Fixes in grid generation for pedantic special cases when one or both
[sgt/puzzles] / pattern.c
1 /*
2 * pattern.c: the pattern-reconstruction game known as `nonograms'.
3 *
4 * TODO before checkin:
5 *
6 * - make some sort of stab at number-of-numbers judgment
7 */
8
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include <assert.h>
13 #include <ctype.h>
14 #include <math.h>
15
16 #include "puzzles.h"
17
18 #define max(x,y) ( (x)>(y) ? (x):(y) )
19 #define min(x,y) ( (x)<(y) ? (x):(y) )
20
21 enum {
22 COL_BACKGROUND,
23 COL_EMPTY,
24 COL_FULL,
25 COL_UNKNOWN,
26 COL_GRID,
27 NCOLOURS
28 };
29
30 #define BORDER 18
31 #define TLBORDER(d) ( (d) / 5 + 2 )
32 #define GUTTER 12
33 #define TILE_SIZE 24
34
35 #define FROMCOORD(d, x) \
36 ( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE )
37
38 #define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d)))
39
40 #define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x)))
41
42 struct game_params {
43 int w, h;
44 };
45
46 #define GRID_UNKNOWN 2
47 #define GRID_FULL 1
48 #define GRID_EMPTY 0
49
50 struct game_state {
51 int w, h;
52 unsigned char *grid;
53 int rowsize;
54 int *rowdata, *rowlen;
55 int completed;
56 };
57
58 #define FLASH_TIME 0.13F
59
60 static game_params *default_params(void)
61 {
62 game_params *ret = snew(game_params);
63
64 ret->w = ret->h = 15;
65
66 return ret;
67 }
68
69 static int game_fetch_preset(int i, char **name, game_params **params)
70 {
71 game_params *ret;
72 char str[80];
73 static const struct { int x, y; } values[] = {
74 {10, 10},
75 {15, 15},
76 {20, 20},
77 {25, 25},
78 {30, 30},
79 };
80
81 if (i < 0 || i >= lenof(values))
82 return FALSE;
83
84 ret = snew(game_params);
85 ret->w = values[i].x;
86 ret->h = values[i].y;
87
88 sprintf(str, "%dx%d", ret->w, ret->h);
89
90 *name = dupstr(str);
91 *params = ret;
92 return TRUE;
93 }
94
95 static void free_params(game_params *params)
96 {
97 sfree(params);
98 }
99
100 static game_params *dup_params(game_params *params)
101 {
102 game_params *ret = snew(game_params);
103 *ret = *params; /* structure copy */
104 return ret;
105 }
106
107 static game_params *decode_params(char const *string)
108 {
109 game_params *ret = default_params();
110 char const *p = string;
111
112 ret->w = atoi(p);
113 while (*p && isdigit(*p)) p++;
114 if (*p == 'x') {
115 p++;
116 ret->h = atoi(p);
117 while (*p && isdigit(*p)) p++;
118 } else {
119 ret->h = ret->w;
120 }
121
122 return ret;
123 }
124
125 static char *encode_params(game_params *params)
126 {
127 char ret[400];
128 int len;
129
130 len = sprintf(ret, "%dx%d", params->w, params->h);
131 assert(len < lenof(ret));
132 ret[len] = '\0';
133
134 return dupstr(ret);
135 }
136
137 static config_item *game_configure(game_params *params)
138 {
139 config_item *ret;
140 char buf[80];
141
142 ret = snewn(3, config_item);
143
144 ret[0].name = "Width";
145 ret[0].type = C_STRING;
146 sprintf(buf, "%d", params->w);
147 ret[0].sval = dupstr(buf);
148 ret[0].ival = 0;
149
150 ret[1].name = "Height";
151 ret[1].type = C_STRING;
152 sprintf(buf, "%d", params->h);
153 ret[1].sval = dupstr(buf);
154 ret[1].ival = 0;
155
156 ret[2].name = NULL;
157 ret[2].type = C_END;
158 ret[2].sval = NULL;
159 ret[2].ival = 0;
160
161 return ret;
162 }
163
164 static game_params *custom_params(config_item *cfg)
165 {
166 game_params *ret = snew(game_params);
167
168 ret->w = atoi(cfg[0].sval);
169 ret->h = atoi(cfg[1].sval);
170
171 return ret;
172 }
173
174 static char *validate_params(game_params *params)
175 {
176 if (params->w <= 0 && params->h <= 0)
177 return "Width and height must both be greater than zero";
178 if (params->w <= 0)
179 return "Width must be greater than zero";
180 if (params->h <= 0)
181 return "Height must be greater than zero";
182 return NULL;
183 }
184
185 /* ----------------------------------------------------------------------
186 * Puzzle generation code.
187 *
188 * For this particular puzzle, it seemed important to me to ensure
189 * a unique solution. I do this the brute-force way, by having a
190 * solver algorithm alongside the generator, and repeatedly
191 * generating a random grid until I find one whose solution is
192 * unique. It turns out that this isn't too onerous on a modern PC
193 * provided you keep grid size below around 30. Any offers of
194 * better algorithms, however, will be very gratefully received.
195 *
196 * Another annoyance of this approach is that it limits the
197 * available puzzles to those solvable by the algorithm I've used.
198 * My algorithm only ever considers a single row or column at any
199 * one time, which means it's incapable of solving the following
200 * difficult example (found by Bella Image around 1995/6, when she
201 * and I were both doing maths degrees):
202 *
203 * 2 1 2 1
204 *
205 * +--+--+--+--+
206 * 1 1 | | | | |
207 * +--+--+--+--+
208 * 2 | | | | |
209 * +--+--+--+--+
210 * 1 | | | | |
211 * +--+--+--+--+
212 * 1 | | | | |
213 * +--+--+--+--+
214 *
215 * Obviously this cannot be solved by a one-row-or-column-at-a-time
216 * algorithm (it would require at least one row or column reading
217 * `2 1', `1 2', `3' or `4' to get started). However, it can be
218 * proved to have a unique solution: if the top left square were
219 * empty, then the only option for the top row would be to fill the
220 * two squares in the 1 columns, which would imply the squares
221 * below those were empty, leaving no place for the 2 in the second
222 * row. Contradiction. Hence the top left square is full, and the
223 * unique solution follows easily from that starting point.
224 *
225 * (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case
226 * it's useful to anyone.)
227 */
228
229 static int float_compare(const void *av, const void *bv)
230 {
231 const float *a = (const float *)av;
232 const float *b = (const float *)bv;
233 if (*a < *b)
234 return -1;
235 else if (*a > *b)
236 return +1;
237 else
238 return 0;
239 }
240
241 static void generate(random_state *rs, int w, int h, unsigned char *retgrid)
242 {
243 float *fgrid;
244 float *fgrid2;
245 int step, i, j;
246 float threshold;
247
248 fgrid = snewn(w*h, float);
249
250 for (i = 0; i < h; i++) {
251 for (j = 0; j < w; j++) {
252 fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F;
253 }
254 }
255
256 /*
257 * The above gives a completely random splattering of black and
258 * white cells. We want to gently bias this in favour of _some_
259 * reasonably thick areas of white and black, while retaining
260 * some randomness and fine detail.
261 *
262 * So we evolve the starting grid using a cellular automaton.
263 * Currently, I'm doing something very simple indeed, which is
264 * to set each square to the average of the surrounding nine
265 * cells (or the average of fewer, if we're on a corner).
266 */
267 for (step = 0; step < 1; step++) {
268 fgrid2 = snewn(w*h, float);
269
270 for (i = 0; i < h; i++) {
271 for (j = 0; j < w; j++) {
272 float sx, xbar;
273 int n, p, q;
274
275 /*
276 * Compute the average of the surrounding cells.
277 */
278 n = 0;
279 sx = 0.F;
280 for (p = -1; p <= +1; p++) {
281 for (q = -1; q <= +1; q++) {
282 if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w)
283 continue;
284 /*
285 * An additional special case not mentioned
286 * above: if a grid dimension is 2xn then
287 * we do not average across that dimension
288 * at all. Otherwise a 2x2 grid would
289 * contain four identical squares.
290 */
291 if ((h==2 && p!=0) || (w==2 && q!=0))
292 continue;
293 n++;
294 sx += fgrid[(i+p)*w+(j+q)];
295 }
296 }
297 xbar = sx / n;
298
299 fgrid2[i*w+j] = xbar;
300 }
301 }
302
303 sfree(fgrid);
304 fgrid = fgrid2;
305 }
306
307 fgrid2 = snewn(w*h, float);
308 memcpy(fgrid2, fgrid, w*h*sizeof(float));
309 qsort(fgrid2, w*h, sizeof(float), float_compare);
310 threshold = fgrid2[w*h/2];
311 sfree(fgrid2);
312
313 for (i = 0; i < h; i++) {
314 for (j = 0; j < w; j++) {
315 retgrid[i*w+j] = (fgrid[i*w+j] >= threshold ? GRID_FULL :
316 GRID_EMPTY);
317 }
318 }
319
320 sfree(fgrid);
321 }
322
323 static int compute_rowdata(int *ret, unsigned char *start, int len, int step)
324 {
325 int i, n;
326
327 n = 0;
328
329 for (i = 0; i < len; i++) {
330 if (start[i*step] == GRID_FULL) {
331 int runlen = 1;
332 while (i+runlen < len && start[(i+runlen)*step] == GRID_FULL)
333 runlen++;
334 ret[n++] = runlen;
335 i += runlen;
336 }
337
338 if (i < len && start[i*step] == GRID_UNKNOWN)
339 return -1;
340 }
341
342 return n;
343 }
344
345 #define UNKNOWN 0
346 #define BLOCK 1
347 #define DOT 2
348 #define STILL_UNKNOWN 3
349
350 static void do_recurse(unsigned char *known, unsigned char *deduced,
351 unsigned char *row, int *data, int len,
352 int freespace, int ndone, int lowest)
353 {
354 int i, j, k;
355
356 if (data[ndone]) {
357 for (i=0; i<=freespace; i++) {
358 j = lowest;
359 for (k=0; k<i; k++) row[j++] = DOT;
360 for (k=0; k<data[ndone]; k++) row[j++] = BLOCK;
361 if (j < len) row[j++] = DOT;
362 do_recurse(known, deduced, row, data, len,
363 freespace-i, ndone+1, j);
364 }
365 } else {
366 for (i=lowest; i<len; i++)
367 row[i] = DOT;
368 for (i=0; i<len; i++)
369 if (known[i] && known[i] != row[i])
370 return;
371 for (i=0; i<len; i++)
372 deduced[i] |= row[i];
373 }
374 }
375
376 static int do_row(unsigned char *known, unsigned char *deduced,
377 unsigned char *row,
378 unsigned char *start, int len, int step, int *data)
379 {
380 int rowlen, i, freespace, done_any;
381
382 freespace = len+1;
383 for (rowlen = 0; data[rowlen]; rowlen++)
384 freespace -= data[rowlen]+1;
385
386 for (i = 0; i < len; i++) {
387 known[i] = start[i*step];
388 deduced[i] = 0;
389 }
390
391 do_recurse(known, deduced, row, data, len, freespace, 0, 0);
392 done_any = FALSE;
393 for (i=0; i<len; i++)
394 if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) {
395 start[i*step] = deduced[i];
396 done_any = TRUE;
397 }
398 return done_any;
399 }
400
401 static unsigned char *generate_soluble(random_state *rs, int w, int h)
402 {
403 int i, j, done_any, ok, ntries, max;
404 unsigned char *grid, *matrix, *workspace;
405 int *rowdata;
406
407 grid = snewn(w*h, unsigned char);
408 matrix = snewn(w*h, unsigned char);
409 max = max(w, h);
410 workspace = snewn(max*3, unsigned char);
411 rowdata = snewn(max+1, int);
412
413 ntries = 0;
414
415 do {
416 ntries++;
417
418 generate(rs, w, h, grid);
419
420 memset(matrix, 0, w*h);
421
422 do {
423 done_any = 0;
424 for (i=0; i<h; i++) {
425 rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
426 done_any |= do_row(workspace, workspace+max, workspace+2*max,
427 matrix+i*w, w, 1, rowdata);
428 }
429 for (i=0; i<w; i++) {
430 rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
431 done_any |= do_row(workspace, workspace+max, workspace+2*max,
432 matrix+i, h, w, rowdata);
433 }
434 } while (done_any);
435
436 ok = TRUE;
437 for (i=0; i<h; i++) {
438 for (j=0; j<w; j++) {
439 if (matrix[i*w+j] == UNKNOWN)
440 ok = FALSE;
441 }
442 }
443 } while (!ok);
444
445 sfree(matrix);
446 sfree(workspace);
447 sfree(rowdata);
448 return grid;
449 }
450
451 static char *new_game_seed(game_params *params, random_state *rs)
452 {
453 unsigned char *grid;
454 int i, j, max, rowlen, *rowdata;
455 char intbuf[80], *seed;
456 int seedlen, seedpos;
457
458 grid = generate_soluble(rs, params->w, params->h);
459 max = max(params->w, params->h);
460 rowdata = snewn(max, int);
461
462 /*
463 * Seed is a slash-separated list of row contents; each row
464 * contents section is a dot-separated list of integers. Row
465 * contents are listed in the order (columns left to right,
466 * then rows top to bottom).
467 *
468 * Simplest way to handle memory allocation is to make two
469 * passes, first computing the seed size and then writing it
470 * out.
471 */
472 seedlen = 0;
473 for (i = 0; i < params->w + params->h; i++) {
474 if (i < params->w)
475 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
476 else
477 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
478 params->w, 1);
479 if (rowlen > 0) {
480 for (j = 0; j < rowlen; j++) {
481 seedlen += 1 + sprintf(intbuf, "%d", rowdata[j]);
482 }
483 } else {
484 seedlen++;
485 }
486 }
487 seed = snewn(seedlen, char);
488 seedpos = 0;
489 for (i = 0; i < params->w + params->h; i++) {
490 if (i < params->w)
491 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
492 else
493 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
494 params->w, 1);
495 if (rowlen > 0) {
496 for (j = 0; j < rowlen; j++) {
497 int len = sprintf(seed+seedpos, "%d", rowdata[j]);
498 if (j+1 < rowlen)
499 seed[seedpos + len] = '.';
500 else
501 seed[seedpos + len] = '/';
502 seedpos += len+1;
503 }
504 } else {
505 seed[seedpos++] = '/';
506 }
507 }
508 assert(seedpos == seedlen);
509 assert(seed[seedlen-1] == '/');
510 seed[seedlen-1] = '\0';
511 sfree(rowdata);
512 return seed;
513 }
514
515 static char *validate_seed(game_params *params, char *seed)
516 {
517 int i, n, rowspace;
518 char *p;
519
520 for (i = 0; i < params->w + params->h; i++) {
521 if (i < params->w)
522 rowspace = params->h + 1;
523 else
524 rowspace = params->w + 1;
525
526 if (*seed && isdigit((unsigned char)*seed)) {
527 do {
528 p = seed;
529 while (seed && isdigit((unsigned char)*seed)) seed++;
530 n = atoi(p);
531 rowspace -= n+1;
532
533 if (rowspace < 0) {
534 if (i < params->w)
535 return "at least one column contains more numbers than will fit";
536 else
537 return "at least one row contains more numbers than will fit";
538 }
539 } while (*seed++ == '.');
540 } else {
541 seed++; /* expect a slash immediately */
542 }
543
544 if (seed[-1] == '/') {
545 if (i+1 == params->w + params->h)
546 return "too many row/column specifications";
547 } else if (seed[-1] == '\0') {
548 if (i+1 < params->w + params->h)
549 return "too few row/column specifications";
550 } else
551 return "unrecognised character in game specification";
552 }
553
554 return NULL;
555 }
556
557 static game_state *new_game(game_params *params, char *seed)
558 {
559 int i;
560 char *p;
561 game_state *state = snew(game_state);
562
563 state->w = params->w;
564 state->h = params->h;
565
566 state->grid = snewn(state->w * state->h, unsigned char);
567 memset(state->grid, GRID_UNKNOWN, state->w * state->h);
568
569 state->rowsize = max(state->w, state->h);
570 state->rowdata = snewn(state->rowsize * (state->w + state->h), int);
571 state->rowlen = snewn(state->w + state->h, int);
572
573 state->completed = FALSE;
574
575 for (i = 0; i < params->w + params->h; i++) {
576 state->rowlen[i] = 0;
577 if (*seed && isdigit((unsigned char)*seed)) {
578 do {
579 p = seed;
580 while (seed && isdigit((unsigned char)*seed)) seed++;
581 state->rowdata[state->rowsize * i + state->rowlen[i]++] =
582 atoi(p);
583 } while (*seed++ == '.');
584 } else {
585 seed++; /* expect a slash immediately */
586 }
587 }
588
589 return state;
590 }
591
592 static game_state *dup_game(game_state *state)
593 {
594 game_state *ret = snew(game_state);
595
596 ret->w = state->w;
597 ret->h = state->h;
598
599 ret->grid = snewn(ret->w * ret->h, unsigned char);
600 memcpy(ret->grid, state->grid, ret->w * ret->h);
601
602 ret->rowsize = state->rowsize;
603 ret->rowdata = snewn(ret->rowsize * (ret->w + ret->h), int);
604 ret->rowlen = snewn(ret->w + ret->h, int);
605 memcpy(ret->rowdata, state->rowdata,
606 ret->rowsize * (ret->w + ret->h) * sizeof(int));
607 memcpy(ret->rowlen, state->rowlen,
608 (ret->w + ret->h) * sizeof(int));
609
610 ret->completed = state->completed;
611
612 return ret;
613 }
614
615 static void free_game(game_state *state)
616 {
617 sfree(state->rowdata);
618 sfree(state->rowlen);
619 sfree(state->grid);
620 sfree(state);
621 }
622
623 struct game_ui {
624 int dragging;
625 int drag_start_x;
626 int drag_start_y;
627 int drag_end_x;
628 int drag_end_y;
629 int drag, release, state;
630 };
631
632 static game_ui *new_ui(game_state *state)
633 {
634 game_ui *ret;
635
636 ret = snew(game_ui);
637 ret->dragging = FALSE;
638
639 return ret;
640 }
641
642 static void free_ui(game_ui *ui)
643 {
644 sfree(ui);
645 }
646
647 static game_state *make_move(game_state *from, game_ui *ui,
648 int x, int y, int button)
649 {
650 game_state *ret;
651
652 x = FROMCOORD(from->w, x);
653 y = FROMCOORD(from->h, y);
654
655 if (x >= 0 && x < from->w && y >= 0 && y < from->h &&
656 (button == LEFT_BUTTON || button == RIGHT_BUTTON ||
657 button == MIDDLE_BUTTON)) {
658
659 ui->dragging = TRUE;
660
661 if (button == LEFT_BUTTON) {
662 ui->drag = LEFT_DRAG;
663 ui->release = LEFT_RELEASE;
664 ui->state = GRID_FULL;
665 } else if (button == RIGHT_BUTTON) {
666 ui->drag = RIGHT_DRAG;
667 ui->release = RIGHT_RELEASE;
668 ui->state = GRID_EMPTY;
669 } else /* if (button == MIDDLE_BUTTON) */ {
670 ui->drag = MIDDLE_DRAG;
671 ui->release = MIDDLE_RELEASE;
672 ui->state = GRID_UNKNOWN;
673 }
674
675 ui->drag_start_x = ui->drag_end_x = x;
676 ui->drag_start_y = ui->drag_end_y = y;
677
678 return from; /* UI activity occurred */
679 }
680
681 if (ui->dragging && button == ui->drag) {
682 /*
683 * There doesn't seem much point in allowing a rectangle
684 * drag; people will generally only want to drag a single
685 * horizontal or vertical line, so we make that easy by
686 * snapping to it.
687 *
688 * Exception: if we're _middle_-button dragging to tag
689 * things as UNKNOWN, we may well want to trash an entire
690 * area and start over!
691 */
692 if (ui->state != GRID_UNKNOWN) {
693 if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y))
694 y = ui->drag_start_y;
695 else
696 x = ui->drag_start_x;
697 }
698
699 if (x < 0) x = 0;
700 if (y < 0) y = 0;
701 if (x >= from->w) x = from->w - 1;
702 if (y >= from->h) y = from->h - 1;
703
704 ui->drag_end_x = x;
705 ui->drag_end_y = y;
706
707 return from; /* UI activity occurred */
708 }
709
710 if (ui->dragging && button == ui->release) {
711 int x1, x2, y1, y2, xx, yy;
712 int move_needed = FALSE;
713
714 x1 = min(ui->drag_start_x, ui->drag_end_x);
715 x2 = max(ui->drag_start_x, ui->drag_end_x);
716 y1 = min(ui->drag_start_y, ui->drag_end_y);
717 y2 = max(ui->drag_start_y, ui->drag_end_y);
718
719 for (yy = y1; yy <= y2; yy++)
720 for (xx = x1; xx <= x2; xx++)
721 if (from->grid[yy * from->w + xx] != ui->state)
722 move_needed = TRUE;
723
724 ui->dragging = FALSE;
725
726 if (move_needed) {
727 ret = dup_game(from);
728 for (yy = y1; yy <= y2; yy++)
729 for (xx = x1; xx <= x2; xx++)
730 ret->grid[yy * ret->w + xx] = ui->state;
731
732 /*
733 * An actual change, so check to see if we've completed
734 * the game.
735 */
736 if (!ret->completed) {
737 int *rowdata = snewn(ret->rowsize, int);
738 int i, len;
739
740 ret->completed = TRUE;
741
742 for (i=0; i<ret->w; i++) {
743 len = compute_rowdata(rowdata,
744 ret->grid+i, ret->h, ret->w);
745 if (len != ret->rowlen[i] ||
746 memcmp(ret->rowdata+i*ret->rowsize, rowdata,
747 len * sizeof(int))) {
748 ret->completed = FALSE;
749 break;
750 }
751 }
752 for (i=0; i<ret->h; i++) {
753 len = compute_rowdata(rowdata,
754 ret->grid+i*ret->w, ret->w, 1);
755 if (len != ret->rowlen[i+ret->w] ||
756 memcmp(ret->rowdata+(i+ret->w)*ret->rowsize, rowdata,
757 len * sizeof(int))) {
758 ret->completed = FALSE;
759 break;
760 }
761 }
762
763 sfree(rowdata);
764 }
765
766 return ret;
767 } else
768 return from; /* UI activity occurred */
769 }
770
771 return NULL;
772 }
773
774 /* ----------------------------------------------------------------------
775 * Drawing routines.
776 */
777
778 struct game_drawstate {
779 int started;
780 int w, h;
781 unsigned char *visible;
782 };
783
784 static void game_size(game_params *params, int *x, int *y)
785 {
786 *x = SIZE(params->w);
787 *y = SIZE(params->h);
788 }
789
790 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
791 {
792 float *ret = snewn(3 * NCOLOURS, float);
793
794 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
795
796 ret[COL_GRID * 3 + 0] = 0.3F;
797 ret[COL_GRID * 3 + 1] = 0.3F;
798 ret[COL_GRID * 3 + 2] = 0.3F;
799
800 ret[COL_UNKNOWN * 3 + 0] = 0.5F;
801 ret[COL_UNKNOWN * 3 + 1] = 0.5F;
802 ret[COL_UNKNOWN * 3 + 2] = 0.5F;
803
804 ret[COL_FULL * 3 + 0] = 0.0F;
805 ret[COL_FULL * 3 + 1] = 0.0F;
806 ret[COL_FULL * 3 + 2] = 0.0F;
807
808 ret[COL_EMPTY * 3 + 0] = 1.0F;
809 ret[COL_EMPTY * 3 + 1] = 1.0F;
810 ret[COL_EMPTY * 3 + 2] = 1.0F;
811
812 *ncolours = NCOLOURS;
813 return ret;
814 }
815
816 static game_drawstate *game_new_drawstate(game_state *state)
817 {
818 struct game_drawstate *ds = snew(struct game_drawstate);
819
820 ds->started = FALSE;
821 ds->w = state->w;
822 ds->h = state->h;
823 ds->visible = snewn(ds->w * ds->h, unsigned char);
824 memset(ds->visible, 255, ds->w * ds->h);
825
826 return ds;
827 }
828
829 static void game_free_drawstate(game_drawstate *ds)
830 {
831 sfree(ds->visible);
832 sfree(ds);
833 }
834
835 static void grid_square(frontend *fe, game_drawstate *ds,
836 int y, int x, int state)
837 {
838 int xl, xr, yt, yb;
839
840 draw_rect(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
841 TILE_SIZE, TILE_SIZE, COL_GRID);
842
843 xl = (x % 5 == 0 ? 1 : 0);
844 yt = (y % 5 == 0 ? 1 : 0);
845 xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0);
846 yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0);
847
848 draw_rect(fe, TOCOORD(ds->w, x) + 1 + xl, TOCOORD(ds->h, y) + 1 + yt,
849 TILE_SIZE - xl - xr - 1, TILE_SIZE - yt - yb - 1,
850 (state == GRID_FULL ? COL_FULL :
851 state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN));
852
853 draw_update(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
854 TILE_SIZE, TILE_SIZE);
855 }
856
857 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
858 game_state *state, int dir, game_ui *ui,
859 float animtime, float flashtime)
860 {
861 int i, j;
862 int x1, x2, y1, y2;
863
864 if (!ds->started) {
865 /*
866 * The initial contents of the window are not guaranteed
867 * and can vary with front ends. To be on the safe side,
868 * all games should start by drawing a big background-
869 * colour rectangle covering the whole window.
870 */
871 draw_rect(fe, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND);
872
873 /*
874 * Draw the numbers.
875 */
876 for (i = 0; i < ds->w + ds->h; i++) {
877 int rowlen = state->rowlen[i];
878 int *rowdata = state->rowdata + state->rowsize * i;
879 int nfit;
880
881 /*
882 * Normally I space the numbers out by the same
883 * distance as the tile size. However, if there are
884 * more numbers than available spaces, I have to squash
885 * them up a bit.
886 */
887 nfit = max(rowlen, TLBORDER(ds->h))-1;
888 assert(nfit > 0);
889
890 for (j = 0; j < rowlen; j++) {
891 int x, y;
892 char str[80];
893
894 if (i < ds->w) {
895 x = TOCOORD(ds->w, i);
896 y = BORDER + TILE_SIZE * (TLBORDER(ds->h)-1);
897 y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit;
898 } else {
899 y = TOCOORD(ds->h, i - ds->w);
900 x = BORDER + TILE_SIZE * (TLBORDER(ds->w)-1);
901 x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit;
902 }
903
904 sprintf(str, "%d", rowdata[j]);
905 draw_text(fe, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE,
906 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE,
907 COL_FULL, str); /* FIXME: COL_TEXT */
908 }
909 }
910
911 /*
912 * Draw the grid outline.
913 */
914 draw_rect(fe, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1,
915 ds->w * TILE_SIZE + 3, ds->h * TILE_SIZE + 3,
916 COL_GRID);
917
918 ds->started = TRUE;
919
920 draw_update(fe, 0, 0, SIZE(ds->w), SIZE(ds->h));
921 }
922
923 if (ui->dragging) {
924 x1 = min(ui->drag_start_x, ui->drag_end_x);
925 x2 = max(ui->drag_start_x, ui->drag_end_x);
926 y1 = min(ui->drag_start_y, ui->drag_end_y);
927 y2 = max(ui->drag_start_y, ui->drag_end_y);
928 } else {
929 x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */
930 }
931
932 /*
933 * Now draw any grid squares which have changed since last
934 * redraw.
935 */
936 for (i = 0; i < ds->h; i++) {
937 for (j = 0; j < ds->w; j++) {
938 int val;
939
940 /*
941 * Work out what state this square should be drawn in,
942 * taking any current drag operation into account.
943 */
944 if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2)
945 val = ui->state;
946 else
947 val = state->grid[i * state->w + j];
948
949 /*
950 * Briefly invert everything twice during a completion
951 * flash.
952 */
953 if (flashtime > 0 &&
954 (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) &&
955 val != GRID_UNKNOWN)
956 val = (GRID_FULL ^ GRID_EMPTY) ^ val;
957
958 if (ds->visible[i * ds->w + j] != val) {
959 grid_square(fe, ds, i, j, val);
960 ds->visible[i * ds->w + j] = val;
961 }
962 }
963 }
964 }
965
966 static float game_anim_length(game_state *oldstate,
967 game_state *newstate, int dir)
968 {
969 return 0.0F;
970 }
971
972 static float game_flash_length(game_state *oldstate,
973 game_state *newstate, int dir)
974 {
975 if (!oldstate->completed && newstate->completed)
976 return FLASH_TIME;
977 return 0.0F;
978 }
979
980 static int game_wants_statusbar(void)
981 {
982 return FALSE;
983 }
984
985 #ifdef COMBINED
986 #define thegame pattern
987 #endif
988
989 const struct game thegame = {
990 "Pattern", "games.pattern", TRUE,
991 default_params,
992 game_fetch_preset,
993 decode_params,
994 encode_params,
995 free_params,
996 dup_params,
997 game_configure,
998 custom_params,
999 validate_params,
1000 new_game_seed,
1001 validate_seed,
1002 new_game,
1003 dup_game,
1004 free_game,
1005 new_ui,
1006 free_ui,
1007 make_move,
1008 game_size,
1009 game_colours,
1010 game_new_drawstate,
1011 game_free_drawstate,
1012 game_redraw,
1013 game_anim_length,
1014 game_flash_length,
1015 game_wants_statusbar,
1016 };