Fixed decoding bug for dual grids
[sgt/puzzles] / pattern.c
1 /*
2 * pattern.c: the pattern-reconstruction game known as `nonograms'.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13
14 enum {
15 COL_BACKGROUND,
16 COL_EMPTY,
17 COL_FULL,
18 COL_TEXT,
19 COL_UNKNOWN,
20 COL_GRID,
21 COL_CURSOR,
22 NCOLOURS
23 };
24
25 #define PREFERRED_TILE_SIZE 24
26 #define TILE_SIZE (ds->tilesize)
27 #define BORDER (3 * TILE_SIZE / 4)
28 #define TLBORDER(d) ( (d) / 5 + 2 )
29 #define GUTTER (TILE_SIZE / 2)
30
31 #define FROMCOORD(d, x) \
32 ( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE )
33
34 #define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d)))
35 #define GETTILESIZE(d, w) ((double)w / (2.0 + (double)TLBORDER(d) + (double)(d)))
36
37 #define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x)))
38
39 struct game_params {
40 int w, h;
41 };
42
43 #define GRID_UNKNOWN 2
44 #define GRID_FULL 1
45 #define GRID_EMPTY 0
46
47 struct game_state {
48 int w, h;
49 unsigned char *grid;
50 int rowsize;
51 int *rowdata, *rowlen;
52 int completed, cheated;
53 };
54
55 #define FLASH_TIME 0.13F
56
57 static game_params *default_params(void)
58 {
59 game_params *ret = snew(game_params);
60
61 ret->w = ret->h = 15;
62
63 return ret;
64 }
65
66 static const struct game_params pattern_presets[] = {
67 {10, 10},
68 {15, 15},
69 {20, 20},
70 #ifndef SLOW_SYSTEM
71 {25, 25},
72 {30, 30},
73 #endif
74 };
75
76 static int game_fetch_preset(int i, char **name, game_params **params)
77 {
78 game_params *ret;
79 char str[80];
80
81 if (i < 0 || i >= lenof(pattern_presets))
82 return FALSE;
83
84 ret = snew(game_params);
85 *ret = pattern_presets[i];
86
87 sprintf(str, "%dx%d", ret->w, ret->h);
88
89 *name = dupstr(str);
90 *params = ret;
91 return TRUE;
92 }
93
94 static void free_params(game_params *params)
95 {
96 sfree(params);
97 }
98
99 static game_params *dup_params(game_params *params)
100 {
101 game_params *ret = snew(game_params);
102 *ret = *params; /* structure copy */
103 return ret;
104 }
105
106 static void decode_params(game_params *ret, char const *string)
107 {
108 char const *p = string;
109
110 ret->w = atoi(p);
111 while (*p && isdigit((unsigned char)*p)) p++;
112 if (*p == 'x') {
113 p++;
114 ret->h = atoi(p);
115 while (*p && isdigit((unsigned char)*p)) p++;
116 } else {
117 ret->h = ret->w;
118 }
119 }
120
121 static char *encode_params(game_params *params, int full)
122 {
123 char ret[400];
124 int len;
125
126 len = sprintf(ret, "%dx%d", params->w, params->h);
127 assert(len < lenof(ret));
128 ret[len] = '\0';
129
130 return dupstr(ret);
131 }
132
133 static config_item *game_configure(game_params *params)
134 {
135 config_item *ret;
136 char buf[80];
137
138 ret = snewn(3, config_item);
139
140 ret[0].name = "Width";
141 ret[0].type = C_STRING;
142 sprintf(buf, "%d", params->w);
143 ret[0].sval = dupstr(buf);
144 ret[0].ival = 0;
145
146 ret[1].name = "Height";
147 ret[1].type = C_STRING;
148 sprintf(buf, "%d", params->h);
149 ret[1].sval = dupstr(buf);
150 ret[1].ival = 0;
151
152 ret[2].name = NULL;
153 ret[2].type = C_END;
154 ret[2].sval = NULL;
155 ret[2].ival = 0;
156
157 return ret;
158 }
159
160 static game_params *custom_params(config_item *cfg)
161 {
162 game_params *ret = snew(game_params);
163
164 ret->w = atoi(cfg[0].sval);
165 ret->h = atoi(cfg[1].sval);
166
167 return ret;
168 }
169
170 static char *validate_params(game_params *params, int full)
171 {
172 if (params->w <= 0 || params->h <= 0)
173 return "Width and height must both be greater than zero";
174 return NULL;
175 }
176
177 /* ----------------------------------------------------------------------
178 * Puzzle generation code.
179 *
180 * For this particular puzzle, it seemed important to me to ensure
181 * a unique solution. I do this the brute-force way, by having a
182 * solver algorithm alongside the generator, and repeatedly
183 * generating a random grid until I find one whose solution is
184 * unique. It turns out that this isn't too onerous on a modern PC
185 * provided you keep grid size below around 30. Any offers of
186 * better algorithms, however, will be very gratefully received.
187 *
188 * Another annoyance of this approach is that it limits the
189 * available puzzles to those solvable by the algorithm I've used.
190 * My algorithm only ever considers a single row or column at any
191 * one time, which means it's incapable of solving the following
192 * difficult example (found by Bella Image around 1995/6, when she
193 * and I were both doing maths degrees):
194 *
195 * 2 1 2 1
196 *
197 * +--+--+--+--+
198 * 1 1 | | | | |
199 * +--+--+--+--+
200 * 2 | | | | |
201 * +--+--+--+--+
202 * 1 | | | | |
203 * +--+--+--+--+
204 * 1 | | | | |
205 * +--+--+--+--+
206 *
207 * Obviously this cannot be solved by a one-row-or-column-at-a-time
208 * algorithm (it would require at least one row or column reading
209 * `2 1', `1 2', `3' or `4' to get started). However, it can be
210 * proved to have a unique solution: if the top left square were
211 * empty, then the only option for the top row would be to fill the
212 * two squares in the 1 columns, which would imply the squares
213 * below those were empty, leaving no place for the 2 in the second
214 * row. Contradiction. Hence the top left square is full, and the
215 * unique solution follows easily from that starting point.
216 *
217 * (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case
218 * it's useful to anyone.)
219 */
220
221 static int float_compare(const void *av, const void *bv)
222 {
223 const float *a = (const float *)av;
224 const float *b = (const float *)bv;
225 if (*a < *b)
226 return -1;
227 else if (*a > *b)
228 return +1;
229 else
230 return 0;
231 }
232
233 static void generate(random_state *rs, int w, int h, unsigned char *retgrid)
234 {
235 float *fgrid;
236 float *fgrid2;
237 int step, i, j;
238 float threshold;
239
240 fgrid = snewn(w*h, float);
241
242 for (i = 0; i < h; i++) {
243 for (j = 0; j < w; j++) {
244 fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F;
245 }
246 }
247
248 /*
249 * The above gives a completely random splattering of black and
250 * white cells. We want to gently bias this in favour of _some_
251 * reasonably thick areas of white and black, while retaining
252 * some randomness and fine detail.
253 *
254 * So we evolve the starting grid using a cellular automaton.
255 * Currently, I'm doing something very simple indeed, which is
256 * to set each square to the average of the surrounding nine
257 * cells (or the average of fewer, if we're on a corner).
258 */
259 for (step = 0; step < 1; step++) {
260 fgrid2 = snewn(w*h, float);
261
262 for (i = 0; i < h; i++) {
263 for (j = 0; j < w; j++) {
264 float sx, xbar;
265 int n, p, q;
266
267 /*
268 * Compute the average of the surrounding cells.
269 */
270 n = 0;
271 sx = 0.F;
272 for (p = -1; p <= +1; p++) {
273 for (q = -1; q <= +1; q++) {
274 if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w)
275 continue;
276 /*
277 * An additional special case not mentioned
278 * above: if a grid dimension is 2xn then
279 * we do not average across that dimension
280 * at all. Otherwise a 2x2 grid would
281 * contain four identical squares.
282 */
283 if ((h==2 && p!=0) || (w==2 && q!=0))
284 continue;
285 n++;
286 sx += fgrid[(i+p)*w+(j+q)];
287 }
288 }
289 xbar = sx / n;
290
291 fgrid2[i*w+j] = xbar;
292 }
293 }
294
295 sfree(fgrid);
296 fgrid = fgrid2;
297 }
298
299 fgrid2 = snewn(w*h, float);
300 memcpy(fgrid2, fgrid, w*h*sizeof(float));
301 qsort(fgrid2, w*h, sizeof(float), float_compare);
302 threshold = fgrid2[w*h/2];
303 sfree(fgrid2);
304
305 for (i = 0; i < h; i++) {
306 for (j = 0; j < w; j++) {
307 retgrid[i*w+j] = (fgrid[i*w+j] >= threshold ? GRID_FULL :
308 GRID_EMPTY);
309 }
310 }
311
312 sfree(fgrid);
313 }
314
315 static int compute_rowdata(int *ret, unsigned char *start, int len, int step)
316 {
317 int i, n;
318
319 n = 0;
320
321 for (i = 0; i < len; i++) {
322 if (start[i*step] == GRID_FULL) {
323 int runlen = 1;
324 while (i+runlen < len && start[(i+runlen)*step] == GRID_FULL)
325 runlen++;
326 ret[n++] = runlen;
327 i += runlen;
328 }
329
330 if (i < len && start[i*step] == GRID_UNKNOWN)
331 return -1;
332 }
333
334 return n;
335 }
336
337 #define UNKNOWN 0
338 #define BLOCK 1
339 #define DOT 2
340 #define STILL_UNKNOWN 3
341
342 #ifdef STANDALONE_SOLVER
343 int verbose = FALSE;
344 #endif
345
346 static void do_recurse(unsigned char *known, unsigned char *deduced,
347 unsigned char *row, int *data, int len,
348 int freespace, int ndone, int lowest)
349 {
350 int i, j, k;
351
352 if (data[ndone]) {
353 for (i=0; i<=freespace; i++) {
354 j = lowest;
355 for (k=0; k<i; k++) row[j++] = DOT;
356 for (k=0; k<data[ndone]; k++) row[j++] = BLOCK;
357 if (j < len) row[j++] = DOT;
358 do_recurse(known, deduced, row, data, len,
359 freespace-i, ndone+1, j);
360 }
361 } else {
362 for (i=lowest; i<len; i++)
363 row[i] = DOT;
364 for (i=0; i<len; i++)
365 if (known[i] && known[i] != row[i])
366 return;
367 for (i=0; i<len; i++)
368 deduced[i] |= row[i];
369 }
370 }
371
372 static int do_row(unsigned char *known, unsigned char *deduced,
373 unsigned char *row,
374 unsigned char *start, int len, int step, int *data
375 #ifdef STANDALONE_SOLVER
376 , const char *rowcol, int index, int cluewid
377 #endif
378 )
379 {
380 int rowlen, i, freespace, done_any;
381
382 freespace = len+1;
383 for (rowlen = 0; data[rowlen]; rowlen++)
384 freespace -= data[rowlen]+1;
385
386 for (i = 0; i < len; i++) {
387 known[i] = start[i*step];
388 deduced[i] = 0;
389 }
390
391 do_recurse(known, deduced, row, data, len, freespace, 0, 0);
392 done_any = FALSE;
393 for (i=0; i<len; i++)
394 if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) {
395 start[i*step] = deduced[i];
396 done_any = TRUE;
397 }
398 #ifdef STANDALONE_SOLVER
399 if (verbose && done_any) {
400 char buf[80];
401 int thiscluewid;
402 printf("%s %2d: [", rowcol, index);
403 for (thiscluewid = -1, i = 0; data[i]; i++)
404 thiscluewid += sprintf(buf, " %d", data[i]);
405 printf("%*s", cluewid - thiscluewid, "");
406 for (i = 0; data[i]; i++)
407 printf(" %d", data[i]);
408 printf(" ] ");
409 for (i = 0; i < len; i++)
410 putchar(known[i] == BLOCK ? '#' :
411 known[i] == DOT ? '.' : '?');
412 printf(" -> ");
413 for (i = 0; i < len; i++)
414 putchar(start[i*step] == BLOCK ? '#' :
415 start[i*step] == DOT ? '.' : '?');
416 putchar('\n');
417 }
418 #endif
419 return done_any;
420 }
421
422 static unsigned char *generate_soluble(random_state *rs, int w, int h)
423 {
424 int i, j, done_any, ok, ntries, max;
425 unsigned char *grid, *matrix, *workspace;
426 int *rowdata;
427
428 grid = snewn(w*h, unsigned char);
429 matrix = snewn(w*h, unsigned char);
430 max = max(w, h);
431 workspace = snewn(max*3, unsigned char);
432 rowdata = snewn(max+1, int);
433
434 ntries = 0;
435
436 do {
437 ntries++;
438
439 generate(rs, w, h, grid);
440
441 /*
442 * The game is a bit too easy if any row or column is
443 * completely black or completely white. An exception is
444 * made for rows/columns that are under 3 squares,
445 * otherwise nothing will ever be successfully generated.
446 */
447 ok = TRUE;
448 if (w > 2) {
449 for (i = 0; i < h; i++) {
450 int colours = 0;
451 for (j = 0; j < w; j++)
452 colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
453 if (colours != 3)
454 ok = FALSE;
455 }
456 }
457 if (h > 2) {
458 for (j = 0; j < w; j++) {
459 int colours = 0;
460 for (i = 0; i < h; i++)
461 colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
462 if (colours != 3)
463 ok = FALSE;
464 }
465 }
466 if (!ok)
467 continue;
468
469 memset(matrix, 0, w*h);
470
471 do {
472 done_any = 0;
473 for (i=0; i<h; i++) {
474 rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
475 done_any |= do_row(workspace, workspace+max, workspace+2*max,
476 matrix+i*w, w, 1, rowdata
477 #ifdef STANDALONE_SOLVER
478 , NULL, 0, 0 /* never do diagnostics here */
479 #endif
480 );
481 }
482 for (i=0; i<w; i++) {
483 rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
484 done_any |= do_row(workspace, workspace+max, workspace+2*max,
485 matrix+i, h, w, rowdata
486 #ifdef STANDALONE_SOLVER
487 , NULL, 0, 0 /* never do diagnostics here */
488 #endif
489 );
490 }
491 } while (done_any);
492
493 ok = TRUE;
494 for (i=0; i<h; i++) {
495 for (j=0; j<w; j++) {
496 if (matrix[i*w+j] == UNKNOWN)
497 ok = FALSE;
498 }
499 }
500 } while (!ok);
501
502 sfree(matrix);
503 sfree(workspace);
504 sfree(rowdata);
505 return grid;
506 }
507
508 static char *new_game_desc(game_params *params, random_state *rs,
509 char **aux, int interactive)
510 {
511 unsigned char *grid;
512 int i, j, max, rowlen, *rowdata;
513 char intbuf[80], *desc;
514 int desclen, descpos;
515
516 grid = generate_soluble(rs, params->w, params->h);
517 max = max(params->w, params->h);
518 rowdata = snewn(max, int);
519
520 /*
521 * Save the solved game in aux.
522 */
523 {
524 char *ai = snewn(params->w * params->h + 2, char);
525
526 /*
527 * String format is exactly the same as a solve move, so we
528 * can just dupstr this in solve_game().
529 */
530
531 ai[0] = 'S';
532
533 for (i = 0; i < params->w * params->h; i++)
534 ai[i+1] = grid[i] ? '1' : '0';
535
536 ai[params->w * params->h + 1] = '\0';
537
538 *aux = ai;
539 }
540
541 /*
542 * Seed is a slash-separated list of row contents; each row
543 * contents section is a dot-separated list of integers. Row
544 * contents are listed in the order (columns left to right,
545 * then rows top to bottom).
546 *
547 * Simplest way to handle memory allocation is to make two
548 * passes, first computing the seed size and then writing it
549 * out.
550 */
551 desclen = 0;
552 for (i = 0; i < params->w + params->h; i++) {
553 if (i < params->w)
554 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
555 else
556 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
557 params->w, 1);
558 if (rowlen > 0) {
559 for (j = 0; j < rowlen; j++) {
560 desclen += 1 + sprintf(intbuf, "%d", rowdata[j]);
561 }
562 } else {
563 desclen++;
564 }
565 }
566 desc = snewn(desclen, char);
567 descpos = 0;
568 for (i = 0; i < params->w + params->h; i++) {
569 if (i < params->w)
570 rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
571 else
572 rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
573 params->w, 1);
574 if (rowlen > 0) {
575 for (j = 0; j < rowlen; j++) {
576 int len = sprintf(desc+descpos, "%d", rowdata[j]);
577 if (j+1 < rowlen)
578 desc[descpos + len] = '.';
579 else
580 desc[descpos + len] = '/';
581 descpos += len+1;
582 }
583 } else {
584 desc[descpos++] = '/';
585 }
586 }
587 assert(descpos == desclen);
588 assert(desc[desclen-1] == '/');
589 desc[desclen-1] = '\0';
590 sfree(rowdata);
591 sfree(grid);
592 return desc;
593 }
594
595 static char *validate_desc(game_params *params, char *desc)
596 {
597 int i, n, rowspace;
598 char *p;
599
600 for (i = 0; i < params->w + params->h; i++) {
601 if (i < params->w)
602 rowspace = params->h + 1;
603 else
604 rowspace = params->w + 1;
605
606 if (*desc && isdigit((unsigned char)*desc)) {
607 do {
608 p = desc;
609 while (*desc && isdigit((unsigned char)*desc)) desc++;
610 n = atoi(p);
611 rowspace -= n+1;
612
613 if (rowspace < 0) {
614 if (i < params->w)
615 return "at least one column contains more numbers than will fit";
616 else
617 return "at least one row contains more numbers than will fit";
618 }
619 } while (*desc++ == '.');
620 } else {
621 desc++; /* expect a slash immediately */
622 }
623
624 if (desc[-1] == '/') {
625 if (i+1 == params->w + params->h)
626 return "too many row/column specifications";
627 } else if (desc[-1] == '\0') {
628 if (i+1 < params->w + params->h)
629 return "too few row/column specifications";
630 } else
631 return "unrecognised character in game specification";
632 }
633
634 return NULL;
635 }
636
637 static game_state *new_game(midend *me, game_params *params, char *desc)
638 {
639 int i;
640 char *p;
641 game_state *state = snew(game_state);
642
643 state->w = params->w;
644 state->h = params->h;
645
646 state->grid = snewn(state->w * state->h, unsigned char);
647 memset(state->grid, GRID_UNKNOWN, state->w * state->h);
648
649 state->rowsize = max(state->w, state->h);
650 state->rowdata = snewn(state->rowsize * (state->w + state->h), int);
651 state->rowlen = snewn(state->w + state->h, int);
652
653 state->completed = state->cheated = FALSE;
654
655 for (i = 0; i < params->w + params->h; i++) {
656 state->rowlen[i] = 0;
657 if (*desc && isdigit((unsigned char)*desc)) {
658 do {
659 p = desc;
660 while (*desc && isdigit((unsigned char)*desc)) desc++;
661 state->rowdata[state->rowsize * i + state->rowlen[i]++] =
662 atoi(p);
663 } while (*desc++ == '.');
664 } else {
665 desc++; /* expect a slash immediately */
666 }
667 }
668
669 return state;
670 }
671
672 static game_state *dup_game(game_state *state)
673 {
674 game_state *ret = snew(game_state);
675
676 ret->w = state->w;
677 ret->h = state->h;
678
679 ret->grid = snewn(ret->w * ret->h, unsigned char);
680 memcpy(ret->grid, state->grid, ret->w * ret->h);
681
682 ret->rowsize = state->rowsize;
683 ret->rowdata = snewn(ret->rowsize * (ret->w + ret->h), int);
684 ret->rowlen = snewn(ret->w + ret->h, int);
685 memcpy(ret->rowdata, state->rowdata,
686 ret->rowsize * (ret->w + ret->h) * sizeof(int));
687 memcpy(ret->rowlen, state->rowlen,
688 (ret->w + ret->h) * sizeof(int));
689
690 ret->completed = state->completed;
691 ret->cheated = state->cheated;
692
693 return ret;
694 }
695
696 static void free_game(game_state *state)
697 {
698 sfree(state->rowdata);
699 sfree(state->rowlen);
700 sfree(state->grid);
701 sfree(state);
702 }
703
704 static char *solve_game(game_state *state, game_state *currstate,
705 char *ai, char **error)
706 {
707 unsigned char *matrix;
708 int w = state->w, h = state->h;
709 int i;
710 char *ret;
711 int done_any, max;
712 unsigned char *workspace;
713 int *rowdata;
714
715 /*
716 * If we already have the solved state in ai, copy it out.
717 */
718 if (ai)
719 return dupstr(ai);
720
721 matrix = snewn(w*h, unsigned char);
722 max = max(w, h);
723 workspace = snewn(max*3, unsigned char);
724 rowdata = snewn(max+1, int);
725
726 memset(matrix, 0, w*h);
727
728 do {
729 done_any = 0;
730 for (i=0; i<h; i++) {
731 memcpy(rowdata, state->rowdata + state->rowsize*(w+i),
732 max*sizeof(int));
733 rowdata[state->rowlen[w+i]] = 0;
734 done_any |= do_row(workspace, workspace+max, workspace+2*max,
735 matrix+i*w, w, 1, rowdata
736 #ifdef STANDALONE_SOLVER
737 , NULL, 0, 0 /* never do diagnostics here */
738 #endif
739 );
740 }
741 for (i=0; i<w; i++) {
742 memcpy(rowdata, state->rowdata + state->rowsize*i, max*sizeof(int));
743 rowdata[state->rowlen[i]] = 0;
744 done_any |= do_row(workspace, workspace+max, workspace+2*max,
745 matrix+i, h, w, rowdata
746 #ifdef STANDALONE_SOLVER
747 , NULL, 0, 0 /* never do diagnostics here */
748 #endif
749 );
750 }
751 } while (done_any);
752
753 sfree(workspace);
754 sfree(rowdata);
755
756 for (i = 0; i < w*h; i++) {
757 if (matrix[i] != BLOCK && matrix[i] != DOT) {
758 sfree(matrix);
759 *error = "Solving algorithm cannot complete this puzzle";
760 return NULL;
761 }
762 }
763
764 ret = snewn(w*h+2, char);
765 ret[0] = 'S';
766 for (i = 0; i < w*h; i++) {
767 assert(matrix[i] == BLOCK || matrix[i] == DOT);
768 ret[i+1] = (matrix[i] == BLOCK ? '1' : '0');
769 }
770 ret[w*h+1] = '\0';
771
772 sfree(matrix);
773
774 return ret;
775 }
776
777 static int game_can_format_as_text_now(game_params *params)
778 {
779 return TRUE;
780 }
781
782 static char *game_text_format(game_state *state)
783 {
784 return NULL;
785 }
786
787 struct game_ui {
788 int dragging;
789 int drag_start_x;
790 int drag_start_y;
791 int drag_end_x;
792 int drag_end_y;
793 int drag, release, state;
794 int cur_x, cur_y, cur_visible;
795 };
796
797 static game_ui *new_ui(game_state *state)
798 {
799 game_ui *ret;
800
801 ret = snew(game_ui);
802 ret->dragging = FALSE;
803 ret->cur_x = ret->cur_y = ret->cur_visible = 0;
804
805 return ret;
806 }
807
808 static void free_ui(game_ui *ui)
809 {
810 sfree(ui);
811 }
812
813 static char *encode_ui(game_ui *ui)
814 {
815 return NULL;
816 }
817
818 static void decode_ui(game_ui *ui, char *encoding)
819 {
820 }
821
822 static void game_changed_state(game_ui *ui, game_state *oldstate,
823 game_state *newstate)
824 {
825 }
826
827 struct game_drawstate {
828 int started;
829 int w, h;
830 int tilesize;
831 unsigned char *visible;
832 int cur_x, cur_y;
833 };
834
835 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
836 int x, int y, int button)
837 {
838 button &= ~MOD_MASK;
839
840 x = FROMCOORD(state->w, x);
841 y = FROMCOORD(state->h, y);
842
843 if (x >= 0 && x < state->w && y >= 0 && y < state->h &&
844 (button == LEFT_BUTTON || button == RIGHT_BUTTON ||
845 button == MIDDLE_BUTTON)) {
846 #ifdef STYLUS_BASED
847 int currstate = state->grid[y * state->w + x];
848 #endif
849
850 ui->dragging = TRUE;
851
852 if (button == LEFT_BUTTON) {
853 ui->drag = LEFT_DRAG;
854 ui->release = LEFT_RELEASE;
855 #ifdef STYLUS_BASED
856 ui->state = (currstate + 2) % 3; /* FULL -> EMPTY -> UNKNOWN */
857 #else
858 ui->state = GRID_FULL;
859 #endif
860 } else if (button == RIGHT_BUTTON) {
861 ui->drag = RIGHT_DRAG;
862 ui->release = RIGHT_RELEASE;
863 #ifdef STYLUS_BASED
864 ui->state = (currstate + 1) % 3; /* EMPTY -> FULL -> UNKNOWN */
865 #else
866 ui->state = GRID_EMPTY;
867 #endif
868 } else /* if (button == MIDDLE_BUTTON) */ {
869 ui->drag = MIDDLE_DRAG;
870 ui->release = MIDDLE_RELEASE;
871 ui->state = GRID_UNKNOWN;
872 }
873
874 ui->drag_start_x = ui->drag_end_x = x;
875 ui->drag_start_y = ui->drag_end_y = y;
876 ui->cur_visible = 0;
877
878 return ""; /* UI activity occurred */
879 }
880
881 if (ui->dragging && button == ui->drag) {
882 /*
883 * There doesn't seem much point in allowing a rectangle
884 * drag; people will generally only want to drag a single
885 * horizontal or vertical line, so we make that easy by
886 * snapping to it.
887 *
888 * Exception: if we're _middle_-button dragging to tag
889 * things as UNKNOWN, we may well want to trash an entire
890 * area and start over!
891 */
892 if (ui->state != GRID_UNKNOWN) {
893 if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y))
894 y = ui->drag_start_y;
895 else
896 x = ui->drag_start_x;
897 }
898
899 if (x < 0) x = 0;
900 if (y < 0) y = 0;
901 if (x >= state->w) x = state->w - 1;
902 if (y >= state->h) y = state->h - 1;
903
904 ui->drag_end_x = x;
905 ui->drag_end_y = y;
906
907 return ""; /* UI activity occurred */
908 }
909
910 if (ui->dragging && button == ui->release) {
911 int x1, x2, y1, y2, xx, yy;
912 int move_needed = FALSE;
913
914 x1 = min(ui->drag_start_x, ui->drag_end_x);
915 x2 = max(ui->drag_start_x, ui->drag_end_x);
916 y1 = min(ui->drag_start_y, ui->drag_end_y);
917 y2 = max(ui->drag_start_y, ui->drag_end_y);
918
919 for (yy = y1; yy <= y2; yy++)
920 for (xx = x1; xx <= x2; xx++)
921 if (state->grid[yy * state->w + xx] != ui->state)
922 move_needed = TRUE;
923
924 ui->dragging = FALSE;
925
926 if (move_needed) {
927 char buf[80];
928 sprintf(buf, "%c%d,%d,%d,%d",
929 (char)(ui->state == GRID_FULL ? 'F' :
930 ui->state == GRID_EMPTY ? 'E' : 'U'),
931 x1, y1, x2-x1+1, y2-y1+1);
932 return dupstr(buf);
933 } else
934 return ""; /* UI activity occurred */
935 }
936
937 if (IS_CURSOR_MOVE(button)) {
938 move_cursor(button, &ui->cur_x, &ui->cur_y, state->w, state->h, 0);
939 ui->cur_visible = 1;
940 return "";
941 }
942 if (IS_CURSOR_SELECT(button)) {
943 int currstate = state->grid[ui->cur_y * state->w + ui->cur_x];
944 int newstate;
945 char buf[80];
946
947 if (!ui->cur_visible) {
948 ui->cur_visible = 1;
949 return "";
950 }
951
952 if (button == CURSOR_SELECT2)
953 newstate = currstate == GRID_UNKNOWN ? GRID_EMPTY :
954 currstate == GRID_EMPTY ? GRID_FULL : GRID_UNKNOWN;
955 else
956 newstate = currstate == GRID_UNKNOWN ? GRID_FULL :
957 currstate == GRID_FULL ? GRID_EMPTY : GRID_UNKNOWN;
958
959 sprintf(buf, "%c%d,%d,%d,%d",
960 (char)(newstate == GRID_FULL ? 'F' :
961 newstate == GRID_EMPTY ? 'E' : 'U'),
962 ui->cur_x, ui->cur_y, 1, 1);
963 return dupstr(buf);
964 }
965
966 return NULL;
967 }
968
969 static game_state *execute_move(game_state *from, char *move)
970 {
971 game_state *ret;
972 int x1, x2, y1, y2, xx, yy;
973 int val;
974
975 if (move[0] == 'S' && strlen(move) == from->w * from->h + 1) {
976 int i;
977
978 ret = dup_game(from);
979
980 for (i = 0; i < ret->w * ret->h; i++)
981 ret->grid[i] = (move[i+1] == '1' ? GRID_FULL : GRID_EMPTY);
982
983 ret->completed = ret->cheated = TRUE;
984
985 return ret;
986 } else if ((move[0] == 'F' || move[0] == 'E' || move[0] == 'U') &&
987 sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 &&
988 x1 >= 0 && x2 >= 0 && x1+x2 <= from->w &&
989 y1 >= 0 && y2 >= 0 && y1+y2 <= from->h) {
990
991 x2 += x1;
992 y2 += y1;
993 val = (move[0] == 'F' ? GRID_FULL :
994 move[0] == 'E' ? GRID_EMPTY : GRID_UNKNOWN);
995
996 ret = dup_game(from);
997 for (yy = y1; yy < y2; yy++)
998 for (xx = x1; xx < x2; xx++)
999 ret->grid[yy * ret->w + xx] = val;
1000
1001 /*
1002 * An actual change, so check to see if we've completed the
1003 * game.
1004 */
1005 if (!ret->completed) {
1006 int *rowdata = snewn(ret->rowsize, int);
1007 int i, len;
1008
1009 ret->completed = TRUE;
1010
1011 for (i=0; i<ret->w; i++) {
1012 len = compute_rowdata(rowdata,
1013 ret->grid+i, ret->h, ret->w);
1014 if (len != ret->rowlen[i] ||
1015 memcmp(ret->rowdata+i*ret->rowsize, rowdata,
1016 len * sizeof(int))) {
1017 ret->completed = FALSE;
1018 break;
1019 }
1020 }
1021 for (i=0; i<ret->h; i++) {
1022 len = compute_rowdata(rowdata,
1023 ret->grid+i*ret->w, ret->w, 1);
1024 if (len != ret->rowlen[i+ret->w] ||
1025 memcmp(ret->rowdata+(i+ret->w)*ret->rowsize, rowdata,
1026 len * sizeof(int))) {
1027 ret->completed = FALSE;
1028 break;
1029 }
1030 }
1031
1032 sfree(rowdata);
1033 }
1034
1035 return ret;
1036 } else
1037 return NULL;
1038 }
1039
1040 /* ----------------------------------------------------------------------
1041 * Drawing routines.
1042 */
1043
1044 static void game_compute_size(game_params *params, int tilesize,
1045 int *x, int *y)
1046 {
1047 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1048 struct { int tilesize; } ads, *ds = &ads;
1049 ads.tilesize = tilesize;
1050
1051 *x = SIZE(params->w);
1052 *y = SIZE(params->h);
1053 }
1054
1055 static void game_set_size(drawing *dr, game_drawstate *ds,
1056 game_params *params, int tilesize)
1057 {
1058 ds->tilesize = tilesize;
1059 }
1060
1061 static float *game_colours(frontend *fe, int *ncolours)
1062 {
1063 float *ret = snewn(3 * NCOLOURS, float);
1064 int i;
1065
1066 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1067
1068 for (i = 0; i < 3; i++) {
1069 ret[COL_GRID * 3 + i] = 0.3F;
1070 ret[COL_UNKNOWN * 3 + i] = 0.5F;
1071 ret[COL_TEXT * 3 + i] = 0.0F;
1072 ret[COL_FULL * 3 + i] = 0.0F;
1073 ret[COL_EMPTY * 3 + i] = 1.0F;
1074 }
1075 ret[COL_CURSOR * 3 + 0] = 1.0F;
1076 ret[COL_CURSOR * 3 + 1] = 0.25F;
1077 ret[COL_CURSOR * 3 + 2] = 0.25F;
1078
1079 *ncolours = NCOLOURS;
1080 return ret;
1081 }
1082
1083 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1084 {
1085 struct game_drawstate *ds = snew(struct game_drawstate);
1086
1087 ds->started = FALSE;
1088 ds->w = state->w;
1089 ds->h = state->h;
1090 ds->visible = snewn(ds->w * ds->h, unsigned char);
1091 ds->tilesize = 0; /* not decided yet */
1092 memset(ds->visible, 255, ds->w * ds->h);
1093 ds->cur_x = ds->cur_y = 0;
1094
1095 return ds;
1096 }
1097
1098 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1099 {
1100 sfree(ds->visible);
1101 sfree(ds);
1102 }
1103
1104 static void grid_square(drawing *dr, game_drawstate *ds,
1105 int y, int x, int state, int cur)
1106 {
1107 int xl, xr, yt, yb, dx, dy, dw, dh;
1108
1109 draw_rect(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
1110 TILE_SIZE, TILE_SIZE, COL_GRID);
1111
1112 xl = (x % 5 == 0 ? 1 : 0);
1113 yt = (y % 5 == 0 ? 1 : 0);
1114 xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0);
1115 yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0);
1116
1117 dx = TOCOORD(ds->w, x) + 1 + xl;
1118 dy = TOCOORD(ds->h, y) + 1 + yt;
1119 dw = TILE_SIZE - xl - xr - 1;
1120 dh = TILE_SIZE - yt - yb - 1;
1121
1122 draw_rect(dr, dx, dy, dw, dh,
1123 (state == GRID_FULL ? COL_FULL :
1124 state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN));
1125 if (cur) {
1126 draw_rect_outline(dr, dx, dy, dw, dh, COL_CURSOR);
1127 draw_rect_outline(dr, dx+1, dy+1, dw-2, dh-2, COL_CURSOR);
1128 }
1129
1130 draw_update(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
1131 TILE_SIZE, TILE_SIZE);
1132 }
1133
1134 static void draw_numbers(drawing *dr, game_drawstate *ds, game_state *state,
1135 int colour)
1136 {
1137 int i, j;
1138
1139 /*
1140 * Draw the numbers.
1141 */
1142 for (i = 0; i < state->w + state->h; i++) {
1143 int rowlen = state->rowlen[i];
1144 int *rowdata = state->rowdata + state->rowsize * i;
1145 int nfit;
1146
1147 /*
1148 * Normally I space the numbers out by the same
1149 * distance as the tile size. However, if there are
1150 * more numbers than available spaces, I have to squash
1151 * them up a bit.
1152 */
1153 nfit = max(rowlen, TLBORDER(state->h))-1;
1154 assert(nfit > 0);
1155
1156 for (j = 0; j < rowlen; j++) {
1157 int x, y;
1158 char str[80];
1159
1160 if (i < state->w) {
1161 x = TOCOORD(state->w, i);
1162 y = BORDER + TILE_SIZE * (TLBORDER(state->h)-1);
1163 y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->h)-1) / nfit;
1164 } else {
1165 y = TOCOORD(state->h, i - state->w);
1166 x = BORDER + TILE_SIZE * (TLBORDER(state->w)-1);
1167 x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->h)-1) / nfit;
1168 }
1169
1170 sprintf(str, "%d", rowdata[j]);
1171 draw_text(dr, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE,
1172 TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, colour, str);
1173 }
1174 }
1175 }
1176
1177 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1178 game_state *state, int dir, game_ui *ui,
1179 float animtime, float flashtime)
1180 {
1181 int i, j;
1182 int x1, x2, y1, y2;
1183 int cx, cy, cmoved;
1184
1185 if (!ds->started) {
1186 /*
1187 * The initial contents of the window are not guaranteed
1188 * and can vary with front ends. To be on the safe side,
1189 * all games should start by drawing a big background-
1190 * colour rectangle covering the whole window.
1191 */
1192 draw_rect(dr, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND);
1193
1194 /*
1195 * Draw the numbers.
1196 */
1197 draw_numbers(dr, ds, state, COL_TEXT);
1198
1199 /*
1200 * Draw the grid outline.
1201 */
1202 draw_rect(dr, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1,
1203 ds->w * TILE_SIZE + 3, ds->h * TILE_SIZE + 3,
1204 COL_GRID);
1205
1206 ds->started = TRUE;
1207
1208 draw_update(dr, 0, 0, SIZE(ds->w), SIZE(ds->h));
1209 }
1210
1211 if (ui->dragging) {
1212 x1 = min(ui->drag_start_x, ui->drag_end_x);
1213 x2 = max(ui->drag_start_x, ui->drag_end_x);
1214 y1 = min(ui->drag_start_y, ui->drag_end_y);
1215 y2 = max(ui->drag_start_y, ui->drag_end_y);
1216 } else {
1217 x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */
1218 }
1219
1220 if (ui->cur_visible) {
1221 cx = ui->cur_x; cy = ui->cur_y;
1222 } else {
1223 cx = cy = -1;
1224 }
1225 cmoved = (cx != ds->cur_x || cy != ds->cur_y);
1226
1227 /*
1228 * Now draw any grid squares which have changed since last
1229 * redraw.
1230 */
1231 for (i = 0; i < ds->h; i++) {
1232 for (j = 0; j < ds->w; j++) {
1233 int val, cc = 0;
1234
1235 /*
1236 * Work out what state this square should be drawn in,
1237 * taking any current drag operation into account.
1238 */
1239 if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2)
1240 val = ui->state;
1241 else
1242 val = state->grid[i * state->w + j];
1243
1244 if (cmoved) {
1245 /* the cursor has moved; if we were the old or
1246 * the new cursor position we need to redraw. */
1247 if (j == cx && i == cy) cc = 1;
1248 if (j == ds->cur_x && i == ds->cur_y) cc = 1;
1249 }
1250
1251 /*
1252 * Briefly invert everything twice during a completion
1253 * flash.
1254 */
1255 if (flashtime > 0 &&
1256 (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) &&
1257 val != GRID_UNKNOWN)
1258 val = (GRID_FULL ^ GRID_EMPTY) ^ val;
1259
1260 if (ds->visible[i * ds->w + j] != val || cc) {
1261 grid_square(dr, ds, i, j, val,
1262 (j == cx && i == cy));
1263 ds->visible[i * ds->w + j] = val;
1264 }
1265 }
1266 }
1267 ds->cur_x = cx; ds->cur_y = cy;
1268 }
1269
1270 static float game_anim_length(game_state *oldstate,
1271 game_state *newstate, int dir, game_ui *ui)
1272 {
1273 return 0.0F;
1274 }
1275
1276 static float game_flash_length(game_state *oldstate,
1277 game_state *newstate, int dir, game_ui *ui)
1278 {
1279 if (!oldstate->completed && newstate->completed &&
1280 !oldstate->cheated && !newstate->cheated)
1281 return FLASH_TIME;
1282 return 0.0F;
1283 }
1284
1285 static int game_status(game_state *state)
1286 {
1287 return state->completed ? +1 : 0;
1288 }
1289
1290 static int game_timing_state(game_state *state, game_ui *ui)
1291 {
1292 return TRUE;
1293 }
1294
1295 static void game_print_size(game_params *params, float *x, float *y)
1296 {
1297 int pw, ph;
1298
1299 /*
1300 * I'll use 5mm squares by default.
1301 */
1302 game_compute_size(params, 500, &pw, &ph);
1303 *x = pw / 100.0F;
1304 *y = ph / 100.0F;
1305 }
1306
1307 static void game_print(drawing *dr, game_state *state, int tilesize)
1308 {
1309 int w = state->w, h = state->h;
1310 int ink = print_mono_colour(dr, 0);
1311 int x, y;
1312
1313 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1314 game_drawstate ads, *ds = &ads;
1315 game_set_size(dr, ds, NULL, tilesize);
1316
1317 /*
1318 * Border.
1319 */
1320 print_line_width(dr, TILE_SIZE / 16);
1321 draw_rect_outline(dr, TOCOORD(w, 0), TOCOORD(h, 0),
1322 w*TILE_SIZE, h*TILE_SIZE, ink);
1323
1324 /*
1325 * Grid.
1326 */
1327 for (x = 1; x < w; x++) {
1328 print_line_width(dr, TILE_SIZE / (x % 5 ? 128 : 24));
1329 draw_line(dr, TOCOORD(w, x), TOCOORD(h, 0),
1330 TOCOORD(w, x), TOCOORD(h, h), ink);
1331 }
1332 for (y = 1; y < h; y++) {
1333 print_line_width(dr, TILE_SIZE / (y % 5 ? 128 : 24));
1334 draw_line(dr, TOCOORD(w, 0), TOCOORD(h, y),
1335 TOCOORD(w, w), TOCOORD(h, y), ink);
1336 }
1337
1338 /*
1339 * Clues.
1340 */
1341 draw_numbers(dr, ds, state, ink);
1342
1343 /*
1344 * Solution.
1345 */
1346 print_line_width(dr, TILE_SIZE / 128);
1347 for (y = 0; y < h; y++)
1348 for (x = 0; x < w; x++) {
1349 if (state->grid[y*w+x] == GRID_FULL)
1350 draw_rect(dr, TOCOORD(w, x), TOCOORD(h, y),
1351 TILE_SIZE, TILE_SIZE, ink);
1352 else if (state->grid[y*w+x] == GRID_EMPTY)
1353 draw_circle(dr, TOCOORD(w, x) + TILE_SIZE/2,
1354 TOCOORD(h, y) + TILE_SIZE/2,
1355 TILE_SIZE/12, ink, ink);
1356 }
1357 }
1358
1359 #ifdef COMBINED
1360 #define thegame pattern
1361 #endif
1362
1363 const struct game thegame = {
1364 "Pattern", "games.pattern", "pattern",
1365 default_params,
1366 game_fetch_preset,
1367 decode_params,
1368 encode_params,
1369 free_params,
1370 dup_params,
1371 TRUE, game_configure, custom_params,
1372 validate_params,
1373 new_game_desc,
1374 validate_desc,
1375 new_game,
1376 dup_game,
1377 free_game,
1378 TRUE, solve_game,
1379 FALSE, game_can_format_as_text_now, game_text_format,
1380 new_ui,
1381 free_ui,
1382 encode_ui,
1383 decode_ui,
1384 game_changed_state,
1385 interpret_move,
1386 execute_move,
1387 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1388 game_colours,
1389 game_new_drawstate,
1390 game_free_drawstate,
1391 game_redraw,
1392 game_anim_length,
1393 game_flash_length,
1394 game_status,
1395 TRUE, FALSE, game_print_size, game_print,
1396 FALSE, /* wants_statusbar */
1397 FALSE, game_timing_state,
1398 REQUIRE_RBUTTON, /* flags */
1399 };
1400
1401 #ifdef STANDALONE_SOLVER
1402
1403 int main(int argc, char **argv)
1404 {
1405 game_params *p;
1406 game_state *s;
1407 char *id = NULL, *desc, *err;
1408
1409 while (--argc > 0) {
1410 char *p = *++argv;
1411 if (*p == '-') {
1412 if (!strcmp(p, "-v")) {
1413 verbose = TRUE;
1414 } else {
1415 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
1416 return 1;
1417 }
1418 } else {
1419 id = p;
1420 }
1421 }
1422
1423 if (!id) {
1424 fprintf(stderr, "usage: %s <game_id>\n", argv[0]);
1425 return 1;
1426 }
1427
1428 desc = strchr(id, ':');
1429 if (!desc) {
1430 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
1431 return 1;
1432 }
1433 *desc++ = '\0';
1434
1435 p = default_params();
1436 decode_params(p, id);
1437 err = validate_desc(p, desc);
1438 if (err) {
1439 fprintf(stderr, "%s: %s\n", argv[0], err);
1440 return 1;
1441 }
1442 s = new_game(NULL, p, desc);
1443
1444 {
1445 int w = p->w, h = p->h, i, j, done_any, max, cluewid = 0;
1446 unsigned char *matrix, *workspace;
1447 int *rowdata;
1448
1449 matrix = snewn(w*h, unsigned char);
1450 max = max(w, h);
1451 workspace = snewn(max*3, unsigned char);
1452 rowdata = snewn(max+1, int);
1453
1454 memset(matrix, 0, w*h);
1455
1456 if (verbose) {
1457 int thiswid;
1458 /*
1459 * Work out the maximum text width of the clue numbers
1460 * in a row or column, so we can print the solver's
1461 * working in a nicely lined up way.
1462 */
1463 for (i = 0; i < (w+h); i++) {
1464 char buf[80];
1465 for (thiswid = -1, j = 0; j < s->rowlen[i]; j++)
1466 thiswid += sprintf(buf, " %d", s->rowdata[s->rowsize*i+j]);
1467 if (cluewid < thiswid)
1468 cluewid = thiswid;
1469 }
1470 }
1471
1472 do {
1473 done_any = 0;
1474 for (i=0; i<h; i++) {
1475 memcpy(rowdata, s->rowdata + s->rowsize*(w+i),
1476 max*sizeof(int));
1477 rowdata[s->rowlen[w+i]] = 0;
1478 done_any |= do_row(workspace, workspace+max, workspace+2*max,
1479 matrix+i*w, w, 1, rowdata
1480 #ifdef STANDALONE_SOLVER
1481 , "row", i+1, cluewid
1482 #endif
1483 );
1484 }
1485 for (i=0; i<w; i++) {
1486 memcpy(rowdata, s->rowdata + s->rowsize*i, max*sizeof(int));
1487 rowdata[s->rowlen[i]] = 0;
1488 done_any |= do_row(workspace, workspace+max, workspace+2*max,
1489 matrix+i, h, w, rowdata
1490 #ifdef STANDALONE_SOLVER
1491 , "col", i+1, cluewid
1492 #endif
1493 );
1494 }
1495 } while (done_any);
1496
1497 for (i = 0; i < h; i++) {
1498 for (j = 0; j < w; j++) {
1499 int c = (matrix[i*w+j] == UNKNOWN ? '?' :
1500 matrix[i*w+j] == BLOCK ? '#' :
1501 matrix[i*w+j] == DOT ? '.' :
1502 '!');
1503 putchar(c);
1504 }
1505 printf("\n");
1506 }
1507 }
1508
1509 return 0;
1510 }
1511
1512 #endif
1513
1514 /* vim: set shiftwidth=4 tabstop=8: */