Introduce a new game backend function (there seem to have been a lot
[sgt/puzzles] / solo.c
1 /*
2 * solo.c: the number-placing puzzle most popularly known as `Sudoku'.
3 *
4 * TODO:
5 *
6 * - reports from users are that `Trivial'-mode puzzles are still
7 * rather hard compared to newspapers' easy ones, so some better
8 * low-end difficulty grading would be nice
9 * + it's possible that really easy puzzles always have
10 * _several_ things you can do, so don't make you hunt too
11 * hard for the one deduction you can currently make
12 * + it's also possible that easy puzzles require fewer
13 * cross-eliminations: perhaps there's a higher incidence of
14 * things you can deduce by looking only at (say) rows,
15 * rather than things you have to check both rows and columns
16 * for
17 * + but really, what I need to do is find some really easy
18 * puzzles and _play_ them, to see what's actually easy about
19 * them
20 * + while I'm revamping this area, filling in the _last_
21 * number in a nearly-full row or column should certainly be
22 * permitted even at the lowest difficulty level.
23 * + also Owen noticed that `Basic' grids requiring numeric
24 * elimination are actually very hard, so I wonder if a
25 * difficulty gradation between that and positional-
26 * elimination-only might be in order
27 * + but it's not good to have _too_ many difficulty levels, or
28 * it'll take too long to randomly generate a given level.
29 *
30 * - it might still be nice to do some prioritisation on the
31 * removal of numbers from the grid
32 * + one possibility is to try to minimise the maximum number
33 * of filled squares in any block, which in particular ought
34 * to enforce never leaving a completely filled block in the
35 * puzzle as presented.
36 *
37 * - alternative interface modes
38 * + sudoku.com's Windows program has a palette of possible
39 * entries; you select a palette entry first and then click
40 * on the square you want it to go in, thus enabling
41 * mouse-only play. Useful for PDAs! I don't think it's
42 * actually incompatible with the current highlight-then-type
43 * approach: you _either_ highlight a palette entry and then
44 * click, _or_ you highlight a square and then type. At most
45 * one thing is ever highlighted at a time, so there's no way
46 * to confuse the two.
47 * + then again, I don't actually like sudoku.com's interface;
48 * it's too much like a paint package whereas I prefer to
49 * think of Solo as a text editor.
50 * + another PDA-friendly possibility is a drag interface:
51 * _drag_ numbers from the palette into the grid squares.
52 * Thought experiments suggest I'd prefer that to the
53 * sudoku.com approach, but I haven't actually tried it.
54 */
55
56 /*
57 * Solo puzzles need to be square overall (since each row and each
58 * column must contain one of every digit), but they need not be
59 * subdivided the same way internally. I am going to adopt a
60 * convention whereby I _always_ refer to `r' as the number of rows
61 * of _big_ divisions, and `c' as the number of columns of _big_
62 * divisions. Thus, a 2c by 3r puzzle looks something like this:
63 *
64 * 4 5 1 | 2 6 3
65 * 6 3 2 | 5 4 1
66 * ------+------ (Of course, you can't subdivide it the other way
67 * 1 4 5 | 6 3 2 or you'll get clashes; observe that the 4 in the
68 * 3 2 6 | 4 1 5 top left would conflict with the 4 in the second
69 * ------+------ box down on the left-hand side.)
70 * 5 1 4 | 3 2 6
71 * 2 6 3 | 1 5 4
72 *
73 * The need for a strong naming convention should now be clear:
74 * each small box is two rows of digits by three columns, while the
75 * overall puzzle has three rows of small boxes by two columns. So
76 * I will (hopefully) consistently use `r' to denote the number of
77 * rows _of small boxes_ (here 3), which is also the number of
78 * columns of digits in each small box; and `c' vice versa (here
79 * 2).
80 *
81 * I'm also going to choose arbitrarily to list c first wherever
82 * possible: the above is a 2x3 puzzle, not a 3x2 one.
83 */
84
85 #include <stdio.h>
86 #include <stdlib.h>
87 #include <string.h>
88 #include <assert.h>
89 #include <ctype.h>
90 #include <math.h>
91
92 #ifdef STANDALONE_SOLVER
93 #include <stdarg.h>
94 int solver_show_working;
95 #endif
96
97 #include "puzzles.h"
98
99 /*
100 * To save space, I store digits internally as unsigned char. This
101 * imposes a hard limit of 255 on the order of the puzzle. Since
102 * even a 5x5 takes unacceptably long to generate, I don't see this
103 * as a serious limitation unless something _really_ impressive
104 * happens in computing technology; but here's a typedef anyway for
105 * general good practice.
106 */
107 typedef unsigned char digit;
108 #define ORDER_MAX 255
109
110 #define TILE_SIZE 32
111 #define BORDER 18
112
113 #define FLASH_TIME 0.4F
114
115 enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF4 };
116
117 enum { DIFF_BLOCK, DIFF_SIMPLE, DIFF_INTERSECT,
118 DIFF_SET, DIFF_RECURSIVE, DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
119
120 enum {
121 COL_BACKGROUND,
122 COL_GRID,
123 COL_CLUE,
124 COL_USER,
125 COL_HIGHLIGHT,
126 COL_ERROR,
127 COL_PENCIL,
128 NCOLOURS
129 };
130
131 struct game_params {
132 int c, r, symm, diff;
133 };
134
135 struct game_state {
136 int c, r;
137 digit *grid;
138 unsigned char *pencil; /* c*r*c*r elements */
139 unsigned char *immutable; /* marks which digits are clues */
140 int completed, cheated;
141 };
142
143 static game_params *default_params(void)
144 {
145 game_params *ret = snew(game_params);
146
147 ret->c = ret->r = 3;
148 ret->symm = SYMM_ROT2; /* a plausible default */
149 ret->diff = DIFF_BLOCK; /* so is this */
150
151 return ret;
152 }
153
154 static void free_params(game_params *params)
155 {
156 sfree(params);
157 }
158
159 static game_params *dup_params(game_params *params)
160 {
161 game_params *ret = snew(game_params);
162 *ret = *params; /* structure copy */
163 return ret;
164 }
165
166 static int game_fetch_preset(int i, char **name, game_params **params)
167 {
168 static struct {
169 char *title;
170 game_params params;
171 } presets[] = {
172 { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK } },
173 { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE } },
174 { "3x3 Trivial", { 3, 3, SYMM_ROT2, DIFF_BLOCK } },
175 { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE } },
176 { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT } },
177 { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET } },
178 { "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE } },
179 #ifndef SLOW_SYSTEM
180 { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE } },
181 { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE } },
182 #endif
183 };
184
185 if (i < 0 || i >= lenof(presets))
186 return FALSE;
187
188 *name = dupstr(presets[i].title);
189 *params = dup_params(&presets[i].params);
190
191 return TRUE;
192 }
193
194 static void decode_params(game_params *ret, char const *string)
195 {
196 ret->c = ret->r = atoi(string);
197 while (*string && isdigit((unsigned char)*string)) string++;
198 if (*string == 'x') {
199 string++;
200 ret->r = atoi(string);
201 while (*string && isdigit((unsigned char)*string)) string++;
202 }
203 while (*string) {
204 if (*string == 'r' || *string == 'm' || *string == 'a') {
205 int sn, sc;
206 sc = *string++;
207 sn = atoi(string);
208 while (*string && isdigit((unsigned char)*string)) string++;
209 if (sc == 'm' && sn == 4)
210 ret->symm = SYMM_REF4;
211 if (sc == 'r' && sn == 4)
212 ret->symm = SYMM_ROT4;
213 if (sc == 'r' && sn == 2)
214 ret->symm = SYMM_ROT2;
215 if (sc == 'a')
216 ret->symm = SYMM_NONE;
217 } else if (*string == 'd') {
218 string++;
219 if (*string == 't') /* trivial */
220 string++, ret->diff = DIFF_BLOCK;
221 else if (*string == 'b') /* basic */
222 string++, ret->diff = DIFF_SIMPLE;
223 else if (*string == 'i') /* intermediate */
224 string++, ret->diff = DIFF_INTERSECT;
225 else if (*string == 'a') /* advanced */
226 string++, ret->diff = DIFF_SET;
227 else if (*string == 'u') /* unreasonable */
228 string++, ret->diff = DIFF_RECURSIVE;
229 } else
230 string++; /* eat unknown character */
231 }
232 }
233
234 static char *encode_params(game_params *params, int full)
235 {
236 char str[80];
237
238 sprintf(str, "%dx%d", params->c, params->r);
239 if (full) {
240 switch (params->symm) {
241 case SYMM_REF4: strcat(str, "m4"); break;
242 case SYMM_ROT4: strcat(str, "r4"); break;
243 /* case SYMM_ROT2: strcat(str, "r2"); break; [default] */
244 case SYMM_NONE: strcat(str, "a"); break;
245 }
246 switch (params->diff) {
247 /* case DIFF_BLOCK: strcat(str, "dt"); break; [default] */
248 case DIFF_SIMPLE: strcat(str, "db"); break;
249 case DIFF_INTERSECT: strcat(str, "di"); break;
250 case DIFF_SET: strcat(str, "da"); break;
251 case DIFF_RECURSIVE: strcat(str, "du"); break;
252 }
253 }
254 return dupstr(str);
255 }
256
257 static config_item *game_configure(game_params *params)
258 {
259 config_item *ret;
260 char buf[80];
261
262 ret = snewn(5, config_item);
263
264 ret[0].name = "Columns of sub-blocks";
265 ret[0].type = C_STRING;
266 sprintf(buf, "%d", params->c);
267 ret[0].sval = dupstr(buf);
268 ret[0].ival = 0;
269
270 ret[1].name = "Rows of sub-blocks";
271 ret[1].type = C_STRING;
272 sprintf(buf, "%d", params->r);
273 ret[1].sval = dupstr(buf);
274 ret[1].ival = 0;
275
276 ret[2].name = "Symmetry";
277 ret[2].type = C_CHOICES;
278 ret[2].sval = ":None:2-way rotation:4-way rotation:4-way mirror";
279 ret[2].ival = params->symm;
280
281 ret[3].name = "Difficulty";
282 ret[3].type = C_CHOICES;
283 ret[3].sval = ":Trivial:Basic:Intermediate:Advanced:Unreasonable";
284 ret[3].ival = params->diff;
285
286 ret[4].name = NULL;
287 ret[4].type = C_END;
288 ret[4].sval = NULL;
289 ret[4].ival = 0;
290
291 return ret;
292 }
293
294 static game_params *custom_params(config_item *cfg)
295 {
296 game_params *ret = snew(game_params);
297
298 ret->c = atoi(cfg[0].sval);
299 ret->r = atoi(cfg[1].sval);
300 ret->symm = cfg[2].ival;
301 ret->diff = cfg[3].ival;
302
303 return ret;
304 }
305
306 static char *validate_params(game_params *params)
307 {
308 if (params->c < 2 || params->r < 2)
309 return "Both dimensions must be at least 2";
310 if (params->c > ORDER_MAX || params->r > ORDER_MAX)
311 return "Dimensions greater than "STR(ORDER_MAX)" are not supported";
312 return NULL;
313 }
314
315 /* ----------------------------------------------------------------------
316 * Full recursive Solo solver.
317 *
318 * The algorithm for this solver is shamelessly copied from a
319 * Python solver written by Andrew Wilkinson (which is GPLed, but
320 * I've reused only ideas and no code). It mostly just does the
321 * obvious recursive thing: pick an empty square, put one of the
322 * possible digits in it, recurse until all squares are filled,
323 * backtrack and change some choices if necessary.
324 *
325 * The clever bit is that every time it chooses which square to
326 * fill in next, it does so by counting the number of _possible_
327 * numbers that can go in each square, and it prioritises so that
328 * it picks a square with the _lowest_ number of possibilities. The
329 * idea is that filling in lots of the obvious bits (particularly
330 * any squares with only one possibility) will cut down on the list
331 * of possibilities for other squares and hence reduce the enormous
332 * search space as much as possible as early as possible.
333 *
334 * In practice the algorithm appeared to work very well; run on
335 * sample problems from the Times it completed in well under a
336 * second on my G5 even when written in Python, and given an empty
337 * grid (so that in principle it would enumerate _all_ solved
338 * grids!) it found the first valid solution just as quickly. So
339 * with a bit more randomisation I see no reason not to use this as
340 * my grid generator.
341 */
342
343 /*
344 * Internal data structure used in solver to keep track of
345 * progress.
346 */
347 struct rsolve_coord { int x, y, r; };
348 struct rsolve_usage {
349 int c, r, cr; /* cr == c*r */
350 /* grid is a copy of the input grid, modified as we go along */
351 digit *grid;
352 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
353 unsigned char *row;
354 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
355 unsigned char *col;
356 /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
357 unsigned char *blk;
358 /* This lists all the empty spaces remaining in the grid. */
359 struct rsolve_coord *spaces;
360 int nspaces;
361 /* If we need randomisation in the solve, this is our random state. */
362 random_state *rs;
363 /* Number of solutions so far found, and maximum number we care about. */
364 int solns, maxsolns;
365 };
366
367 /*
368 * The real recursive step in the solving function.
369 */
370 static void rsolve_real(struct rsolve_usage *usage, digit *grid)
371 {
372 int c = usage->c, r = usage->r, cr = usage->cr;
373 int i, j, n, sx, sy, bestm, bestr;
374 int *digits;
375
376 /*
377 * Firstly, check for completion! If there are no spaces left
378 * in the grid, we have a solution.
379 */
380 if (usage->nspaces == 0) {
381 if (!usage->solns) {
382 /*
383 * This is our first solution, so fill in the output grid.
384 */
385 memcpy(grid, usage->grid, cr * cr);
386 }
387 usage->solns++;
388 return;
389 }
390
391 /*
392 * Otherwise, there must be at least one space. Find the most
393 * constrained space, using the `r' field as a tie-breaker.
394 */
395 bestm = cr+1; /* so that any space will beat it */
396 bestr = 0;
397 i = sx = sy = -1;
398 for (j = 0; j < usage->nspaces; j++) {
399 int x = usage->spaces[j].x, y = usage->spaces[j].y;
400 int m;
401
402 /*
403 * Find the number of digits that could go in this space.
404 */
405 m = 0;
406 for (n = 0; n < cr; n++)
407 if (!usage->row[y*cr+n] && !usage->col[x*cr+n] &&
408 !usage->blk[((y/c)*c+(x/r))*cr+n])
409 m++;
410
411 if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) {
412 bestm = m;
413 bestr = usage->spaces[j].r;
414 sx = x;
415 sy = y;
416 i = j;
417 }
418 }
419
420 /*
421 * Swap that square into the final place in the spaces array,
422 * so that decrementing nspaces will remove it from the list.
423 */
424 if (i != usage->nspaces-1) {
425 struct rsolve_coord t;
426 t = usage->spaces[usage->nspaces-1];
427 usage->spaces[usage->nspaces-1] = usage->spaces[i];
428 usage->spaces[i] = t;
429 }
430
431 /*
432 * Now we've decided which square to start our recursion at,
433 * simply go through all possible values, shuffling them
434 * randomly first if necessary.
435 */
436 digits = snewn(bestm, int);
437 j = 0;
438 for (n = 0; n < cr; n++)
439 if (!usage->row[sy*cr+n] && !usage->col[sx*cr+n] &&
440 !usage->blk[((sy/c)*c+(sx/r))*cr+n]) {
441 digits[j++] = n+1;
442 }
443
444 if (usage->rs) {
445 /* shuffle */
446 for (i = j; i > 1; i--) {
447 int p = random_upto(usage->rs, i);
448 if (p != i-1) {
449 int t = digits[p];
450 digits[p] = digits[i-1];
451 digits[i-1] = t;
452 }
453 }
454 }
455
456 /* And finally, go through the digit list and actually recurse. */
457 for (i = 0; i < j; i++) {
458 n = digits[i];
459
460 /* Update the usage structure to reflect the placing of this digit. */
461 usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
462 usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = TRUE;
463 usage->grid[sy*cr+sx] = n;
464 usage->nspaces--;
465
466 /* Call the solver recursively. */
467 rsolve_real(usage, grid);
468
469 /*
470 * If we have seen as many solutions as we need, terminate
471 * all processing immediately.
472 */
473 if (usage->solns >= usage->maxsolns)
474 break;
475
476 /* Revert the usage structure. */
477 usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
478 usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = FALSE;
479 usage->grid[sy*cr+sx] = 0;
480 usage->nspaces++;
481 }
482
483 sfree(digits);
484 }
485
486 /*
487 * Entry point to solver. You give it dimensions and a starting
488 * grid, which is simply an array of N^4 digits. In that array, 0
489 * means an empty square, and 1..N mean a clue square.
490 *
491 * Return value is the number of solutions found; searching will
492 * stop after the provided `max'. (Thus, you can pass max==1 to
493 * indicate that you only care about finding _one_ solution, or
494 * max==2 to indicate that you want to know the difference between
495 * a unique and non-unique solution.) The input parameter `grid' is
496 * also filled in with the _first_ (or only) solution found by the
497 * solver.
498 */
499 static int rsolve(int c, int r, digit *grid, random_state *rs, int max)
500 {
501 struct rsolve_usage *usage;
502 int x, y, cr = c*r;
503 int ret;
504
505 /*
506 * Create an rsolve_usage structure.
507 */
508 usage = snew(struct rsolve_usage);
509
510 usage->c = c;
511 usage->r = r;
512 usage->cr = cr;
513
514 usage->grid = snewn(cr * cr, digit);
515 memcpy(usage->grid, grid, cr * cr);
516
517 usage->row = snewn(cr * cr, unsigned char);
518 usage->col = snewn(cr * cr, unsigned char);
519 usage->blk = snewn(cr * cr, unsigned char);
520 memset(usage->row, FALSE, cr * cr);
521 memset(usage->col, FALSE, cr * cr);
522 memset(usage->blk, FALSE, cr * cr);
523
524 usage->spaces = snewn(cr * cr, struct rsolve_coord);
525 usage->nspaces = 0;
526
527 usage->solns = 0;
528 usage->maxsolns = max;
529
530 usage->rs = rs;
531
532 /*
533 * Now fill it in with data from the input grid.
534 */
535 for (y = 0; y < cr; y++) {
536 for (x = 0; x < cr; x++) {
537 int v = grid[y*cr+x];
538 if (v == 0) {
539 usage->spaces[usage->nspaces].x = x;
540 usage->spaces[usage->nspaces].y = y;
541 if (rs)
542 usage->spaces[usage->nspaces].r = random_bits(rs, 31);
543 else
544 usage->spaces[usage->nspaces].r = usage->nspaces;
545 usage->nspaces++;
546 } else {
547 usage->row[y*cr+v-1] = TRUE;
548 usage->col[x*cr+v-1] = TRUE;
549 usage->blk[((y/c)*c+(x/r))*cr+v-1] = TRUE;
550 }
551 }
552 }
553
554 /*
555 * Run the real recursive solving function.
556 */
557 rsolve_real(usage, grid);
558 ret = usage->solns;
559
560 /*
561 * Clean up the usage structure now we have our answer.
562 */
563 sfree(usage->spaces);
564 sfree(usage->blk);
565 sfree(usage->col);
566 sfree(usage->row);
567 sfree(usage->grid);
568 sfree(usage);
569
570 /*
571 * And return.
572 */
573 return ret;
574 }
575
576 /* ----------------------------------------------------------------------
577 * End of recursive solver code.
578 */
579
580 /* ----------------------------------------------------------------------
581 * Less capable non-recursive solver. This one is used to check
582 * solubility of a grid as we gradually remove numbers from it: by
583 * verifying a grid using this solver we can ensure it isn't _too_
584 * hard (e.g. does not actually require guessing and backtracking).
585 *
586 * It supports a variety of specific modes of reasoning. By
587 * enabling or disabling subsets of these modes we can arrange a
588 * range of difficulty levels.
589 */
590
591 /*
592 * Modes of reasoning currently supported:
593 *
594 * - Positional elimination: a number must go in a particular
595 * square because all the other empty squares in a given
596 * row/col/blk are ruled out.
597 *
598 * - Numeric elimination: a square must have a particular number
599 * in because all the other numbers that could go in it are
600 * ruled out.
601 *
602 * - Intersectional analysis: given two domains which overlap
603 * (hence one must be a block, and the other can be a row or
604 * col), if the possible locations for a particular number in
605 * one of the domains can be narrowed down to the overlap, then
606 * that number can be ruled out everywhere but the overlap in
607 * the other domain too.
608 *
609 * - Set elimination: if there is a subset of the empty squares
610 * within a domain such that the union of the possible numbers
611 * in that subset has the same size as the subset itself, then
612 * those numbers can be ruled out everywhere else in the domain.
613 * (For example, if there are five empty squares and the
614 * possible numbers in each are 12, 23, 13, 134 and 1345, then
615 * the first three empty squares form such a subset: the numbers
616 * 1, 2 and 3 _must_ be in those three squares in some
617 * permutation, and hence we can deduce none of them can be in
618 * the fourth or fifth squares.)
619 * + You can also see this the other way round, concentrating
620 * on numbers rather than squares: if there is a subset of
621 * the unplaced numbers within a domain such that the union
622 * of all their possible positions has the same size as the
623 * subset itself, then all other numbers can be ruled out for
624 * those positions. However, it turns out that this is
625 * exactly equivalent to the first formulation at all times:
626 * there is a 1-1 correspondence between suitable subsets of
627 * the unplaced numbers and suitable subsets of the unfilled
628 * places, found by taking the _complement_ of the union of
629 * the numbers' possible positions (or the spaces' possible
630 * contents).
631 */
632
633 /*
634 * Within this solver, I'm going to transform all y-coordinates by
635 * inverting the significance of the block number and the position
636 * within the block. That is, we will start with the top row of
637 * each block in order, then the second row of each block in order,
638 * etc.
639 *
640 * This transformation has the enormous advantage that it means
641 * every row, column _and_ block is described by an arithmetic
642 * progression of coordinates within the cubic array, so that I can
643 * use the same very simple function to do blockwise, row-wise and
644 * column-wise elimination.
645 */
646 #define YTRANS(y) (((y)%c)*r+(y)/c)
647 #define YUNTRANS(y) (((y)%r)*c+(y)/r)
648
649 struct nsolve_usage {
650 int c, r, cr;
651 /*
652 * We set up a cubic array, indexed by x, y and digit; each
653 * element of this array is TRUE or FALSE according to whether
654 * or not that digit _could_ in principle go in that position.
655 *
656 * The way to index this array is cube[(x*cr+y)*cr+n-1].
657 * y-coordinates in here are transformed.
658 */
659 unsigned char *cube;
660 /*
661 * This is the grid in which we write down our final
662 * deductions. y-coordinates in here are _not_ transformed.
663 */
664 digit *grid;
665 /*
666 * Now we keep track, at a slightly higher level, of what we
667 * have yet to work out, to prevent doing the same deduction
668 * many times.
669 */
670 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
671 unsigned char *row;
672 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
673 unsigned char *col;
674 /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
675 unsigned char *blk;
676 };
677 #define cubepos(x,y,n) (((x)*usage->cr+(y))*usage->cr+(n)-1)
678 #define cube(x,y,n) (usage->cube[cubepos(x,y,n)])
679
680 /*
681 * Function called when we are certain that a particular square has
682 * a particular number in it. The y-coordinate passed in here is
683 * transformed.
684 */
685 static void nsolve_place(struct nsolve_usage *usage, int x, int y, int n)
686 {
687 int c = usage->c, r = usage->r, cr = usage->cr;
688 int i, j, bx, by;
689
690 assert(cube(x,y,n));
691
692 /*
693 * Rule out all other numbers in this square.
694 */
695 for (i = 1; i <= cr; i++)
696 if (i != n)
697 cube(x,y,i) = FALSE;
698
699 /*
700 * Rule out this number in all other positions in the row.
701 */
702 for (i = 0; i < cr; i++)
703 if (i != y)
704 cube(x,i,n) = FALSE;
705
706 /*
707 * Rule out this number in all other positions in the column.
708 */
709 for (i = 0; i < cr; i++)
710 if (i != x)
711 cube(i,y,n) = FALSE;
712
713 /*
714 * Rule out this number in all other positions in the block.
715 */
716 bx = (x/r)*r;
717 by = y % r;
718 for (i = 0; i < r; i++)
719 for (j = 0; j < c; j++)
720 if (bx+i != x || by+j*r != y)
721 cube(bx+i,by+j*r,n) = FALSE;
722
723 /*
724 * Enter the number in the result grid.
725 */
726 usage->grid[YUNTRANS(y)*cr+x] = n;
727
728 /*
729 * Cross out this number from the list of numbers left to place
730 * in its row, its column and its block.
731 */
732 usage->row[y*cr+n-1] = usage->col[x*cr+n-1] =
733 usage->blk[((y%r)*c+(x/r))*cr+n-1] = TRUE;
734 }
735
736 static int nsolve_elim(struct nsolve_usage *usage, int start, int step
737 #ifdef STANDALONE_SOLVER
738 , char *fmt, ...
739 #endif
740 )
741 {
742 int c = usage->c, r = usage->r, cr = c*r;
743 int fpos, m, i;
744
745 /*
746 * Count the number of set bits within this section of the
747 * cube.
748 */
749 m = 0;
750 fpos = -1;
751 for (i = 0; i < cr; i++)
752 if (usage->cube[start+i*step]) {
753 fpos = start+i*step;
754 m++;
755 }
756
757 if (m == 1) {
758 int x, y, n;
759 assert(fpos >= 0);
760
761 n = 1 + fpos % cr;
762 y = fpos / cr;
763 x = y / cr;
764 y %= cr;
765
766 if (!usage->grid[YUNTRANS(y)*cr+x]) {
767 #ifdef STANDALONE_SOLVER
768 if (solver_show_working) {
769 va_list ap;
770 va_start(ap, fmt);
771 vprintf(fmt, ap);
772 va_end(ap);
773 printf(":\n placing %d at (%d,%d)\n",
774 n, 1+x, 1+YUNTRANS(y));
775 }
776 #endif
777 nsolve_place(usage, x, y, n);
778 return TRUE;
779 }
780 }
781
782 return FALSE;
783 }
784
785 static int nsolve_intersect(struct nsolve_usage *usage,
786 int start1, int step1, int start2, int step2
787 #ifdef STANDALONE_SOLVER
788 , char *fmt, ...
789 #endif
790 )
791 {
792 int c = usage->c, r = usage->r, cr = c*r;
793 int ret, i;
794
795 /*
796 * Loop over the first domain and see if there's any set bit
797 * not also in the second.
798 */
799 for (i = 0; i < cr; i++) {
800 int p = start1+i*step1;
801 if (usage->cube[p] &&
802 !(p >= start2 && p < start2+cr*step2 &&
803 (p - start2) % step2 == 0))
804 return FALSE; /* there is, so we can't deduce */
805 }
806
807 /*
808 * We have determined that all set bits in the first domain are
809 * within its overlap with the second. So loop over the second
810 * domain and remove all set bits that aren't also in that
811 * overlap; return TRUE iff we actually _did_ anything.
812 */
813 ret = FALSE;
814 for (i = 0; i < cr; i++) {
815 int p = start2+i*step2;
816 if (usage->cube[p] &&
817 !(p >= start1 && p < start1+cr*step1 && (p - start1) % step1 == 0))
818 {
819 #ifdef STANDALONE_SOLVER
820 if (solver_show_working) {
821 int px, py, pn;
822
823 if (!ret) {
824 va_list ap;
825 va_start(ap, fmt);
826 vprintf(fmt, ap);
827 va_end(ap);
828 printf(":\n");
829 }
830
831 pn = 1 + p % cr;
832 py = p / cr;
833 px = py / cr;
834 py %= cr;
835
836 printf(" ruling out %d at (%d,%d)\n",
837 pn, 1+px, 1+YUNTRANS(py));
838 }
839 #endif
840 ret = TRUE; /* we did something */
841 usage->cube[p] = 0;
842 }
843 }
844
845 return ret;
846 }
847
848 struct nsolve_scratch {
849 unsigned char *grid, *rowidx, *colidx, *set;
850 };
851
852 static int nsolve_set(struct nsolve_usage *usage,
853 struct nsolve_scratch *scratch,
854 int start, int step1, int step2
855 #ifdef STANDALONE_SOLVER
856 , char *fmt, ...
857 #endif
858 )
859 {
860 int c = usage->c, r = usage->r, cr = c*r;
861 int i, j, n, count;
862 unsigned char *grid = scratch->grid;
863 unsigned char *rowidx = scratch->rowidx;
864 unsigned char *colidx = scratch->colidx;
865 unsigned char *set = scratch->set;
866
867 /*
868 * We are passed a cr-by-cr matrix of booleans. Our first job
869 * is to winnow it by finding any definite placements - i.e.
870 * any row with a solitary 1 - and discarding that row and the
871 * column containing the 1.
872 */
873 memset(rowidx, TRUE, cr);
874 memset(colidx, TRUE, cr);
875 for (i = 0; i < cr; i++) {
876 int count = 0, first = -1;
877 for (j = 0; j < cr; j++)
878 if (usage->cube[start+i*step1+j*step2])
879 first = j, count++;
880 if (count == 0) {
881 /*
882 * This condition actually marks a completely insoluble
883 * (i.e. internally inconsistent) puzzle. We return and
884 * report no progress made.
885 */
886 return FALSE;
887 }
888 if (count == 1)
889 rowidx[i] = colidx[first] = FALSE;
890 }
891
892 /*
893 * Convert each of rowidx/colidx from a list of 0s and 1s to a
894 * list of the indices of the 1s.
895 */
896 for (i = j = 0; i < cr; i++)
897 if (rowidx[i])
898 rowidx[j++] = i;
899 n = j;
900 for (i = j = 0; i < cr; i++)
901 if (colidx[i])
902 colidx[j++] = i;
903 assert(n == j);
904
905 /*
906 * And create the smaller matrix.
907 */
908 for (i = 0; i < n; i++)
909 for (j = 0; j < n; j++)
910 grid[i*cr+j] = usage->cube[start+rowidx[i]*step1+colidx[j]*step2];
911
912 /*
913 * Having done that, we now have a matrix in which every row
914 * has at least two 1s in. Now we search to see if we can find
915 * a rectangle of zeroes (in the set-theoretic sense of
916 * `rectangle', i.e. a subset of rows crossed with a subset of
917 * columns) whose width and height add up to n.
918 */
919
920 memset(set, 0, n);
921 count = 0;
922 while (1) {
923 /*
924 * We have a candidate set. If its size is <=1 or >=n-1
925 * then we move on immediately.
926 */
927 if (count > 1 && count < n-1) {
928 /*
929 * The number of rows we need is n-count. See if we can
930 * find that many rows which each have a zero in all
931 * the positions listed in `set'.
932 */
933 int rows = 0;
934 for (i = 0; i < n; i++) {
935 int ok = TRUE;
936 for (j = 0; j < n; j++)
937 if (set[j] && grid[i*cr+j]) {
938 ok = FALSE;
939 break;
940 }
941 if (ok)
942 rows++;
943 }
944
945 /*
946 * We expect never to be able to get _more_ than
947 * n-count suitable rows: this would imply that (for
948 * example) there are four numbers which between them
949 * have at most three possible positions, and hence it
950 * indicates a faulty deduction before this point or
951 * even a bogus clue.
952 */
953 assert(rows <= n - count);
954 if (rows >= n - count) {
955 int progress = FALSE;
956
957 /*
958 * We've got one! Now, for each row which _doesn't_
959 * satisfy the criterion, eliminate all its set
960 * bits in the positions _not_ listed in `set'.
961 * Return TRUE (meaning progress has been made) if
962 * we successfully eliminated anything at all.
963 *
964 * This involves referring back through
965 * rowidx/colidx in order to work out which actual
966 * positions in the cube to meddle with.
967 */
968 for (i = 0; i < n; i++) {
969 int ok = TRUE;
970 for (j = 0; j < n; j++)
971 if (set[j] && grid[i*cr+j]) {
972 ok = FALSE;
973 break;
974 }
975 if (!ok) {
976 for (j = 0; j < n; j++)
977 if (!set[j] && grid[i*cr+j]) {
978 int fpos = (start+rowidx[i]*step1+
979 colidx[j]*step2);
980 #ifdef STANDALONE_SOLVER
981 if (solver_show_working) {
982 int px, py, pn;
983
984 if (!progress) {
985 va_list ap;
986 va_start(ap, fmt);
987 vprintf(fmt, ap);
988 va_end(ap);
989 printf(":\n");
990 }
991
992 pn = 1 + fpos % cr;
993 py = fpos / cr;
994 px = py / cr;
995 py %= cr;
996
997 printf(" ruling out %d at (%d,%d)\n",
998 pn, 1+px, 1+YUNTRANS(py));
999 }
1000 #endif
1001 progress = TRUE;
1002 usage->cube[fpos] = FALSE;
1003 }
1004 }
1005 }
1006
1007 if (progress) {
1008 return TRUE;
1009 }
1010 }
1011 }
1012
1013 /*
1014 * Binary increment: change the rightmost 0 to a 1, and
1015 * change all 1s to the right of it to 0s.
1016 */
1017 i = n;
1018 while (i > 0 && set[i-1])
1019 set[--i] = 0, count--;
1020 if (i > 0)
1021 set[--i] = 1, count++;
1022 else
1023 break; /* done */
1024 }
1025
1026 return FALSE;
1027 }
1028
1029 static struct nsolve_scratch *nsolve_new_scratch(struct nsolve_usage *usage)
1030 {
1031 struct nsolve_scratch *scratch = snew(struct nsolve_scratch);
1032 int cr = usage->cr;
1033 scratch->grid = snewn(cr*cr, unsigned char);
1034 scratch->rowidx = snewn(cr, unsigned char);
1035 scratch->colidx = snewn(cr, unsigned char);
1036 scratch->set = snewn(cr, unsigned char);
1037 return scratch;
1038 }
1039
1040 static void nsolve_free_scratch(struct nsolve_scratch *scratch)
1041 {
1042 sfree(scratch->set);
1043 sfree(scratch->colidx);
1044 sfree(scratch->rowidx);
1045 sfree(scratch->grid);
1046 sfree(scratch);
1047 }
1048
1049 static int nsolve(int c, int r, digit *grid)
1050 {
1051 struct nsolve_usage *usage;
1052 struct nsolve_scratch *scratch;
1053 int cr = c*r;
1054 int x, y, n;
1055 int diff = DIFF_BLOCK;
1056
1057 /*
1058 * Set up a usage structure as a clean slate (everything
1059 * possible).
1060 */
1061 usage = snew(struct nsolve_usage);
1062 usage->c = c;
1063 usage->r = r;
1064 usage->cr = cr;
1065 usage->cube = snewn(cr*cr*cr, unsigned char);
1066 usage->grid = grid; /* write straight back to the input */
1067 memset(usage->cube, TRUE, cr*cr*cr);
1068
1069 usage->row = snewn(cr * cr, unsigned char);
1070 usage->col = snewn(cr * cr, unsigned char);
1071 usage->blk = snewn(cr * cr, unsigned char);
1072 memset(usage->row, FALSE, cr * cr);
1073 memset(usage->col, FALSE, cr * cr);
1074 memset(usage->blk, FALSE, cr * cr);
1075
1076 scratch = nsolve_new_scratch(usage);
1077
1078 /*
1079 * Place all the clue numbers we are given.
1080 */
1081 for (x = 0; x < cr; x++)
1082 for (y = 0; y < cr; y++)
1083 if (grid[y*cr+x])
1084 nsolve_place(usage, x, YTRANS(y), grid[y*cr+x]);
1085
1086 /*
1087 * Now loop over the grid repeatedly trying all permitted modes
1088 * of reasoning. The loop terminates if we complete an
1089 * iteration without making any progress; we then return
1090 * failure or success depending on whether the grid is full or
1091 * not.
1092 */
1093 while (1) {
1094 /*
1095 * I'd like to write `continue;' inside each of the
1096 * following loops, so that the solver returns here after
1097 * making some progress. However, I can't specify that I
1098 * want to continue an outer loop rather than the innermost
1099 * one, so I'm apologetically resorting to a goto.
1100 */
1101 cont:
1102
1103 /*
1104 * Blockwise positional elimination.
1105 */
1106 for (x = 0; x < cr; x += r)
1107 for (y = 0; y < r; y++)
1108 for (n = 1; n <= cr; n++)
1109 if (!usage->blk[(y*c+(x/r))*cr+n-1] &&
1110 nsolve_elim(usage, cubepos(x,y,n), r*cr
1111 #ifdef STANDALONE_SOLVER
1112 , "positional elimination,"
1113 " block (%d,%d)", 1+x/r, 1+y
1114 #endif
1115 )) {
1116 diff = max(diff, DIFF_BLOCK);
1117 goto cont;
1118 }
1119
1120 /*
1121 * Row-wise positional elimination.
1122 */
1123 for (y = 0; y < cr; y++)
1124 for (n = 1; n <= cr; n++)
1125 if (!usage->row[y*cr+n-1] &&
1126 nsolve_elim(usage, cubepos(0,y,n), cr*cr
1127 #ifdef STANDALONE_SOLVER
1128 , "positional elimination,"
1129 " row %d", 1+YUNTRANS(y)
1130 #endif
1131 )) {
1132 diff = max(diff, DIFF_SIMPLE);
1133 goto cont;
1134 }
1135 /*
1136 * Column-wise positional elimination.
1137 */
1138 for (x = 0; x < cr; x++)
1139 for (n = 1; n <= cr; n++)
1140 if (!usage->col[x*cr+n-1] &&
1141 nsolve_elim(usage, cubepos(x,0,n), cr
1142 #ifdef STANDALONE_SOLVER
1143 , "positional elimination," " column %d", 1+x
1144 #endif
1145 )) {
1146 diff = max(diff, DIFF_SIMPLE);
1147 goto cont;
1148 }
1149
1150 /*
1151 * Numeric elimination.
1152 */
1153 for (x = 0; x < cr; x++)
1154 for (y = 0; y < cr; y++)
1155 if (!usage->grid[YUNTRANS(y)*cr+x] &&
1156 nsolve_elim(usage, cubepos(x,y,1), 1
1157 #ifdef STANDALONE_SOLVER
1158 , "numeric elimination at (%d,%d)", 1+x,
1159 1+YUNTRANS(y)
1160 #endif
1161 )) {
1162 diff = max(diff, DIFF_SIMPLE);
1163 goto cont;
1164 }
1165
1166 /*
1167 * Intersectional analysis, rows vs blocks.
1168 */
1169 for (y = 0; y < cr; y++)
1170 for (x = 0; x < cr; x += r)
1171 for (n = 1; n <= cr; n++)
1172 if (!usage->row[y*cr+n-1] &&
1173 !usage->blk[((y%r)*c+(x/r))*cr+n-1] &&
1174 (nsolve_intersect(usage, cubepos(0,y,n), cr*cr,
1175 cubepos(x,y%r,n), r*cr
1176 #ifdef STANDALONE_SOLVER
1177 , "intersectional analysis,"
1178 " row %d vs block (%d,%d)",
1179 1+YUNTRANS(y), 1+x/r, 1+y%r
1180 #endif
1181 ) ||
1182 nsolve_intersect(usage, cubepos(x,y%r,n), r*cr,
1183 cubepos(0,y,n), cr*cr
1184 #ifdef STANDALONE_SOLVER
1185 , "intersectional analysis,"
1186 " block (%d,%d) vs row %d",
1187 1+x/r, 1+y%r, 1+YUNTRANS(y)
1188 #endif
1189 ))) {
1190 diff = max(diff, DIFF_INTERSECT);
1191 goto cont;
1192 }
1193
1194 /*
1195 * Intersectional analysis, columns vs blocks.
1196 */
1197 for (x = 0; x < cr; x++)
1198 for (y = 0; y < r; y++)
1199 for (n = 1; n <= cr; n++)
1200 if (!usage->col[x*cr+n-1] &&
1201 !usage->blk[(y*c+(x/r))*cr+n-1] &&
1202 (nsolve_intersect(usage, cubepos(x,0,n), cr,
1203 cubepos((x/r)*r,y,n), r*cr
1204 #ifdef STANDALONE_SOLVER
1205 , "intersectional analysis,"
1206 " column %d vs block (%d,%d)",
1207 1+x, 1+x/r, 1+y
1208 #endif
1209 ) ||
1210 nsolve_intersect(usage, cubepos((x/r)*r,y,n), r*cr,
1211 cubepos(x,0,n), cr
1212 #ifdef STANDALONE_SOLVER
1213 , "intersectional analysis,"
1214 " block (%d,%d) vs column %d",
1215 1+x/r, 1+y, 1+x
1216 #endif
1217 ))) {
1218 diff = max(diff, DIFF_INTERSECT);
1219 goto cont;
1220 }
1221
1222 /*
1223 * Blockwise set elimination.
1224 */
1225 for (x = 0; x < cr; x += r)
1226 for (y = 0; y < r; y++)
1227 if (nsolve_set(usage, scratch, cubepos(x,y,1), r*cr, 1
1228 #ifdef STANDALONE_SOLVER
1229 , "set elimination, block (%d,%d)", 1+x/r, 1+y
1230 #endif
1231 )) {
1232 diff = max(diff, DIFF_SET);
1233 goto cont;
1234 }
1235
1236 /*
1237 * Row-wise set elimination.
1238 */
1239 for (y = 0; y < cr; y++)
1240 if (nsolve_set(usage, scratch, cubepos(0,y,1), cr*cr, 1
1241 #ifdef STANDALONE_SOLVER
1242 , "set elimination, row %d", 1+YUNTRANS(y)
1243 #endif
1244 )) {
1245 diff = max(diff, DIFF_SET);
1246 goto cont;
1247 }
1248
1249 /*
1250 * Column-wise set elimination.
1251 */
1252 for (x = 0; x < cr; x++)
1253 if (nsolve_set(usage, scratch, cubepos(x,0,1), cr, 1
1254 #ifdef STANDALONE_SOLVER
1255 , "set elimination, column %d", 1+x
1256 #endif
1257 )) {
1258 diff = max(diff, DIFF_SET);
1259 goto cont;
1260 }
1261
1262 /*
1263 * If we reach here, we have made no deductions in this
1264 * iteration, so the algorithm terminates.
1265 */
1266 break;
1267 }
1268
1269 nsolve_free_scratch(scratch);
1270
1271 sfree(usage->cube);
1272 sfree(usage->row);
1273 sfree(usage->col);
1274 sfree(usage->blk);
1275 sfree(usage);
1276
1277 for (x = 0; x < cr; x++)
1278 for (y = 0; y < cr; y++)
1279 if (!grid[y*cr+x])
1280 return DIFF_IMPOSSIBLE;
1281 return diff;
1282 }
1283
1284 /* ----------------------------------------------------------------------
1285 * End of non-recursive solver code.
1286 */
1287
1288 /*
1289 * Check whether a grid contains a valid complete puzzle.
1290 */
1291 static int check_valid(int c, int r, digit *grid)
1292 {
1293 int cr = c*r;
1294 unsigned char *used;
1295 int x, y, n;
1296
1297 used = snewn(cr, unsigned char);
1298
1299 /*
1300 * Check that each row contains precisely one of everything.
1301 */
1302 for (y = 0; y < cr; y++) {
1303 memset(used, FALSE, cr);
1304 for (x = 0; x < cr; x++)
1305 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
1306 used[grid[y*cr+x]-1] = TRUE;
1307 for (n = 0; n < cr; n++)
1308 if (!used[n]) {
1309 sfree(used);
1310 return FALSE;
1311 }
1312 }
1313
1314 /*
1315 * Check that each column contains precisely one of everything.
1316 */
1317 for (x = 0; x < cr; x++) {
1318 memset(used, FALSE, cr);
1319 for (y = 0; y < cr; y++)
1320 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
1321 used[grid[y*cr+x]-1] = TRUE;
1322 for (n = 0; n < cr; n++)
1323 if (!used[n]) {
1324 sfree(used);
1325 return FALSE;
1326 }
1327 }
1328
1329 /*
1330 * Check that each block contains precisely one of everything.
1331 */
1332 for (x = 0; x < cr; x += r) {
1333 for (y = 0; y < cr; y += c) {
1334 int xx, yy;
1335 memset(used, FALSE, cr);
1336 for (xx = x; xx < x+r; xx++)
1337 for (yy = 0; yy < y+c; yy++)
1338 if (grid[yy*cr+xx] > 0 && grid[yy*cr+xx] <= cr)
1339 used[grid[yy*cr+xx]-1] = TRUE;
1340 for (n = 0; n < cr; n++)
1341 if (!used[n]) {
1342 sfree(used);
1343 return FALSE;
1344 }
1345 }
1346 }
1347
1348 sfree(used);
1349 return TRUE;
1350 }
1351
1352 static void symmetry_limit(game_params *params, int *xlim, int *ylim, int s)
1353 {
1354 int c = params->c, r = params->r, cr = c*r;
1355
1356 switch (s) {
1357 case SYMM_NONE:
1358 *xlim = *ylim = cr;
1359 break;
1360 case SYMM_ROT2:
1361 *xlim = (cr+1) / 2;
1362 *ylim = cr;
1363 break;
1364 case SYMM_REF4:
1365 case SYMM_ROT4:
1366 *xlim = *ylim = (cr+1) / 2;
1367 break;
1368 }
1369 }
1370
1371 static int symmetries(game_params *params, int x, int y, int *output, int s)
1372 {
1373 int c = params->c, r = params->r, cr = c*r;
1374 int i = 0;
1375
1376 *output++ = x;
1377 *output++ = y;
1378 i++;
1379
1380 switch (s) {
1381 case SYMM_NONE:
1382 break; /* just x,y is all we need */
1383 case SYMM_REF4:
1384 case SYMM_ROT4:
1385 switch (s) {
1386 case SYMM_REF4:
1387 *output++ = cr - 1 - x;
1388 *output++ = y;
1389 i++;
1390
1391 *output++ = x;
1392 *output++ = cr - 1 - y;
1393 i++;
1394 break;
1395 case SYMM_ROT4:
1396 *output++ = cr - 1 - y;
1397 *output++ = x;
1398 i++;
1399
1400 *output++ = y;
1401 *output++ = cr - 1 - x;
1402 i++;
1403 break;
1404 }
1405 /* fall through */
1406 case SYMM_ROT2:
1407 *output++ = cr - 1 - x;
1408 *output++ = cr - 1 - y;
1409 i++;
1410 break;
1411 }
1412
1413 return i;
1414 }
1415
1416 struct game_aux_info {
1417 int c, r;
1418 digit *grid;
1419 };
1420
1421 static char *new_game_desc(game_params *params, random_state *rs,
1422 game_aux_info **aux, int interactive)
1423 {
1424 int c = params->c, r = params->r, cr = c*r;
1425 int area = cr*cr;
1426 digit *grid, *grid2;
1427 struct xy { int x, y; } *locs;
1428 int nlocs;
1429 int ret;
1430 char *desc;
1431 int coords[16], ncoords;
1432 int xlim, ylim;
1433 int maxdiff, recursing;
1434
1435 /*
1436 * Adjust the maximum difficulty level to be consistent with
1437 * the puzzle size: all 2x2 puzzles appear to be Trivial
1438 * (DIFF_BLOCK) so we cannot hold out for even a Basic
1439 * (DIFF_SIMPLE) one.
1440 */
1441 maxdiff = params->diff;
1442 if (c == 2 && r == 2)
1443 maxdiff = DIFF_BLOCK;
1444
1445 grid = snewn(area, digit);
1446 locs = snewn(area, struct xy);
1447 grid2 = snewn(area, digit);
1448
1449 /*
1450 * Loop until we get a grid of the required difficulty. This is
1451 * nasty, but it seems to be unpleasantly hard to generate
1452 * difficult grids otherwise.
1453 */
1454 do {
1455 /*
1456 * Start the recursive solver with an empty grid to generate a
1457 * random solved state.
1458 */
1459 memset(grid, 0, area);
1460 ret = rsolve(c, r, grid, rs, 1);
1461 assert(ret == 1);
1462 assert(check_valid(c, r, grid));
1463
1464 /*
1465 * Save the solved grid in the aux_info.
1466 */
1467 {
1468 game_aux_info *ai = snew(game_aux_info);
1469 ai->c = c;
1470 ai->r = r;
1471 ai->grid = snewn(cr * cr, digit);
1472 memcpy(ai->grid, grid, cr * cr * sizeof(digit));
1473 /*
1474 * We might already have written *aux the last time we
1475 * went round this loop, in which case we should free
1476 * the old aux_info before overwriting it with the new
1477 * one.
1478 */
1479 if (*aux) {
1480 sfree((*aux)->grid);
1481 sfree(*aux);
1482 }
1483 *aux = ai;
1484 }
1485
1486 /*
1487 * Now we have a solved grid, start removing things from it
1488 * while preserving solubility.
1489 */
1490 symmetry_limit(params, &xlim, &ylim, params->symm);
1491 recursing = FALSE;
1492 while (1) {
1493 int x, y, i, j;
1494
1495 /*
1496 * Iterate over the grid and enumerate all the filled
1497 * squares we could empty.
1498 */
1499 nlocs = 0;
1500
1501 for (x = 0; x < xlim; x++)
1502 for (y = 0; y < ylim; y++)
1503 if (grid[y*cr+x]) {
1504 locs[nlocs].x = x;
1505 locs[nlocs].y = y;
1506 nlocs++;
1507 }
1508
1509 /*
1510 * Now shuffle that list.
1511 */
1512 for (i = nlocs; i > 1; i--) {
1513 int p = random_upto(rs, i);
1514 if (p != i-1) {
1515 struct xy t = locs[p];
1516 locs[p] = locs[i-1];
1517 locs[i-1] = t;
1518 }
1519 }
1520
1521 /*
1522 * Now loop over the shuffled list and, for each element,
1523 * see whether removing that element (and its reflections)
1524 * from the grid will still leave the grid soluble by
1525 * nsolve.
1526 */
1527 for (i = 0; i < nlocs; i++) {
1528 int ret;
1529
1530 x = locs[i].x;
1531 y = locs[i].y;
1532
1533 memcpy(grid2, grid, area);
1534 ncoords = symmetries(params, x, y, coords, params->symm);
1535 for (j = 0; j < ncoords; j++)
1536 grid2[coords[2*j+1]*cr+coords[2*j]] = 0;
1537
1538 if (recursing)
1539 ret = (rsolve(c, r, grid2, NULL, 2) == 1);
1540 else
1541 ret = (nsolve(c, r, grid2) <= maxdiff);
1542
1543 if (ret) {
1544 for (j = 0; j < ncoords; j++)
1545 grid[coords[2*j+1]*cr+coords[2*j]] = 0;
1546 break;
1547 }
1548 }
1549
1550 if (i == nlocs) {
1551 /*
1552 * There was nothing we could remove without
1553 * destroying solvability. If we're trying to
1554 * generate a recursion-only grid and haven't
1555 * switched over to rsolve yet, we now do;
1556 * otherwise we give up.
1557 */
1558 if (maxdiff == DIFF_RECURSIVE && !recursing) {
1559 recursing = TRUE;
1560 } else {
1561 break;
1562 }
1563 }
1564 }
1565
1566 memcpy(grid2, grid, area);
1567 } while (nsolve(c, r, grid2) < maxdiff);
1568
1569 sfree(grid2);
1570 sfree(locs);
1571
1572 /*
1573 * Now we have the grid as it will be presented to the user.
1574 * Encode it in a game desc.
1575 */
1576 {
1577 char *p;
1578 int run, i;
1579
1580 desc = snewn(5 * area, char);
1581 p = desc;
1582 run = 0;
1583 for (i = 0; i <= area; i++) {
1584 int n = (i < area ? grid[i] : -1);
1585
1586 if (!n)
1587 run++;
1588 else {
1589 if (run) {
1590 while (run > 0) {
1591 int c = 'a' - 1 + run;
1592 if (run > 26)
1593 c = 'z';
1594 *p++ = c;
1595 run -= c - ('a' - 1);
1596 }
1597 } else {
1598 /*
1599 * If there's a number in the very top left or
1600 * bottom right, there's no point putting an
1601 * unnecessary _ before or after it.
1602 */
1603 if (p > desc && n > 0)
1604 *p++ = '_';
1605 }
1606 if (n > 0)
1607 p += sprintf(p, "%d", n);
1608 run = 0;
1609 }
1610 }
1611 assert(p - desc < 5 * area);
1612 *p++ = '\0';
1613 desc = sresize(desc, p - desc, char);
1614 }
1615
1616 sfree(grid);
1617
1618 return desc;
1619 }
1620
1621 static void game_free_aux_info(game_aux_info *aux)
1622 {
1623 sfree(aux->grid);
1624 sfree(aux);
1625 }
1626
1627 static char *validate_desc(game_params *params, char *desc)
1628 {
1629 int area = params->r * params->r * params->c * params->c;
1630 int squares = 0;
1631
1632 while (*desc) {
1633 int n = *desc++;
1634 if (n >= 'a' && n <= 'z') {
1635 squares += n - 'a' + 1;
1636 } else if (n == '_') {
1637 /* do nothing */;
1638 } else if (n > '0' && n <= '9') {
1639 squares++;
1640 while (*desc >= '0' && *desc <= '9')
1641 desc++;
1642 } else
1643 return "Invalid character in game description";
1644 }
1645
1646 if (squares < area)
1647 return "Not enough data to fill grid";
1648
1649 if (squares > area)
1650 return "Too much data to fit in grid";
1651
1652 return NULL;
1653 }
1654
1655 static game_state *new_game(midend_data *me, game_params *params, char *desc)
1656 {
1657 game_state *state = snew(game_state);
1658 int c = params->c, r = params->r, cr = c*r, area = cr * cr;
1659 int i;
1660
1661 state->c = params->c;
1662 state->r = params->r;
1663
1664 state->grid = snewn(area, digit);
1665 state->pencil = snewn(area * cr, unsigned char);
1666 memset(state->pencil, 0, area * cr);
1667 state->immutable = snewn(area, unsigned char);
1668 memset(state->immutable, FALSE, area);
1669
1670 state->completed = state->cheated = FALSE;
1671
1672 i = 0;
1673 while (*desc) {
1674 int n = *desc++;
1675 if (n >= 'a' && n <= 'z') {
1676 int run = n - 'a' + 1;
1677 assert(i + run <= area);
1678 while (run-- > 0)
1679 state->grid[i++] = 0;
1680 } else if (n == '_') {
1681 /* do nothing */;
1682 } else if (n > '0' && n <= '9') {
1683 assert(i < area);
1684 state->immutable[i] = TRUE;
1685 state->grid[i++] = atoi(desc-1);
1686 while (*desc >= '0' && *desc <= '9')
1687 desc++;
1688 } else {
1689 assert(!"We can't get here");
1690 }
1691 }
1692 assert(i == area);
1693
1694 return state;
1695 }
1696
1697 static game_state *dup_game(game_state *state)
1698 {
1699 game_state *ret = snew(game_state);
1700 int c = state->c, r = state->r, cr = c*r, area = cr * cr;
1701
1702 ret->c = state->c;
1703 ret->r = state->r;
1704
1705 ret->grid = snewn(area, digit);
1706 memcpy(ret->grid, state->grid, area);
1707
1708 ret->pencil = snewn(area * cr, unsigned char);
1709 memcpy(ret->pencil, state->pencil, area * cr);
1710
1711 ret->immutable = snewn(area, unsigned char);
1712 memcpy(ret->immutable, state->immutable, area);
1713
1714 ret->completed = state->completed;
1715 ret->cheated = state->cheated;
1716
1717 return ret;
1718 }
1719
1720 static void free_game(game_state *state)
1721 {
1722 sfree(state->immutable);
1723 sfree(state->pencil);
1724 sfree(state->grid);
1725 sfree(state);
1726 }
1727
1728 static game_state *solve_game(game_state *state, game_aux_info *ai,
1729 char **error)
1730 {
1731 game_state *ret;
1732 int c = state->c, r = state->r, cr = c*r;
1733 int rsolve_ret;
1734
1735 ret = dup_game(state);
1736 ret->completed = ret->cheated = TRUE;
1737
1738 /*
1739 * If we already have the solution in the aux_info, save
1740 * ourselves some time.
1741 */
1742 if (ai) {
1743
1744 assert(c == ai->c);
1745 assert(r == ai->r);
1746 memcpy(ret->grid, ai->grid, cr * cr * sizeof(digit));
1747
1748 } else {
1749 rsolve_ret = rsolve(c, r, ret->grid, NULL, 2);
1750
1751 if (rsolve_ret != 1) {
1752 free_game(ret);
1753 if (rsolve_ret == 0)
1754 *error = "No solution exists for this puzzle";
1755 else
1756 *error = "Multiple solutions exist for this puzzle";
1757 return NULL;
1758 }
1759 }
1760
1761 return ret;
1762 }
1763
1764 static char *grid_text_format(int c, int r, digit *grid)
1765 {
1766 int cr = c*r;
1767 int x, y;
1768 int maxlen;
1769 char *ret, *p;
1770
1771 /*
1772 * There are cr lines of digits, plus r-1 lines of block
1773 * separators. Each line contains cr digits, cr-1 separating
1774 * spaces, and c-1 two-character block separators. Thus, the
1775 * total length of a line is 2*cr+2*c-3 (not counting the
1776 * newline), and there are cr+r-1 of them.
1777 */
1778 maxlen = (cr+r-1) * (2*cr+2*c-2);
1779 ret = snewn(maxlen+1, char);
1780 p = ret;
1781
1782 for (y = 0; y < cr; y++) {
1783 for (x = 0; x < cr; x++) {
1784 int ch = grid[y * cr + x];
1785 if (ch == 0)
1786 ch = ' ';
1787 else if (ch <= 9)
1788 ch = '0' + ch;
1789 else
1790 ch = 'a' + ch-10;
1791 *p++ = ch;
1792 if (x+1 < cr) {
1793 *p++ = ' ';
1794 if ((x+1) % r == 0) {
1795 *p++ = '|';
1796 *p++ = ' ';
1797 }
1798 }
1799 }
1800 *p++ = '\n';
1801 if (y+1 < cr && (y+1) % c == 0) {
1802 for (x = 0; x < cr; x++) {
1803 *p++ = '-';
1804 if (x+1 < cr) {
1805 *p++ = '-';
1806 if ((x+1) % r == 0) {
1807 *p++ = '+';
1808 *p++ = '-';
1809 }
1810 }
1811 }
1812 *p++ = '\n';
1813 }
1814 }
1815
1816 assert(p - ret == maxlen);
1817 *p = '\0';
1818 return ret;
1819 }
1820
1821 static char *game_text_format(game_state *state)
1822 {
1823 return grid_text_format(state->c, state->r, state->grid);
1824 }
1825
1826 struct game_ui {
1827 /*
1828 * These are the coordinates of the currently highlighted
1829 * square on the grid, or -1,-1 if there isn't one. When there
1830 * is, pressing a valid number or letter key or Space will
1831 * enter that number or letter in the grid.
1832 */
1833 int hx, hy;
1834 /*
1835 * This indicates whether the current highlight is a
1836 * pencil-mark one or a real one.
1837 */
1838 int hpencil;
1839 };
1840
1841 static game_ui *new_ui(game_state *state)
1842 {
1843 game_ui *ui = snew(game_ui);
1844
1845 ui->hx = ui->hy = -1;
1846 ui->hpencil = 0;
1847
1848 return ui;
1849 }
1850
1851 static void free_ui(game_ui *ui)
1852 {
1853 sfree(ui);
1854 }
1855
1856 static void game_changed_state(game_ui *ui, game_state *oldstate,
1857 game_state *newstate)
1858 {
1859 int c = newstate->c, r = newstate->r, cr = c*r;
1860 /*
1861 * We prevent pencil-mode highlighting of a filled square. So
1862 * if the user has just filled in a square which we had a
1863 * pencil-mode highlight in (by Undo, or by Redo, or by Solve),
1864 * then we cancel the highlight.
1865 */
1866 if (ui->hx >= 0 && ui->hy >= 0 && ui->hpencil &&
1867 newstate->grid[ui->hy * cr + ui->hx] != 0) {
1868 ui->hx = ui->hy = -1;
1869 }
1870 }
1871
1872 static game_state *make_move(game_state *from, game_ui *ui, game_drawstate *ds,
1873 int x, int y, int button)
1874 {
1875 int c = from->c, r = from->r, cr = c*r;
1876 int tx, ty;
1877 game_state *ret;
1878
1879 button &= ~MOD_MASK;
1880
1881 tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
1882 ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
1883
1884 if (tx >= 0 && tx < cr && ty >= 0 && ty < cr) {
1885 if (button == LEFT_BUTTON) {
1886 if (from->immutable[ty*cr+tx]) {
1887 ui->hx = ui->hy = -1;
1888 } else if (tx == ui->hx && ty == ui->hy && ui->hpencil == 0) {
1889 ui->hx = ui->hy = -1;
1890 } else {
1891 ui->hx = tx;
1892 ui->hy = ty;
1893 ui->hpencil = 0;
1894 }
1895 return from; /* UI activity occurred */
1896 }
1897 if (button == RIGHT_BUTTON) {
1898 /*
1899 * Pencil-mode highlighting for non filled squares.
1900 */
1901 if (from->grid[ty*cr+tx] == 0) {
1902 if (tx == ui->hx && ty == ui->hy && ui->hpencil) {
1903 ui->hx = ui->hy = -1;
1904 } else {
1905 ui->hpencil = 1;
1906 ui->hx = tx;
1907 ui->hy = ty;
1908 }
1909 } else {
1910 ui->hx = ui->hy = -1;
1911 }
1912 return from; /* UI activity occurred */
1913 }
1914 }
1915
1916 if (ui->hx != -1 && ui->hy != -1 &&
1917 ((button >= '1' && button <= '9' && button - '0' <= cr) ||
1918 (button >= 'a' && button <= 'z' && button - 'a' + 10 <= cr) ||
1919 (button >= 'A' && button <= 'Z' && button - 'A' + 10 <= cr) ||
1920 button == ' ')) {
1921 int n = button - '0';
1922 if (button >= 'A' && button <= 'Z')
1923 n = button - 'A' + 10;
1924 if (button >= 'a' && button <= 'z')
1925 n = button - 'a' + 10;
1926 if (button == ' ')
1927 n = 0;
1928
1929 /*
1930 * Can't overwrite this square. In principle this shouldn't
1931 * happen anyway because we should never have even been
1932 * able to highlight the square, but it never hurts to be
1933 * careful.
1934 */
1935 if (from->immutable[ui->hy*cr+ui->hx])
1936 return NULL;
1937
1938 /*
1939 * Can't make pencil marks in a filled square. In principle
1940 * this shouldn't happen anyway because we should never
1941 * have even been able to pencil-highlight the square, but
1942 * it never hurts to be careful.
1943 */
1944 if (ui->hpencil && from->grid[ui->hy*cr+ui->hx])
1945 return NULL;
1946
1947 ret = dup_game(from);
1948 if (ui->hpencil && n > 0) {
1949 int index = (ui->hy*cr+ui->hx) * cr + (n-1);
1950 ret->pencil[index] = !ret->pencil[index];
1951 } else {
1952 ret->grid[ui->hy*cr+ui->hx] = n;
1953 memset(ret->pencil + (ui->hy*cr+ui->hx)*cr, 0, cr);
1954
1955 /*
1956 * We've made a real change to the grid. Check to see
1957 * if the game has been completed.
1958 */
1959 if (!ret->completed && check_valid(c, r, ret->grid)) {
1960 ret->completed = TRUE;
1961 }
1962 }
1963 ui->hx = ui->hy = -1;
1964
1965 return ret; /* made a valid move */
1966 }
1967
1968 return NULL;
1969 }
1970
1971 /* ----------------------------------------------------------------------
1972 * Drawing routines.
1973 */
1974
1975 struct game_drawstate {
1976 int started;
1977 int c, r, cr;
1978 digit *grid;
1979 unsigned char *pencil;
1980 unsigned char *hl;
1981 /* This is scratch space used within a single call to game_redraw. */
1982 int *entered_items;
1983 };
1984
1985 #define XSIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
1986 #define YSIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
1987
1988 static void game_size(game_params *params, int *x, int *y)
1989 {
1990 int c = params->c, r = params->r, cr = c*r;
1991
1992 *x = XSIZE(cr);
1993 *y = YSIZE(cr);
1994 }
1995
1996 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
1997 {
1998 float *ret = snewn(3 * NCOLOURS, float);
1999
2000 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2001
2002 ret[COL_GRID * 3 + 0] = 0.0F;
2003 ret[COL_GRID * 3 + 1] = 0.0F;
2004 ret[COL_GRID * 3 + 2] = 0.0F;
2005
2006 ret[COL_CLUE * 3 + 0] = 0.0F;
2007 ret[COL_CLUE * 3 + 1] = 0.0F;
2008 ret[COL_CLUE * 3 + 2] = 0.0F;
2009
2010 ret[COL_USER * 3 + 0] = 0.0F;
2011 ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
2012 ret[COL_USER * 3 + 2] = 0.0F;
2013
2014 ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0];
2015 ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
2016 ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
2017
2018 ret[COL_ERROR * 3 + 0] = 1.0F;
2019 ret[COL_ERROR * 3 + 1] = 0.0F;
2020 ret[COL_ERROR * 3 + 2] = 0.0F;
2021
2022 ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2023 ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2024 ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
2025
2026 *ncolours = NCOLOURS;
2027 return ret;
2028 }
2029
2030 static game_drawstate *game_new_drawstate(game_state *state)
2031 {
2032 struct game_drawstate *ds = snew(struct game_drawstate);
2033 int c = state->c, r = state->r, cr = c*r;
2034
2035 ds->started = FALSE;
2036 ds->c = c;
2037 ds->r = r;
2038 ds->cr = cr;
2039 ds->grid = snewn(cr*cr, digit);
2040 memset(ds->grid, 0, cr*cr);
2041 ds->pencil = snewn(cr*cr*cr, digit);
2042 memset(ds->pencil, 0, cr*cr*cr);
2043 ds->hl = snewn(cr*cr, unsigned char);
2044 memset(ds->hl, 0, cr*cr);
2045 ds->entered_items = snewn(cr*cr, int);
2046 return ds;
2047 }
2048
2049 static void game_free_drawstate(game_drawstate *ds)
2050 {
2051 sfree(ds->hl);
2052 sfree(ds->pencil);
2053 sfree(ds->grid);
2054 sfree(ds->entered_items);
2055 sfree(ds);
2056 }
2057
2058 static void draw_number(frontend *fe, game_drawstate *ds, game_state *state,
2059 int x, int y, int hl)
2060 {
2061 int c = state->c, r = state->r, cr = c*r;
2062 int tx, ty;
2063 int cx, cy, cw, ch;
2064 char str[2];
2065
2066 if (ds->grid[y*cr+x] == state->grid[y*cr+x] &&
2067 ds->hl[y*cr+x] == hl &&
2068 !memcmp(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr))
2069 return; /* no change required */
2070
2071 tx = BORDER + x * TILE_SIZE + 2;
2072 ty = BORDER + y * TILE_SIZE + 2;
2073
2074 cx = tx;
2075 cy = ty;
2076 cw = TILE_SIZE-3;
2077 ch = TILE_SIZE-3;
2078
2079 if (x % r)
2080 cx--, cw++;
2081 if ((x+1) % r)
2082 cw++;
2083 if (y % c)
2084 cy--, ch++;
2085 if ((y+1) % c)
2086 ch++;
2087
2088 clip(fe, cx, cy, cw, ch);
2089
2090 /* background needs erasing */
2091 draw_rect(fe, cx, cy, cw, ch, (hl & 15) == 1 ? COL_HIGHLIGHT : COL_BACKGROUND);
2092
2093 /* pencil-mode highlight */
2094 if ((hl & 15) == 2) {
2095 int coords[6];
2096 coords[0] = cx;
2097 coords[1] = cy;
2098 coords[2] = cx+cw/2;
2099 coords[3] = cy;
2100 coords[4] = cx;
2101 coords[5] = cy+ch/2;
2102 draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT);
2103 }
2104
2105 /* new number needs drawing? */
2106 if (state->grid[y*cr+x]) {
2107 str[1] = '\0';
2108 str[0] = state->grid[y*cr+x] + '0';
2109 if (str[0] > '9')
2110 str[0] += 'a' - ('9'+1);
2111 draw_text(fe, tx + TILE_SIZE/2, ty + TILE_SIZE/2,
2112 FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
2113 state->immutable[y*cr+x] ? COL_CLUE : (hl & 16) ? COL_ERROR : COL_USER, str);
2114 } else {
2115 int i, j, npencil;
2116 int pw, ph, pmax, fontsize;
2117
2118 /* count the pencil marks required */
2119 for (i = npencil = 0; i < cr; i++)
2120 if (state->pencil[(y*cr+x)*cr+i])
2121 npencil++;
2122
2123 /*
2124 * It's not sensible to arrange pencil marks in the same
2125 * layout as the squares within a block, because this leads
2126 * to the font being too small. Instead, we arrange pencil
2127 * marks in the nearest thing we can to a square layout,
2128 * and we adjust the square layout depending on the number
2129 * of pencil marks in the square.
2130 */
2131 for (pw = 1; pw * pw < npencil; pw++);
2132 if (pw < 3) pw = 3; /* otherwise it just looks _silly_ */
2133 ph = (npencil + pw - 1) / pw;
2134 if (ph < 2) ph = 2; /* likewise */
2135 pmax = max(pw, ph);
2136 fontsize = TILE_SIZE/(pmax*(11-pmax)/8);
2137
2138 for (i = j = 0; i < cr; i++)
2139 if (state->pencil[(y*cr+x)*cr+i]) {
2140 int dx = j % pw, dy = j / pw;
2141
2142 str[1] = '\0';
2143 str[0] = i + '1';
2144 if (str[0] > '9')
2145 str[0] += 'a' - ('9'+1);
2146 draw_text(fe, tx + (4*dx+3) * TILE_SIZE / (4*pw+2),
2147 ty + (4*dy+3) * TILE_SIZE / (4*ph+2),
2148 FONT_VARIABLE, fontsize,
2149 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
2150 j++;
2151 }
2152 }
2153
2154 unclip(fe);
2155
2156 draw_update(fe, cx, cy, cw, ch);
2157
2158 ds->grid[y*cr+x] = state->grid[y*cr+x];
2159 memcpy(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr);
2160 ds->hl[y*cr+x] = hl;
2161 }
2162
2163 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
2164 game_state *state, int dir, game_ui *ui,
2165 float animtime, float flashtime)
2166 {
2167 int c = state->c, r = state->r, cr = c*r;
2168 int x, y;
2169
2170 if (!ds->started) {
2171 /*
2172 * The initial contents of the window are not guaranteed
2173 * and can vary with front ends. To be on the safe side,
2174 * all games should start by drawing a big
2175 * background-colour rectangle covering the whole window.
2176 */
2177 draw_rect(fe, 0, 0, XSIZE(cr), YSIZE(cr), COL_BACKGROUND);
2178
2179 /*
2180 * Draw the grid.
2181 */
2182 for (x = 0; x <= cr; x++) {
2183 int thick = (x % r ? 0 : 1);
2184 draw_rect(fe, BORDER + x*TILE_SIZE - thick, BORDER-1,
2185 1+2*thick, cr*TILE_SIZE+3, COL_GRID);
2186 }
2187 for (y = 0; y <= cr; y++) {
2188 int thick = (y % c ? 0 : 1);
2189 draw_rect(fe, BORDER-1, BORDER + y*TILE_SIZE - thick,
2190 cr*TILE_SIZE+3, 1+2*thick, COL_GRID);
2191 }
2192 }
2193
2194 /*
2195 * This array is used to keep track of rows, columns and boxes
2196 * which contain a number more than once.
2197 */
2198 for (x = 0; x < cr * cr; x++)
2199 ds->entered_items[x] = 0;
2200 for (x = 0; x < cr; x++)
2201 for (y = 0; y < cr; y++) {
2202 digit d = state->grid[y*cr+x];
2203 if (d) {
2204 int box = (x/r)+(y/c)*c;
2205 ds->entered_items[x*cr+d-1] |= ((ds->entered_items[x*cr+d-1] & 1) << 1) | 1;
2206 ds->entered_items[y*cr+d-1] |= ((ds->entered_items[y*cr+d-1] & 4) << 1) | 4;
2207 ds->entered_items[box*cr+d-1] |= ((ds->entered_items[box*cr+d-1] & 16) << 1) | 16;
2208 }
2209 }
2210
2211 /*
2212 * Draw any numbers which need redrawing.
2213 */
2214 for (x = 0; x < cr; x++) {
2215 for (y = 0; y < cr; y++) {
2216 int highlight = 0;
2217 digit d = state->grid[y*cr+x];
2218
2219 if (flashtime > 0 &&
2220 (flashtime <= FLASH_TIME/3 ||
2221 flashtime >= FLASH_TIME*2/3))
2222 highlight = 1;
2223
2224 /* Highlight active input areas. */
2225 if (x == ui->hx && y == ui->hy)
2226 highlight = ui->hpencil ? 2 : 1;
2227
2228 /* Mark obvious errors (ie, numbers which occur more than once
2229 * in a single row, column, or box). */
2230 if ((ds->entered_items[x*cr+d-1] & 2) ||
2231 (ds->entered_items[y*cr+d-1] & 8) ||
2232 (ds->entered_items[((x/r)+(y/c)*c)*cr+d-1] & 32))
2233 highlight |= 16;
2234
2235 draw_number(fe, ds, state, x, y, highlight);
2236 }
2237 }
2238
2239 /*
2240 * Update the _entire_ grid if necessary.
2241 */
2242 if (!ds->started) {
2243 draw_update(fe, 0, 0, XSIZE(cr), YSIZE(cr));
2244 ds->started = TRUE;
2245 }
2246 }
2247
2248 static float game_anim_length(game_state *oldstate, game_state *newstate,
2249 int dir, game_ui *ui)
2250 {
2251 return 0.0F;
2252 }
2253
2254 static float game_flash_length(game_state *oldstate, game_state *newstate,
2255 int dir, game_ui *ui)
2256 {
2257 if (!oldstate->completed && newstate->completed &&
2258 !oldstate->cheated && !newstate->cheated)
2259 return FLASH_TIME;
2260 return 0.0F;
2261 }
2262
2263 static int game_wants_statusbar(void)
2264 {
2265 return FALSE;
2266 }
2267
2268 static int game_timing_state(game_state *state)
2269 {
2270 return TRUE;
2271 }
2272
2273 #ifdef COMBINED
2274 #define thegame solo
2275 #endif
2276
2277 const struct game thegame = {
2278 "Solo", "games.solo",
2279 default_params,
2280 game_fetch_preset,
2281 decode_params,
2282 encode_params,
2283 free_params,
2284 dup_params,
2285 TRUE, game_configure, custom_params,
2286 validate_params,
2287 new_game_desc,
2288 game_free_aux_info,
2289 validate_desc,
2290 new_game,
2291 dup_game,
2292 free_game,
2293 TRUE, solve_game,
2294 TRUE, game_text_format,
2295 new_ui,
2296 free_ui,
2297 game_changed_state,
2298 make_move,
2299 game_size,
2300 game_colours,
2301 game_new_drawstate,
2302 game_free_drawstate,
2303 game_redraw,
2304 game_anim_length,
2305 game_flash_length,
2306 game_wants_statusbar,
2307 FALSE, game_timing_state,
2308 0, /* mouse_priorities */
2309 };
2310
2311 #ifdef STANDALONE_SOLVER
2312
2313 /*
2314 * gcc -DSTANDALONE_SOLVER -o solosolver solo.c malloc.c
2315 */
2316
2317 void frontend_default_colour(frontend *fe, float *output) {}
2318 void draw_text(frontend *fe, int x, int y, int fonttype, int fontsize,
2319 int align, int colour, char *text) {}
2320 void draw_rect(frontend *fe, int x, int y, int w, int h, int colour) {}
2321 void draw_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) {}
2322 void draw_polygon(frontend *fe, int *coords, int npoints,
2323 int fill, int colour) {}
2324 void clip(frontend *fe, int x, int y, int w, int h) {}
2325 void unclip(frontend *fe) {}
2326 void start_draw(frontend *fe) {}
2327 void draw_update(frontend *fe, int x, int y, int w, int h) {}
2328 void end_draw(frontend *fe) {}
2329 unsigned long random_bits(random_state *state, int bits)
2330 { assert(!"Shouldn't get randomness"); return 0; }
2331 unsigned long random_upto(random_state *state, unsigned long limit)
2332 { assert(!"Shouldn't get randomness"); return 0; }
2333
2334 void fatal(char *fmt, ...)
2335 {
2336 va_list ap;
2337
2338 fprintf(stderr, "fatal error: ");
2339
2340 va_start(ap, fmt);
2341 vfprintf(stderr, fmt, ap);
2342 va_end(ap);
2343
2344 fprintf(stderr, "\n");
2345 exit(1);
2346 }
2347
2348 int main(int argc, char **argv)
2349 {
2350 game_params *p;
2351 game_state *s;
2352 int recurse = TRUE;
2353 char *id = NULL, *desc, *err;
2354 int y, x;
2355 int grade = FALSE;
2356
2357 while (--argc > 0) {
2358 char *p = *++argv;
2359 if (!strcmp(p, "-r")) {
2360 recurse = TRUE;
2361 } else if (!strcmp(p, "-n")) {
2362 recurse = FALSE;
2363 } else if (!strcmp(p, "-v")) {
2364 solver_show_working = TRUE;
2365 recurse = FALSE;
2366 } else if (!strcmp(p, "-g")) {
2367 grade = TRUE;
2368 recurse = FALSE;
2369 } else if (*p == '-') {
2370 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0]);
2371 return 1;
2372 } else {
2373 id = p;
2374 }
2375 }
2376
2377 if (!id) {
2378 fprintf(stderr, "usage: %s [-n | -r | -g | -v] <game_id>\n", argv[0]);
2379 return 1;
2380 }
2381
2382 desc = strchr(id, ':');
2383 if (!desc) {
2384 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
2385 return 1;
2386 }
2387 *desc++ = '\0';
2388
2389 p = default_params();
2390 decode_params(p, id);
2391 err = validate_desc(p, desc);
2392 if (err) {
2393 fprintf(stderr, "%s: %s\n", argv[0], err);
2394 return 1;
2395 }
2396 s = new_game(NULL, p, desc);
2397
2398 if (recurse) {
2399 int ret = rsolve(p->c, p->r, s->grid, NULL, 2);
2400 if (ret > 1) {
2401 fprintf(stderr, "%s: rsolve: multiple solutions detected\n",
2402 argv[0]);
2403 }
2404 } else {
2405 int ret = nsolve(p->c, p->r, s->grid);
2406 if (grade) {
2407 if (ret == DIFF_IMPOSSIBLE) {
2408 /*
2409 * Now resort to rsolve to determine whether it's
2410 * really soluble.
2411 */
2412 ret = rsolve(p->c, p->r, s->grid, NULL, 2);
2413 if (ret == 0)
2414 ret = DIFF_IMPOSSIBLE;
2415 else if (ret == 1)
2416 ret = DIFF_RECURSIVE;
2417 else
2418 ret = DIFF_AMBIGUOUS;
2419 }
2420 printf("Difficulty rating: %s\n",
2421 ret==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)":
2422 ret==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
2423 ret==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
2424 ret==DIFF_SET ? "Advanced (set elimination required)":
2425 ret==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
2426 ret==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
2427 ret==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
2428 "INTERNAL ERROR: unrecognised difficulty code");
2429 }
2430 }
2431
2432 printf("%s\n", grid_text_format(p->c, p->r, s->grid));
2433
2434 return 0;
2435 }
2436
2437 #endif