I've dithered a bit in the past about whether or not it's allowable
[sgt/puzzles] / inertia.c
1 /*
2 * inertia.c: Game involving navigating round a grid picking up
3 * gems.
4 *
5 * Game rules and basic generator design by Ben Olmstead.
6 * This re-implementation was written by Simon Tatham.
7 */
8
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include <assert.h>
13 #include <ctype.h>
14 #include <math.h>
15
16 #include "puzzles.h"
17
18 /* Used in the game_state */
19 #define BLANK 'b'
20 #define GEM 'g'
21 #define MINE 'm'
22 #define STOP 's'
23 #define WALL 'w'
24
25 /* Used in the game IDs */
26 #define START 'S'
27
28 /* Used in the game generation */
29 #define POSSGEM 'G'
30
31 /* Used only in the game_drawstate*/
32 #define UNDRAWN '?'
33
34 #define DIRECTIONS 8
35 #define DX(dir) ( (dir) & 3 ? (((dir) & 7) > 4 ? -1 : +1) : 0 )
36 #define DY(dir) ( DX((dir)+6) )
37
38 /*
39 * Lvalue macro which expects x and y to be in range.
40 */
41 #define LV_AT(w, h, grid, x, y) ( (grid)[(y)*(w)+(x)] )
42
43 /*
44 * Rvalue macro which can cope with x and y being out of range.
45 */
46 #define AT(w, h, grid, x, y) ( (x)<0 || (x)>=(w) || (y)<0 || (y)>=(h) ? \
47 WALL : LV_AT(w, h, grid, x, y) )
48
49 enum {
50 COL_BACKGROUND,
51 COL_OUTLINE,
52 COL_HIGHLIGHT,
53 COL_LOWLIGHT,
54 COL_PLAYER,
55 COL_DEAD_PLAYER,
56 COL_MINE,
57 COL_GEM,
58 COL_WALL,
59 NCOLOURS
60 };
61
62 struct game_params {
63 int w, h;
64 };
65
66 struct game_state {
67 game_params p;
68 int px, py;
69 int gems;
70 char *grid;
71 int distance_moved;
72 int dead;
73 };
74
75 static game_params *default_params(void)
76 {
77 game_params *ret = snew(game_params);
78
79 ret->w = 10;
80 ret->h = 8;
81
82 return ret;
83 }
84
85 static void free_params(game_params *params)
86 {
87 sfree(params);
88 }
89
90 static game_params *dup_params(game_params *params)
91 {
92 game_params *ret = snew(game_params);
93 *ret = *params; /* structure copy */
94 return ret;
95 }
96
97 static const struct game_params inertia_presets[] = {
98 { 10, 8 },
99 { 15, 12 },
100 { 20, 16 },
101 };
102
103 static int game_fetch_preset(int i, char **name, game_params **params)
104 {
105 game_params p, *ret;
106 char *retname;
107 char namebuf[80];
108
109 if (i < 0 || i >= lenof(inertia_presets))
110 return FALSE;
111
112 p = inertia_presets[i];
113 ret = dup_params(&p);
114 sprintf(namebuf, "%dx%d", ret->w, ret->h);
115 retname = dupstr(namebuf);
116
117 *params = ret;
118 *name = retname;
119 return TRUE;
120 }
121
122 static void decode_params(game_params *params, char const *string)
123 {
124 params->w = params->h = atoi(string);
125 while (*string && isdigit((unsigned char)*string)) string++;
126 if (*string == 'x') {
127 string++;
128 params->h = atoi(string);
129 }
130 }
131
132 static char *encode_params(game_params *params, int full)
133 {
134 char data[256];
135
136 sprintf(data, "%dx%d", params->w, params->h);
137
138 return dupstr(data);
139 }
140
141 static config_item *game_configure(game_params *params)
142 {
143 config_item *ret;
144 char buf[80];
145
146 ret = snewn(3, config_item);
147
148 ret[0].name = "Width";
149 ret[0].type = C_STRING;
150 sprintf(buf, "%d", params->w);
151 ret[0].sval = dupstr(buf);
152 ret[0].ival = 0;
153
154 ret[1].name = "Height";
155 ret[1].type = C_STRING;
156 sprintf(buf, "%d", params->h);
157 ret[1].sval = dupstr(buf);
158 ret[1].ival = 0;
159
160 ret[2].name = NULL;
161 ret[2].type = C_END;
162 ret[2].sval = NULL;
163 ret[2].ival = 0;
164
165 return ret;
166 }
167
168 static game_params *custom_params(config_item *cfg)
169 {
170 game_params *ret = snew(game_params);
171
172 ret->w = atoi(cfg[0].sval);
173 ret->h = atoi(cfg[1].sval);
174
175 return ret;
176 }
177
178 static char *validate_params(game_params *params, int full)
179 {
180 /*
181 * Avoid completely degenerate cases which only have one
182 * row/column. We probably could generate completable puzzles
183 * of that shape, but they'd be forced to be extremely boring
184 * and at large sizes would take a while to happen upon at
185 * random as well.
186 */
187 if (params->w < 2 || params->h < 2)
188 return "Width and height must both be at least two";
189
190 /*
191 * The grid construction algorithm creates 1/5 as many gems as
192 * grid squares, and must create at least one gem to have an
193 * actual puzzle. However, an area-five grid is ruled out by
194 * the above constraint, so the practical minimum is six.
195 */
196 if (params->w * params->h < 6)
197 return "Grid area must be at least six squares";
198
199 return NULL;
200 }
201
202 /* ----------------------------------------------------------------------
203 * Solver used by grid generator.
204 */
205
206 struct solver_scratch {
207 unsigned char *reachable_from, *reachable_to;
208 int *positions;
209 };
210
211 static struct solver_scratch *new_scratch(int w, int h)
212 {
213 struct solver_scratch *sc = snew(struct solver_scratch);
214
215 sc->reachable_from = snewn(w * h * DIRECTIONS, unsigned char);
216 sc->reachable_to = snewn(w * h * DIRECTIONS, unsigned char);
217 sc->positions = snewn(w * h * DIRECTIONS, int);
218
219 return sc;
220 }
221
222 static void free_scratch(struct solver_scratch *sc)
223 {
224 sfree(sc->reachable_from);
225 sfree(sc->reachable_to);
226 sfree(sc->positions);
227 sfree(sc);
228 }
229
230 static int can_go(int w, int h, char *grid,
231 int x1, int y1, int dir1, int x2, int y2, int dir2)
232 {
233 /*
234 * Returns TRUE if we can transition directly from (x1,y1)
235 * going in direction dir1, to (x2,y2) going in direction dir2.
236 */
237
238 /*
239 * If we're actually in the middle of an unoccupyable square,
240 * we cannot make any move.
241 */
242 if (AT(w, h, grid, x1, y1) == WALL ||
243 AT(w, h, grid, x1, y1) == MINE)
244 return FALSE;
245
246 /*
247 * If a move is capable of stopping at x1,y1,dir1, and x2,y2 is
248 * the same coordinate as x1,y1, then we can make the
249 * transition (by stopping and changing direction).
250 *
251 * For this to be the case, we have to either have a wall
252 * beyond x1,y1,dir1, or have a stop on x1,y1.
253 */
254 if (x2 == x1 && y2 == y1 &&
255 (AT(w, h, grid, x1, y1) == STOP ||
256 AT(w, h, grid, x1, y1) == START ||
257 AT(w, h, grid, x1+DX(dir1), y1+DY(dir1)) == WALL))
258 return TRUE;
259
260 /*
261 * If a move is capable of continuing here, then x1,y1,dir1 can
262 * move one space further on.
263 */
264 if (x2 == x1+DX(dir1) && y2 == y1+DY(dir1) && dir1 == dir2 &&
265 (AT(w, h, grid, x2, y2) == BLANK ||
266 AT(w, h, grid, x2, y2) == GEM ||
267 AT(w, h, grid, x2, y2) == STOP ||
268 AT(w, h, grid, x2, y2) == START))
269 return TRUE;
270
271 /*
272 * That's it.
273 */
274 return FALSE;
275 }
276
277 static int find_gem_candidates(int w, int h, char *grid,
278 struct solver_scratch *sc)
279 {
280 int wh = w*h;
281 int head, tail;
282 int sx, sy, gx, gy, gd, pass, possgems;
283
284 /*
285 * This function finds all the candidate gem squares, which are
286 * precisely those squares which can be picked up on a loop
287 * from the starting point back to the starting point. Doing
288 * this may involve passing through such a square in the middle
289 * of a move; so simple breadth-first search over the _squares_
290 * of the grid isn't quite adequate, because it might be that
291 * we can only reach a gem from the start by moving over it in
292 * one direction, but can only return to the start if we were
293 * moving over it in another direction.
294 *
295 * Instead, we BFS over a space which mentions each grid square
296 * eight times - once for each direction. We also BFS twice:
297 * once to find out what square+direction pairs we can reach
298 * _from_ the start point, and once to find out what pairs we
299 * can reach the start point from. Then a square is reachable
300 * if any of the eight directions for that square has both
301 * flags set.
302 */
303
304 memset(sc->reachable_from, 0, wh * DIRECTIONS);
305 memset(sc->reachable_to, 0, wh * DIRECTIONS);
306
307 /*
308 * Find the starting square.
309 */
310 sx = -1; /* placate optimiser */
311 for (sy = 0; sy < h; sy++) {
312 for (sx = 0; sx < w; sx++)
313 if (AT(w, h, grid, sx, sy) == START)
314 break;
315 if (sx < w)
316 break;
317 }
318 assert(sy < h);
319
320 for (pass = 0; pass < 2; pass++) {
321 unsigned char *reachable = (pass == 0 ? sc->reachable_from :
322 sc->reachable_to);
323 int sign = (pass == 0 ? +1 : -1);
324 int dir;
325
326 #ifdef SOLVER_DIAGNOSTICS
327 printf("starting pass %d\n", pass);
328 #endif
329
330 /*
331 * `head' and `tail' are indices within sc->positions which
332 * track the list of board positions left to process.
333 */
334 head = tail = 0;
335 for (dir = 0; dir < DIRECTIONS; dir++) {
336 int index = (sy*w+sx)*DIRECTIONS+dir;
337 sc->positions[tail++] = index;
338 reachable[index] = TRUE;
339 #ifdef SOLVER_DIAGNOSTICS
340 printf("starting point %d,%d,%d\n", sx, sy, dir);
341 #endif
342 }
343
344 /*
345 * Now repeatedly pick an element off the list and process
346 * it.
347 */
348 while (head < tail) {
349 int index = sc->positions[head++];
350 int dir = index % DIRECTIONS;
351 int x = (index / DIRECTIONS) % w;
352 int y = index / (w * DIRECTIONS);
353 int n, x2, y2, d2, i2;
354
355 #ifdef SOLVER_DIAGNOSTICS
356 printf("processing point %d,%d,%d\n", x, y, dir);
357 #endif
358 /*
359 * The places we attempt to switch to here are:
360 * - each possible direction change (all the other
361 * directions in this square)
362 * - one step further in the direction we're going (or
363 * one step back, if we're in the reachable_to pass).
364 */
365 for (n = -1; n < DIRECTIONS; n++) {
366 if (n < 0) {
367 x2 = x + sign * DX(dir);
368 y2 = y + sign * DY(dir);
369 d2 = dir;
370 } else {
371 x2 = x;
372 y2 = y;
373 d2 = n;
374 }
375 i2 = (y2*w+x2)*DIRECTIONS+d2;
376 if (x2 >= 0 && x2 < w &&
377 y2 >= 0 && y2 < h &&
378 !reachable[i2]) {
379 int ok;
380 #ifdef SOLVER_DIAGNOSTICS
381 printf(" trying point %d,%d,%d", x2, y2, d2);
382 #endif
383 if (pass == 0)
384 ok = can_go(w, h, grid, x, y, dir, x2, y2, d2);
385 else
386 ok = can_go(w, h, grid, x2, y2, d2, x, y, dir);
387 #ifdef SOLVER_DIAGNOSTICS
388 printf(" - %sok\n", ok ? "" : "not ");
389 #endif
390 if (ok) {
391 sc->positions[tail++] = i2;
392 reachable[i2] = TRUE;
393 }
394 }
395 }
396 }
397 }
398
399 /*
400 * And that should be it. Now all we have to do is find the
401 * squares for which there exists _some_ direction such that
402 * the square plus that direction form a tuple which is both
403 * reachable from the start and reachable to the start.
404 */
405 possgems = 0;
406 for (gy = 0; gy < h; gy++)
407 for (gx = 0; gx < w; gx++)
408 if (AT(w, h, grid, gx, gy) == BLANK) {
409 for (gd = 0; gd < DIRECTIONS; gd++) {
410 int index = (gy*w+gx)*DIRECTIONS+gd;
411 if (sc->reachable_from[index] && sc->reachable_to[index]) {
412 #ifdef SOLVER_DIAGNOSTICS
413 printf("space at %d,%d is reachable via"
414 " direction %d\n", gx, gy, gd);
415 #endif
416 LV_AT(w, h, grid, gx, gy) = POSSGEM;
417 possgems++;
418 break;
419 }
420 }
421 }
422
423 return possgems;
424 }
425
426 /* ----------------------------------------------------------------------
427 * Grid generation code.
428 */
429
430 static char *gengrid(int w, int h, random_state *rs)
431 {
432 int wh = w*h;
433 char *grid = snewn(wh+1, char);
434 struct solver_scratch *sc = new_scratch(w, h);
435 int maxdist_threshold, tries;
436
437 maxdist_threshold = 2;
438 tries = 0;
439
440 while (1) {
441 int i, j;
442 int possgems;
443 int *dist, *list, head, tail, maxdist;
444
445 /*
446 * We're going to fill the grid with the five basic piece
447 * types in about 1/5 proportion. For the moment, though,
448 * we leave out the gems, because we'll put those in
449 * _after_ we run the solver to tell us where the viable
450 * locations are.
451 */
452 i = 0;
453 for (j = 0; j < wh/5; j++)
454 grid[i++] = WALL;
455 for (j = 0; j < wh/5; j++)
456 grid[i++] = STOP;
457 for (j = 0; j < wh/5; j++)
458 grid[i++] = MINE;
459 assert(i < wh);
460 grid[i++] = START;
461 while (i < wh)
462 grid[i++] = BLANK;
463 shuffle(grid, wh, sizeof(*grid), rs);
464
465 /*
466 * Find the viable gem locations, and immediately give up
467 * and try again if there aren't enough of them.
468 */
469 possgems = find_gem_candidates(w, h, grid, sc);
470 if (possgems < wh/5)
471 continue;
472
473 /*
474 * We _could_ now select wh/5 of the POSSGEMs and set them
475 * to GEM, and have a viable level. However, there's a
476 * chance that a large chunk of the level will turn out to
477 * be unreachable, so first we test for that.
478 *
479 * We do this by finding the largest distance from any
480 * square to the nearest POSSGEM, by breadth-first search.
481 * If this is above a critical threshold, we abort and try
482 * again.
483 *
484 * (This search is purely geometric, without regard to
485 * walls and long ways round.)
486 */
487 dist = sc->positions;
488 list = sc->positions + wh;
489 for (i = 0; i < wh; i++)
490 dist[i] = -1;
491 head = tail = 0;
492 for (i = 0; i < wh; i++)
493 if (grid[i] == POSSGEM) {
494 dist[i] = 0;
495 list[tail++] = i;
496 }
497 maxdist = 0;
498 while (head < tail) {
499 int pos, x, y, d;
500
501 pos = list[head++];
502 if (maxdist < dist[pos])
503 maxdist = dist[pos];
504
505 x = pos % w;
506 y = pos / w;
507
508 for (d = 0; d < DIRECTIONS; d++) {
509 int x2, y2, p2;
510
511 x2 = x + DX(d);
512 y2 = y + DY(d);
513
514 if (x2 >= 0 && x2 < w && y2 >= 0 && y2 < h) {
515 p2 = y2*w+x2;
516 if (dist[p2] < 0) {
517 dist[p2] = dist[pos] + 1;
518 list[tail++] = p2;
519 }
520 }
521 }
522 }
523 assert(head == wh && tail == wh);
524
525 /*
526 * Now abandon this grid and go round again if maxdist is
527 * above the required threshold.
528 *
529 * We can safely start the threshold as low as 2. As we
530 * accumulate failed generation attempts, we gradually
531 * raise it as we get more desperate.
532 */
533 if (maxdist > maxdist_threshold) {
534 tries++;
535 if (tries == 50) {
536 maxdist_threshold++;
537 tries = 0;
538 }
539 continue;
540 }
541
542 /*
543 * Now our reachable squares are plausibly evenly
544 * distributed over the grid. I'm not actually going to
545 * _enforce_ that I place the gems in such a way as not to
546 * increase that maxdist value; I'm now just going to trust
547 * to the RNG to pick a sensible subset of the POSSGEMs.
548 */
549 j = 0;
550 for (i = 0; i < wh; i++)
551 if (grid[i] == POSSGEM)
552 list[j++] = i;
553 shuffle(list, j, sizeof(*list), rs);
554 for (i = 0; i < j; i++)
555 grid[list[i]] = (i < wh/5 ? GEM : BLANK);
556 break;
557 }
558
559 free_scratch(sc);
560
561 grid[wh] = '\0';
562
563 return grid;
564 }
565
566 static char *new_game_desc(game_params *params, random_state *rs,
567 char **aux, int interactive)
568 {
569 return gengrid(params->w, params->h, rs);
570 }
571
572 static char *validate_desc(game_params *params, char *desc)
573 {
574 int w = params->w, h = params->h, wh = w*h;
575 int starts = 0, gems = 0, i;
576
577 for (i = 0; i < wh; i++) {
578 if (!desc[i])
579 return "Not enough data to fill grid";
580 if (desc[i] != WALL && desc[i] != START && desc[i] != STOP &&
581 desc[i] != GEM && desc[i] != MINE && desc[i] != BLANK)
582 return "Unrecognised character in game description";
583 if (desc[i] == START)
584 starts++;
585 if (desc[i] == GEM)
586 gems++;
587 }
588 if (desc[i])
589 return "Too much data to fill grid";
590 if (starts < 1)
591 return "No starting square specified";
592 if (starts > 1)
593 return "More than one starting square specified";
594 if (gems < 1)
595 return "No gems specified";
596
597 return NULL;
598 }
599
600 static game_state *new_game(midend *me, game_params *params, char *desc)
601 {
602 int w = params->w, h = params->h, wh = w*h;
603 int i;
604 game_state *state = snew(game_state);
605
606 state->p = *params; /* structure copy */
607
608 state->grid = snewn(wh, char);
609 assert(strlen(desc) == wh);
610 memcpy(state->grid, desc, wh);
611
612 state->px = state->py = -1;
613 state->gems = 0;
614 for (i = 0; i < wh; i++) {
615 if (state->grid[i] == START) {
616 state->grid[i] = STOP;
617 state->px = i % w;
618 state->py = i / w;
619 } else if (state->grid[i] == GEM) {
620 state->gems++;
621 }
622 }
623
624 assert(state->gems > 0);
625 assert(state->px >= 0 && state->py >= 0);
626
627 state->distance_moved = 0;
628 state->dead = FALSE;
629
630 return state;
631 }
632
633 static game_state *dup_game(game_state *state)
634 {
635 int w = state->p.w, h = state->p.h, wh = w*h;
636 game_state *ret = snew(game_state);
637
638 ret->p = state->p;
639 ret->px = state->px;
640 ret->py = state->py;
641 ret->gems = state->gems;
642 ret->grid = snewn(wh, char);
643 ret->distance_moved = state->distance_moved;
644 ret->dead = FALSE;
645 memcpy(ret->grid, state->grid, wh);
646
647 return ret;
648 }
649
650 static void free_game(game_state *state)
651 {
652 sfree(state->grid);
653 sfree(state);
654 }
655
656 static char *solve_game(game_state *state, game_state *currstate,
657 char *aux, char **error)
658 {
659 return NULL;
660 }
661
662 static char *game_text_format(game_state *state)
663 {
664 return NULL;
665 }
666
667 struct game_ui {
668 float anim_length;
669 int flashtype;
670 int deaths;
671 int just_made_move;
672 int just_died;
673 };
674
675 static game_ui *new_ui(game_state *state)
676 {
677 game_ui *ui = snew(game_ui);
678 ui->anim_length = 0.0F;
679 ui->flashtype = 0;
680 ui->deaths = 0;
681 ui->just_made_move = FALSE;
682 ui->just_died = FALSE;
683 return ui;
684 }
685
686 static void free_ui(game_ui *ui)
687 {
688 sfree(ui);
689 }
690
691 static char *encode_ui(game_ui *ui)
692 {
693 char buf[80];
694 /*
695 * The deaths counter needs preserving across a serialisation.
696 */
697 sprintf(buf, "D%d", ui->deaths);
698 return dupstr(buf);
699 }
700
701 static void decode_ui(game_ui *ui, char *encoding)
702 {
703 int p = 0;
704 sscanf(encoding, "D%d%n", &ui->deaths, &p);
705 }
706
707 static void game_changed_state(game_ui *ui, game_state *oldstate,
708 game_state *newstate)
709 {
710 /*
711 * Increment the deaths counter. We only do this if
712 * ui->just_made_move is set (redoing a suicide move doesn't
713 * kill you _again_), and also we only do it if the game isn't
714 * completed (once you're finished, you can play).
715 */
716 if (!oldstate->dead && newstate->dead && ui->just_made_move &&
717 newstate->gems) {
718 ui->deaths++;
719 ui->just_died = TRUE;
720 } else {
721 ui->just_died = FALSE;
722 }
723 ui->just_made_move = FALSE;
724 }
725
726 struct game_drawstate {
727 game_params p;
728 int tilesize;
729 int started;
730 unsigned short *grid;
731 blitter *player_background;
732 int player_bg_saved, pbgx, pbgy;
733 };
734
735 #define PREFERRED_TILESIZE 32
736 #define TILESIZE (ds->tilesize)
737 #define BORDER (TILESIZE)
738 #define HIGHLIGHT_WIDTH (TILESIZE / 10)
739 #define COORD(x) ( (x) * TILESIZE + BORDER )
740 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
741
742 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
743 int x, int y, int button)
744 {
745 int w = state->p.w, h = state->p.h /*, wh = w*h */;
746 int dir;
747 char buf[80];
748
749 dir = -1;
750
751 if (button == LEFT_BUTTON) {
752 /*
753 * Mouse-clicking near the target point (or, more
754 * accurately, in the appropriate octant) is an alternative
755 * way to input moves.
756 */
757
758 if (FROMCOORD(x) != state->px || FROMCOORD(y) != state->py) {
759 int dx, dy;
760 float angle;
761
762 dx = FROMCOORD(x) - state->px;
763 dy = FROMCOORD(y) - state->py;
764 /* I pass dx,dy rather than dy,dx so that the octants
765 * end up the right way round. */
766 angle = atan2(dx, -dy);
767
768 angle = (angle + (PI/8)) / (PI/4);
769 assert(angle > -16.0F);
770 dir = (int)(angle + 16.0F) & 7;
771 }
772 } else if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
773 dir = 0;
774 else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
775 dir = 4;
776 else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
777 dir = 6;
778 else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
779 dir = 2;
780 else if (button == (MOD_NUM_KEYPAD | '7'))
781 dir = 7;
782 else if (button == (MOD_NUM_KEYPAD | '1'))
783 dir = 5;
784 else if (button == (MOD_NUM_KEYPAD | '9'))
785 dir = 1;
786 else if (button == (MOD_NUM_KEYPAD | '3'))
787 dir = 3;
788
789 if (dir < 0)
790 return NULL;
791
792 /*
793 * Reject the move if we can't make it at all due to a wall
794 * being in the way.
795 */
796 if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
797 return NULL;
798
799 /*
800 * Reject the move if we're dead!
801 */
802 if (state->dead)
803 return NULL;
804
805 /*
806 * Otherwise, we can make the move. All we need to specify is
807 * the direction.
808 */
809 ui->just_made_move = TRUE;
810 sprintf(buf, "%d", dir);
811 return dupstr(buf);
812 }
813
814 static game_state *execute_move(game_state *state, char *move)
815 {
816 int w = state->p.w, h = state->p.h /*, wh = w*h */;
817 int dir = atoi(move);
818 game_state *ret;
819
820 if (dir < 0 || dir >= DIRECTIONS)
821 return NULL; /* huh? */
822
823 if (state->dead)
824 return NULL;
825
826 if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
827 return NULL; /* wall in the way! */
828
829 /*
830 * Now make the move.
831 */
832 ret = dup_game(state);
833 ret->distance_moved = 0;
834 while (1) {
835 ret->px += DX(dir);
836 ret->py += DY(dir);
837 ret->distance_moved++;
838
839 if (AT(w, h, ret->grid, ret->px, ret->py) == GEM) {
840 LV_AT(w, h, ret->grid, ret->px, ret->py) = BLANK;
841 ret->gems--;
842 }
843
844 if (AT(w, h, ret->grid, ret->px, ret->py) == MINE) {
845 ret->dead = TRUE;
846 break;
847 }
848
849 if (AT(w, h, ret->grid, ret->px, ret->py) == STOP ||
850 AT(w, h, ret->grid, ret->px+DX(dir),
851 ret->py+DY(dir)) == WALL)
852 break;
853 }
854
855 return ret;
856 }
857
858 /* ----------------------------------------------------------------------
859 * Drawing routines.
860 */
861
862 static void game_compute_size(game_params *params, int tilesize,
863 int *x, int *y)
864 {
865 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
866 struct { int tilesize; } ads, *ds = &ads;
867 ads.tilesize = tilesize;
868
869 *x = 2 * BORDER + 1 + params->w * TILESIZE;
870 *y = 2 * BORDER + 1 + params->h * TILESIZE;
871 }
872
873 static void game_set_size(drawing *dr, game_drawstate *ds,
874 game_params *params, int tilesize)
875 {
876 ds->tilesize = tilesize;
877
878 assert(!ds->player_background); /* set_size is never called twice */
879 assert(!ds->player_bg_saved);
880
881 ds->player_background = blitter_new(dr, TILESIZE, TILESIZE);
882 }
883
884 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
885 {
886 float *ret = snewn(3 * NCOLOURS, float);
887 int i;
888
889 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
890
891 ret[COL_OUTLINE * 3 + 0] = 0.0F;
892 ret[COL_OUTLINE * 3 + 1] = 0.0F;
893 ret[COL_OUTLINE * 3 + 2] = 0.0F;
894
895 ret[COL_PLAYER * 3 + 0] = 0.0F;
896 ret[COL_PLAYER * 3 + 1] = 1.0F;
897 ret[COL_PLAYER * 3 + 2] = 0.0F;
898
899 ret[COL_DEAD_PLAYER * 3 + 0] = 1.0F;
900 ret[COL_DEAD_PLAYER * 3 + 1] = 0.0F;
901 ret[COL_DEAD_PLAYER * 3 + 2] = 0.0F;
902
903 ret[COL_MINE * 3 + 0] = 0.0F;
904 ret[COL_MINE * 3 + 1] = 0.0F;
905 ret[COL_MINE * 3 + 2] = 0.0F;
906
907 ret[COL_GEM * 3 + 0] = 0.6F;
908 ret[COL_GEM * 3 + 1] = 1.0F;
909 ret[COL_GEM * 3 + 2] = 1.0F;
910
911 for (i = 0; i < 3; i++) {
912 ret[COL_WALL * 3 + i] = (3 * ret[COL_BACKGROUND * 3 + i] +
913 1 * ret[COL_HIGHLIGHT * 3 + i]) / 4;
914 }
915
916 *ncolours = NCOLOURS;
917 return ret;
918 }
919
920 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
921 {
922 int w = state->p.w, h = state->p.h, wh = w*h;
923 struct game_drawstate *ds = snew(struct game_drawstate);
924 int i;
925
926 ds->tilesize = 0;
927
928 /* We can't allocate the blitter rectangle for the player background
929 * until we know what size to make it. */
930 ds->player_background = NULL;
931 ds->player_bg_saved = FALSE;
932 ds->pbgx = ds->pbgy = -1;
933
934 ds->p = state->p; /* structure copy */
935 ds->started = FALSE;
936 ds->grid = snewn(wh, unsigned short);
937 for (i = 0; i < wh; i++)
938 ds->grid[i] = UNDRAWN;
939
940 return ds;
941 }
942
943 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
944 {
945 if (ds->player_background)
946 blitter_free(dr, ds->player_background);
947 sfree(ds->grid);
948 sfree(ds);
949 }
950
951 static void draw_player(drawing *dr, game_drawstate *ds, int x, int y,
952 int dead)
953 {
954 if (dead) {
955 int coords[DIRECTIONS*4];
956 int d;
957
958 for (d = 0; d < DIRECTIONS; d++) {
959 float x1, y1, x2, y2, x3, y3, len;
960
961 x1 = DX(d);
962 y1 = DY(d);
963 len = sqrt(x1*x1+y1*y1); x1 /= len; y1 /= len;
964
965 x3 = DX(d+1);
966 y3 = DY(d+1);
967 len = sqrt(x3*x3+y3*y3); x3 /= len; y3 /= len;
968
969 x2 = (x1+x3) / 4;
970 y2 = (y1+y3) / 4;
971
972 coords[d*4+0] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x1);
973 coords[d*4+1] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y1);
974 coords[d*4+2] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x2);
975 coords[d*4+3] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y2);
976 }
977 draw_polygon(dr, coords, DIRECTIONS*2, COL_DEAD_PLAYER, COL_OUTLINE);
978 } else {
979 draw_circle(dr, x + TILESIZE/2, y + TILESIZE/2,
980 TILESIZE/3, COL_PLAYER, COL_OUTLINE);
981 }
982 draw_update(dr, x, y, TILESIZE, TILESIZE);
983 }
984
985 #define FLASH_DEAD 0x100
986 #define FLASH_WIN 0x200
987 #define FLASH_MASK 0x300
988
989 static void draw_tile(drawing *dr, game_drawstate *ds, int x, int y, int v)
990 {
991 int tx = COORD(x), ty = COORD(y);
992 int bg = (v & FLASH_DEAD ? COL_DEAD_PLAYER :
993 v & FLASH_WIN ? COL_HIGHLIGHT : COL_BACKGROUND);
994
995 v &= ~FLASH_MASK;
996
997 clip(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1);
998 draw_rect(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1, bg);
999
1000 if (v == WALL) {
1001 int coords[6];
1002
1003 coords[0] = tx + TILESIZE;
1004 coords[1] = ty + TILESIZE;
1005 coords[2] = tx + TILESIZE;
1006 coords[3] = ty + 1;
1007 coords[4] = tx + 1;
1008 coords[5] = ty + TILESIZE;
1009 draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
1010
1011 coords[0] = tx + 1;
1012 coords[1] = ty + 1;
1013 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
1014
1015 draw_rect(dr, tx + 1 + HIGHLIGHT_WIDTH, ty + 1 + HIGHLIGHT_WIDTH,
1016 TILESIZE - 2*HIGHLIGHT_WIDTH,
1017 TILESIZE - 2*HIGHLIGHT_WIDTH, COL_WALL);
1018 } else if (v == MINE) {
1019 int cx = tx + TILESIZE / 2;
1020 int cy = ty + TILESIZE / 2;
1021 int r = TILESIZE / 2 - 3;
1022 int coords[4*5*2];
1023 int xdx = 1, xdy = 0, ydx = 0, ydy = 1;
1024 int tdx, tdy, i;
1025
1026 for (i = 0; i < 4*5*2; i += 5*2) {
1027 coords[i+2*0+0] = cx - r/6*xdx + r*4/5*ydx;
1028 coords[i+2*0+1] = cy - r/6*xdy + r*4/5*ydy;
1029 coords[i+2*1+0] = cx - r/6*xdx + r*ydx;
1030 coords[i+2*1+1] = cy - r/6*xdy + r*ydy;
1031 coords[i+2*2+0] = cx + r/6*xdx + r*ydx;
1032 coords[i+2*2+1] = cy + r/6*xdy + r*ydy;
1033 coords[i+2*3+0] = cx + r/6*xdx + r*4/5*ydx;
1034 coords[i+2*3+1] = cy + r/6*xdy + r*4/5*ydy;
1035 coords[i+2*4+0] = cx + r*3/5*xdx + r*3/5*ydx;
1036 coords[i+2*4+1] = cy + r*3/5*xdy + r*3/5*ydy;
1037
1038 tdx = ydx;
1039 tdy = ydy;
1040 ydx = xdx;
1041 ydy = xdy;
1042 xdx = -tdx;
1043 xdy = -tdy;
1044 }
1045
1046 draw_polygon(dr, coords, 5*4, COL_MINE, COL_MINE);
1047
1048 draw_rect(dr, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT);
1049 } else if (v == STOP) {
1050 draw_circle(dr, tx + TILESIZE/2, ty + TILESIZE/2,
1051 TILESIZE*3/7, -1, COL_OUTLINE);
1052 draw_rect(dr, tx + TILESIZE*3/7, ty+1,
1053 TILESIZE - 2*(TILESIZE*3/7) + 1, TILESIZE-1, bg);
1054 draw_rect(dr, tx+1, ty + TILESIZE*3/7,
1055 TILESIZE-1, TILESIZE - 2*(TILESIZE*3/7) + 1, bg);
1056 } else if (v == GEM) {
1057 int coords[8];
1058
1059 coords[0] = tx+TILESIZE/2;
1060 coords[1] = ty+TILESIZE*1/7;
1061 coords[2] = tx+TILESIZE*1/7;
1062 coords[3] = ty+TILESIZE/2;
1063 coords[4] = tx+TILESIZE/2;
1064 coords[5] = ty+TILESIZE-TILESIZE*1/7;
1065 coords[6] = tx+TILESIZE-TILESIZE*1/7;
1066 coords[7] = ty+TILESIZE/2;
1067
1068 draw_polygon(dr, coords, 4, COL_GEM, COL_OUTLINE);
1069 }
1070
1071 unclip(dr);
1072 draw_update(dr, tx, ty, TILESIZE, TILESIZE);
1073 }
1074
1075 #define BASE_ANIM_LENGTH 0.1F
1076 #define FLASH_LENGTH 0.3F
1077
1078 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1079 game_state *state, int dir, game_ui *ui,
1080 float animtime, float flashtime)
1081 {
1082 int w = state->p.w, h = state->p.h /*, wh = w*h */;
1083 int x, y;
1084 float ap;
1085 int player_dist;
1086 int flashtype;
1087 int gems, deaths;
1088 char status[256];
1089
1090 if (flashtime &&
1091 !((int)(flashtime * 3 / FLASH_LENGTH) % 2))
1092 flashtype = ui->flashtype;
1093 else
1094 flashtype = 0;
1095
1096 /*
1097 * Erase the player sprite.
1098 */
1099 if (ds->player_bg_saved) {
1100 assert(ds->player_background);
1101 blitter_load(dr, ds->player_background, ds->pbgx, ds->pbgy);
1102 draw_update(dr, ds->pbgx, ds->pbgy, TILESIZE, TILESIZE);
1103 ds->player_bg_saved = FALSE;
1104 }
1105
1106 /*
1107 * Initialise a fresh drawstate.
1108 */
1109 if (!ds->started) {
1110 int wid, ht;
1111
1112 /*
1113 * Blank out the window initially.
1114 */
1115 game_compute_size(&ds->p, TILESIZE, &wid, &ht);
1116 draw_rect(dr, 0, 0, wid, ht, COL_BACKGROUND);
1117 draw_update(dr, 0, 0, wid, ht);
1118
1119 /*
1120 * Draw the grid lines.
1121 */
1122 for (y = 0; y <= h; y++)
1123 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y),
1124 COL_LOWLIGHT);
1125 for (x = 0; x <= w; x++)
1126 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h),
1127 COL_LOWLIGHT);
1128
1129 ds->started = TRUE;
1130 }
1131
1132 /*
1133 * If we're in the process of animating a move, let's start by
1134 * working out how far the player has moved from their _older_
1135 * state.
1136 */
1137 if (oldstate) {
1138 ap = animtime / ui->anim_length;
1139 player_dist = ap * (dir > 0 ? state : oldstate)->distance_moved;
1140 } else {
1141 player_dist = 0;
1142 ap = 0.0F;
1143 }
1144
1145 /*
1146 * Draw the grid contents.
1147 *
1148 * We count the gems as we go round this loop, for the purposes
1149 * of the status bar. Of course we have a gems counter in the
1150 * game_state already, but if we do the counting in this loop
1151 * then it tracks gems being picked up in a sliding move, and
1152 * updates one by one.
1153 */
1154 gems = 0;
1155 for (y = 0; y < h; y++)
1156 for (x = 0; x < w; x++) {
1157 unsigned short v = (unsigned char)state->grid[y*w+x];
1158
1159 /*
1160 * Special case: if the player is in the process of
1161 * moving over a gem, we draw the gem iff they haven't
1162 * gone past it yet.
1163 */
1164 if (oldstate && oldstate->grid[y*w+x] != state->grid[y*w+x]) {
1165 /*
1166 * Compute the distance from this square to the
1167 * original player position.
1168 */
1169 int dist = max(abs(x - oldstate->px), abs(y - oldstate->py));
1170
1171 /*
1172 * If the player has reached here, use the new grid
1173 * element. Otherwise use the old one.
1174 */
1175 if (player_dist < dist)
1176 v = oldstate->grid[y*w+x];
1177 else
1178 v = state->grid[y*w+x];
1179 }
1180
1181 /*
1182 * Special case: erase the mine the dead player is
1183 * sitting on. Only at the end of the move.
1184 */
1185 if (v == MINE && !oldstate && state->dead &&
1186 x == state->px && y == state->py)
1187 v = BLANK;
1188
1189 if (v == GEM)
1190 gems++;
1191
1192 v |= flashtype;
1193
1194 if (ds->grid[y*w+x] != v) {
1195 draw_tile(dr, ds, x, y, v);
1196 ds->grid[y*w+x] = v;
1197 }
1198 }
1199
1200 /*
1201 * Gem counter in the status bar. We replace it with
1202 * `COMPLETED!' when it reaches zero ... or rather, when the
1203 * _current state_'s gem counter is zero. (Thus, `Gems: 0' is
1204 * shown between the collection of the last gem and the
1205 * completion of the move animation that did it.)
1206 */
1207 if (state->dead && (!oldstate || oldstate->dead))
1208 sprintf(status, "DEAD!");
1209 else if (state->gems || (oldstate && oldstate->gems))
1210 sprintf(status, "Gems: %d", gems);
1211 else
1212 sprintf(status, "COMPLETED!");
1213 /* We subtract one from the visible death counter if we're still
1214 * animating the move at the end of which the death took place. */
1215 deaths = ui->deaths;
1216 if (oldstate && ui->just_died) {
1217 assert(deaths > 0);
1218 deaths--;
1219 }
1220 if (deaths)
1221 sprintf(status + strlen(status), " Deaths: %d", deaths);
1222 status_bar(dr, status);
1223
1224 /*
1225 * Draw the player sprite.
1226 */
1227 assert(!ds->player_bg_saved);
1228 assert(ds->player_background);
1229 {
1230 int ox, oy, nx, ny;
1231 nx = COORD(state->px);
1232 ny = COORD(state->py);
1233 if (oldstate) {
1234 ox = COORD(oldstate->px);
1235 oy = COORD(oldstate->py);
1236 } else {
1237 ox = nx;
1238 oy = ny;
1239 }
1240 ds->pbgx = ox + ap * (nx - ox);
1241 ds->pbgy = oy + ap * (ny - oy);
1242 }
1243 blitter_save(dr, ds->player_background, ds->pbgx, ds->pbgy);
1244 draw_player(dr, ds, ds->pbgx, ds->pbgy, (state->dead && !oldstate));
1245 ds->player_bg_saved = TRUE;
1246 }
1247
1248 static float game_anim_length(game_state *oldstate, game_state *newstate,
1249 int dir, game_ui *ui)
1250 {
1251 int dist;
1252 if (dir > 0)
1253 dist = newstate->distance_moved;
1254 else
1255 dist = oldstate->distance_moved;
1256 ui->anim_length = sqrt(dist) * BASE_ANIM_LENGTH;
1257 return ui->anim_length;
1258 }
1259
1260 static float game_flash_length(game_state *oldstate, game_state *newstate,
1261 int dir, game_ui *ui)
1262 {
1263 if (!oldstate->dead && newstate->dead) {
1264 ui->flashtype = FLASH_DEAD;
1265 return FLASH_LENGTH;
1266 } else if (oldstate->gems && !newstate->gems) {
1267 ui->flashtype = FLASH_WIN;
1268 return FLASH_LENGTH;
1269 }
1270 return 0.0F;
1271 }
1272
1273 static int game_wants_statusbar(void)
1274 {
1275 return TRUE;
1276 }
1277
1278 static int game_timing_state(game_state *state, game_ui *ui)
1279 {
1280 return TRUE;
1281 }
1282
1283 static void game_print_size(game_params *params, float *x, float *y)
1284 {
1285 }
1286
1287 static void game_print(drawing *dr, game_state *state, int tilesize)
1288 {
1289 }
1290
1291 #ifdef COMBINED
1292 #define thegame inertia
1293 #endif
1294
1295 const struct game thegame = {
1296 "Inertia", "games.inertia",
1297 default_params,
1298 game_fetch_preset,
1299 decode_params,
1300 encode_params,
1301 free_params,
1302 dup_params,
1303 TRUE, game_configure, custom_params,
1304 validate_params,
1305 new_game_desc,
1306 validate_desc,
1307 new_game,
1308 dup_game,
1309 free_game,
1310 FALSE, solve_game,
1311 FALSE, game_text_format,
1312 new_ui,
1313 free_ui,
1314 encode_ui,
1315 decode_ui,
1316 game_changed_state,
1317 interpret_move,
1318 execute_move,
1319 PREFERRED_TILESIZE, game_compute_size, game_set_size,
1320 game_colours,
1321 game_new_drawstate,
1322 game_free_drawstate,
1323 game_redraw,
1324 game_anim_length,
1325 game_flash_length,
1326 FALSE, FALSE, game_print_size, game_print,
1327 game_wants_statusbar,
1328 FALSE, game_timing_state,
1329 0, /* mouse_priorities */
1330 };