Miscellaneous fixes from James Harvey's PalmOS porting work:
[sgt/puzzles] / solo.c
CommitLineData
1d8e8ad8 1/*
2 * solo.c: the number-placing puzzle most popularly known as `Sudoku'.
3 *
4 * TODO:
5 *
c8266e03 6 * - reports from users are that `Trivial'-mode puzzles are still
7 * rather hard compared to newspapers' easy ones, so some better
8 * low-end difficulty grading would be nice
9 * + it's possible that really easy puzzles always have
10 * _several_ things you can do, so don't make you hunt too
11 * hard for the one deduction you can currently make
12 * + it's also possible that easy puzzles require fewer
13 * cross-eliminations: perhaps there's a higher incidence of
14 * things you can deduce by looking only at (say) rows,
15 * rather than things you have to check both rows and columns
16 * for
17 * + but really, what I need to do is find some really easy
18 * puzzles and _play_ them, to see what's actually easy about
19 * them
20 * + while I'm revamping this area, filling in the _last_
21 * number in a nearly-full row or column should certainly be
22 * permitted even at the lowest difficulty level.
23 * + also Owen noticed that `Basic' grids requiring numeric
24 * elimination are actually very hard, so I wonder if a
25 * difficulty gradation between that and positional-
26 * elimination-only might be in order
27 * + but it's not good to have _too_ many difficulty levels, or
28 * it'll take too long to randomly generate a given level.
29 *
ef57b17d 30 * - it might still be nice to do some prioritisation on the
31 * removal of numbers from the grid
32 * + one possibility is to try to minimise the maximum number
33 * of filled squares in any block, which in particular ought
34 * to enforce never leaving a completely filled block in the
35 * puzzle as presented.
1d8e8ad8 36 *
37 * - alternative interface modes
38 * + sudoku.com's Windows program has a palette of possible
39 * entries; you select a palette entry first and then click
40 * on the square you want it to go in, thus enabling
41 * mouse-only play. Useful for PDAs! I don't think it's
42 * actually incompatible with the current highlight-then-type
43 * approach: you _either_ highlight a palette entry and then
44 * click, _or_ you highlight a square and then type. At most
45 * one thing is ever highlighted at a time, so there's no way
46 * to confuse the two.
c8266e03 47 * + then again, I don't actually like sudoku.com's interface;
48 * it's too much like a paint package whereas I prefer to
49 * think of Solo as a text editor.
50 * + another PDA-friendly possibility is a drag interface:
51 * _drag_ numbers from the palette into the grid squares.
52 * Thought experiments suggest I'd prefer that to the
53 * sudoku.com approach, but I haven't actually tried it.
1d8e8ad8 54 */
55
56/*
57 * Solo puzzles need to be square overall (since each row and each
58 * column must contain one of every digit), but they need not be
59 * subdivided the same way internally. I am going to adopt a
60 * convention whereby I _always_ refer to `r' as the number of rows
61 * of _big_ divisions, and `c' as the number of columns of _big_
62 * divisions. Thus, a 2c by 3r puzzle looks something like this:
63 *
64 * 4 5 1 | 2 6 3
65 * 6 3 2 | 5 4 1
66 * ------+------ (Of course, you can't subdivide it the other way
67 * 1 4 5 | 6 3 2 or you'll get clashes; observe that the 4 in the
68 * 3 2 6 | 4 1 5 top left would conflict with the 4 in the second
69 * ------+------ box down on the left-hand side.)
70 * 5 1 4 | 3 2 6
71 * 2 6 3 | 1 5 4
72 *
73 * The need for a strong naming convention should now be clear:
74 * each small box is two rows of digits by three columns, while the
75 * overall puzzle has three rows of small boxes by two columns. So
76 * I will (hopefully) consistently use `r' to denote the number of
77 * rows _of small boxes_ (here 3), which is also the number of
78 * columns of digits in each small box; and `c' vice versa (here
79 * 2).
80 *
81 * I'm also going to choose arbitrarily to list c first wherever
82 * possible: the above is a 2x3 puzzle, not a 3x2 one.
83 */
84
85#include <stdio.h>
86#include <stdlib.h>
87#include <string.h>
88#include <assert.h>
89#include <ctype.h>
90#include <math.h>
91
7c568a48 92#ifdef STANDALONE_SOLVER
93#include <stdarg.h>
94int solver_show_working;
95#endif
96
1d8e8ad8 97#include "puzzles.h"
98
99/*
100 * To save space, I store digits internally as unsigned char. This
101 * imposes a hard limit of 255 on the order of the puzzle. Since
102 * even a 5x5 takes unacceptably long to generate, I don't see this
103 * as a serious limitation unless something _really_ impressive
104 * happens in computing technology; but here's a typedef anyway for
105 * general good practice.
106 */
107typedef unsigned char digit;
108#define ORDER_MAX 255
109
110#define TILE_SIZE 32
111#define BORDER 18
112
113#define FLASH_TIME 0.4F
114
ef57b17d 115enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF4 };
116
7c568a48 117enum { DIFF_BLOCK, DIFF_SIMPLE, DIFF_INTERSECT,
118 DIFF_SET, DIFF_RECURSIVE, DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
119
1d8e8ad8 120enum {
121 COL_BACKGROUND,
ef57b17d 122 COL_GRID,
123 COL_CLUE,
124 COL_USER,
125 COL_HIGHLIGHT,
c8266e03 126 COL_PENCIL,
ef57b17d 127 NCOLOURS
1d8e8ad8 128};
129
130struct game_params {
7c568a48 131 int c, r, symm, diff;
1d8e8ad8 132};
133
134struct game_state {
135 int c, r;
136 digit *grid;
c8266e03 137 unsigned char *pencil; /* c*r*c*r elements */
1d8e8ad8 138 unsigned char *immutable; /* marks which digits are clues */
2ac6d24e 139 int completed, cheated;
1d8e8ad8 140};
141
142static game_params *default_params(void)
143{
144 game_params *ret = snew(game_params);
145
146 ret->c = ret->r = 3;
ef57b17d 147 ret->symm = SYMM_ROT2; /* a plausible default */
4f36adaa 148 ret->diff = DIFF_BLOCK; /* so is this */
1d8e8ad8 149
150 return ret;
151}
152
1d8e8ad8 153static void free_params(game_params *params)
154{
155 sfree(params);
156}
157
158static game_params *dup_params(game_params *params)
159{
160 game_params *ret = snew(game_params);
161 *ret = *params; /* structure copy */
162 return ret;
163}
164
7c568a48 165static int game_fetch_preset(int i, char **name, game_params **params)
166{
167 static struct {
168 char *title;
169 game_params params;
170 } presets[] = {
171 { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK } },
172 { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE } },
4f36adaa 173 { "3x3 Trivial", { 3, 3, SYMM_ROT2, DIFF_BLOCK } },
7c568a48 174 { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE } },
175 { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT } },
176 { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET } },
de60d8bd 177 { "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE } },
ab53eb64 178#ifndef SLOW_SYSTEM
7c568a48 179 { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE } },
180 { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE } },
ab53eb64 181#endif
7c568a48 182 };
183
184 if (i < 0 || i >= lenof(presets))
185 return FALSE;
186
187 *name = dupstr(presets[i].title);
188 *params = dup_params(&presets[i].params);
189
190 return TRUE;
191}
192
1185e3c5 193static void decode_params(game_params *ret, char const *string)
1d8e8ad8 194{
1d8e8ad8 195 ret->c = ret->r = atoi(string);
196 while (*string && isdigit((unsigned char)*string)) string++;
197 if (*string == 'x') {
198 string++;
199 ret->r = atoi(string);
200 while (*string && isdigit((unsigned char)*string)) string++;
201 }
7c568a48 202 while (*string) {
203 if (*string == 'r' || *string == 'm' || *string == 'a') {
204 int sn, sc;
205 sc = *string++;
206 sn = atoi(string);
207 while (*string && isdigit((unsigned char)*string)) string++;
208 if (sc == 'm' && sn == 4)
209 ret->symm = SYMM_REF4;
210 if (sc == 'r' && sn == 4)
211 ret->symm = SYMM_ROT4;
212 if (sc == 'r' && sn == 2)
213 ret->symm = SYMM_ROT2;
214 if (sc == 'a')
215 ret->symm = SYMM_NONE;
216 } else if (*string == 'd') {
217 string++;
218 if (*string == 't') /* trivial */
219 string++, ret->diff = DIFF_BLOCK;
220 else if (*string == 'b') /* basic */
221 string++, ret->diff = DIFF_SIMPLE;
222 else if (*string == 'i') /* intermediate */
223 string++, ret->diff = DIFF_INTERSECT;
224 else if (*string == 'a') /* advanced */
225 string++, ret->diff = DIFF_SET;
de60d8bd 226 else if (*string == 'u') /* unreasonable */
227 string++, ret->diff = DIFF_RECURSIVE;
7c568a48 228 } else
229 string++; /* eat unknown character */
ef57b17d 230 }
1d8e8ad8 231}
232
1185e3c5 233static char *encode_params(game_params *params, int full)
1d8e8ad8 234{
235 char str[80];
236
237 sprintf(str, "%dx%d", params->c, params->r);
1185e3c5 238 if (full) {
239 switch (params->symm) {
240 case SYMM_REF4: strcat(str, "m4"); break;
241 case SYMM_ROT4: strcat(str, "r4"); break;
242 /* case SYMM_ROT2: strcat(str, "r2"); break; [default] */
243 case SYMM_NONE: strcat(str, "a"); break;
244 }
245 switch (params->diff) {
246 /* case DIFF_BLOCK: strcat(str, "dt"); break; [default] */
247 case DIFF_SIMPLE: strcat(str, "db"); break;
248 case DIFF_INTERSECT: strcat(str, "di"); break;
249 case DIFF_SET: strcat(str, "da"); break;
250 case DIFF_RECURSIVE: strcat(str, "du"); break;
251 }
252 }
1d8e8ad8 253 return dupstr(str);
254}
255
256static config_item *game_configure(game_params *params)
257{
258 config_item *ret;
259 char buf[80];
260
261 ret = snewn(5, config_item);
262
263 ret[0].name = "Columns of sub-blocks";
264 ret[0].type = C_STRING;
265 sprintf(buf, "%d", params->c);
266 ret[0].sval = dupstr(buf);
267 ret[0].ival = 0;
268
269 ret[1].name = "Rows of sub-blocks";
270 ret[1].type = C_STRING;
271 sprintf(buf, "%d", params->r);
272 ret[1].sval = dupstr(buf);
273 ret[1].ival = 0;
274
ef57b17d 275 ret[2].name = "Symmetry";
276 ret[2].type = C_CHOICES;
277 ret[2].sval = ":None:2-way rotation:4-way rotation:4-way mirror";
278 ret[2].ival = params->symm;
279
7c568a48 280 ret[3].name = "Difficulty";
281 ret[3].type = C_CHOICES;
de60d8bd 282 ret[3].sval = ":Trivial:Basic:Intermediate:Advanced:Unreasonable";
7c568a48 283 ret[3].ival = params->diff;
1d8e8ad8 284
7c568a48 285 ret[4].name = NULL;
286 ret[4].type = C_END;
287 ret[4].sval = NULL;
288 ret[4].ival = 0;
1d8e8ad8 289
290 return ret;
291}
292
293static game_params *custom_params(config_item *cfg)
294{
295 game_params *ret = snew(game_params);
296
c1f743c8 297 ret->c = atoi(cfg[0].sval);
298 ret->r = atoi(cfg[1].sval);
ef57b17d 299 ret->symm = cfg[2].ival;
7c568a48 300 ret->diff = cfg[3].ival;
1d8e8ad8 301
302 return ret;
303}
304
305static char *validate_params(game_params *params)
306{
307 if (params->c < 2 || params->r < 2)
308 return "Both dimensions must be at least 2";
309 if (params->c > ORDER_MAX || params->r > ORDER_MAX)
310 return "Dimensions greater than "STR(ORDER_MAX)" are not supported";
311 return NULL;
312}
313
314/* ----------------------------------------------------------------------
315 * Full recursive Solo solver.
316 *
317 * The algorithm for this solver is shamelessly copied from a
318 * Python solver written by Andrew Wilkinson (which is GPLed, but
319 * I've reused only ideas and no code). It mostly just does the
320 * obvious recursive thing: pick an empty square, put one of the
321 * possible digits in it, recurse until all squares are filled,
322 * backtrack and change some choices if necessary.
323 *
324 * The clever bit is that every time it chooses which square to
325 * fill in next, it does so by counting the number of _possible_
326 * numbers that can go in each square, and it prioritises so that
327 * it picks a square with the _lowest_ number of possibilities. The
328 * idea is that filling in lots of the obvious bits (particularly
329 * any squares with only one possibility) will cut down on the list
330 * of possibilities for other squares and hence reduce the enormous
331 * search space as much as possible as early as possible.
332 *
333 * In practice the algorithm appeared to work very well; run on
334 * sample problems from the Times it completed in well under a
335 * second on my G5 even when written in Python, and given an empty
336 * grid (so that in principle it would enumerate _all_ solved
337 * grids!) it found the first valid solution just as quickly. So
338 * with a bit more randomisation I see no reason not to use this as
339 * my grid generator.
340 */
341
342/*
343 * Internal data structure used in solver to keep track of
344 * progress.
345 */
346struct rsolve_coord { int x, y, r; };
347struct rsolve_usage {
348 int c, r, cr; /* cr == c*r */
349 /* grid is a copy of the input grid, modified as we go along */
350 digit *grid;
351 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
352 unsigned char *row;
353 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
354 unsigned char *col;
355 /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
356 unsigned char *blk;
357 /* This lists all the empty spaces remaining in the grid. */
358 struct rsolve_coord *spaces;
359 int nspaces;
360 /* If we need randomisation in the solve, this is our random state. */
361 random_state *rs;
362 /* Number of solutions so far found, and maximum number we care about. */
363 int solns, maxsolns;
364};
365
366/*
367 * The real recursive step in the solving function.
368 */
369static void rsolve_real(struct rsolve_usage *usage, digit *grid)
370{
371 int c = usage->c, r = usage->r, cr = usage->cr;
372 int i, j, n, sx, sy, bestm, bestr;
373 int *digits;
374
375 /*
376 * Firstly, check for completion! If there are no spaces left
377 * in the grid, we have a solution.
378 */
379 if (usage->nspaces == 0) {
380 if (!usage->solns) {
381 /*
382 * This is our first solution, so fill in the output grid.
383 */
384 memcpy(grid, usage->grid, cr * cr);
385 }
386 usage->solns++;
387 return;
388 }
389
390 /*
391 * Otherwise, there must be at least one space. Find the most
392 * constrained space, using the `r' field as a tie-breaker.
393 */
394 bestm = cr+1; /* so that any space will beat it */
395 bestr = 0;
396 i = sx = sy = -1;
397 for (j = 0; j < usage->nspaces; j++) {
398 int x = usage->spaces[j].x, y = usage->spaces[j].y;
399 int m;
400
401 /*
402 * Find the number of digits that could go in this space.
403 */
404 m = 0;
405 for (n = 0; n < cr; n++)
406 if (!usage->row[y*cr+n] && !usage->col[x*cr+n] &&
407 !usage->blk[((y/c)*c+(x/r))*cr+n])
408 m++;
409
410 if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) {
411 bestm = m;
412 bestr = usage->spaces[j].r;
413 sx = x;
414 sy = y;
415 i = j;
416 }
417 }
418
419 /*
420 * Swap that square into the final place in the spaces array,
421 * so that decrementing nspaces will remove it from the list.
422 */
423 if (i != usage->nspaces-1) {
424 struct rsolve_coord t;
425 t = usage->spaces[usage->nspaces-1];
426 usage->spaces[usage->nspaces-1] = usage->spaces[i];
427 usage->spaces[i] = t;
428 }
429
430 /*
431 * Now we've decided which square to start our recursion at,
432 * simply go through all possible values, shuffling them
433 * randomly first if necessary.
434 */
435 digits = snewn(bestm, int);
436 j = 0;
437 for (n = 0; n < cr; n++)
438 if (!usage->row[sy*cr+n] && !usage->col[sx*cr+n] &&
439 !usage->blk[((sy/c)*c+(sx/r))*cr+n]) {
440 digits[j++] = n+1;
441 }
442
443 if (usage->rs) {
444 /* shuffle */
445 for (i = j; i > 1; i--) {
446 int p = random_upto(usage->rs, i);
447 if (p != i-1) {
448 int t = digits[p];
449 digits[p] = digits[i-1];
450 digits[i-1] = t;
451 }
452 }
453 }
454
455 /* And finally, go through the digit list and actually recurse. */
456 for (i = 0; i < j; i++) {
457 n = digits[i];
458
459 /* Update the usage structure to reflect the placing of this digit. */
460 usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
461 usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = TRUE;
462 usage->grid[sy*cr+sx] = n;
463 usage->nspaces--;
464
465 /* Call the solver recursively. */
466 rsolve_real(usage, grid);
467
468 /*
469 * If we have seen as many solutions as we need, terminate
470 * all processing immediately.
471 */
472 if (usage->solns >= usage->maxsolns)
473 break;
474
475 /* Revert the usage structure. */
476 usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
477 usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = FALSE;
478 usage->grid[sy*cr+sx] = 0;
479 usage->nspaces++;
480 }
481
482 sfree(digits);
483}
484
485/*
486 * Entry point to solver. You give it dimensions and a starting
487 * grid, which is simply an array of N^4 digits. In that array, 0
488 * means an empty square, and 1..N mean a clue square.
489 *
490 * Return value is the number of solutions found; searching will
491 * stop after the provided `max'. (Thus, you can pass max==1 to
492 * indicate that you only care about finding _one_ solution, or
493 * max==2 to indicate that you want to know the difference between
494 * a unique and non-unique solution.) The input parameter `grid' is
495 * also filled in with the _first_ (or only) solution found by the
496 * solver.
497 */
498static int rsolve(int c, int r, digit *grid, random_state *rs, int max)
499{
500 struct rsolve_usage *usage;
501 int x, y, cr = c*r;
502 int ret;
503
504 /*
505 * Create an rsolve_usage structure.
506 */
507 usage = snew(struct rsolve_usage);
508
509 usage->c = c;
510 usage->r = r;
511 usage->cr = cr;
512
513 usage->grid = snewn(cr * cr, digit);
514 memcpy(usage->grid, grid, cr * cr);
515
516 usage->row = snewn(cr * cr, unsigned char);
517 usage->col = snewn(cr * cr, unsigned char);
518 usage->blk = snewn(cr * cr, unsigned char);
519 memset(usage->row, FALSE, cr * cr);
520 memset(usage->col, FALSE, cr * cr);
521 memset(usage->blk, FALSE, cr * cr);
522
523 usage->spaces = snewn(cr * cr, struct rsolve_coord);
524 usage->nspaces = 0;
525
526 usage->solns = 0;
527 usage->maxsolns = max;
528
529 usage->rs = rs;
530
531 /*
532 * Now fill it in with data from the input grid.
533 */
534 for (y = 0; y < cr; y++) {
535 for (x = 0; x < cr; x++) {
536 int v = grid[y*cr+x];
537 if (v == 0) {
538 usage->spaces[usage->nspaces].x = x;
539 usage->spaces[usage->nspaces].y = y;
540 if (rs)
541 usage->spaces[usage->nspaces].r = random_bits(rs, 31);
542 else
543 usage->spaces[usage->nspaces].r = usage->nspaces;
544 usage->nspaces++;
545 } else {
546 usage->row[y*cr+v-1] = TRUE;
547 usage->col[x*cr+v-1] = TRUE;
548 usage->blk[((y/c)*c+(x/r))*cr+v-1] = TRUE;
549 }
550 }
551 }
552
553 /*
554 * Run the real recursive solving function.
555 */
556 rsolve_real(usage, grid);
557 ret = usage->solns;
558
559 /*
560 * Clean up the usage structure now we have our answer.
561 */
562 sfree(usage->spaces);
563 sfree(usage->blk);
564 sfree(usage->col);
565 sfree(usage->row);
566 sfree(usage->grid);
567 sfree(usage);
568
569 /*
570 * And return.
571 */
572 return ret;
573}
574
575/* ----------------------------------------------------------------------
576 * End of recursive solver code.
577 */
578
579/* ----------------------------------------------------------------------
580 * Less capable non-recursive solver. This one is used to check
581 * solubility of a grid as we gradually remove numbers from it: by
582 * verifying a grid using this solver we can ensure it isn't _too_
583 * hard (e.g. does not actually require guessing and backtracking).
584 *
585 * It supports a variety of specific modes of reasoning. By
586 * enabling or disabling subsets of these modes we can arrange a
587 * range of difficulty levels.
588 */
589
590/*
591 * Modes of reasoning currently supported:
592 *
593 * - Positional elimination: a number must go in a particular
594 * square because all the other empty squares in a given
595 * row/col/blk are ruled out.
596 *
597 * - Numeric elimination: a square must have a particular number
598 * in because all the other numbers that could go in it are
599 * ruled out.
600 *
7c568a48 601 * - Intersectional analysis: given two domains which overlap
1d8e8ad8 602 * (hence one must be a block, and the other can be a row or
603 * col), if the possible locations for a particular number in
604 * one of the domains can be narrowed down to the overlap, then
605 * that number can be ruled out everywhere but the overlap in
606 * the other domain too.
607 *
7c568a48 608 * - Set elimination: if there is a subset of the empty squares
609 * within a domain such that the union of the possible numbers
610 * in that subset has the same size as the subset itself, then
611 * those numbers can be ruled out everywhere else in the domain.
612 * (For example, if there are five empty squares and the
613 * possible numbers in each are 12, 23, 13, 134 and 1345, then
614 * the first three empty squares form such a subset: the numbers
615 * 1, 2 and 3 _must_ be in those three squares in some
616 * permutation, and hence we can deduce none of them can be in
617 * the fourth or fifth squares.)
618 * + You can also see this the other way round, concentrating
619 * on numbers rather than squares: if there is a subset of
620 * the unplaced numbers within a domain such that the union
621 * of all their possible positions has the same size as the
622 * subset itself, then all other numbers can be ruled out for
623 * those positions. However, it turns out that this is
624 * exactly equivalent to the first formulation at all times:
625 * there is a 1-1 correspondence between suitable subsets of
626 * the unplaced numbers and suitable subsets of the unfilled
627 * places, found by taking the _complement_ of the union of
628 * the numbers' possible positions (or the spaces' possible
629 * contents).
1d8e8ad8 630 */
631
4846f788 632/*
633 * Within this solver, I'm going to transform all y-coordinates by
634 * inverting the significance of the block number and the position
635 * within the block. That is, we will start with the top row of
636 * each block in order, then the second row of each block in order,
637 * etc.
638 *
639 * This transformation has the enormous advantage that it means
640 * every row, column _and_ block is described by an arithmetic
641 * progression of coordinates within the cubic array, so that I can
642 * use the same very simple function to do blockwise, row-wise and
643 * column-wise elimination.
644 */
645#define YTRANS(y) (((y)%c)*r+(y)/c)
646#define YUNTRANS(y) (((y)%r)*c+(y)/r)
647
1d8e8ad8 648struct nsolve_usage {
649 int c, r, cr;
650 /*
651 * We set up a cubic array, indexed by x, y and digit; each
652 * element of this array is TRUE or FALSE according to whether
653 * or not that digit _could_ in principle go in that position.
654 *
655 * The way to index this array is cube[(x*cr+y)*cr+n-1].
4846f788 656 * y-coordinates in here are transformed.
1d8e8ad8 657 */
658 unsigned char *cube;
659 /*
660 * This is the grid in which we write down our final
4846f788 661 * deductions. y-coordinates in here are _not_ transformed.
1d8e8ad8 662 */
663 digit *grid;
664 /*
665 * Now we keep track, at a slightly higher level, of what we
666 * have yet to work out, to prevent doing the same deduction
667 * many times.
668 */
669 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
670 unsigned char *row;
671 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
672 unsigned char *col;
673 /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
674 unsigned char *blk;
675};
4846f788 676#define cubepos(x,y,n) (((x)*usage->cr+(y))*usage->cr+(n)-1)
677#define cube(x,y,n) (usage->cube[cubepos(x,y,n)])
1d8e8ad8 678
679/*
680 * Function called when we are certain that a particular square has
4846f788 681 * a particular number in it. The y-coordinate passed in here is
682 * transformed.
1d8e8ad8 683 */
684static void nsolve_place(struct nsolve_usage *usage, int x, int y, int n)
685{
686 int c = usage->c, r = usage->r, cr = usage->cr;
687 int i, j, bx, by;
688
689 assert(cube(x,y,n));
690
691 /*
692 * Rule out all other numbers in this square.
693 */
694 for (i = 1; i <= cr; i++)
695 if (i != n)
696 cube(x,y,i) = FALSE;
697
698 /*
699 * Rule out this number in all other positions in the row.
700 */
701 for (i = 0; i < cr; i++)
702 if (i != y)
703 cube(x,i,n) = FALSE;
704
705 /*
706 * Rule out this number in all other positions in the column.
707 */
708 for (i = 0; i < cr; i++)
709 if (i != x)
710 cube(i,y,n) = FALSE;
711
712 /*
713 * Rule out this number in all other positions in the block.
714 */
715 bx = (x/r)*r;
4846f788 716 by = y % r;
1d8e8ad8 717 for (i = 0; i < r; i++)
718 for (j = 0; j < c; j++)
4846f788 719 if (bx+i != x || by+j*r != y)
720 cube(bx+i,by+j*r,n) = FALSE;
1d8e8ad8 721
722 /*
723 * Enter the number in the result grid.
724 */
4846f788 725 usage->grid[YUNTRANS(y)*cr+x] = n;
1d8e8ad8 726
727 /*
728 * Cross out this number from the list of numbers left to place
729 * in its row, its column and its block.
730 */
731 usage->row[y*cr+n-1] = usage->col[x*cr+n-1] =
7c568a48 732 usage->blk[((y%r)*c+(x/r))*cr+n-1] = TRUE;
1d8e8ad8 733}
734
7c568a48 735static int nsolve_elim(struct nsolve_usage *usage, int start, int step
736#ifdef STANDALONE_SOLVER
737 , char *fmt, ...
738#endif
739 )
1d8e8ad8 740{
4846f788 741 int c = usage->c, r = usage->r, cr = c*r;
742 int fpos, m, i;
1d8e8ad8 743
744 /*
4846f788 745 * Count the number of set bits within this section of the
746 * cube.
1d8e8ad8 747 */
748 m = 0;
4846f788 749 fpos = -1;
750 for (i = 0; i < cr; i++)
751 if (usage->cube[start+i*step]) {
752 fpos = start+i*step;
1d8e8ad8 753 m++;
754 }
755
756 if (m == 1) {
4846f788 757 int x, y, n;
758 assert(fpos >= 0);
1d8e8ad8 759
4846f788 760 n = 1 + fpos % cr;
761 y = fpos / cr;
762 x = y / cr;
763 y %= cr;
1d8e8ad8 764
3ddae0ff 765 if (!usage->grid[YUNTRANS(y)*cr+x]) {
7c568a48 766#ifdef STANDALONE_SOLVER
767 if (solver_show_working) {
768 va_list ap;
769 va_start(ap, fmt);
770 vprintf(fmt, ap);
771 va_end(ap);
772 printf(":\n placing %d at (%d,%d)\n",
773 n, 1+x, 1+YUNTRANS(y));
774 }
775#endif
3ddae0ff 776 nsolve_place(usage, x, y, n);
777 return TRUE;
778 }
1d8e8ad8 779 }
780
781 return FALSE;
782}
783
7c568a48 784static int nsolve_intersect(struct nsolve_usage *usage,
785 int start1, int step1, int start2, int step2
786#ifdef STANDALONE_SOLVER
787 , char *fmt, ...
788#endif
789 )
790{
791 int c = usage->c, r = usage->r, cr = c*r;
792 int ret, i;
793
794 /*
795 * Loop over the first domain and see if there's any set bit
796 * not also in the second.
797 */
798 for (i = 0; i < cr; i++) {
799 int p = start1+i*step1;
800 if (usage->cube[p] &&
801 !(p >= start2 && p < start2+cr*step2 &&
802 (p - start2) % step2 == 0))
803 return FALSE; /* there is, so we can't deduce */
804 }
805
806 /*
807 * We have determined that all set bits in the first domain are
808 * within its overlap with the second. So loop over the second
809 * domain and remove all set bits that aren't also in that
810 * overlap; return TRUE iff we actually _did_ anything.
811 */
812 ret = FALSE;
813 for (i = 0; i < cr; i++) {
814 int p = start2+i*step2;
815 if (usage->cube[p] &&
816 !(p >= start1 && p < start1+cr*step1 && (p - start1) % step1 == 0))
817 {
818#ifdef STANDALONE_SOLVER
819 if (solver_show_working) {
820 int px, py, pn;
821
822 if (!ret) {
823 va_list ap;
824 va_start(ap, fmt);
825 vprintf(fmt, ap);
826 va_end(ap);
827 printf(":\n");
828 }
829
830 pn = 1 + p % cr;
831 py = p / cr;
832 px = py / cr;
833 py %= cr;
834
835 printf(" ruling out %d at (%d,%d)\n",
836 pn, 1+px, 1+YUNTRANS(py));
837 }
838#endif
839 ret = TRUE; /* we did something */
840 usage->cube[p] = 0;
841 }
842 }
843
844 return ret;
845}
846
ab53eb64 847struct nsolve_scratch {
848 unsigned char *grid, *rowidx, *colidx, *set;
849};
850
7c568a48 851static int nsolve_set(struct nsolve_usage *usage,
ab53eb64 852 struct nsolve_scratch *scratch,
7c568a48 853 int start, int step1, int step2
854#ifdef STANDALONE_SOLVER
855 , char *fmt, ...
856#endif
857 )
858{
859 int c = usage->c, r = usage->r, cr = c*r;
860 int i, j, n, count;
ab53eb64 861 unsigned char *grid = scratch->grid;
862 unsigned char *rowidx = scratch->rowidx;
863 unsigned char *colidx = scratch->colidx;
864 unsigned char *set = scratch->set;
7c568a48 865
866 /*
867 * We are passed a cr-by-cr matrix of booleans. Our first job
868 * is to winnow it by finding any definite placements - i.e.
869 * any row with a solitary 1 - and discarding that row and the
870 * column containing the 1.
871 */
872 memset(rowidx, TRUE, cr);
873 memset(colidx, TRUE, cr);
874 for (i = 0; i < cr; i++) {
875 int count = 0, first = -1;
876 for (j = 0; j < cr; j++)
877 if (usage->cube[start+i*step1+j*step2])
878 first = j, count++;
879 if (count == 0) {
880 /*
881 * This condition actually marks a completely insoluble
882 * (i.e. internally inconsistent) puzzle. We return and
883 * report no progress made.
884 */
885 return FALSE;
886 }
887 if (count == 1)
888 rowidx[i] = colidx[first] = FALSE;
889 }
890
891 /*
892 * Convert each of rowidx/colidx from a list of 0s and 1s to a
893 * list of the indices of the 1s.
894 */
895 for (i = j = 0; i < cr; i++)
896 if (rowidx[i])
897 rowidx[j++] = i;
898 n = j;
899 for (i = j = 0; i < cr; i++)
900 if (colidx[i])
901 colidx[j++] = i;
902 assert(n == j);
903
904 /*
905 * And create the smaller matrix.
906 */
907 for (i = 0; i < n; i++)
908 for (j = 0; j < n; j++)
909 grid[i*cr+j] = usage->cube[start+rowidx[i]*step1+colidx[j]*step2];
910
911 /*
912 * Having done that, we now have a matrix in which every row
913 * has at least two 1s in. Now we search to see if we can find
914 * a rectangle of zeroes (in the set-theoretic sense of
915 * `rectangle', i.e. a subset of rows crossed with a subset of
916 * columns) whose width and height add up to n.
917 */
918
919 memset(set, 0, n);
920 count = 0;
921 while (1) {
922 /*
923 * We have a candidate set. If its size is <=1 or >=n-1
924 * then we move on immediately.
925 */
926 if (count > 1 && count < n-1) {
927 /*
928 * The number of rows we need is n-count. See if we can
929 * find that many rows which each have a zero in all
930 * the positions listed in `set'.
931 */
932 int rows = 0;
933 for (i = 0; i < n; i++) {
934 int ok = TRUE;
935 for (j = 0; j < n; j++)
936 if (set[j] && grid[i*cr+j]) {
937 ok = FALSE;
938 break;
939 }
940 if (ok)
941 rows++;
942 }
943
944 /*
945 * We expect never to be able to get _more_ than
946 * n-count suitable rows: this would imply that (for
947 * example) there are four numbers which between them
948 * have at most three possible positions, and hence it
949 * indicates a faulty deduction before this point or
950 * even a bogus clue.
951 */
952 assert(rows <= n - count);
953 if (rows >= n - count) {
954 int progress = FALSE;
955
956 /*
957 * We've got one! Now, for each row which _doesn't_
958 * satisfy the criterion, eliminate all its set
959 * bits in the positions _not_ listed in `set'.
960 * Return TRUE (meaning progress has been made) if
961 * we successfully eliminated anything at all.
962 *
963 * This involves referring back through
964 * rowidx/colidx in order to work out which actual
965 * positions in the cube to meddle with.
966 */
967 for (i = 0; i < n; i++) {
968 int ok = TRUE;
969 for (j = 0; j < n; j++)
970 if (set[j] && grid[i*cr+j]) {
971 ok = FALSE;
972 break;
973 }
974 if (!ok) {
975 for (j = 0; j < n; j++)
976 if (!set[j] && grid[i*cr+j]) {
977 int fpos = (start+rowidx[i]*step1+
978 colidx[j]*step2);
979#ifdef STANDALONE_SOLVER
980 if (solver_show_working) {
981 int px, py, pn;
982
983 if (!progress) {
984 va_list ap;
985 va_start(ap, fmt);
986 vprintf(fmt, ap);
987 va_end(ap);
988 printf(":\n");
989 }
990
991 pn = 1 + fpos % cr;
992 py = fpos / cr;
993 px = py / cr;
994 py %= cr;
995
996 printf(" ruling out %d at (%d,%d)\n",
997 pn, 1+px, 1+YUNTRANS(py));
998 }
999#endif
1000 progress = TRUE;
1001 usage->cube[fpos] = FALSE;
1002 }
1003 }
1004 }
1005
1006 if (progress) {
7c568a48 1007 return TRUE;
1008 }
1009 }
1010 }
1011
1012 /*
1013 * Binary increment: change the rightmost 0 to a 1, and
1014 * change all 1s to the right of it to 0s.
1015 */
1016 i = n;
1017 while (i > 0 && set[i-1])
1018 set[--i] = 0, count--;
1019 if (i > 0)
1020 set[--i] = 1, count++;
1021 else
1022 break; /* done */
1023 }
1024
7c568a48 1025 return FALSE;
1026}
1027
ab53eb64 1028static struct nsolve_scratch *nsolve_new_scratch(struct nsolve_usage *usage)
1029{
1030 struct nsolve_scratch *scratch = snew(struct nsolve_scratch);
1031 int cr = usage->cr;
1032 scratch->grid = snewn(cr*cr, unsigned char);
1033 scratch->rowidx = snewn(cr, unsigned char);
1034 scratch->colidx = snewn(cr, unsigned char);
1035 scratch->set = snewn(cr, unsigned char);
1036 return scratch;
1037}
1038
1039static void nsolve_free_scratch(struct nsolve_scratch *scratch)
1040{
1041 sfree(scratch->set);
1042 sfree(scratch->colidx);
1043 sfree(scratch->rowidx);
1044 sfree(scratch->grid);
1045 sfree(scratch);
1046}
1047
1d8e8ad8 1048static int nsolve(int c, int r, digit *grid)
1049{
1050 struct nsolve_usage *usage;
ab53eb64 1051 struct nsolve_scratch *scratch;
1d8e8ad8 1052 int cr = c*r;
1053 int x, y, n;
7c568a48 1054 int diff = DIFF_BLOCK;
1d8e8ad8 1055
1056 /*
1057 * Set up a usage structure as a clean slate (everything
1058 * possible).
1059 */
1060 usage = snew(struct nsolve_usage);
1061 usage->c = c;
1062 usage->r = r;
1063 usage->cr = cr;
1064 usage->cube = snewn(cr*cr*cr, unsigned char);
1065 usage->grid = grid; /* write straight back to the input */
1066 memset(usage->cube, TRUE, cr*cr*cr);
1067
1068 usage->row = snewn(cr * cr, unsigned char);
1069 usage->col = snewn(cr * cr, unsigned char);
1070 usage->blk = snewn(cr * cr, unsigned char);
1071 memset(usage->row, FALSE, cr * cr);
1072 memset(usage->col, FALSE, cr * cr);
1073 memset(usage->blk, FALSE, cr * cr);
1074
ab53eb64 1075 scratch = nsolve_new_scratch(usage);
1076
1d8e8ad8 1077 /*
1078 * Place all the clue numbers we are given.
1079 */
1080 for (x = 0; x < cr; x++)
1081 for (y = 0; y < cr; y++)
1082 if (grid[y*cr+x])
4846f788 1083 nsolve_place(usage, x, YTRANS(y), grid[y*cr+x]);
1d8e8ad8 1084
1085 /*
1086 * Now loop over the grid repeatedly trying all permitted modes
1087 * of reasoning. The loop terminates if we complete an
1088 * iteration without making any progress; we then return
1089 * failure or success depending on whether the grid is full or
1090 * not.
1091 */
1092 while (1) {
7c568a48 1093 /*
1094 * I'd like to write `continue;' inside each of the
1095 * following loops, so that the solver returns here after
1096 * making some progress. However, I can't specify that I
1097 * want to continue an outer loop rather than the innermost
1098 * one, so I'm apologetically resorting to a goto.
1099 */
3ddae0ff 1100 cont:
1101
1d8e8ad8 1102 /*
1103 * Blockwise positional elimination.
1104 */
4846f788 1105 for (x = 0; x < cr; x += r)
1d8e8ad8 1106 for (y = 0; y < r; y++)
1107 for (n = 1; n <= cr; n++)
4846f788 1108 if (!usage->blk[(y*c+(x/r))*cr+n-1] &&
7c568a48 1109 nsolve_elim(usage, cubepos(x,y,n), r*cr
1110#ifdef STANDALONE_SOLVER
1111 , "positional elimination,"
1112 " block (%d,%d)", 1+x/r, 1+y
1113#endif
1114 )) {
1115 diff = max(diff, DIFF_BLOCK);
3ddae0ff 1116 goto cont;
7c568a48 1117 }
1d8e8ad8 1118
1119 /*
1120 * Row-wise positional elimination.
1121 */
1122 for (y = 0; y < cr; y++)
1123 for (n = 1; n <= cr; n++)
1124 if (!usage->row[y*cr+n-1] &&
7c568a48 1125 nsolve_elim(usage, cubepos(0,y,n), cr*cr
1126#ifdef STANDALONE_SOLVER
1127 , "positional elimination,"
1128 " row %d", 1+YUNTRANS(y)
1129#endif
1130 )) {
1131 diff = max(diff, DIFF_SIMPLE);
3ddae0ff 1132 goto cont;
7c568a48 1133 }
1d8e8ad8 1134 /*
1135 * Column-wise positional elimination.
1136 */
1137 for (x = 0; x < cr; x++)
1138 for (n = 1; n <= cr; n++)
1139 if (!usage->col[x*cr+n-1] &&
7c568a48 1140 nsolve_elim(usage, cubepos(x,0,n), cr
1141#ifdef STANDALONE_SOLVER
1142 , "positional elimination," " column %d", 1+x
1143#endif
1144 )) {
1145 diff = max(diff, DIFF_SIMPLE);
3ddae0ff 1146 goto cont;
7c568a48 1147 }
1d8e8ad8 1148
1149 /*
1150 * Numeric elimination.
1151 */
1152 for (x = 0; x < cr; x++)
1153 for (y = 0; y < cr; y++)
4846f788 1154 if (!usage->grid[YUNTRANS(y)*cr+x] &&
7c568a48 1155 nsolve_elim(usage, cubepos(x,y,1), 1
1156#ifdef STANDALONE_SOLVER
1157 , "numeric elimination at (%d,%d)", 1+x,
1158 1+YUNTRANS(y)
1159#endif
1160 )) {
1161 diff = max(diff, DIFF_SIMPLE);
1162 goto cont;
1163 }
1164
1165 /*
1166 * Intersectional analysis, rows vs blocks.
1167 */
1168 for (y = 0; y < cr; y++)
1169 for (x = 0; x < cr; x += r)
1170 for (n = 1; n <= cr; n++)
1171 if (!usage->row[y*cr+n-1] &&
1172 !usage->blk[((y%r)*c+(x/r))*cr+n-1] &&
1173 (nsolve_intersect(usage, cubepos(0,y,n), cr*cr,
1174 cubepos(x,y%r,n), r*cr
1175#ifdef STANDALONE_SOLVER
1176 , "intersectional analysis,"
1177 " row %d vs block (%d,%d)",
b37c4d5f 1178 1+YUNTRANS(y), 1+x/r, 1+y%r
7c568a48 1179#endif
1180 ) ||
1181 nsolve_intersect(usage, cubepos(x,y%r,n), r*cr,
1182 cubepos(0,y,n), cr*cr
1183#ifdef STANDALONE_SOLVER
1184 , "intersectional analysis,"
1185 " block (%d,%d) vs row %d",
b37c4d5f 1186 1+x/r, 1+y%r, 1+YUNTRANS(y)
7c568a48 1187#endif
1188 ))) {
1189 diff = max(diff, DIFF_INTERSECT);
1190 goto cont;
1191 }
1192
1193 /*
1194 * Intersectional analysis, columns vs blocks.
1195 */
1196 for (x = 0; x < cr; x++)
1197 for (y = 0; y < r; y++)
1198 for (n = 1; n <= cr; n++)
1199 if (!usage->col[x*cr+n-1] &&
1200 !usage->blk[(y*c+(x/r))*cr+n-1] &&
1201 (nsolve_intersect(usage, cubepos(x,0,n), cr,
1202 cubepos((x/r)*r,y,n), r*cr
1203#ifdef STANDALONE_SOLVER
1204 , "intersectional analysis,"
1205 " column %d vs block (%d,%d)",
1206 1+x, 1+x/r, 1+y
1207#endif
1208 ) ||
1209 nsolve_intersect(usage, cubepos((x/r)*r,y,n), r*cr,
1210 cubepos(x,0,n), cr
1211#ifdef STANDALONE_SOLVER
1212 , "intersectional analysis,"
1213 " block (%d,%d) vs column %d",
1214 1+x/r, 1+y, 1+x
1215#endif
1216 ))) {
1217 diff = max(diff, DIFF_INTERSECT);
1218 goto cont;
1219 }
1220
1221 /*
1222 * Blockwise set elimination.
1223 */
1224 for (x = 0; x < cr; x += r)
1225 for (y = 0; y < r; y++)
ab53eb64 1226 if (nsolve_set(usage, scratch, cubepos(x,y,1), r*cr, 1
7c568a48 1227#ifdef STANDALONE_SOLVER
1228 , "set elimination, block (%d,%d)", 1+x/r, 1+y
1229#endif
1230 )) {
1231 diff = max(diff, DIFF_SET);
1232 goto cont;
1233 }
1234
1235 /*
1236 * Row-wise set elimination.
1237 */
1238 for (y = 0; y < cr; y++)
ab53eb64 1239 if (nsolve_set(usage, scratch, cubepos(0,y,1), cr*cr, 1
7c568a48 1240#ifdef STANDALONE_SOLVER
1241 , "set elimination, row %d", 1+YUNTRANS(y)
1242#endif
1243 )) {
1244 diff = max(diff, DIFF_SET);
1245 goto cont;
1246 }
1247
1248 /*
1249 * Column-wise set elimination.
1250 */
1251 for (x = 0; x < cr; x++)
ab53eb64 1252 if (nsolve_set(usage, scratch, cubepos(x,0,1), cr, 1
7c568a48 1253#ifdef STANDALONE_SOLVER
1254 , "set elimination, column %d", 1+x
1255#endif
1256 )) {
1257 diff = max(diff, DIFF_SET);
1258 goto cont;
1259 }
1d8e8ad8 1260
1261 /*
1262 * If we reach here, we have made no deductions in this
1263 * iteration, so the algorithm terminates.
1264 */
1265 break;
1266 }
1267
ab53eb64 1268 nsolve_free_scratch(scratch);
1269
1d8e8ad8 1270 sfree(usage->cube);
1271 sfree(usage->row);
1272 sfree(usage->col);
1273 sfree(usage->blk);
1274 sfree(usage);
1275
1276 for (x = 0; x < cr; x++)
1277 for (y = 0; y < cr; y++)
1278 if (!grid[y*cr+x])
7c568a48 1279 return DIFF_IMPOSSIBLE;
1280 return diff;
1d8e8ad8 1281}
1282
1283/* ----------------------------------------------------------------------
1284 * End of non-recursive solver code.
1285 */
1286
1287/*
1288 * Check whether a grid contains a valid complete puzzle.
1289 */
1290static int check_valid(int c, int r, digit *grid)
1291{
1292 int cr = c*r;
1293 unsigned char *used;
1294 int x, y, n;
1295
1296 used = snewn(cr, unsigned char);
1297
1298 /*
1299 * Check that each row contains precisely one of everything.
1300 */
1301 for (y = 0; y < cr; y++) {
1302 memset(used, FALSE, cr);
1303 for (x = 0; x < cr; x++)
1304 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
1305 used[grid[y*cr+x]-1] = TRUE;
1306 for (n = 0; n < cr; n++)
1307 if (!used[n]) {
1308 sfree(used);
1309 return FALSE;
1310 }
1311 }
1312
1313 /*
1314 * Check that each column contains precisely one of everything.
1315 */
1316 for (x = 0; x < cr; x++) {
1317 memset(used, FALSE, cr);
1318 for (y = 0; y < cr; y++)
1319 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
1320 used[grid[y*cr+x]-1] = TRUE;
1321 for (n = 0; n < cr; n++)
1322 if (!used[n]) {
1323 sfree(used);
1324 return FALSE;
1325 }
1326 }
1327
1328 /*
1329 * Check that each block contains precisely one of everything.
1330 */
1331 for (x = 0; x < cr; x += r) {
1332 for (y = 0; y < cr; y += c) {
1333 int xx, yy;
1334 memset(used, FALSE, cr);
1335 for (xx = x; xx < x+r; xx++)
1336 for (yy = 0; yy < y+c; yy++)
1337 if (grid[yy*cr+xx] > 0 && grid[yy*cr+xx] <= cr)
1338 used[grid[yy*cr+xx]-1] = TRUE;
1339 for (n = 0; n < cr; n++)
1340 if (!used[n]) {
1341 sfree(used);
1342 return FALSE;
1343 }
1344 }
1345 }
1346
1347 sfree(used);
1348 return TRUE;
1349}
1350
ef57b17d 1351static void symmetry_limit(game_params *params, int *xlim, int *ylim, int s)
1352{
1353 int c = params->c, r = params->r, cr = c*r;
1354
1355 switch (s) {
1356 case SYMM_NONE:
1357 *xlim = *ylim = cr;
1358 break;
1359 case SYMM_ROT2:
1360 *xlim = (cr+1) / 2;
1361 *ylim = cr;
1362 break;
1363 case SYMM_REF4:
1364 case SYMM_ROT4:
1365 *xlim = *ylim = (cr+1) / 2;
1366 break;
1367 }
1368}
1369
1370static int symmetries(game_params *params, int x, int y, int *output, int s)
1371{
1372 int c = params->c, r = params->r, cr = c*r;
1373 int i = 0;
1374
1375 *output++ = x;
1376 *output++ = y;
1377 i++;
1378
1379 switch (s) {
1380 case SYMM_NONE:
1381 break; /* just x,y is all we need */
1382 case SYMM_REF4:
1383 case SYMM_ROT4:
1384 switch (s) {
1385 case SYMM_REF4:
1386 *output++ = cr - 1 - x;
1387 *output++ = y;
1388 i++;
1389
1390 *output++ = x;
1391 *output++ = cr - 1 - y;
1392 i++;
1393 break;
1394 case SYMM_ROT4:
1395 *output++ = cr - 1 - y;
1396 *output++ = x;
1397 i++;
1398
1399 *output++ = y;
1400 *output++ = cr - 1 - x;
1401 i++;
1402 break;
1403 }
1404 /* fall through */
1405 case SYMM_ROT2:
1406 *output++ = cr - 1 - x;
1407 *output++ = cr - 1 - y;
1408 i++;
1409 break;
1410 }
1411
1412 return i;
1413}
1414
3220eba4 1415struct game_aux_info {
1416 int c, r;
1417 digit *grid;
1418};
1419
1185e3c5 1420static char *new_game_desc(game_params *params, random_state *rs,
6aa6af4c 1421 game_aux_info **aux, int interactive)
1d8e8ad8 1422{
1423 int c = params->c, r = params->r, cr = c*r;
1424 int area = cr*cr;
1425 digit *grid, *grid2;
1426 struct xy { int x, y; } *locs;
1427 int nlocs;
1428 int ret;
1185e3c5 1429 char *desc;
ef57b17d 1430 int coords[16], ncoords;
1431 int xlim, ylim;
de60d8bd 1432 int maxdiff, recursing;
1d8e8ad8 1433
1434 /*
7c568a48 1435 * Adjust the maximum difficulty level to be consistent with
1436 * the puzzle size: all 2x2 puzzles appear to be Trivial
1437 * (DIFF_BLOCK) so we cannot hold out for even a Basic
1438 * (DIFF_SIMPLE) one.
1d8e8ad8 1439 */
7c568a48 1440 maxdiff = params->diff;
1441 if (c == 2 && r == 2)
1442 maxdiff = DIFF_BLOCK;
1d8e8ad8 1443
7c568a48 1444 grid = snewn(area, digit);
ef57b17d 1445 locs = snewn(area, struct xy);
1d8e8ad8 1446 grid2 = snewn(area, digit);
1d8e8ad8 1447
7c568a48 1448 /*
1449 * Loop until we get a grid of the required difficulty. This is
1450 * nasty, but it seems to be unpleasantly hard to generate
1451 * difficult grids otherwise.
1452 */
1453 do {
1454 /*
1455 * Start the recursive solver with an empty grid to generate a
1456 * random solved state.
1457 */
1458 memset(grid, 0, area);
1459 ret = rsolve(c, r, grid, rs, 1);
1460 assert(ret == 1);
1461 assert(check_valid(c, r, grid));
1462
3220eba4 1463 /*
1464 * Save the solved grid in the aux_info.
1465 */
1466 {
1467 game_aux_info *ai = snew(game_aux_info);
1468 ai->c = c;
1469 ai->r = r;
1470 ai->grid = snewn(cr * cr, digit);
1471 memcpy(ai->grid, grid, cr * cr * sizeof(digit));
ab53eb64 1472 /*
1473 * We might already have written *aux the last time we
1474 * went round this loop, in which case we should free
1475 * the old aux_info before overwriting it with the new
1476 * one.
1477 */
1478 if (*aux) {
1479 sfree((*aux)->grid);
1480 sfree(*aux);
1481 }
3220eba4 1482 *aux = ai;
1483 }
1484
7c568a48 1485 /*
1486 * Now we have a solved grid, start removing things from it
1487 * while preserving solubility.
1488 */
1489 symmetry_limit(params, &xlim, &ylim, params->symm);
de60d8bd 1490 recursing = FALSE;
7c568a48 1491 while (1) {
1492 int x, y, i, j;
1493
1494 /*
1495 * Iterate over the grid and enumerate all the filled
1496 * squares we could empty.
1497 */
1498 nlocs = 0;
1499
1500 for (x = 0; x < xlim; x++)
1501 for (y = 0; y < ylim; y++)
1502 if (grid[y*cr+x]) {
1503 locs[nlocs].x = x;
1504 locs[nlocs].y = y;
1505 nlocs++;
1506 }
1507
1508 /*
1509 * Now shuffle that list.
1510 */
1511 for (i = nlocs; i > 1; i--) {
1512 int p = random_upto(rs, i);
1513 if (p != i-1) {
1514 struct xy t = locs[p];
1515 locs[p] = locs[i-1];
1516 locs[i-1] = t;
1517 }
1518 }
1519
1520 /*
1521 * Now loop over the shuffled list and, for each element,
1522 * see whether removing that element (and its reflections)
1523 * from the grid will still leave the grid soluble by
1524 * nsolve.
1525 */
1526 for (i = 0; i < nlocs; i++) {
de60d8bd 1527 int ret;
1528
7c568a48 1529 x = locs[i].x;
1530 y = locs[i].y;
1531
1532 memcpy(grid2, grid, area);
1533 ncoords = symmetries(params, x, y, coords, params->symm);
1534 for (j = 0; j < ncoords; j++)
1535 grid2[coords[2*j+1]*cr+coords[2*j]] = 0;
1536
de60d8bd 1537 if (recursing)
1538 ret = (rsolve(c, r, grid2, NULL, 2) == 1);
1539 else
1540 ret = (nsolve(c, r, grid2) <= maxdiff);
1541
1542 if (ret) {
7c568a48 1543 for (j = 0; j < ncoords; j++)
1544 grid[coords[2*j+1]*cr+coords[2*j]] = 0;
1545 break;
1546 }
1547 }
1548
1549 if (i == nlocs) {
1550 /*
de60d8bd 1551 * There was nothing we could remove without
1552 * destroying solvability. If we're trying to
1553 * generate a recursion-only grid and haven't
1554 * switched over to rsolve yet, we now do;
1555 * otherwise we give up.
7c568a48 1556 */
de60d8bd 1557 if (maxdiff == DIFF_RECURSIVE && !recursing) {
1558 recursing = TRUE;
1559 } else {
1560 break;
1561 }
7c568a48 1562 }
1563 }
1d8e8ad8 1564
7c568a48 1565 memcpy(grid2, grid, area);
de60d8bd 1566 } while (nsolve(c, r, grid2) < maxdiff);
1d8e8ad8 1567
1d8e8ad8 1568 sfree(grid2);
1569 sfree(locs);
1570
1d8e8ad8 1571 /*
1572 * Now we have the grid as it will be presented to the user.
1185e3c5 1573 * Encode it in a game desc.
1d8e8ad8 1574 */
1575 {
1576 char *p;
1577 int run, i;
1578
1185e3c5 1579 desc = snewn(5 * area, char);
1580 p = desc;
1d8e8ad8 1581 run = 0;
1582 for (i = 0; i <= area; i++) {
1583 int n = (i < area ? grid[i] : -1);
1584
1585 if (!n)
1586 run++;
1587 else {
1588 if (run) {
1589 while (run > 0) {
1590 int c = 'a' - 1 + run;
1591 if (run > 26)
1592 c = 'z';
1593 *p++ = c;
1594 run -= c - ('a' - 1);
1595 }
1596 } else {
1597 /*
1598 * If there's a number in the very top left or
1599 * bottom right, there's no point putting an
1600 * unnecessary _ before or after it.
1601 */
1185e3c5 1602 if (p > desc && n > 0)
1d8e8ad8 1603 *p++ = '_';
1604 }
1605 if (n > 0)
1606 p += sprintf(p, "%d", n);
1607 run = 0;
1608 }
1609 }
1185e3c5 1610 assert(p - desc < 5 * area);
1d8e8ad8 1611 *p++ = '\0';
1185e3c5 1612 desc = sresize(desc, p - desc, char);
1d8e8ad8 1613 }
1614
1615 sfree(grid);
1616
1185e3c5 1617 return desc;
1d8e8ad8 1618}
1619
2ac6d24e 1620static void game_free_aux_info(game_aux_info *aux)
6f2d8d7c 1621{
3220eba4 1622 sfree(aux->grid);
1623 sfree(aux);
6f2d8d7c 1624}
1625
1185e3c5 1626static char *validate_desc(game_params *params, char *desc)
1d8e8ad8 1627{
1628 int area = params->r * params->r * params->c * params->c;
1629 int squares = 0;
1630
1185e3c5 1631 while (*desc) {
1632 int n = *desc++;
1d8e8ad8 1633 if (n >= 'a' && n <= 'z') {
1634 squares += n - 'a' + 1;
1635 } else if (n == '_') {
1636 /* do nothing */;
1637 } else if (n > '0' && n <= '9') {
1638 squares++;
1185e3c5 1639 while (*desc >= '0' && *desc <= '9')
1640 desc++;
1d8e8ad8 1641 } else
1185e3c5 1642 return "Invalid character in game description";
1d8e8ad8 1643 }
1644
1645 if (squares < area)
1646 return "Not enough data to fill grid";
1647
1648 if (squares > area)
1649 return "Too much data to fit in grid";
1650
1651 return NULL;
1652}
1653
c380832d 1654static game_state *new_game(midend_data *me, game_params *params, char *desc)
1d8e8ad8 1655{
1656 game_state *state = snew(game_state);
1657 int c = params->c, r = params->r, cr = c*r, area = cr * cr;
1658 int i;
1659
1660 state->c = params->c;
1661 state->r = params->r;
1662
1663 state->grid = snewn(area, digit);
c8266e03 1664 state->pencil = snewn(area * cr, unsigned char);
1665 memset(state->pencil, 0, area * cr);
1d8e8ad8 1666 state->immutable = snewn(area, unsigned char);
1667 memset(state->immutable, FALSE, area);
1668
2ac6d24e 1669 state->completed = state->cheated = FALSE;
1d8e8ad8 1670
1671 i = 0;
1185e3c5 1672 while (*desc) {
1673 int n = *desc++;
1d8e8ad8 1674 if (n >= 'a' && n <= 'z') {
1675 int run = n - 'a' + 1;
1676 assert(i + run <= area);
1677 while (run-- > 0)
1678 state->grid[i++] = 0;
1679 } else if (n == '_') {
1680 /* do nothing */;
1681 } else if (n > '0' && n <= '9') {
1682 assert(i < area);
1683 state->immutable[i] = TRUE;
1185e3c5 1684 state->grid[i++] = atoi(desc-1);
1685 while (*desc >= '0' && *desc <= '9')
1686 desc++;
1d8e8ad8 1687 } else {
1688 assert(!"We can't get here");
1689 }
1690 }
1691 assert(i == area);
1692
1693 return state;
1694}
1695
1696static game_state *dup_game(game_state *state)
1697{
1698 game_state *ret = snew(game_state);
1699 int c = state->c, r = state->r, cr = c*r, area = cr * cr;
1700
1701 ret->c = state->c;
1702 ret->r = state->r;
1703
1704 ret->grid = snewn(area, digit);
1705 memcpy(ret->grid, state->grid, area);
1706
c8266e03 1707 ret->pencil = snewn(area * cr, unsigned char);
1708 memcpy(ret->pencil, state->pencil, area * cr);
1709
1d8e8ad8 1710 ret->immutable = snewn(area, unsigned char);
1711 memcpy(ret->immutable, state->immutable, area);
1712
1713 ret->completed = state->completed;
2ac6d24e 1714 ret->cheated = state->cheated;
1d8e8ad8 1715
1716 return ret;
1717}
1718
1719static void free_game(game_state *state)
1720{
1721 sfree(state->immutable);
c8266e03 1722 sfree(state->pencil);
1d8e8ad8 1723 sfree(state->grid);
1724 sfree(state);
1725}
1726
3220eba4 1727static game_state *solve_game(game_state *state, game_aux_info *ai,
2ac6d24e 1728 char **error)
1729{
1730 game_state *ret;
3220eba4 1731 int c = state->c, r = state->r, cr = c*r;
2ac6d24e 1732 int rsolve_ret;
1733
2ac6d24e 1734 ret = dup_game(state);
1735 ret->completed = ret->cheated = TRUE;
1736
3220eba4 1737 /*
1738 * If we already have the solution in the aux_info, save
1739 * ourselves some time.
1740 */
1741 if (ai) {
1742
1743 assert(c == ai->c);
1744 assert(r == ai->r);
1745 memcpy(ret->grid, ai->grid, cr * cr * sizeof(digit));
1746
1747 } else {
1748 rsolve_ret = rsolve(c, r, ret->grid, NULL, 2);
1749
1750 if (rsolve_ret != 1) {
1751 free_game(ret);
1752 if (rsolve_ret == 0)
1753 *error = "No solution exists for this puzzle";
1754 else
1755 *error = "Multiple solutions exist for this puzzle";
1756 return NULL;
1757 }
2ac6d24e 1758 }
1759
1760 return ret;
1761}
1762
9b4b03d3 1763static char *grid_text_format(int c, int r, digit *grid)
1764{
1765 int cr = c*r;
1766 int x, y;
1767 int maxlen;
1768 char *ret, *p;
1769
1770 /*
1771 * There are cr lines of digits, plus r-1 lines of block
1772 * separators. Each line contains cr digits, cr-1 separating
1773 * spaces, and c-1 two-character block separators. Thus, the
1774 * total length of a line is 2*cr+2*c-3 (not counting the
1775 * newline), and there are cr+r-1 of them.
1776 */
1777 maxlen = (cr+r-1) * (2*cr+2*c-2);
1778 ret = snewn(maxlen+1, char);
1779 p = ret;
1780
1781 for (y = 0; y < cr; y++) {
1782 for (x = 0; x < cr; x++) {
1783 int ch = grid[y * cr + x];
1784 if (ch == 0)
1785 ch = ' ';
1786 else if (ch <= 9)
1787 ch = '0' + ch;
1788 else
1789 ch = 'a' + ch-10;
1790 *p++ = ch;
1791 if (x+1 < cr) {
1792 *p++ = ' ';
1793 if ((x+1) % r == 0) {
1794 *p++ = '|';
1795 *p++ = ' ';
1796 }
1797 }
1798 }
1799 *p++ = '\n';
1800 if (y+1 < cr && (y+1) % c == 0) {
1801 for (x = 0; x < cr; x++) {
1802 *p++ = '-';
1803 if (x+1 < cr) {
1804 *p++ = '-';
1805 if ((x+1) % r == 0) {
1806 *p++ = '+';
1807 *p++ = '-';
1808 }
1809 }
1810 }
1811 *p++ = '\n';
1812 }
1813 }
1814
1815 assert(p - ret == maxlen);
1816 *p = '\0';
1817 return ret;
1818}
1819
1820static char *game_text_format(game_state *state)
1821{
1822 return grid_text_format(state->c, state->r, state->grid);
1823}
1824
1d8e8ad8 1825struct game_ui {
1826 /*
1827 * These are the coordinates of the currently highlighted
1828 * square on the grid, or -1,-1 if there isn't one. When there
1829 * is, pressing a valid number or letter key or Space will
1830 * enter that number or letter in the grid.
1831 */
1832 int hx, hy;
c8266e03 1833 /*
1834 * This indicates whether the current highlight is a
1835 * pencil-mark one or a real one.
1836 */
1837 int hpencil;
1d8e8ad8 1838};
1839
1840static game_ui *new_ui(game_state *state)
1841{
1842 game_ui *ui = snew(game_ui);
1843
1844 ui->hx = ui->hy = -1;
c8266e03 1845 ui->hpencil = 0;
1d8e8ad8 1846
1847 return ui;
1848}
1849
1850static void free_ui(game_ui *ui)
1851{
1852 sfree(ui);
1853}
1854
c0361acd 1855static game_state *make_move(game_state *from, game_ui *ui, game_drawstate *ds,
1856 int x, int y, int button)
1d8e8ad8 1857{
1858 int c = from->c, r = from->r, cr = c*r;
1859 int tx, ty;
1860 game_state *ret;
1861
f0ee053c 1862 button &= ~MOD_MASK;
3c833d45 1863
ae812854 1864 tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
1865 ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
1d8e8ad8 1866
39d682c9 1867 if (tx >= 0 && tx < cr && ty >= 0 && ty < cr) {
1868 if (button == LEFT_BUTTON) {
1869 if (from->immutable[ty*cr+tx]) {
1870 ui->hx = ui->hy = -1;
1871 } else if (tx == ui->hx && ty == ui->hy && ui->hpencil == 0) {
1872 ui->hx = ui->hy = -1;
1873 } else {
1874 ui->hx = tx;
1875 ui->hy = ty;
1876 ui->hpencil = 0;
1877 }
1878 return from; /* UI activity occurred */
1879 }
1880 if (button == RIGHT_BUTTON) {
1881 /*
1882 * Pencil-mode highlighting for non filled squares.
1883 */
1884 if (from->grid[ty*cr+tx] == 0) {
1885 if (tx == ui->hx && ty == ui->hy && ui->hpencil) {
1886 ui->hx = ui->hy = -1;
1887 } else {
1888 ui->hpencil = 1;
1889 ui->hx = tx;
1890 ui->hy = ty;
1891 }
1892 } else {
1893 ui->hx = ui->hy = -1;
1894 }
1895 return from; /* UI activity occurred */
1896 }
1d8e8ad8 1897 }
1898
1899 if (ui->hx != -1 && ui->hy != -1 &&
1900 ((button >= '1' && button <= '9' && button - '0' <= cr) ||
1901 (button >= 'a' && button <= 'z' && button - 'a' + 10 <= cr) ||
1902 (button >= 'A' && button <= 'Z' && button - 'A' + 10 <= cr) ||
1903 button == ' ')) {
1904 int n = button - '0';
1905 if (button >= 'A' && button <= 'Z')
1906 n = button - 'A' + 10;
1907 if (button >= 'a' && button <= 'z')
1908 n = button - 'a' + 10;
1909 if (button == ' ')
1910 n = 0;
1911
39d682c9 1912 /*
1913 * Can't overwrite this square. In principle this shouldn't
1914 * happen anyway because we should never have even been
1915 * able to highlight the square, but it never hurts to be
1916 * careful.
1917 */
1d8e8ad8 1918 if (from->immutable[ui->hy*cr+ui->hx])
39d682c9 1919 return NULL;
1d8e8ad8 1920
c8266e03 1921 /*
1922 * Can't make pencil marks in a filled square. In principle
1923 * this shouldn't happen anyway because we should never
1924 * have even been able to pencil-highlight the square, but
1925 * it never hurts to be careful.
1926 */
1927 if (ui->hpencil && from->grid[ui->hy*cr+ui->hx])
1928 return NULL;
1929
1d8e8ad8 1930 ret = dup_game(from);
c8266e03 1931 if (ui->hpencil && n > 0) {
1932 int index = (ui->hy*cr+ui->hx) * cr + (n-1);
1933 ret->pencil[index] = !ret->pencil[index];
1934 } else {
1935 ret->grid[ui->hy*cr+ui->hx] = n;
1936 memset(ret->pencil + (ui->hy*cr+ui->hx)*cr, 0, cr);
1d8e8ad8 1937
c8266e03 1938 /*
1939 * We've made a real change to the grid. Check to see
1940 * if the game has been completed.
1941 */
1942 if (!ret->completed && check_valid(c, r, ret->grid)) {
1943 ret->completed = TRUE;
1944 }
1945 }
1946 ui->hx = ui->hy = -1;
1d8e8ad8 1947
1948 return ret; /* made a valid move */
1949 }
1950
1951 return NULL;
1952}
1953
1954/* ----------------------------------------------------------------------
1955 * Drawing routines.
1956 */
1957
1958struct game_drawstate {
1959 int started;
1960 int c, r, cr;
1961 digit *grid;
c8266e03 1962 unsigned char *pencil;
1d8e8ad8 1963 unsigned char *hl;
1964};
1965
1966#define XSIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
1967#define YSIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
1968
1969static void game_size(game_params *params, int *x, int *y)
1970{
1971 int c = params->c, r = params->r, cr = c*r;
1972
1973 *x = XSIZE(cr);
1974 *y = YSIZE(cr);
1975}
1976
1977static float *game_colours(frontend *fe, game_state *state, int *ncolours)
1978{
1979 float *ret = snewn(3 * NCOLOURS, float);
1980
1981 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1982
1983 ret[COL_GRID * 3 + 0] = 0.0F;
1984 ret[COL_GRID * 3 + 1] = 0.0F;
1985 ret[COL_GRID * 3 + 2] = 0.0F;
1986
1987 ret[COL_CLUE * 3 + 0] = 0.0F;
1988 ret[COL_CLUE * 3 + 1] = 0.0F;
1989 ret[COL_CLUE * 3 + 2] = 0.0F;
1990
1991 ret[COL_USER * 3 + 0] = 0.0F;
1992 ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
1993 ret[COL_USER * 3 + 2] = 0.0F;
1994
1995 ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0];
1996 ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
1997 ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
1998
c8266e03 1999 ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2000 ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2001 ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
2002
1d8e8ad8 2003 *ncolours = NCOLOURS;
2004 return ret;
2005}
2006
2007static game_drawstate *game_new_drawstate(game_state *state)
2008{
2009 struct game_drawstate *ds = snew(struct game_drawstate);
2010 int c = state->c, r = state->r, cr = c*r;
2011
2012 ds->started = FALSE;
2013 ds->c = c;
2014 ds->r = r;
2015 ds->cr = cr;
2016 ds->grid = snewn(cr*cr, digit);
2017 memset(ds->grid, 0, cr*cr);
c8266e03 2018 ds->pencil = snewn(cr*cr*cr, digit);
2019 memset(ds->pencil, 0, cr*cr*cr);
1d8e8ad8 2020 ds->hl = snewn(cr*cr, unsigned char);
2021 memset(ds->hl, 0, cr*cr);
2022
2023 return ds;
2024}
2025
2026static void game_free_drawstate(game_drawstate *ds)
2027{
2028 sfree(ds->hl);
c8266e03 2029 sfree(ds->pencil);
1d8e8ad8 2030 sfree(ds->grid);
2031 sfree(ds);
2032}
2033
2034static void draw_number(frontend *fe, game_drawstate *ds, game_state *state,
2035 int x, int y, int hl)
2036{
2037 int c = state->c, r = state->r, cr = c*r;
2038 int tx, ty;
2039 int cx, cy, cw, ch;
2040 char str[2];
2041
c8266e03 2042 if (ds->grid[y*cr+x] == state->grid[y*cr+x] &&
2043 ds->hl[y*cr+x] == hl &&
2044 !memcmp(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr))
1d8e8ad8 2045 return; /* no change required */
2046
2047 tx = BORDER + x * TILE_SIZE + 2;
2048 ty = BORDER + y * TILE_SIZE + 2;
2049
2050 cx = tx;
2051 cy = ty;
2052 cw = TILE_SIZE-3;
2053 ch = TILE_SIZE-3;
2054
2055 if (x % r)
2056 cx--, cw++;
2057 if ((x+1) % r)
2058 cw++;
2059 if (y % c)
2060 cy--, ch++;
2061 if ((y+1) % c)
2062 ch++;
2063
2064 clip(fe, cx, cy, cw, ch);
2065
c8266e03 2066 /* background needs erasing */
2067 draw_rect(fe, cx, cy, cw, ch, hl == 1 ? COL_HIGHLIGHT : COL_BACKGROUND);
2068
2069 /* pencil-mode highlight */
2070 if (hl == 2) {
2071 int coords[6];
2072 coords[0] = cx;
2073 coords[1] = cy;
2074 coords[2] = cx+cw/2;
2075 coords[3] = cy;
2076 coords[4] = cx;
2077 coords[5] = cy+ch/2;
2078 draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT);
2079 }
1d8e8ad8 2080
2081 /* new number needs drawing? */
2082 if (state->grid[y*cr+x]) {
2083 str[1] = '\0';
2084 str[0] = state->grid[y*cr+x] + '0';
2085 if (str[0] > '9')
2086 str[0] += 'a' - ('9'+1);
2087 draw_text(fe, tx + TILE_SIZE/2, ty + TILE_SIZE/2,
2088 FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
2089 state->immutable[y*cr+x] ? COL_CLUE : COL_USER, str);
c8266e03 2090 } else {
2091 /* pencil marks required? */
2092 int i, j;
2093
2094 for (i = j = 0; i < cr; i++)
2095 if (state->pencil[(y*cr+x)*cr+i]) {
2096 int dx = j % r, dy = j / r, crm = max(c, r);
2097 str[1] = '\0';
2098 str[0] = i + '1';
2099 if (str[0] > '9')
2100 str[0] += 'a' - ('9'+1);
2101 draw_text(fe, tx + (4*dx+3) * TILE_SIZE / (4*r+2),
2102 ty + (4*dy+3) * TILE_SIZE / (4*c+2),
2103 FONT_VARIABLE, TILE_SIZE/(crm*5/4),
2104 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
2105 j++;
2106 }
1d8e8ad8 2107 }
2108
2109 unclip(fe);
2110
2111 draw_update(fe, cx, cy, cw, ch);
2112
2113 ds->grid[y*cr+x] = state->grid[y*cr+x];
c8266e03 2114 memcpy(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr);
1d8e8ad8 2115 ds->hl[y*cr+x] = hl;
2116}
2117
2118static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
2119 game_state *state, int dir, game_ui *ui,
2120 float animtime, float flashtime)
2121{
2122 int c = state->c, r = state->r, cr = c*r;
2123 int x, y;
2124
2125 if (!ds->started) {
2126 /*
2127 * The initial contents of the window are not guaranteed
2128 * and can vary with front ends. To be on the safe side,
2129 * all games should start by drawing a big
2130 * background-colour rectangle covering the whole window.
2131 */
2132 draw_rect(fe, 0, 0, XSIZE(cr), YSIZE(cr), COL_BACKGROUND);
2133
2134 /*
2135 * Draw the grid.
2136 */
2137 for (x = 0; x <= cr; x++) {
2138 int thick = (x % r ? 0 : 1);
2139 draw_rect(fe, BORDER + x*TILE_SIZE - thick, BORDER-1,
2140 1+2*thick, cr*TILE_SIZE+3, COL_GRID);
2141 }
2142 for (y = 0; y <= cr; y++) {
2143 int thick = (y % c ? 0 : 1);
2144 draw_rect(fe, BORDER-1, BORDER + y*TILE_SIZE - thick,
2145 cr*TILE_SIZE+3, 1+2*thick, COL_GRID);
2146 }
2147 }
2148
2149 /*
2150 * Draw any numbers which need redrawing.
2151 */
2152 for (x = 0; x < cr; x++) {
2153 for (y = 0; y < cr; y++) {
c8266e03 2154 int highlight = 0;
2155 if (flashtime > 0 &&
2156 (flashtime <= FLASH_TIME/3 ||
2157 flashtime >= FLASH_TIME*2/3))
2158 highlight = 1;
2159 if (x == ui->hx && y == ui->hy)
2160 highlight = ui->hpencil ? 2 : 1;
2161 draw_number(fe, ds, state, x, y, highlight);
1d8e8ad8 2162 }
2163 }
2164
2165 /*
2166 * Update the _entire_ grid if necessary.
2167 */
2168 if (!ds->started) {
2169 draw_update(fe, 0, 0, XSIZE(cr), YSIZE(cr));
2170 ds->started = TRUE;
2171 }
2172}
2173
2174static float game_anim_length(game_state *oldstate, game_state *newstate,
e3f21163 2175 int dir, game_ui *ui)
1d8e8ad8 2176{
2177 return 0.0F;
2178}
2179
2180static float game_flash_length(game_state *oldstate, game_state *newstate,
e3f21163 2181 int dir, game_ui *ui)
1d8e8ad8 2182{
2ac6d24e 2183 if (!oldstate->completed && newstate->completed &&
2184 !oldstate->cheated && !newstate->cheated)
1d8e8ad8 2185 return FLASH_TIME;
2186 return 0.0F;
2187}
2188
2189static int game_wants_statusbar(void)
2190{
2191 return FALSE;
2192}
2193
48dcdd62 2194static int game_timing_state(game_state *state)
2195{
2196 return TRUE;
2197}
2198
1d8e8ad8 2199#ifdef COMBINED
2200#define thegame solo
2201#endif
2202
2203const struct game thegame = {
1d228b10 2204 "Solo", "games.solo",
1d8e8ad8 2205 default_params,
2206 game_fetch_preset,
2207 decode_params,
2208 encode_params,
2209 free_params,
2210 dup_params,
1d228b10 2211 TRUE, game_configure, custom_params,
1d8e8ad8 2212 validate_params,
1185e3c5 2213 new_game_desc,
6f2d8d7c 2214 game_free_aux_info,
1185e3c5 2215 validate_desc,
1d8e8ad8 2216 new_game,
2217 dup_game,
2218 free_game,
2ac6d24e 2219 TRUE, solve_game,
9b4b03d3 2220 TRUE, game_text_format,
1d8e8ad8 2221 new_ui,
2222 free_ui,
2223 make_move,
2224 game_size,
2225 game_colours,
2226 game_new_drawstate,
2227 game_free_drawstate,
2228 game_redraw,
2229 game_anim_length,
2230 game_flash_length,
2231 game_wants_statusbar,
48dcdd62 2232 FALSE, game_timing_state,
93b1da3d 2233 0, /* mouse_priorities */
1d8e8ad8 2234};
3ddae0ff 2235
2236#ifdef STANDALONE_SOLVER
2237
7c568a48 2238/*
2239 * gcc -DSTANDALONE_SOLVER -o solosolver solo.c malloc.c
2240 */
2241
3ddae0ff 2242void frontend_default_colour(frontend *fe, float *output) {}
2243void draw_text(frontend *fe, int x, int y, int fonttype, int fontsize,
2244 int align, int colour, char *text) {}
2245void draw_rect(frontend *fe, int x, int y, int w, int h, int colour) {}
2246void draw_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) {}
2247void draw_polygon(frontend *fe, int *coords, int npoints,
2248 int fill, int colour) {}
2249void clip(frontend *fe, int x, int y, int w, int h) {}
2250void unclip(frontend *fe) {}
2251void start_draw(frontend *fe) {}
2252void draw_update(frontend *fe, int x, int y, int w, int h) {}
2253void end_draw(frontend *fe) {}
7c568a48 2254unsigned long random_bits(random_state *state, int bits)
2255{ assert(!"Shouldn't get randomness"); return 0; }
2256unsigned long random_upto(random_state *state, unsigned long limit)
2257{ assert(!"Shouldn't get randomness"); return 0; }
3ddae0ff 2258
2259void fatal(char *fmt, ...)
2260{
2261 va_list ap;
2262
2263 fprintf(stderr, "fatal error: ");
2264
2265 va_start(ap, fmt);
2266 vfprintf(stderr, fmt, ap);
2267 va_end(ap);
2268
2269 fprintf(stderr, "\n");
2270 exit(1);
2271}
2272
2273int main(int argc, char **argv)
2274{
2275 game_params *p;
2276 game_state *s;
7c568a48 2277 int recurse = TRUE;
1185e3c5 2278 char *id = NULL, *desc, *err;
3ddae0ff 2279 int y, x;
7c568a48 2280 int grade = FALSE;
3ddae0ff 2281
2282 while (--argc > 0) {
2283 char *p = *++argv;
2284 if (!strcmp(p, "-r")) {
2285 recurse = TRUE;
2286 } else if (!strcmp(p, "-n")) {
2287 recurse = FALSE;
7c568a48 2288 } else if (!strcmp(p, "-v")) {
2289 solver_show_working = TRUE;
2290 recurse = FALSE;
2291 } else if (!strcmp(p, "-g")) {
2292 grade = TRUE;
2293 recurse = FALSE;
3ddae0ff 2294 } else if (*p == '-') {
2295 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0]);
2296 return 1;
2297 } else {
2298 id = p;
2299 }
2300 }
2301
2302 if (!id) {
7c568a48 2303 fprintf(stderr, "usage: %s [-n | -r | -g | -v] <game_id>\n", argv[0]);
3ddae0ff 2304 return 1;
2305 }
2306
1185e3c5 2307 desc = strchr(id, ':');
2308 if (!desc) {
3ddae0ff 2309 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
2310 return 1;
2311 }
1185e3c5 2312 *desc++ = '\0';
3ddae0ff 2313
1733f4ca 2314 p = default_params();
2315 decode_params(p, id);
1185e3c5 2316 err = validate_desc(p, desc);
3ddae0ff 2317 if (err) {
2318 fprintf(stderr, "%s: %s\n", argv[0], err);
2319 return 1;
2320 }
39d682c9 2321 s = new_game(NULL, p, desc);
3ddae0ff 2322
2323 if (recurse) {
2324 int ret = rsolve(p->c, p->r, s->grid, NULL, 2);
2325 if (ret > 1) {
7c568a48 2326 fprintf(stderr, "%s: rsolve: multiple solutions detected\n",
2327 argv[0]);
3ddae0ff 2328 }
2329 } else {
7c568a48 2330 int ret = nsolve(p->c, p->r, s->grid);
2331 if (grade) {
2332 if (ret == DIFF_IMPOSSIBLE) {
2333 /*
2334 * Now resort to rsolve to determine whether it's
2335 * really soluble.
2336 */
2337 ret = rsolve(p->c, p->r, s->grid, NULL, 2);
2338 if (ret == 0)
2339 ret = DIFF_IMPOSSIBLE;
2340 else if (ret == 1)
2341 ret = DIFF_RECURSIVE;
2342 else
2343 ret = DIFF_AMBIGUOUS;
2344 }
d5958d3f 2345 printf("Difficulty rating: %s\n",
2346 ret==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)":
2347 ret==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
2348 ret==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
2349 ret==DIFF_SET ? "Advanced (set elimination required)":
2350 ret==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
2351 ret==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
2352 ret==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
7c568a48 2353 "INTERNAL ERROR: unrecognised difficulty code");
2354 }
3ddae0ff 2355 }
2356
9b4b03d3 2357 printf("%s\n", grid_text_format(p->c, p->r, s->grid));
3ddae0ff 2358
2359 return 0;
2360}
2361
2362#endif