Add a limited-shuffle mode like that added to Sixteen and Twiddle in r5769,
[sgt/puzzles] / solo.c
CommitLineData
1d8e8ad8 1/*
2 * solo.c: the number-placing puzzle most popularly known as `Sudoku'.
3 *
4 * TODO:
5 *
c8266e03 6 * - reports from users are that `Trivial'-mode puzzles are still
7 * rather hard compared to newspapers' easy ones, so some better
8 * low-end difficulty grading would be nice
9 * + it's possible that really easy puzzles always have
10 * _several_ things you can do, so don't make you hunt too
11 * hard for the one deduction you can currently make
12 * + it's also possible that easy puzzles require fewer
13 * cross-eliminations: perhaps there's a higher incidence of
14 * things you can deduce by looking only at (say) rows,
15 * rather than things you have to check both rows and columns
16 * for
17 * + but really, what I need to do is find some really easy
18 * puzzles and _play_ them, to see what's actually easy about
19 * them
20 * + while I'm revamping this area, filling in the _last_
21 * number in a nearly-full row or column should certainly be
22 * permitted even at the lowest difficulty level.
23 * + also Owen noticed that `Basic' grids requiring numeric
24 * elimination are actually very hard, so I wonder if a
25 * difficulty gradation between that and positional-
26 * elimination-only might be in order
27 * + but it's not good to have _too_ many difficulty levels, or
28 * it'll take too long to randomly generate a given level.
29 *
ef57b17d 30 * - it might still be nice to do some prioritisation on the
31 * removal of numbers from the grid
32 * + one possibility is to try to minimise the maximum number
33 * of filled squares in any block, which in particular ought
34 * to enforce never leaving a completely filled block in the
35 * puzzle as presented.
1d8e8ad8 36 *
37 * - alternative interface modes
38 * + sudoku.com's Windows program has a palette of possible
39 * entries; you select a palette entry first and then click
40 * on the square you want it to go in, thus enabling
41 * mouse-only play. Useful for PDAs! I don't think it's
42 * actually incompatible with the current highlight-then-type
43 * approach: you _either_ highlight a palette entry and then
44 * click, _or_ you highlight a square and then type. At most
45 * one thing is ever highlighted at a time, so there's no way
46 * to confuse the two.
c8266e03 47 * + then again, I don't actually like sudoku.com's interface;
48 * it's too much like a paint package whereas I prefer to
49 * think of Solo as a text editor.
50 * + another PDA-friendly possibility is a drag interface:
51 * _drag_ numbers from the palette into the grid squares.
52 * Thought experiments suggest I'd prefer that to the
53 * sudoku.com approach, but I haven't actually tried it.
1d8e8ad8 54 */
55
56/*
57 * Solo puzzles need to be square overall (since each row and each
58 * column must contain one of every digit), but they need not be
59 * subdivided the same way internally. I am going to adopt a
60 * convention whereby I _always_ refer to `r' as the number of rows
61 * of _big_ divisions, and `c' as the number of columns of _big_
62 * divisions. Thus, a 2c by 3r puzzle looks something like this:
63 *
64 * 4 5 1 | 2 6 3
65 * 6 3 2 | 5 4 1
66 * ------+------ (Of course, you can't subdivide it the other way
67 * 1 4 5 | 6 3 2 or you'll get clashes; observe that the 4 in the
68 * 3 2 6 | 4 1 5 top left would conflict with the 4 in the second
69 * ------+------ box down on the left-hand side.)
70 * 5 1 4 | 3 2 6
71 * 2 6 3 | 1 5 4
72 *
73 * The need for a strong naming convention should now be clear:
74 * each small box is two rows of digits by three columns, while the
75 * overall puzzle has three rows of small boxes by two columns. So
76 * I will (hopefully) consistently use `r' to denote the number of
77 * rows _of small boxes_ (here 3), which is also the number of
78 * columns of digits in each small box; and `c' vice versa (here
79 * 2).
80 *
81 * I'm also going to choose arbitrarily to list c first wherever
82 * possible: the above is a 2x3 puzzle, not a 3x2 one.
83 */
84
85#include <stdio.h>
86#include <stdlib.h>
87#include <string.h>
88#include <assert.h>
89#include <ctype.h>
90#include <math.h>
91
7c568a48 92#ifdef STANDALONE_SOLVER
93#include <stdarg.h>
94int solver_show_working;
95#endif
96
1d8e8ad8 97#include "puzzles.h"
98
7c568a48 99#define max(x,y) ((x)>(y)?(x):(y))
100
1d8e8ad8 101/*
102 * To save space, I store digits internally as unsigned char. This
103 * imposes a hard limit of 255 on the order of the puzzle. Since
104 * even a 5x5 takes unacceptably long to generate, I don't see this
105 * as a serious limitation unless something _really_ impressive
106 * happens in computing technology; but here's a typedef anyway for
107 * general good practice.
108 */
109typedef unsigned char digit;
110#define ORDER_MAX 255
111
112#define TILE_SIZE 32
113#define BORDER 18
114
115#define FLASH_TIME 0.4F
116
ef57b17d 117enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF4 };
118
7c568a48 119enum { DIFF_BLOCK, DIFF_SIMPLE, DIFF_INTERSECT,
120 DIFF_SET, DIFF_RECURSIVE, DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
121
1d8e8ad8 122enum {
123 COL_BACKGROUND,
ef57b17d 124 COL_GRID,
125 COL_CLUE,
126 COL_USER,
127 COL_HIGHLIGHT,
c8266e03 128 COL_PENCIL,
ef57b17d 129 NCOLOURS
1d8e8ad8 130};
131
132struct game_params {
7c568a48 133 int c, r, symm, diff;
1d8e8ad8 134};
135
136struct game_state {
137 int c, r;
138 digit *grid;
c8266e03 139 unsigned char *pencil; /* c*r*c*r elements */
1d8e8ad8 140 unsigned char *immutable; /* marks which digits are clues */
2ac6d24e 141 int completed, cheated;
1d8e8ad8 142};
143
144static game_params *default_params(void)
145{
146 game_params *ret = snew(game_params);
147
148 ret->c = ret->r = 3;
ef57b17d 149 ret->symm = SYMM_ROT2; /* a plausible default */
4f36adaa 150 ret->diff = DIFF_BLOCK; /* so is this */
1d8e8ad8 151
152 return ret;
153}
154
1d8e8ad8 155static void free_params(game_params *params)
156{
157 sfree(params);
158}
159
160static game_params *dup_params(game_params *params)
161{
162 game_params *ret = snew(game_params);
163 *ret = *params; /* structure copy */
164 return ret;
165}
166
7c568a48 167static int game_fetch_preset(int i, char **name, game_params **params)
168{
169 static struct {
170 char *title;
171 game_params params;
172 } presets[] = {
173 { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK } },
174 { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE } },
4f36adaa 175 { "3x3 Trivial", { 3, 3, SYMM_ROT2, DIFF_BLOCK } },
7c568a48 176 { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE } },
177 { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT } },
178 { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET } },
de60d8bd 179 { "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE } },
7c568a48 180 { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE } },
181 { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE } },
182 };
183
184 if (i < 0 || i >= lenof(presets))
185 return FALSE;
186
187 *name = dupstr(presets[i].title);
188 *params = dup_params(&presets[i].params);
189
190 return TRUE;
191}
192
1185e3c5 193static void decode_params(game_params *ret, char const *string)
1d8e8ad8 194{
1d8e8ad8 195 ret->c = ret->r = atoi(string);
196 while (*string && isdigit((unsigned char)*string)) string++;
197 if (*string == 'x') {
198 string++;
199 ret->r = atoi(string);
200 while (*string && isdigit((unsigned char)*string)) string++;
201 }
7c568a48 202 while (*string) {
203 if (*string == 'r' || *string == 'm' || *string == 'a') {
204 int sn, sc;
205 sc = *string++;
206 sn = atoi(string);
207 while (*string && isdigit((unsigned char)*string)) string++;
208 if (sc == 'm' && sn == 4)
209 ret->symm = SYMM_REF4;
210 if (sc == 'r' && sn == 4)
211 ret->symm = SYMM_ROT4;
212 if (sc == 'r' && sn == 2)
213 ret->symm = SYMM_ROT2;
214 if (sc == 'a')
215 ret->symm = SYMM_NONE;
216 } else if (*string == 'd') {
217 string++;
218 if (*string == 't') /* trivial */
219 string++, ret->diff = DIFF_BLOCK;
220 else if (*string == 'b') /* basic */
221 string++, ret->diff = DIFF_SIMPLE;
222 else if (*string == 'i') /* intermediate */
223 string++, ret->diff = DIFF_INTERSECT;
224 else if (*string == 'a') /* advanced */
225 string++, ret->diff = DIFF_SET;
de60d8bd 226 else if (*string == 'u') /* unreasonable */
227 string++, ret->diff = DIFF_RECURSIVE;
7c568a48 228 } else
229 string++; /* eat unknown character */
ef57b17d 230 }
1d8e8ad8 231}
232
1185e3c5 233static char *encode_params(game_params *params, int full)
1d8e8ad8 234{
235 char str[80];
236
237 sprintf(str, "%dx%d", params->c, params->r);
1185e3c5 238 if (full) {
239 switch (params->symm) {
240 case SYMM_REF4: strcat(str, "m4"); break;
241 case SYMM_ROT4: strcat(str, "r4"); break;
242 /* case SYMM_ROT2: strcat(str, "r2"); break; [default] */
243 case SYMM_NONE: strcat(str, "a"); break;
244 }
245 switch (params->diff) {
246 /* case DIFF_BLOCK: strcat(str, "dt"); break; [default] */
247 case DIFF_SIMPLE: strcat(str, "db"); break;
248 case DIFF_INTERSECT: strcat(str, "di"); break;
249 case DIFF_SET: strcat(str, "da"); break;
250 case DIFF_RECURSIVE: strcat(str, "du"); break;
251 }
252 }
1d8e8ad8 253 return dupstr(str);
254}
255
256static config_item *game_configure(game_params *params)
257{
258 config_item *ret;
259 char buf[80];
260
261 ret = snewn(5, config_item);
262
263 ret[0].name = "Columns of sub-blocks";
264 ret[0].type = C_STRING;
265 sprintf(buf, "%d", params->c);
266 ret[0].sval = dupstr(buf);
267 ret[0].ival = 0;
268
269 ret[1].name = "Rows of sub-blocks";
270 ret[1].type = C_STRING;
271 sprintf(buf, "%d", params->r);
272 ret[1].sval = dupstr(buf);
273 ret[1].ival = 0;
274
ef57b17d 275 ret[2].name = "Symmetry";
276 ret[2].type = C_CHOICES;
277 ret[2].sval = ":None:2-way rotation:4-way rotation:4-way mirror";
278 ret[2].ival = params->symm;
279
7c568a48 280 ret[3].name = "Difficulty";
281 ret[3].type = C_CHOICES;
de60d8bd 282 ret[3].sval = ":Trivial:Basic:Intermediate:Advanced:Unreasonable";
7c568a48 283 ret[3].ival = params->diff;
1d8e8ad8 284
7c568a48 285 ret[4].name = NULL;
286 ret[4].type = C_END;
287 ret[4].sval = NULL;
288 ret[4].ival = 0;
1d8e8ad8 289
290 return ret;
291}
292
293static game_params *custom_params(config_item *cfg)
294{
295 game_params *ret = snew(game_params);
296
c1f743c8 297 ret->c = atoi(cfg[0].sval);
298 ret->r = atoi(cfg[1].sval);
ef57b17d 299 ret->symm = cfg[2].ival;
7c568a48 300 ret->diff = cfg[3].ival;
1d8e8ad8 301
302 return ret;
303}
304
305static char *validate_params(game_params *params)
306{
307 if (params->c < 2 || params->r < 2)
308 return "Both dimensions must be at least 2";
309 if (params->c > ORDER_MAX || params->r > ORDER_MAX)
310 return "Dimensions greater than "STR(ORDER_MAX)" are not supported";
311 return NULL;
312}
313
314/* ----------------------------------------------------------------------
315 * Full recursive Solo solver.
316 *
317 * The algorithm for this solver is shamelessly copied from a
318 * Python solver written by Andrew Wilkinson (which is GPLed, but
319 * I've reused only ideas and no code). It mostly just does the
320 * obvious recursive thing: pick an empty square, put one of the
321 * possible digits in it, recurse until all squares are filled,
322 * backtrack and change some choices if necessary.
323 *
324 * The clever bit is that every time it chooses which square to
325 * fill in next, it does so by counting the number of _possible_
326 * numbers that can go in each square, and it prioritises so that
327 * it picks a square with the _lowest_ number of possibilities. The
328 * idea is that filling in lots of the obvious bits (particularly
329 * any squares with only one possibility) will cut down on the list
330 * of possibilities for other squares and hence reduce the enormous
331 * search space as much as possible as early as possible.
332 *
333 * In practice the algorithm appeared to work very well; run on
334 * sample problems from the Times it completed in well under a
335 * second on my G5 even when written in Python, and given an empty
336 * grid (so that in principle it would enumerate _all_ solved
337 * grids!) it found the first valid solution just as quickly. So
338 * with a bit more randomisation I see no reason not to use this as
339 * my grid generator.
340 */
341
342/*
343 * Internal data structure used in solver to keep track of
344 * progress.
345 */
346struct rsolve_coord { int x, y, r; };
347struct rsolve_usage {
348 int c, r, cr; /* cr == c*r */
349 /* grid is a copy of the input grid, modified as we go along */
350 digit *grid;
351 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
352 unsigned char *row;
353 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
354 unsigned char *col;
355 /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
356 unsigned char *blk;
357 /* This lists all the empty spaces remaining in the grid. */
358 struct rsolve_coord *spaces;
359 int nspaces;
360 /* If we need randomisation in the solve, this is our random state. */
361 random_state *rs;
362 /* Number of solutions so far found, and maximum number we care about. */
363 int solns, maxsolns;
364};
365
366/*
367 * The real recursive step in the solving function.
368 */
369static void rsolve_real(struct rsolve_usage *usage, digit *grid)
370{
371 int c = usage->c, r = usage->r, cr = usage->cr;
372 int i, j, n, sx, sy, bestm, bestr;
373 int *digits;
374
375 /*
376 * Firstly, check for completion! If there are no spaces left
377 * in the grid, we have a solution.
378 */
379 if (usage->nspaces == 0) {
380 if (!usage->solns) {
381 /*
382 * This is our first solution, so fill in the output grid.
383 */
384 memcpy(grid, usage->grid, cr * cr);
385 }
386 usage->solns++;
387 return;
388 }
389
390 /*
391 * Otherwise, there must be at least one space. Find the most
392 * constrained space, using the `r' field as a tie-breaker.
393 */
394 bestm = cr+1; /* so that any space will beat it */
395 bestr = 0;
396 i = sx = sy = -1;
397 for (j = 0; j < usage->nspaces; j++) {
398 int x = usage->spaces[j].x, y = usage->spaces[j].y;
399 int m;
400
401 /*
402 * Find the number of digits that could go in this space.
403 */
404 m = 0;
405 for (n = 0; n < cr; n++)
406 if (!usage->row[y*cr+n] && !usage->col[x*cr+n] &&
407 !usage->blk[((y/c)*c+(x/r))*cr+n])
408 m++;
409
410 if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) {
411 bestm = m;
412 bestr = usage->spaces[j].r;
413 sx = x;
414 sy = y;
415 i = j;
416 }
417 }
418
419 /*
420 * Swap that square into the final place in the spaces array,
421 * so that decrementing nspaces will remove it from the list.
422 */
423 if (i != usage->nspaces-1) {
424 struct rsolve_coord t;
425 t = usage->spaces[usage->nspaces-1];
426 usage->spaces[usage->nspaces-1] = usage->spaces[i];
427 usage->spaces[i] = t;
428 }
429
430 /*
431 * Now we've decided which square to start our recursion at,
432 * simply go through all possible values, shuffling them
433 * randomly first if necessary.
434 */
435 digits = snewn(bestm, int);
436 j = 0;
437 for (n = 0; n < cr; n++)
438 if (!usage->row[sy*cr+n] && !usage->col[sx*cr+n] &&
439 !usage->blk[((sy/c)*c+(sx/r))*cr+n]) {
440 digits[j++] = n+1;
441 }
442
443 if (usage->rs) {
444 /* shuffle */
445 for (i = j; i > 1; i--) {
446 int p = random_upto(usage->rs, i);
447 if (p != i-1) {
448 int t = digits[p];
449 digits[p] = digits[i-1];
450 digits[i-1] = t;
451 }
452 }
453 }
454
455 /* And finally, go through the digit list and actually recurse. */
456 for (i = 0; i < j; i++) {
457 n = digits[i];
458
459 /* Update the usage structure to reflect the placing of this digit. */
460 usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
461 usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = TRUE;
462 usage->grid[sy*cr+sx] = n;
463 usage->nspaces--;
464
465 /* Call the solver recursively. */
466 rsolve_real(usage, grid);
467
468 /*
469 * If we have seen as many solutions as we need, terminate
470 * all processing immediately.
471 */
472 if (usage->solns >= usage->maxsolns)
473 break;
474
475 /* Revert the usage structure. */
476 usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
477 usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = FALSE;
478 usage->grid[sy*cr+sx] = 0;
479 usage->nspaces++;
480 }
481
482 sfree(digits);
483}
484
485/*
486 * Entry point to solver. You give it dimensions and a starting
487 * grid, which is simply an array of N^4 digits. In that array, 0
488 * means an empty square, and 1..N mean a clue square.
489 *
490 * Return value is the number of solutions found; searching will
491 * stop after the provided `max'. (Thus, you can pass max==1 to
492 * indicate that you only care about finding _one_ solution, or
493 * max==2 to indicate that you want to know the difference between
494 * a unique and non-unique solution.) The input parameter `grid' is
495 * also filled in with the _first_ (or only) solution found by the
496 * solver.
497 */
498static int rsolve(int c, int r, digit *grid, random_state *rs, int max)
499{
500 struct rsolve_usage *usage;
501 int x, y, cr = c*r;
502 int ret;
503
504 /*
505 * Create an rsolve_usage structure.
506 */
507 usage = snew(struct rsolve_usage);
508
509 usage->c = c;
510 usage->r = r;
511 usage->cr = cr;
512
513 usage->grid = snewn(cr * cr, digit);
514 memcpy(usage->grid, grid, cr * cr);
515
516 usage->row = snewn(cr * cr, unsigned char);
517 usage->col = snewn(cr * cr, unsigned char);
518 usage->blk = snewn(cr * cr, unsigned char);
519 memset(usage->row, FALSE, cr * cr);
520 memset(usage->col, FALSE, cr * cr);
521 memset(usage->blk, FALSE, cr * cr);
522
523 usage->spaces = snewn(cr * cr, struct rsolve_coord);
524 usage->nspaces = 0;
525
526 usage->solns = 0;
527 usage->maxsolns = max;
528
529 usage->rs = rs;
530
531 /*
532 * Now fill it in with data from the input grid.
533 */
534 for (y = 0; y < cr; y++) {
535 for (x = 0; x < cr; x++) {
536 int v = grid[y*cr+x];
537 if (v == 0) {
538 usage->spaces[usage->nspaces].x = x;
539 usage->spaces[usage->nspaces].y = y;
540 if (rs)
541 usage->spaces[usage->nspaces].r = random_bits(rs, 31);
542 else
543 usage->spaces[usage->nspaces].r = usage->nspaces;
544 usage->nspaces++;
545 } else {
546 usage->row[y*cr+v-1] = TRUE;
547 usage->col[x*cr+v-1] = TRUE;
548 usage->blk[((y/c)*c+(x/r))*cr+v-1] = TRUE;
549 }
550 }
551 }
552
553 /*
554 * Run the real recursive solving function.
555 */
556 rsolve_real(usage, grid);
557 ret = usage->solns;
558
559 /*
560 * Clean up the usage structure now we have our answer.
561 */
562 sfree(usage->spaces);
563 sfree(usage->blk);
564 sfree(usage->col);
565 sfree(usage->row);
566 sfree(usage->grid);
567 sfree(usage);
568
569 /*
570 * And return.
571 */
572 return ret;
573}
574
575/* ----------------------------------------------------------------------
576 * End of recursive solver code.
577 */
578
579/* ----------------------------------------------------------------------
580 * Less capable non-recursive solver. This one is used to check
581 * solubility of a grid as we gradually remove numbers from it: by
582 * verifying a grid using this solver we can ensure it isn't _too_
583 * hard (e.g. does not actually require guessing and backtracking).
584 *
585 * It supports a variety of specific modes of reasoning. By
586 * enabling or disabling subsets of these modes we can arrange a
587 * range of difficulty levels.
588 */
589
590/*
591 * Modes of reasoning currently supported:
592 *
593 * - Positional elimination: a number must go in a particular
594 * square because all the other empty squares in a given
595 * row/col/blk are ruled out.
596 *
597 * - Numeric elimination: a square must have a particular number
598 * in because all the other numbers that could go in it are
599 * ruled out.
600 *
7c568a48 601 * - Intersectional analysis: given two domains which overlap
1d8e8ad8 602 * (hence one must be a block, and the other can be a row or
603 * col), if the possible locations for a particular number in
604 * one of the domains can be narrowed down to the overlap, then
605 * that number can be ruled out everywhere but the overlap in
606 * the other domain too.
607 *
7c568a48 608 * - Set elimination: if there is a subset of the empty squares
609 * within a domain such that the union of the possible numbers
610 * in that subset has the same size as the subset itself, then
611 * those numbers can be ruled out everywhere else in the domain.
612 * (For example, if there are five empty squares and the
613 * possible numbers in each are 12, 23, 13, 134 and 1345, then
614 * the first three empty squares form such a subset: the numbers
615 * 1, 2 and 3 _must_ be in those three squares in some
616 * permutation, and hence we can deduce none of them can be in
617 * the fourth or fifth squares.)
618 * + You can also see this the other way round, concentrating
619 * on numbers rather than squares: if there is a subset of
620 * the unplaced numbers within a domain such that the union
621 * of all their possible positions has the same size as the
622 * subset itself, then all other numbers can be ruled out for
623 * those positions. However, it turns out that this is
624 * exactly equivalent to the first formulation at all times:
625 * there is a 1-1 correspondence between suitable subsets of
626 * the unplaced numbers and suitable subsets of the unfilled
627 * places, found by taking the _complement_ of the union of
628 * the numbers' possible positions (or the spaces' possible
629 * contents).
1d8e8ad8 630 */
631
4846f788 632/*
633 * Within this solver, I'm going to transform all y-coordinates by
634 * inverting the significance of the block number and the position
635 * within the block. That is, we will start with the top row of
636 * each block in order, then the second row of each block in order,
637 * etc.
638 *
639 * This transformation has the enormous advantage that it means
640 * every row, column _and_ block is described by an arithmetic
641 * progression of coordinates within the cubic array, so that I can
642 * use the same very simple function to do blockwise, row-wise and
643 * column-wise elimination.
644 */
645#define YTRANS(y) (((y)%c)*r+(y)/c)
646#define YUNTRANS(y) (((y)%r)*c+(y)/r)
647
1d8e8ad8 648struct nsolve_usage {
649 int c, r, cr;
650 /*
651 * We set up a cubic array, indexed by x, y and digit; each
652 * element of this array is TRUE or FALSE according to whether
653 * or not that digit _could_ in principle go in that position.
654 *
655 * The way to index this array is cube[(x*cr+y)*cr+n-1].
4846f788 656 * y-coordinates in here are transformed.
1d8e8ad8 657 */
658 unsigned char *cube;
659 /*
660 * This is the grid in which we write down our final
4846f788 661 * deductions. y-coordinates in here are _not_ transformed.
1d8e8ad8 662 */
663 digit *grid;
664 /*
665 * Now we keep track, at a slightly higher level, of what we
666 * have yet to work out, to prevent doing the same deduction
667 * many times.
668 */
669 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
670 unsigned char *row;
671 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
672 unsigned char *col;
673 /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
674 unsigned char *blk;
675};
4846f788 676#define cubepos(x,y,n) (((x)*usage->cr+(y))*usage->cr+(n)-1)
677#define cube(x,y,n) (usage->cube[cubepos(x,y,n)])
1d8e8ad8 678
679/*
680 * Function called when we are certain that a particular square has
4846f788 681 * a particular number in it. The y-coordinate passed in here is
682 * transformed.
1d8e8ad8 683 */
684static void nsolve_place(struct nsolve_usage *usage, int x, int y, int n)
685{
686 int c = usage->c, r = usage->r, cr = usage->cr;
687 int i, j, bx, by;
688
689 assert(cube(x,y,n));
690
691 /*
692 * Rule out all other numbers in this square.
693 */
694 for (i = 1; i <= cr; i++)
695 if (i != n)
696 cube(x,y,i) = FALSE;
697
698 /*
699 * Rule out this number in all other positions in the row.
700 */
701 for (i = 0; i < cr; i++)
702 if (i != y)
703 cube(x,i,n) = FALSE;
704
705 /*
706 * Rule out this number in all other positions in the column.
707 */
708 for (i = 0; i < cr; i++)
709 if (i != x)
710 cube(i,y,n) = FALSE;
711
712 /*
713 * Rule out this number in all other positions in the block.
714 */
715 bx = (x/r)*r;
4846f788 716 by = y % r;
1d8e8ad8 717 for (i = 0; i < r; i++)
718 for (j = 0; j < c; j++)
4846f788 719 if (bx+i != x || by+j*r != y)
720 cube(bx+i,by+j*r,n) = FALSE;
1d8e8ad8 721
722 /*
723 * Enter the number in the result grid.
724 */
4846f788 725 usage->grid[YUNTRANS(y)*cr+x] = n;
1d8e8ad8 726
727 /*
728 * Cross out this number from the list of numbers left to place
729 * in its row, its column and its block.
730 */
731 usage->row[y*cr+n-1] = usage->col[x*cr+n-1] =
7c568a48 732 usage->blk[((y%r)*c+(x/r))*cr+n-1] = TRUE;
1d8e8ad8 733}
734
7c568a48 735static int nsolve_elim(struct nsolve_usage *usage, int start, int step
736#ifdef STANDALONE_SOLVER
737 , char *fmt, ...
738#endif
739 )
1d8e8ad8 740{
4846f788 741 int c = usage->c, r = usage->r, cr = c*r;
742 int fpos, m, i;
1d8e8ad8 743
744 /*
4846f788 745 * Count the number of set bits within this section of the
746 * cube.
1d8e8ad8 747 */
748 m = 0;
4846f788 749 fpos = -1;
750 for (i = 0; i < cr; i++)
751 if (usage->cube[start+i*step]) {
752 fpos = start+i*step;
1d8e8ad8 753 m++;
754 }
755
756 if (m == 1) {
4846f788 757 int x, y, n;
758 assert(fpos >= 0);
1d8e8ad8 759
4846f788 760 n = 1 + fpos % cr;
761 y = fpos / cr;
762 x = y / cr;
763 y %= cr;
1d8e8ad8 764
3ddae0ff 765 if (!usage->grid[YUNTRANS(y)*cr+x]) {
7c568a48 766#ifdef STANDALONE_SOLVER
767 if (solver_show_working) {
768 va_list ap;
769 va_start(ap, fmt);
770 vprintf(fmt, ap);
771 va_end(ap);
772 printf(":\n placing %d at (%d,%d)\n",
773 n, 1+x, 1+YUNTRANS(y));
774 }
775#endif
3ddae0ff 776 nsolve_place(usage, x, y, n);
777 return TRUE;
778 }
1d8e8ad8 779 }
780
781 return FALSE;
782}
783
7c568a48 784static int nsolve_intersect(struct nsolve_usage *usage,
785 int start1, int step1, int start2, int step2
786#ifdef STANDALONE_SOLVER
787 , char *fmt, ...
788#endif
789 )
790{
791 int c = usage->c, r = usage->r, cr = c*r;
792 int ret, i;
793
794 /*
795 * Loop over the first domain and see if there's any set bit
796 * not also in the second.
797 */
798 for (i = 0; i < cr; i++) {
799 int p = start1+i*step1;
800 if (usage->cube[p] &&
801 !(p >= start2 && p < start2+cr*step2 &&
802 (p - start2) % step2 == 0))
803 return FALSE; /* there is, so we can't deduce */
804 }
805
806 /*
807 * We have determined that all set bits in the first domain are
808 * within its overlap with the second. So loop over the second
809 * domain and remove all set bits that aren't also in that
810 * overlap; return TRUE iff we actually _did_ anything.
811 */
812 ret = FALSE;
813 for (i = 0; i < cr; i++) {
814 int p = start2+i*step2;
815 if (usage->cube[p] &&
816 !(p >= start1 && p < start1+cr*step1 && (p - start1) % step1 == 0))
817 {
818#ifdef STANDALONE_SOLVER
819 if (solver_show_working) {
820 int px, py, pn;
821
822 if (!ret) {
823 va_list ap;
824 va_start(ap, fmt);
825 vprintf(fmt, ap);
826 va_end(ap);
827 printf(":\n");
828 }
829
830 pn = 1 + p % cr;
831 py = p / cr;
832 px = py / cr;
833 py %= cr;
834
835 printf(" ruling out %d at (%d,%d)\n",
836 pn, 1+px, 1+YUNTRANS(py));
837 }
838#endif
839 ret = TRUE; /* we did something */
840 usage->cube[p] = 0;
841 }
842 }
843
844 return ret;
845}
846
847static int nsolve_set(struct nsolve_usage *usage,
848 int start, int step1, int step2
849#ifdef STANDALONE_SOLVER
850 , char *fmt, ...
851#endif
852 )
853{
854 int c = usage->c, r = usage->r, cr = c*r;
855 int i, j, n, count;
856 unsigned char *grid = snewn(cr*cr, unsigned char);
857 unsigned char *rowidx = snewn(cr, unsigned char);
858 unsigned char *colidx = snewn(cr, unsigned char);
859 unsigned char *set = snewn(cr, unsigned char);
860
861 /*
862 * We are passed a cr-by-cr matrix of booleans. Our first job
863 * is to winnow it by finding any definite placements - i.e.
864 * any row with a solitary 1 - and discarding that row and the
865 * column containing the 1.
866 */
867 memset(rowidx, TRUE, cr);
868 memset(colidx, TRUE, cr);
869 for (i = 0; i < cr; i++) {
870 int count = 0, first = -1;
871 for (j = 0; j < cr; j++)
872 if (usage->cube[start+i*step1+j*step2])
873 first = j, count++;
874 if (count == 0) {
875 /*
876 * This condition actually marks a completely insoluble
877 * (i.e. internally inconsistent) puzzle. We return and
878 * report no progress made.
879 */
880 return FALSE;
881 }
882 if (count == 1)
883 rowidx[i] = colidx[first] = FALSE;
884 }
885
886 /*
887 * Convert each of rowidx/colidx from a list of 0s and 1s to a
888 * list of the indices of the 1s.
889 */
890 for (i = j = 0; i < cr; i++)
891 if (rowidx[i])
892 rowidx[j++] = i;
893 n = j;
894 for (i = j = 0; i < cr; i++)
895 if (colidx[i])
896 colidx[j++] = i;
897 assert(n == j);
898
899 /*
900 * And create the smaller matrix.
901 */
902 for (i = 0; i < n; i++)
903 for (j = 0; j < n; j++)
904 grid[i*cr+j] = usage->cube[start+rowidx[i]*step1+colidx[j]*step2];
905
906 /*
907 * Having done that, we now have a matrix in which every row
908 * has at least two 1s in. Now we search to see if we can find
909 * a rectangle of zeroes (in the set-theoretic sense of
910 * `rectangle', i.e. a subset of rows crossed with a subset of
911 * columns) whose width and height add up to n.
912 */
913
914 memset(set, 0, n);
915 count = 0;
916 while (1) {
917 /*
918 * We have a candidate set. If its size is <=1 or >=n-1
919 * then we move on immediately.
920 */
921 if (count > 1 && count < n-1) {
922 /*
923 * The number of rows we need is n-count. See if we can
924 * find that many rows which each have a zero in all
925 * the positions listed in `set'.
926 */
927 int rows = 0;
928 for (i = 0; i < n; i++) {
929 int ok = TRUE;
930 for (j = 0; j < n; j++)
931 if (set[j] && grid[i*cr+j]) {
932 ok = FALSE;
933 break;
934 }
935 if (ok)
936 rows++;
937 }
938
939 /*
940 * We expect never to be able to get _more_ than
941 * n-count suitable rows: this would imply that (for
942 * example) there are four numbers which between them
943 * have at most three possible positions, and hence it
944 * indicates a faulty deduction before this point or
945 * even a bogus clue.
946 */
947 assert(rows <= n - count);
948 if (rows >= n - count) {
949 int progress = FALSE;
950
951 /*
952 * We've got one! Now, for each row which _doesn't_
953 * satisfy the criterion, eliminate all its set
954 * bits in the positions _not_ listed in `set'.
955 * Return TRUE (meaning progress has been made) if
956 * we successfully eliminated anything at all.
957 *
958 * This involves referring back through
959 * rowidx/colidx in order to work out which actual
960 * positions in the cube to meddle with.
961 */
962 for (i = 0; i < n; i++) {
963 int ok = TRUE;
964 for (j = 0; j < n; j++)
965 if (set[j] && grid[i*cr+j]) {
966 ok = FALSE;
967 break;
968 }
969 if (!ok) {
970 for (j = 0; j < n; j++)
971 if (!set[j] && grid[i*cr+j]) {
972 int fpos = (start+rowidx[i]*step1+
973 colidx[j]*step2);
974#ifdef STANDALONE_SOLVER
975 if (solver_show_working) {
976 int px, py, pn;
977
978 if (!progress) {
979 va_list ap;
980 va_start(ap, fmt);
981 vprintf(fmt, ap);
982 va_end(ap);
983 printf(":\n");
984 }
985
986 pn = 1 + fpos % cr;
987 py = fpos / cr;
988 px = py / cr;
989 py %= cr;
990
991 printf(" ruling out %d at (%d,%d)\n",
992 pn, 1+px, 1+YUNTRANS(py));
993 }
994#endif
995 progress = TRUE;
996 usage->cube[fpos] = FALSE;
997 }
998 }
999 }
1000
1001 if (progress) {
1002 sfree(set);
1003 sfree(colidx);
1004 sfree(rowidx);
1005 sfree(grid);
1006 return TRUE;
1007 }
1008 }
1009 }
1010
1011 /*
1012 * Binary increment: change the rightmost 0 to a 1, and
1013 * change all 1s to the right of it to 0s.
1014 */
1015 i = n;
1016 while (i > 0 && set[i-1])
1017 set[--i] = 0, count--;
1018 if (i > 0)
1019 set[--i] = 1, count++;
1020 else
1021 break; /* done */
1022 }
1023
1024 sfree(set);
1025 sfree(colidx);
1026 sfree(rowidx);
1027 sfree(grid);
1028
1029 return FALSE;
1030}
1031
1d8e8ad8 1032static int nsolve(int c, int r, digit *grid)
1033{
1034 struct nsolve_usage *usage;
1035 int cr = c*r;
1036 int x, y, n;
7c568a48 1037 int diff = DIFF_BLOCK;
1d8e8ad8 1038
1039 /*
1040 * Set up a usage structure as a clean slate (everything
1041 * possible).
1042 */
1043 usage = snew(struct nsolve_usage);
1044 usage->c = c;
1045 usage->r = r;
1046 usage->cr = cr;
1047 usage->cube = snewn(cr*cr*cr, unsigned char);
1048 usage->grid = grid; /* write straight back to the input */
1049 memset(usage->cube, TRUE, cr*cr*cr);
1050
1051 usage->row = snewn(cr * cr, unsigned char);
1052 usage->col = snewn(cr * cr, unsigned char);
1053 usage->blk = snewn(cr * cr, unsigned char);
1054 memset(usage->row, FALSE, cr * cr);
1055 memset(usage->col, FALSE, cr * cr);
1056 memset(usage->blk, FALSE, cr * cr);
1057
1058 /*
1059 * Place all the clue numbers we are given.
1060 */
1061 for (x = 0; x < cr; x++)
1062 for (y = 0; y < cr; y++)
1063 if (grid[y*cr+x])
4846f788 1064 nsolve_place(usage, x, YTRANS(y), grid[y*cr+x]);
1d8e8ad8 1065
1066 /*
1067 * Now loop over the grid repeatedly trying all permitted modes
1068 * of reasoning. The loop terminates if we complete an
1069 * iteration without making any progress; we then return
1070 * failure or success depending on whether the grid is full or
1071 * not.
1072 */
1073 while (1) {
7c568a48 1074 /*
1075 * I'd like to write `continue;' inside each of the
1076 * following loops, so that the solver returns here after
1077 * making some progress. However, I can't specify that I
1078 * want to continue an outer loop rather than the innermost
1079 * one, so I'm apologetically resorting to a goto.
1080 */
3ddae0ff 1081 cont:
1082
1d8e8ad8 1083 /*
1084 * Blockwise positional elimination.
1085 */
4846f788 1086 for (x = 0; x < cr; x += r)
1d8e8ad8 1087 for (y = 0; y < r; y++)
1088 for (n = 1; n <= cr; n++)
4846f788 1089 if (!usage->blk[(y*c+(x/r))*cr+n-1] &&
7c568a48 1090 nsolve_elim(usage, cubepos(x,y,n), r*cr
1091#ifdef STANDALONE_SOLVER
1092 , "positional elimination,"
1093 " block (%d,%d)", 1+x/r, 1+y
1094#endif
1095 )) {
1096 diff = max(diff, DIFF_BLOCK);
3ddae0ff 1097 goto cont;
7c568a48 1098 }
1d8e8ad8 1099
1100 /*
1101 * Row-wise positional elimination.
1102 */
1103 for (y = 0; y < cr; y++)
1104 for (n = 1; n <= cr; n++)
1105 if (!usage->row[y*cr+n-1] &&
7c568a48 1106 nsolve_elim(usage, cubepos(0,y,n), cr*cr
1107#ifdef STANDALONE_SOLVER
1108 , "positional elimination,"
1109 " row %d", 1+YUNTRANS(y)
1110#endif
1111 )) {
1112 diff = max(diff, DIFF_SIMPLE);
3ddae0ff 1113 goto cont;
7c568a48 1114 }
1d8e8ad8 1115 /*
1116 * Column-wise positional elimination.
1117 */
1118 for (x = 0; x < cr; x++)
1119 for (n = 1; n <= cr; n++)
1120 if (!usage->col[x*cr+n-1] &&
7c568a48 1121 nsolve_elim(usage, cubepos(x,0,n), cr
1122#ifdef STANDALONE_SOLVER
1123 , "positional elimination," " column %d", 1+x
1124#endif
1125 )) {
1126 diff = max(diff, DIFF_SIMPLE);
3ddae0ff 1127 goto cont;
7c568a48 1128 }
1d8e8ad8 1129
1130 /*
1131 * Numeric elimination.
1132 */
1133 for (x = 0; x < cr; x++)
1134 for (y = 0; y < cr; y++)
4846f788 1135 if (!usage->grid[YUNTRANS(y)*cr+x] &&
7c568a48 1136 nsolve_elim(usage, cubepos(x,y,1), 1
1137#ifdef STANDALONE_SOLVER
1138 , "numeric elimination at (%d,%d)", 1+x,
1139 1+YUNTRANS(y)
1140#endif
1141 )) {
1142 diff = max(diff, DIFF_SIMPLE);
1143 goto cont;
1144 }
1145
1146 /*
1147 * Intersectional analysis, rows vs blocks.
1148 */
1149 for (y = 0; y < cr; y++)
1150 for (x = 0; x < cr; x += r)
1151 for (n = 1; n <= cr; n++)
1152 if (!usage->row[y*cr+n-1] &&
1153 !usage->blk[((y%r)*c+(x/r))*cr+n-1] &&
1154 (nsolve_intersect(usage, cubepos(0,y,n), cr*cr,
1155 cubepos(x,y%r,n), r*cr
1156#ifdef STANDALONE_SOLVER
1157 , "intersectional analysis,"
1158 " row %d vs block (%d,%d)",
b37c4d5f 1159 1+YUNTRANS(y), 1+x/r, 1+y%r
7c568a48 1160#endif
1161 ) ||
1162 nsolve_intersect(usage, cubepos(x,y%r,n), r*cr,
1163 cubepos(0,y,n), cr*cr
1164#ifdef STANDALONE_SOLVER
1165 , "intersectional analysis,"
1166 " block (%d,%d) vs row %d",
b37c4d5f 1167 1+x/r, 1+y%r, 1+YUNTRANS(y)
7c568a48 1168#endif
1169 ))) {
1170 diff = max(diff, DIFF_INTERSECT);
1171 goto cont;
1172 }
1173
1174 /*
1175 * Intersectional analysis, columns vs blocks.
1176 */
1177 for (x = 0; x < cr; x++)
1178 for (y = 0; y < r; y++)
1179 for (n = 1; n <= cr; n++)
1180 if (!usage->col[x*cr+n-1] &&
1181 !usage->blk[(y*c+(x/r))*cr+n-1] &&
1182 (nsolve_intersect(usage, cubepos(x,0,n), cr,
1183 cubepos((x/r)*r,y,n), r*cr
1184#ifdef STANDALONE_SOLVER
1185 , "intersectional analysis,"
1186 " column %d vs block (%d,%d)",
1187 1+x, 1+x/r, 1+y
1188#endif
1189 ) ||
1190 nsolve_intersect(usage, cubepos((x/r)*r,y,n), r*cr,
1191 cubepos(x,0,n), cr
1192#ifdef STANDALONE_SOLVER
1193 , "intersectional analysis,"
1194 " block (%d,%d) vs column %d",
1195 1+x/r, 1+y, 1+x
1196#endif
1197 ))) {
1198 diff = max(diff, DIFF_INTERSECT);
1199 goto cont;
1200 }
1201
1202 /*
1203 * Blockwise set elimination.
1204 */
1205 for (x = 0; x < cr; x += r)
1206 for (y = 0; y < r; y++)
1207 if (nsolve_set(usage, cubepos(x,y,1), r*cr, 1
1208#ifdef STANDALONE_SOLVER
1209 , "set elimination, block (%d,%d)", 1+x/r, 1+y
1210#endif
1211 )) {
1212 diff = max(diff, DIFF_SET);
1213 goto cont;
1214 }
1215
1216 /*
1217 * Row-wise set elimination.
1218 */
1219 for (y = 0; y < cr; y++)
1220 if (nsolve_set(usage, cubepos(0,y,1), cr*cr, 1
1221#ifdef STANDALONE_SOLVER
1222 , "set elimination, row %d", 1+YUNTRANS(y)
1223#endif
1224 )) {
1225 diff = max(diff, DIFF_SET);
1226 goto cont;
1227 }
1228
1229 /*
1230 * Column-wise set elimination.
1231 */
1232 for (x = 0; x < cr; x++)
1233 if (nsolve_set(usage, cubepos(x,0,1), cr, 1
1234#ifdef STANDALONE_SOLVER
1235 , "set elimination, column %d", 1+x
1236#endif
1237 )) {
1238 diff = max(diff, DIFF_SET);
1239 goto cont;
1240 }
1d8e8ad8 1241
1242 /*
1243 * If we reach here, we have made no deductions in this
1244 * iteration, so the algorithm terminates.
1245 */
1246 break;
1247 }
1248
1249 sfree(usage->cube);
1250 sfree(usage->row);
1251 sfree(usage->col);
1252 sfree(usage->blk);
1253 sfree(usage);
1254
1255 for (x = 0; x < cr; x++)
1256 for (y = 0; y < cr; y++)
1257 if (!grid[y*cr+x])
7c568a48 1258 return DIFF_IMPOSSIBLE;
1259 return diff;
1d8e8ad8 1260}
1261
1262/* ----------------------------------------------------------------------
1263 * End of non-recursive solver code.
1264 */
1265
1266/*
1267 * Check whether a grid contains a valid complete puzzle.
1268 */
1269static int check_valid(int c, int r, digit *grid)
1270{
1271 int cr = c*r;
1272 unsigned char *used;
1273 int x, y, n;
1274
1275 used = snewn(cr, unsigned char);
1276
1277 /*
1278 * Check that each row contains precisely one of everything.
1279 */
1280 for (y = 0; y < cr; y++) {
1281 memset(used, FALSE, cr);
1282 for (x = 0; x < cr; x++)
1283 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
1284 used[grid[y*cr+x]-1] = TRUE;
1285 for (n = 0; n < cr; n++)
1286 if (!used[n]) {
1287 sfree(used);
1288 return FALSE;
1289 }
1290 }
1291
1292 /*
1293 * Check that each column contains precisely one of everything.
1294 */
1295 for (x = 0; x < cr; x++) {
1296 memset(used, FALSE, cr);
1297 for (y = 0; y < cr; y++)
1298 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
1299 used[grid[y*cr+x]-1] = TRUE;
1300 for (n = 0; n < cr; n++)
1301 if (!used[n]) {
1302 sfree(used);
1303 return FALSE;
1304 }
1305 }
1306
1307 /*
1308 * Check that each block contains precisely one of everything.
1309 */
1310 for (x = 0; x < cr; x += r) {
1311 for (y = 0; y < cr; y += c) {
1312 int xx, yy;
1313 memset(used, FALSE, cr);
1314 for (xx = x; xx < x+r; xx++)
1315 for (yy = 0; yy < y+c; yy++)
1316 if (grid[yy*cr+xx] > 0 && grid[yy*cr+xx] <= cr)
1317 used[grid[yy*cr+xx]-1] = TRUE;
1318 for (n = 0; n < cr; n++)
1319 if (!used[n]) {
1320 sfree(used);
1321 return FALSE;
1322 }
1323 }
1324 }
1325
1326 sfree(used);
1327 return TRUE;
1328}
1329
ef57b17d 1330static void symmetry_limit(game_params *params, int *xlim, int *ylim, int s)
1331{
1332 int c = params->c, r = params->r, cr = c*r;
1333
1334 switch (s) {
1335 case SYMM_NONE:
1336 *xlim = *ylim = cr;
1337 break;
1338 case SYMM_ROT2:
1339 *xlim = (cr+1) / 2;
1340 *ylim = cr;
1341 break;
1342 case SYMM_REF4:
1343 case SYMM_ROT4:
1344 *xlim = *ylim = (cr+1) / 2;
1345 break;
1346 }
1347}
1348
1349static int symmetries(game_params *params, int x, int y, int *output, int s)
1350{
1351 int c = params->c, r = params->r, cr = c*r;
1352 int i = 0;
1353
1354 *output++ = x;
1355 *output++ = y;
1356 i++;
1357
1358 switch (s) {
1359 case SYMM_NONE:
1360 break; /* just x,y is all we need */
1361 case SYMM_REF4:
1362 case SYMM_ROT4:
1363 switch (s) {
1364 case SYMM_REF4:
1365 *output++ = cr - 1 - x;
1366 *output++ = y;
1367 i++;
1368
1369 *output++ = x;
1370 *output++ = cr - 1 - y;
1371 i++;
1372 break;
1373 case SYMM_ROT4:
1374 *output++ = cr - 1 - y;
1375 *output++ = x;
1376 i++;
1377
1378 *output++ = y;
1379 *output++ = cr - 1 - x;
1380 i++;
1381 break;
1382 }
1383 /* fall through */
1384 case SYMM_ROT2:
1385 *output++ = cr - 1 - x;
1386 *output++ = cr - 1 - y;
1387 i++;
1388 break;
1389 }
1390
1391 return i;
1392}
1393
3220eba4 1394struct game_aux_info {
1395 int c, r;
1396 digit *grid;
1397};
1398
1185e3c5 1399static char *new_game_desc(game_params *params, random_state *rs,
6f2d8d7c 1400 game_aux_info **aux)
1d8e8ad8 1401{
1402 int c = params->c, r = params->r, cr = c*r;
1403 int area = cr*cr;
1404 digit *grid, *grid2;
1405 struct xy { int x, y; } *locs;
1406 int nlocs;
1407 int ret;
1185e3c5 1408 char *desc;
ef57b17d 1409 int coords[16], ncoords;
1410 int xlim, ylim;
de60d8bd 1411 int maxdiff, recursing;
1d8e8ad8 1412
1413 /*
7c568a48 1414 * Adjust the maximum difficulty level to be consistent with
1415 * the puzzle size: all 2x2 puzzles appear to be Trivial
1416 * (DIFF_BLOCK) so we cannot hold out for even a Basic
1417 * (DIFF_SIMPLE) one.
1d8e8ad8 1418 */
7c568a48 1419 maxdiff = params->diff;
1420 if (c == 2 && r == 2)
1421 maxdiff = DIFF_BLOCK;
1d8e8ad8 1422
7c568a48 1423 grid = snewn(area, digit);
ef57b17d 1424 locs = snewn(area, struct xy);
1d8e8ad8 1425 grid2 = snewn(area, digit);
1d8e8ad8 1426
7c568a48 1427 /*
1428 * Loop until we get a grid of the required difficulty. This is
1429 * nasty, but it seems to be unpleasantly hard to generate
1430 * difficult grids otherwise.
1431 */
1432 do {
1433 /*
1434 * Start the recursive solver with an empty grid to generate a
1435 * random solved state.
1436 */
1437 memset(grid, 0, area);
1438 ret = rsolve(c, r, grid, rs, 1);
1439 assert(ret == 1);
1440 assert(check_valid(c, r, grid));
1441
3220eba4 1442 /*
1443 * Save the solved grid in the aux_info.
1444 */
1445 {
1446 game_aux_info *ai = snew(game_aux_info);
1447 ai->c = c;
1448 ai->r = r;
1449 ai->grid = snewn(cr * cr, digit);
1450 memcpy(ai->grid, grid, cr * cr * sizeof(digit));
1451 *aux = ai;
1452 }
1453
7c568a48 1454 /*
1455 * Now we have a solved grid, start removing things from it
1456 * while preserving solubility.
1457 */
1458 symmetry_limit(params, &xlim, &ylim, params->symm);
de60d8bd 1459 recursing = FALSE;
7c568a48 1460 while (1) {
1461 int x, y, i, j;
1462
1463 /*
1464 * Iterate over the grid and enumerate all the filled
1465 * squares we could empty.
1466 */
1467 nlocs = 0;
1468
1469 for (x = 0; x < xlim; x++)
1470 for (y = 0; y < ylim; y++)
1471 if (grid[y*cr+x]) {
1472 locs[nlocs].x = x;
1473 locs[nlocs].y = y;
1474 nlocs++;
1475 }
1476
1477 /*
1478 * Now shuffle that list.
1479 */
1480 for (i = nlocs; i > 1; i--) {
1481 int p = random_upto(rs, i);
1482 if (p != i-1) {
1483 struct xy t = locs[p];
1484 locs[p] = locs[i-1];
1485 locs[i-1] = t;
1486 }
1487 }
1488
1489 /*
1490 * Now loop over the shuffled list and, for each element,
1491 * see whether removing that element (and its reflections)
1492 * from the grid will still leave the grid soluble by
1493 * nsolve.
1494 */
1495 for (i = 0; i < nlocs; i++) {
de60d8bd 1496 int ret;
1497
7c568a48 1498 x = locs[i].x;
1499 y = locs[i].y;
1500
1501 memcpy(grid2, grid, area);
1502 ncoords = symmetries(params, x, y, coords, params->symm);
1503 for (j = 0; j < ncoords; j++)
1504 grid2[coords[2*j+1]*cr+coords[2*j]] = 0;
1505
de60d8bd 1506 if (recursing)
1507 ret = (rsolve(c, r, grid2, NULL, 2) == 1);
1508 else
1509 ret = (nsolve(c, r, grid2) <= maxdiff);
1510
1511 if (ret) {
7c568a48 1512 for (j = 0; j < ncoords; j++)
1513 grid[coords[2*j+1]*cr+coords[2*j]] = 0;
1514 break;
1515 }
1516 }
1517
1518 if (i == nlocs) {
1519 /*
de60d8bd 1520 * There was nothing we could remove without
1521 * destroying solvability. If we're trying to
1522 * generate a recursion-only grid and haven't
1523 * switched over to rsolve yet, we now do;
1524 * otherwise we give up.
7c568a48 1525 */
de60d8bd 1526 if (maxdiff == DIFF_RECURSIVE && !recursing) {
1527 recursing = TRUE;
1528 } else {
1529 break;
1530 }
7c568a48 1531 }
1532 }
1d8e8ad8 1533
7c568a48 1534 memcpy(grid2, grid, area);
de60d8bd 1535 } while (nsolve(c, r, grid2) < maxdiff);
1d8e8ad8 1536
1d8e8ad8 1537 sfree(grid2);
1538 sfree(locs);
1539
1d8e8ad8 1540 /*
1541 * Now we have the grid as it will be presented to the user.
1185e3c5 1542 * Encode it in a game desc.
1d8e8ad8 1543 */
1544 {
1545 char *p;
1546 int run, i;
1547
1185e3c5 1548 desc = snewn(5 * area, char);
1549 p = desc;
1d8e8ad8 1550 run = 0;
1551 for (i = 0; i <= area; i++) {
1552 int n = (i < area ? grid[i] : -1);
1553
1554 if (!n)
1555 run++;
1556 else {
1557 if (run) {
1558 while (run > 0) {
1559 int c = 'a' - 1 + run;
1560 if (run > 26)
1561 c = 'z';
1562 *p++ = c;
1563 run -= c - ('a' - 1);
1564 }
1565 } else {
1566 /*
1567 * If there's a number in the very top left or
1568 * bottom right, there's no point putting an
1569 * unnecessary _ before or after it.
1570 */
1185e3c5 1571 if (p > desc && n > 0)
1d8e8ad8 1572 *p++ = '_';
1573 }
1574 if (n > 0)
1575 p += sprintf(p, "%d", n);
1576 run = 0;
1577 }
1578 }
1185e3c5 1579 assert(p - desc < 5 * area);
1d8e8ad8 1580 *p++ = '\0';
1185e3c5 1581 desc = sresize(desc, p - desc, char);
1d8e8ad8 1582 }
1583
1584 sfree(grid);
1585
1185e3c5 1586 return desc;
1d8e8ad8 1587}
1588
2ac6d24e 1589static void game_free_aux_info(game_aux_info *aux)
6f2d8d7c 1590{
3220eba4 1591 sfree(aux->grid);
1592 sfree(aux);
6f2d8d7c 1593}
1594
1185e3c5 1595static char *validate_desc(game_params *params, char *desc)
1d8e8ad8 1596{
1597 int area = params->r * params->r * params->c * params->c;
1598 int squares = 0;
1599
1185e3c5 1600 while (*desc) {
1601 int n = *desc++;
1d8e8ad8 1602 if (n >= 'a' && n <= 'z') {
1603 squares += n - 'a' + 1;
1604 } else if (n == '_') {
1605 /* do nothing */;
1606 } else if (n > '0' && n <= '9') {
1607 squares++;
1185e3c5 1608 while (*desc >= '0' && *desc <= '9')
1609 desc++;
1d8e8ad8 1610 } else
1185e3c5 1611 return "Invalid character in game description";
1d8e8ad8 1612 }
1613
1614 if (squares < area)
1615 return "Not enough data to fill grid";
1616
1617 if (squares > area)
1618 return "Too much data to fit in grid";
1619
1620 return NULL;
1621}
1622
1185e3c5 1623static game_state *new_game(game_params *params, char *desc)
1d8e8ad8 1624{
1625 game_state *state = snew(game_state);
1626 int c = params->c, r = params->r, cr = c*r, area = cr * cr;
1627 int i;
1628
1629 state->c = params->c;
1630 state->r = params->r;
1631
1632 state->grid = snewn(area, digit);
c8266e03 1633 state->pencil = snewn(area * cr, unsigned char);
1634 memset(state->pencil, 0, area * cr);
1d8e8ad8 1635 state->immutable = snewn(area, unsigned char);
1636 memset(state->immutable, FALSE, area);
1637
2ac6d24e 1638 state->completed = state->cheated = FALSE;
1d8e8ad8 1639
1640 i = 0;
1185e3c5 1641 while (*desc) {
1642 int n = *desc++;
1d8e8ad8 1643 if (n >= 'a' && n <= 'z') {
1644 int run = n - 'a' + 1;
1645 assert(i + run <= area);
1646 while (run-- > 0)
1647 state->grid[i++] = 0;
1648 } else if (n == '_') {
1649 /* do nothing */;
1650 } else if (n > '0' && n <= '9') {
1651 assert(i < area);
1652 state->immutable[i] = TRUE;
1185e3c5 1653 state->grid[i++] = atoi(desc-1);
1654 while (*desc >= '0' && *desc <= '9')
1655 desc++;
1d8e8ad8 1656 } else {
1657 assert(!"We can't get here");
1658 }
1659 }
1660 assert(i == area);
1661
1662 return state;
1663}
1664
1665static game_state *dup_game(game_state *state)
1666{
1667 game_state *ret = snew(game_state);
1668 int c = state->c, r = state->r, cr = c*r, area = cr * cr;
1669
1670 ret->c = state->c;
1671 ret->r = state->r;
1672
1673 ret->grid = snewn(area, digit);
1674 memcpy(ret->grid, state->grid, area);
1675
c8266e03 1676 ret->pencil = snewn(area * cr, unsigned char);
1677 memcpy(ret->pencil, state->pencil, area * cr);
1678
1d8e8ad8 1679 ret->immutable = snewn(area, unsigned char);
1680 memcpy(ret->immutable, state->immutable, area);
1681
1682 ret->completed = state->completed;
2ac6d24e 1683 ret->cheated = state->cheated;
1d8e8ad8 1684
1685 return ret;
1686}
1687
1688static void free_game(game_state *state)
1689{
1690 sfree(state->immutable);
c8266e03 1691 sfree(state->pencil);
1d8e8ad8 1692 sfree(state->grid);
1693 sfree(state);
1694}
1695
3220eba4 1696static game_state *solve_game(game_state *state, game_aux_info *ai,
2ac6d24e 1697 char **error)
1698{
1699 game_state *ret;
3220eba4 1700 int c = state->c, r = state->r, cr = c*r;
2ac6d24e 1701 int rsolve_ret;
1702
2ac6d24e 1703 ret = dup_game(state);
1704 ret->completed = ret->cheated = TRUE;
1705
3220eba4 1706 /*
1707 * If we already have the solution in the aux_info, save
1708 * ourselves some time.
1709 */
1710 if (ai) {
1711
1712 assert(c == ai->c);
1713 assert(r == ai->r);
1714 memcpy(ret->grid, ai->grid, cr * cr * sizeof(digit));
1715
1716 } else {
1717 rsolve_ret = rsolve(c, r, ret->grid, NULL, 2);
1718
1719 if (rsolve_ret != 1) {
1720 free_game(ret);
1721 if (rsolve_ret == 0)
1722 *error = "No solution exists for this puzzle";
1723 else
1724 *error = "Multiple solutions exist for this puzzle";
1725 return NULL;
1726 }
2ac6d24e 1727 }
1728
1729 return ret;
1730}
1731
9b4b03d3 1732static char *grid_text_format(int c, int r, digit *grid)
1733{
1734 int cr = c*r;
1735 int x, y;
1736 int maxlen;
1737 char *ret, *p;
1738
1739 /*
1740 * There are cr lines of digits, plus r-1 lines of block
1741 * separators. Each line contains cr digits, cr-1 separating
1742 * spaces, and c-1 two-character block separators. Thus, the
1743 * total length of a line is 2*cr+2*c-3 (not counting the
1744 * newline), and there are cr+r-1 of them.
1745 */
1746 maxlen = (cr+r-1) * (2*cr+2*c-2);
1747 ret = snewn(maxlen+1, char);
1748 p = ret;
1749
1750 for (y = 0; y < cr; y++) {
1751 for (x = 0; x < cr; x++) {
1752 int ch = grid[y * cr + x];
1753 if (ch == 0)
1754 ch = ' ';
1755 else if (ch <= 9)
1756 ch = '0' + ch;
1757 else
1758 ch = 'a' + ch-10;
1759 *p++ = ch;
1760 if (x+1 < cr) {
1761 *p++ = ' ';
1762 if ((x+1) % r == 0) {
1763 *p++ = '|';
1764 *p++ = ' ';
1765 }
1766 }
1767 }
1768 *p++ = '\n';
1769 if (y+1 < cr && (y+1) % c == 0) {
1770 for (x = 0; x < cr; x++) {
1771 *p++ = '-';
1772 if (x+1 < cr) {
1773 *p++ = '-';
1774 if ((x+1) % r == 0) {
1775 *p++ = '+';
1776 *p++ = '-';
1777 }
1778 }
1779 }
1780 *p++ = '\n';
1781 }
1782 }
1783
1784 assert(p - ret == maxlen);
1785 *p = '\0';
1786 return ret;
1787}
1788
1789static char *game_text_format(game_state *state)
1790{
1791 return grid_text_format(state->c, state->r, state->grid);
1792}
1793
1d8e8ad8 1794struct game_ui {
1795 /*
1796 * These are the coordinates of the currently highlighted
1797 * square on the grid, or -1,-1 if there isn't one. When there
1798 * is, pressing a valid number or letter key or Space will
1799 * enter that number or letter in the grid.
1800 */
1801 int hx, hy;
c8266e03 1802 /*
1803 * This indicates whether the current highlight is a
1804 * pencil-mark one or a real one.
1805 */
1806 int hpencil;
1d8e8ad8 1807};
1808
1809static game_ui *new_ui(game_state *state)
1810{
1811 game_ui *ui = snew(game_ui);
1812
1813 ui->hx = ui->hy = -1;
c8266e03 1814 ui->hpencil = 0;
1d8e8ad8 1815
1816 return ui;
1817}
1818
1819static void free_ui(game_ui *ui)
1820{
1821 sfree(ui);
1822}
1823
1824static game_state *make_move(game_state *from, game_ui *ui, int x, int y,
1825 int button)
1826{
1827 int c = from->c, r = from->r, cr = c*r;
1828 int tx, ty;
1829 game_state *ret;
1830
f0ee053c 1831 button &= ~MOD_MASK;
3c833d45 1832
ae812854 1833 tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
1834 ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
1d8e8ad8 1835
c8266e03 1836 if (tx >= 0 && tx < cr && ty >= 0 && ty < cr &&
1837 (button == LEFT_BUTTON || button == RIGHT_BUTTON)) {
1838 /*
1839 * Prevent pencil-mode highlighting of a filled square.
1840 */
1841 if (button == RIGHT_BUTTON && from->grid[ty*cr+tx])
1842 return NULL;
1843
1d8e8ad8 1844 if (tx == ui->hx && ty == ui->hy) {
1845 ui->hx = ui->hy = -1;
1846 } else {
1847 ui->hx = tx;
1848 ui->hy = ty;
1849 }
c8266e03 1850 ui->hpencil = (button == RIGHT_BUTTON);
1d8e8ad8 1851 return from; /* UI activity occurred */
1852 }
1853
1854 if (ui->hx != -1 && ui->hy != -1 &&
1855 ((button >= '1' && button <= '9' && button - '0' <= cr) ||
1856 (button >= 'a' && button <= 'z' && button - 'a' + 10 <= cr) ||
1857 (button >= 'A' && button <= 'Z' && button - 'A' + 10 <= cr) ||
1858 button == ' ')) {
1859 int n = button - '0';
1860 if (button >= 'A' && button <= 'Z')
1861 n = button - 'A' + 10;
1862 if (button >= 'a' && button <= 'z')
1863 n = button - 'a' + 10;
1864 if (button == ' ')
1865 n = 0;
1866
1867 if (from->immutable[ui->hy*cr+ui->hx])
1868 return NULL; /* can't overwrite this square */
1869
c8266e03 1870 /*
1871 * Can't make pencil marks in a filled square. In principle
1872 * this shouldn't happen anyway because we should never
1873 * have even been able to pencil-highlight the square, but
1874 * it never hurts to be careful.
1875 */
1876 if (ui->hpencil && from->grid[ui->hy*cr+ui->hx])
1877 return NULL;
1878
1d8e8ad8 1879 ret = dup_game(from);
c8266e03 1880 if (ui->hpencil && n > 0) {
1881 int index = (ui->hy*cr+ui->hx) * cr + (n-1);
1882 ret->pencil[index] = !ret->pencil[index];
1883 } else {
1884 ret->grid[ui->hy*cr+ui->hx] = n;
1885 memset(ret->pencil + (ui->hy*cr+ui->hx)*cr, 0, cr);
1d8e8ad8 1886
c8266e03 1887 /*
1888 * We've made a real change to the grid. Check to see
1889 * if the game has been completed.
1890 */
1891 if (!ret->completed && check_valid(c, r, ret->grid)) {
1892 ret->completed = TRUE;
1893 }
1894 }
1895 ui->hx = ui->hy = -1;
1d8e8ad8 1896
1897 return ret; /* made a valid move */
1898 }
1899
1900 return NULL;
1901}
1902
1903/* ----------------------------------------------------------------------
1904 * Drawing routines.
1905 */
1906
1907struct game_drawstate {
1908 int started;
1909 int c, r, cr;
1910 digit *grid;
c8266e03 1911 unsigned char *pencil;
1d8e8ad8 1912 unsigned char *hl;
1913};
1914
1915#define XSIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
1916#define YSIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
1917
1918static void game_size(game_params *params, int *x, int *y)
1919{
1920 int c = params->c, r = params->r, cr = c*r;
1921
1922 *x = XSIZE(cr);
1923 *y = YSIZE(cr);
1924}
1925
1926static float *game_colours(frontend *fe, game_state *state, int *ncolours)
1927{
1928 float *ret = snewn(3 * NCOLOURS, float);
1929
1930 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1931
1932 ret[COL_GRID * 3 + 0] = 0.0F;
1933 ret[COL_GRID * 3 + 1] = 0.0F;
1934 ret[COL_GRID * 3 + 2] = 0.0F;
1935
1936 ret[COL_CLUE * 3 + 0] = 0.0F;
1937 ret[COL_CLUE * 3 + 1] = 0.0F;
1938 ret[COL_CLUE * 3 + 2] = 0.0F;
1939
1940 ret[COL_USER * 3 + 0] = 0.0F;
1941 ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
1942 ret[COL_USER * 3 + 2] = 0.0F;
1943
1944 ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0];
1945 ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
1946 ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
1947
c8266e03 1948 ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1949 ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1950 ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
1951
1d8e8ad8 1952 *ncolours = NCOLOURS;
1953 return ret;
1954}
1955
1956static game_drawstate *game_new_drawstate(game_state *state)
1957{
1958 struct game_drawstate *ds = snew(struct game_drawstate);
1959 int c = state->c, r = state->r, cr = c*r;
1960
1961 ds->started = FALSE;
1962 ds->c = c;
1963 ds->r = r;
1964 ds->cr = cr;
1965 ds->grid = snewn(cr*cr, digit);
1966 memset(ds->grid, 0, cr*cr);
c8266e03 1967 ds->pencil = snewn(cr*cr*cr, digit);
1968 memset(ds->pencil, 0, cr*cr*cr);
1d8e8ad8 1969 ds->hl = snewn(cr*cr, unsigned char);
1970 memset(ds->hl, 0, cr*cr);
1971
1972 return ds;
1973}
1974
1975static void game_free_drawstate(game_drawstate *ds)
1976{
1977 sfree(ds->hl);
c8266e03 1978 sfree(ds->pencil);
1d8e8ad8 1979 sfree(ds->grid);
1980 sfree(ds);
1981}
1982
1983static void draw_number(frontend *fe, game_drawstate *ds, game_state *state,
1984 int x, int y, int hl)
1985{
1986 int c = state->c, r = state->r, cr = c*r;
1987 int tx, ty;
1988 int cx, cy, cw, ch;
1989 char str[2];
1990
c8266e03 1991 if (ds->grid[y*cr+x] == state->grid[y*cr+x] &&
1992 ds->hl[y*cr+x] == hl &&
1993 !memcmp(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr))
1d8e8ad8 1994 return; /* no change required */
1995
1996 tx = BORDER + x * TILE_SIZE + 2;
1997 ty = BORDER + y * TILE_SIZE + 2;
1998
1999 cx = tx;
2000 cy = ty;
2001 cw = TILE_SIZE-3;
2002 ch = TILE_SIZE-3;
2003
2004 if (x % r)
2005 cx--, cw++;
2006 if ((x+1) % r)
2007 cw++;
2008 if (y % c)
2009 cy--, ch++;
2010 if ((y+1) % c)
2011 ch++;
2012
2013 clip(fe, cx, cy, cw, ch);
2014
c8266e03 2015 /* background needs erasing */
2016 draw_rect(fe, cx, cy, cw, ch, hl == 1 ? COL_HIGHLIGHT : COL_BACKGROUND);
2017
2018 /* pencil-mode highlight */
2019 if (hl == 2) {
2020 int coords[6];
2021 coords[0] = cx;
2022 coords[1] = cy;
2023 coords[2] = cx+cw/2;
2024 coords[3] = cy;
2025 coords[4] = cx;
2026 coords[5] = cy+ch/2;
2027 draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT);
2028 }
1d8e8ad8 2029
2030 /* new number needs drawing? */
2031 if (state->grid[y*cr+x]) {
2032 str[1] = '\0';
2033 str[0] = state->grid[y*cr+x] + '0';
2034 if (str[0] > '9')
2035 str[0] += 'a' - ('9'+1);
2036 draw_text(fe, tx + TILE_SIZE/2, ty + TILE_SIZE/2,
2037 FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
2038 state->immutable[y*cr+x] ? COL_CLUE : COL_USER, str);
c8266e03 2039 } else {
2040 /* pencil marks required? */
2041 int i, j;
2042
2043 for (i = j = 0; i < cr; i++)
2044 if (state->pencil[(y*cr+x)*cr+i]) {
2045 int dx = j % r, dy = j / r, crm = max(c, r);
2046 str[1] = '\0';
2047 str[0] = i + '1';
2048 if (str[0] > '9')
2049 str[0] += 'a' - ('9'+1);
2050 draw_text(fe, tx + (4*dx+3) * TILE_SIZE / (4*r+2),
2051 ty + (4*dy+3) * TILE_SIZE / (4*c+2),
2052 FONT_VARIABLE, TILE_SIZE/(crm*5/4),
2053 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
2054 j++;
2055 }
1d8e8ad8 2056 }
2057
2058 unclip(fe);
2059
2060 draw_update(fe, cx, cy, cw, ch);
2061
2062 ds->grid[y*cr+x] = state->grid[y*cr+x];
c8266e03 2063 memcpy(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr);
1d8e8ad8 2064 ds->hl[y*cr+x] = hl;
2065}
2066
2067static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
2068 game_state *state, int dir, game_ui *ui,
2069 float animtime, float flashtime)
2070{
2071 int c = state->c, r = state->r, cr = c*r;
2072 int x, y;
2073
2074 if (!ds->started) {
2075 /*
2076 * The initial contents of the window are not guaranteed
2077 * and can vary with front ends. To be on the safe side,
2078 * all games should start by drawing a big
2079 * background-colour rectangle covering the whole window.
2080 */
2081 draw_rect(fe, 0, 0, XSIZE(cr), YSIZE(cr), COL_BACKGROUND);
2082
2083 /*
2084 * Draw the grid.
2085 */
2086 for (x = 0; x <= cr; x++) {
2087 int thick = (x % r ? 0 : 1);
2088 draw_rect(fe, BORDER + x*TILE_SIZE - thick, BORDER-1,
2089 1+2*thick, cr*TILE_SIZE+3, COL_GRID);
2090 }
2091 for (y = 0; y <= cr; y++) {
2092 int thick = (y % c ? 0 : 1);
2093 draw_rect(fe, BORDER-1, BORDER + y*TILE_SIZE - thick,
2094 cr*TILE_SIZE+3, 1+2*thick, COL_GRID);
2095 }
2096 }
2097
2098 /*
2099 * Draw any numbers which need redrawing.
2100 */
2101 for (x = 0; x < cr; x++) {
2102 for (y = 0; y < cr; y++) {
c8266e03 2103 int highlight = 0;
2104 if (flashtime > 0 &&
2105 (flashtime <= FLASH_TIME/3 ||
2106 flashtime >= FLASH_TIME*2/3))
2107 highlight = 1;
2108 if (x == ui->hx && y == ui->hy)
2109 highlight = ui->hpencil ? 2 : 1;
2110 draw_number(fe, ds, state, x, y, highlight);
1d8e8ad8 2111 }
2112 }
2113
2114 /*
2115 * Update the _entire_ grid if necessary.
2116 */
2117 if (!ds->started) {
2118 draw_update(fe, 0, 0, XSIZE(cr), YSIZE(cr));
2119 ds->started = TRUE;
2120 }
2121}
2122
2123static float game_anim_length(game_state *oldstate, game_state *newstate,
2124 int dir)
2125{
2126 return 0.0F;
2127}
2128
2129static float game_flash_length(game_state *oldstate, game_state *newstate,
2130 int dir)
2131{
2ac6d24e 2132 if (!oldstate->completed && newstate->completed &&
2133 !oldstate->cheated && !newstate->cheated)
1d8e8ad8 2134 return FLASH_TIME;
2135 return 0.0F;
2136}
2137
2138static int game_wants_statusbar(void)
2139{
2140 return FALSE;
2141}
2142
2143#ifdef COMBINED
2144#define thegame solo
2145#endif
2146
2147const struct game thegame = {
1d228b10 2148 "Solo", "games.solo",
1d8e8ad8 2149 default_params,
2150 game_fetch_preset,
2151 decode_params,
2152 encode_params,
2153 free_params,
2154 dup_params,
1d228b10 2155 TRUE, game_configure, custom_params,
1d8e8ad8 2156 validate_params,
1185e3c5 2157 new_game_desc,
6f2d8d7c 2158 game_free_aux_info,
1185e3c5 2159 validate_desc,
1d8e8ad8 2160 new_game,
2161 dup_game,
2162 free_game,
2ac6d24e 2163 TRUE, solve_game,
9b4b03d3 2164 TRUE, game_text_format,
1d8e8ad8 2165 new_ui,
2166 free_ui,
2167 make_move,
2168 game_size,
2169 game_colours,
2170 game_new_drawstate,
2171 game_free_drawstate,
2172 game_redraw,
2173 game_anim_length,
2174 game_flash_length,
2175 game_wants_statusbar,
2176};
3ddae0ff 2177
2178#ifdef STANDALONE_SOLVER
2179
7c568a48 2180/*
2181 * gcc -DSTANDALONE_SOLVER -o solosolver solo.c malloc.c
2182 */
2183
3ddae0ff 2184void frontend_default_colour(frontend *fe, float *output) {}
2185void draw_text(frontend *fe, int x, int y, int fonttype, int fontsize,
2186 int align, int colour, char *text) {}
2187void draw_rect(frontend *fe, int x, int y, int w, int h, int colour) {}
2188void draw_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) {}
2189void draw_polygon(frontend *fe, int *coords, int npoints,
2190 int fill, int colour) {}
2191void clip(frontend *fe, int x, int y, int w, int h) {}
2192void unclip(frontend *fe) {}
2193void start_draw(frontend *fe) {}
2194void draw_update(frontend *fe, int x, int y, int w, int h) {}
2195void end_draw(frontend *fe) {}
7c568a48 2196unsigned long random_bits(random_state *state, int bits)
2197{ assert(!"Shouldn't get randomness"); return 0; }
2198unsigned long random_upto(random_state *state, unsigned long limit)
2199{ assert(!"Shouldn't get randomness"); return 0; }
3ddae0ff 2200
2201void fatal(char *fmt, ...)
2202{
2203 va_list ap;
2204
2205 fprintf(stderr, "fatal error: ");
2206
2207 va_start(ap, fmt);
2208 vfprintf(stderr, fmt, ap);
2209 va_end(ap);
2210
2211 fprintf(stderr, "\n");
2212 exit(1);
2213}
2214
2215int main(int argc, char **argv)
2216{
2217 game_params *p;
2218 game_state *s;
7c568a48 2219 int recurse = TRUE;
1185e3c5 2220 char *id = NULL, *desc, *err;
3ddae0ff 2221 int y, x;
7c568a48 2222 int grade = FALSE;
3ddae0ff 2223
2224 while (--argc > 0) {
2225 char *p = *++argv;
2226 if (!strcmp(p, "-r")) {
2227 recurse = TRUE;
2228 } else if (!strcmp(p, "-n")) {
2229 recurse = FALSE;
7c568a48 2230 } else if (!strcmp(p, "-v")) {
2231 solver_show_working = TRUE;
2232 recurse = FALSE;
2233 } else if (!strcmp(p, "-g")) {
2234 grade = TRUE;
2235 recurse = FALSE;
3ddae0ff 2236 } else if (*p == '-') {
2237 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0]);
2238 return 1;
2239 } else {
2240 id = p;
2241 }
2242 }
2243
2244 if (!id) {
7c568a48 2245 fprintf(stderr, "usage: %s [-n | -r | -g | -v] <game_id>\n", argv[0]);
3ddae0ff 2246 return 1;
2247 }
2248
1185e3c5 2249 desc = strchr(id, ':');
2250 if (!desc) {
3ddae0ff 2251 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
2252 return 1;
2253 }
1185e3c5 2254 *desc++ = '\0';
3ddae0ff 2255
1733f4ca 2256 p = default_params();
2257 decode_params(p, id);
1185e3c5 2258 err = validate_desc(p, desc);
3ddae0ff 2259 if (err) {
2260 fprintf(stderr, "%s: %s\n", argv[0], err);
2261 return 1;
2262 }
1185e3c5 2263 s = new_game(p, desc);
3ddae0ff 2264
2265 if (recurse) {
2266 int ret = rsolve(p->c, p->r, s->grid, NULL, 2);
2267 if (ret > 1) {
7c568a48 2268 fprintf(stderr, "%s: rsolve: multiple solutions detected\n",
2269 argv[0]);
3ddae0ff 2270 }
2271 } else {
7c568a48 2272 int ret = nsolve(p->c, p->r, s->grid);
2273 if (grade) {
2274 if (ret == DIFF_IMPOSSIBLE) {
2275 /*
2276 * Now resort to rsolve to determine whether it's
2277 * really soluble.
2278 */
2279 ret = rsolve(p->c, p->r, s->grid, NULL, 2);
2280 if (ret == 0)
2281 ret = DIFF_IMPOSSIBLE;
2282 else if (ret == 1)
2283 ret = DIFF_RECURSIVE;
2284 else
2285 ret = DIFF_AMBIGUOUS;
2286 }
d5958d3f 2287 printf("Difficulty rating: %s\n",
2288 ret==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)":
2289 ret==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
2290 ret==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
2291 ret==DIFF_SET ? "Advanced (set elimination required)":
2292 ret==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
2293 ret==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
2294 ret==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
7c568a48 2295 "INTERNAL ERROR: unrecognised difficulty code");
2296 }
3ddae0ff 2297 }
2298
9b4b03d3 2299 printf("%s\n", grid_text_format(p->c, p->r, s->grid));
3ddae0ff 2300
2301 return 0;
2302}
2303
2304#endif