Missed a vital semicolon off the Cygwin version.c makefile fragment.
[sgt/puzzles] / solo.c
CommitLineData
1d8e8ad8 1/*
2 * solo.c: the number-placing puzzle most popularly known as `Sudoku'.
3 *
4 * TODO:
5 *
ef57b17d 6 * - it might still be nice to do some prioritisation on the
7 * removal of numbers from the grid
8 * + one possibility is to try to minimise the maximum number
9 * of filled squares in any block, which in particular ought
10 * to enforce never leaving a completely filled block in the
11 * puzzle as presented.
1d8e8ad8 12 *
13 * - alternative interface modes
14 * + sudoku.com's Windows program has a palette of possible
15 * entries; you select a palette entry first and then click
16 * on the square you want it to go in, thus enabling
17 * mouse-only play. Useful for PDAs! I don't think it's
18 * actually incompatible with the current highlight-then-type
19 * approach: you _either_ highlight a palette entry and then
20 * click, _or_ you highlight a square and then type. At most
21 * one thing is ever highlighted at a time, so there's no way
22 * to confuse the two.
23 * + `pencil marks' might be useful for more subtle forms of
7c568a48 24 * deduction, now we can create puzzles that require them.
1d8e8ad8 25 */
26
27/*
28 * Solo puzzles need to be square overall (since each row and each
29 * column must contain one of every digit), but they need not be
30 * subdivided the same way internally. I am going to adopt a
31 * convention whereby I _always_ refer to `r' as the number of rows
32 * of _big_ divisions, and `c' as the number of columns of _big_
33 * divisions. Thus, a 2c by 3r puzzle looks something like this:
34 *
35 * 4 5 1 | 2 6 3
36 * 6 3 2 | 5 4 1
37 * ------+------ (Of course, you can't subdivide it the other way
38 * 1 4 5 | 6 3 2 or you'll get clashes; observe that the 4 in the
39 * 3 2 6 | 4 1 5 top left would conflict with the 4 in the second
40 * ------+------ box down on the left-hand side.)
41 * 5 1 4 | 3 2 6
42 * 2 6 3 | 1 5 4
43 *
44 * The need for a strong naming convention should now be clear:
45 * each small box is two rows of digits by three columns, while the
46 * overall puzzle has three rows of small boxes by two columns. So
47 * I will (hopefully) consistently use `r' to denote the number of
48 * rows _of small boxes_ (here 3), which is also the number of
49 * columns of digits in each small box; and `c' vice versa (here
50 * 2).
51 *
52 * I'm also going to choose arbitrarily to list c first wherever
53 * possible: the above is a 2x3 puzzle, not a 3x2 one.
54 */
55
56#include <stdio.h>
57#include <stdlib.h>
58#include <string.h>
59#include <assert.h>
60#include <ctype.h>
61#include <math.h>
62
7c568a48 63#ifdef STANDALONE_SOLVER
64#include <stdarg.h>
65int solver_show_working;
66#endif
67
1d8e8ad8 68#include "puzzles.h"
69
7c568a48 70#define max(x,y) ((x)>(y)?(x):(y))
71
1d8e8ad8 72/*
73 * To save space, I store digits internally as unsigned char. This
74 * imposes a hard limit of 255 on the order of the puzzle. Since
75 * even a 5x5 takes unacceptably long to generate, I don't see this
76 * as a serious limitation unless something _really_ impressive
77 * happens in computing technology; but here's a typedef anyway for
78 * general good practice.
79 */
80typedef unsigned char digit;
81#define ORDER_MAX 255
82
83#define TILE_SIZE 32
84#define BORDER 18
85
86#define FLASH_TIME 0.4F
87
ef57b17d 88enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF4 };
89
7c568a48 90enum { DIFF_BLOCK, DIFF_SIMPLE, DIFF_INTERSECT,
91 DIFF_SET, DIFF_RECURSIVE, DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
92
1d8e8ad8 93enum {
94 COL_BACKGROUND,
ef57b17d 95 COL_GRID,
96 COL_CLUE,
97 COL_USER,
98 COL_HIGHLIGHT,
99 NCOLOURS
1d8e8ad8 100};
101
102struct game_params {
7c568a48 103 int c, r, symm, diff;
1d8e8ad8 104};
105
106struct game_state {
107 int c, r;
108 digit *grid;
109 unsigned char *immutable; /* marks which digits are clues */
2ac6d24e 110 int completed, cheated;
1d8e8ad8 111};
112
113static game_params *default_params(void)
114{
115 game_params *ret = snew(game_params);
116
117 ret->c = ret->r = 3;
ef57b17d 118 ret->symm = SYMM_ROT2; /* a plausible default */
4f36adaa 119 ret->diff = DIFF_BLOCK; /* so is this */
1d8e8ad8 120
121 return ret;
122}
123
1d8e8ad8 124static void free_params(game_params *params)
125{
126 sfree(params);
127}
128
129static game_params *dup_params(game_params *params)
130{
131 game_params *ret = snew(game_params);
132 *ret = *params; /* structure copy */
133 return ret;
134}
135
7c568a48 136static int game_fetch_preset(int i, char **name, game_params **params)
137{
138 static struct {
139 char *title;
140 game_params params;
141 } presets[] = {
142 { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK } },
143 { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE } },
4f36adaa 144 { "3x3 Trivial", { 3, 3, SYMM_ROT2, DIFF_BLOCK } },
7c568a48 145 { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE } },
146 { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT } },
147 { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET } },
de60d8bd 148 { "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE } },
7c568a48 149 { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE } },
150 { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE } },
151 };
152
153 if (i < 0 || i >= lenof(presets))
154 return FALSE;
155
156 *name = dupstr(presets[i].title);
157 *params = dup_params(&presets[i].params);
158
159 return TRUE;
160}
161
1d8e8ad8 162static game_params *decode_params(char const *string)
163{
164 game_params *ret = default_params();
165
166 ret->c = ret->r = atoi(string);
ef57b17d 167 ret->symm = SYMM_ROT2;
4f36adaa 168 ret->diff = DIFF_BLOCK;
1d8e8ad8 169 while (*string && isdigit((unsigned char)*string)) string++;
170 if (*string == 'x') {
171 string++;
172 ret->r = atoi(string);
173 while (*string && isdigit((unsigned char)*string)) string++;
174 }
7c568a48 175 while (*string) {
176 if (*string == 'r' || *string == 'm' || *string == 'a') {
177 int sn, sc;
178 sc = *string++;
179 sn = atoi(string);
180 while (*string && isdigit((unsigned char)*string)) string++;
181 if (sc == 'm' && sn == 4)
182 ret->symm = SYMM_REF4;
183 if (sc == 'r' && sn == 4)
184 ret->symm = SYMM_ROT4;
185 if (sc == 'r' && sn == 2)
186 ret->symm = SYMM_ROT2;
187 if (sc == 'a')
188 ret->symm = SYMM_NONE;
189 } else if (*string == 'd') {
190 string++;
191 if (*string == 't') /* trivial */
192 string++, ret->diff = DIFF_BLOCK;
193 else if (*string == 'b') /* basic */
194 string++, ret->diff = DIFF_SIMPLE;
195 else if (*string == 'i') /* intermediate */
196 string++, ret->diff = DIFF_INTERSECT;
197 else if (*string == 'a') /* advanced */
198 string++, ret->diff = DIFF_SET;
de60d8bd 199 else if (*string == 'u') /* unreasonable */
200 string++, ret->diff = DIFF_RECURSIVE;
7c568a48 201 } else
202 string++; /* eat unknown character */
ef57b17d 203 }
1d8e8ad8 204
205 return ret;
206}
207
208static char *encode_params(game_params *params)
209{
210 char str[80];
211
ef57b17d 212 /*
213 * Symmetry is a game generation preference and hence is left
214 * out of the encoding. Users can add it back in as they see
215 * fit.
216 */
1d8e8ad8 217 sprintf(str, "%dx%d", params->c, params->r);
218 return dupstr(str);
219}
220
221static config_item *game_configure(game_params *params)
222{
223 config_item *ret;
224 char buf[80];
225
226 ret = snewn(5, config_item);
227
228 ret[0].name = "Columns of sub-blocks";
229 ret[0].type = C_STRING;
230 sprintf(buf, "%d", params->c);
231 ret[0].sval = dupstr(buf);
232 ret[0].ival = 0;
233
234 ret[1].name = "Rows of sub-blocks";
235 ret[1].type = C_STRING;
236 sprintf(buf, "%d", params->r);
237 ret[1].sval = dupstr(buf);
238 ret[1].ival = 0;
239
ef57b17d 240 ret[2].name = "Symmetry";
241 ret[2].type = C_CHOICES;
242 ret[2].sval = ":None:2-way rotation:4-way rotation:4-way mirror";
243 ret[2].ival = params->symm;
244
7c568a48 245 ret[3].name = "Difficulty";
246 ret[3].type = C_CHOICES;
de60d8bd 247 ret[3].sval = ":Trivial:Basic:Intermediate:Advanced:Unreasonable";
7c568a48 248 ret[3].ival = params->diff;
1d8e8ad8 249
7c568a48 250 ret[4].name = NULL;
251 ret[4].type = C_END;
252 ret[4].sval = NULL;
253 ret[4].ival = 0;
1d8e8ad8 254
255 return ret;
256}
257
258static game_params *custom_params(config_item *cfg)
259{
260 game_params *ret = snew(game_params);
261
c1f743c8 262 ret->c = atoi(cfg[0].sval);
263 ret->r = atoi(cfg[1].sval);
ef57b17d 264 ret->symm = cfg[2].ival;
7c568a48 265 ret->diff = cfg[3].ival;
1d8e8ad8 266
267 return ret;
268}
269
270static char *validate_params(game_params *params)
271{
272 if (params->c < 2 || params->r < 2)
273 return "Both dimensions must be at least 2";
274 if (params->c > ORDER_MAX || params->r > ORDER_MAX)
275 return "Dimensions greater than "STR(ORDER_MAX)" are not supported";
276 return NULL;
277}
278
279/* ----------------------------------------------------------------------
280 * Full recursive Solo solver.
281 *
282 * The algorithm for this solver is shamelessly copied from a
283 * Python solver written by Andrew Wilkinson (which is GPLed, but
284 * I've reused only ideas and no code). It mostly just does the
285 * obvious recursive thing: pick an empty square, put one of the
286 * possible digits in it, recurse until all squares are filled,
287 * backtrack and change some choices if necessary.
288 *
289 * The clever bit is that every time it chooses which square to
290 * fill in next, it does so by counting the number of _possible_
291 * numbers that can go in each square, and it prioritises so that
292 * it picks a square with the _lowest_ number of possibilities. The
293 * idea is that filling in lots of the obvious bits (particularly
294 * any squares with only one possibility) will cut down on the list
295 * of possibilities for other squares and hence reduce the enormous
296 * search space as much as possible as early as possible.
297 *
298 * In practice the algorithm appeared to work very well; run on
299 * sample problems from the Times it completed in well under a
300 * second on my G5 even when written in Python, and given an empty
301 * grid (so that in principle it would enumerate _all_ solved
302 * grids!) it found the first valid solution just as quickly. So
303 * with a bit more randomisation I see no reason not to use this as
304 * my grid generator.
305 */
306
307/*
308 * Internal data structure used in solver to keep track of
309 * progress.
310 */
311struct rsolve_coord { int x, y, r; };
312struct rsolve_usage {
313 int c, r, cr; /* cr == c*r */
314 /* grid is a copy of the input grid, modified as we go along */
315 digit *grid;
316 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
317 unsigned char *row;
318 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
319 unsigned char *col;
320 /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
321 unsigned char *blk;
322 /* This lists all the empty spaces remaining in the grid. */
323 struct rsolve_coord *spaces;
324 int nspaces;
325 /* If we need randomisation in the solve, this is our random state. */
326 random_state *rs;
327 /* Number of solutions so far found, and maximum number we care about. */
328 int solns, maxsolns;
329};
330
331/*
332 * The real recursive step in the solving function.
333 */
334static void rsolve_real(struct rsolve_usage *usage, digit *grid)
335{
336 int c = usage->c, r = usage->r, cr = usage->cr;
337 int i, j, n, sx, sy, bestm, bestr;
338 int *digits;
339
340 /*
341 * Firstly, check for completion! If there are no spaces left
342 * in the grid, we have a solution.
343 */
344 if (usage->nspaces == 0) {
345 if (!usage->solns) {
346 /*
347 * This is our first solution, so fill in the output grid.
348 */
349 memcpy(grid, usage->grid, cr * cr);
350 }
351 usage->solns++;
352 return;
353 }
354
355 /*
356 * Otherwise, there must be at least one space. Find the most
357 * constrained space, using the `r' field as a tie-breaker.
358 */
359 bestm = cr+1; /* so that any space will beat it */
360 bestr = 0;
361 i = sx = sy = -1;
362 for (j = 0; j < usage->nspaces; j++) {
363 int x = usage->spaces[j].x, y = usage->spaces[j].y;
364 int m;
365
366 /*
367 * Find the number of digits that could go in this space.
368 */
369 m = 0;
370 for (n = 0; n < cr; n++)
371 if (!usage->row[y*cr+n] && !usage->col[x*cr+n] &&
372 !usage->blk[((y/c)*c+(x/r))*cr+n])
373 m++;
374
375 if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) {
376 bestm = m;
377 bestr = usage->spaces[j].r;
378 sx = x;
379 sy = y;
380 i = j;
381 }
382 }
383
384 /*
385 * Swap that square into the final place in the spaces array,
386 * so that decrementing nspaces will remove it from the list.
387 */
388 if (i != usage->nspaces-1) {
389 struct rsolve_coord t;
390 t = usage->spaces[usage->nspaces-1];
391 usage->spaces[usage->nspaces-1] = usage->spaces[i];
392 usage->spaces[i] = t;
393 }
394
395 /*
396 * Now we've decided which square to start our recursion at,
397 * simply go through all possible values, shuffling them
398 * randomly first if necessary.
399 */
400 digits = snewn(bestm, int);
401 j = 0;
402 for (n = 0; n < cr; n++)
403 if (!usage->row[sy*cr+n] && !usage->col[sx*cr+n] &&
404 !usage->blk[((sy/c)*c+(sx/r))*cr+n]) {
405 digits[j++] = n+1;
406 }
407
408 if (usage->rs) {
409 /* shuffle */
410 for (i = j; i > 1; i--) {
411 int p = random_upto(usage->rs, i);
412 if (p != i-1) {
413 int t = digits[p];
414 digits[p] = digits[i-1];
415 digits[i-1] = t;
416 }
417 }
418 }
419
420 /* And finally, go through the digit list and actually recurse. */
421 for (i = 0; i < j; i++) {
422 n = digits[i];
423
424 /* Update the usage structure to reflect the placing of this digit. */
425 usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
426 usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = TRUE;
427 usage->grid[sy*cr+sx] = n;
428 usage->nspaces--;
429
430 /* Call the solver recursively. */
431 rsolve_real(usage, grid);
432
433 /*
434 * If we have seen as many solutions as we need, terminate
435 * all processing immediately.
436 */
437 if (usage->solns >= usage->maxsolns)
438 break;
439
440 /* Revert the usage structure. */
441 usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
442 usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = FALSE;
443 usage->grid[sy*cr+sx] = 0;
444 usage->nspaces++;
445 }
446
447 sfree(digits);
448}
449
450/*
451 * Entry point to solver. You give it dimensions and a starting
452 * grid, which is simply an array of N^4 digits. In that array, 0
453 * means an empty square, and 1..N mean a clue square.
454 *
455 * Return value is the number of solutions found; searching will
456 * stop after the provided `max'. (Thus, you can pass max==1 to
457 * indicate that you only care about finding _one_ solution, or
458 * max==2 to indicate that you want to know the difference between
459 * a unique and non-unique solution.) The input parameter `grid' is
460 * also filled in with the _first_ (or only) solution found by the
461 * solver.
462 */
463static int rsolve(int c, int r, digit *grid, random_state *rs, int max)
464{
465 struct rsolve_usage *usage;
466 int x, y, cr = c*r;
467 int ret;
468
469 /*
470 * Create an rsolve_usage structure.
471 */
472 usage = snew(struct rsolve_usage);
473
474 usage->c = c;
475 usage->r = r;
476 usage->cr = cr;
477
478 usage->grid = snewn(cr * cr, digit);
479 memcpy(usage->grid, grid, cr * cr);
480
481 usage->row = snewn(cr * cr, unsigned char);
482 usage->col = snewn(cr * cr, unsigned char);
483 usage->blk = snewn(cr * cr, unsigned char);
484 memset(usage->row, FALSE, cr * cr);
485 memset(usage->col, FALSE, cr * cr);
486 memset(usage->blk, FALSE, cr * cr);
487
488 usage->spaces = snewn(cr * cr, struct rsolve_coord);
489 usage->nspaces = 0;
490
491 usage->solns = 0;
492 usage->maxsolns = max;
493
494 usage->rs = rs;
495
496 /*
497 * Now fill it in with data from the input grid.
498 */
499 for (y = 0; y < cr; y++) {
500 for (x = 0; x < cr; x++) {
501 int v = grid[y*cr+x];
502 if (v == 0) {
503 usage->spaces[usage->nspaces].x = x;
504 usage->spaces[usage->nspaces].y = y;
505 if (rs)
506 usage->spaces[usage->nspaces].r = random_bits(rs, 31);
507 else
508 usage->spaces[usage->nspaces].r = usage->nspaces;
509 usage->nspaces++;
510 } else {
511 usage->row[y*cr+v-1] = TRUE;
512 usage->col[x*cr+v-1] = TRUE;
513 usage->blk[((y/c)*c+(x/r))*cr+v-1] = TRUE;
514 }
515 }
516 }
517
518 /*
519 * Run the real recursive solving function.
520 */
521 rsolve_real(usage, grid);
522 ret = usage->solns;
523
524 /*
525 * Clean up the usage structure now we have our answer.
526 */
527 sfree(usage->spaces);
528 sfree(usage->blk);
529 sfree(usage->col);
530 sfree(usage->row);
531 sfree(usage->grid);
532 sfree(usage);
533
534 /*
535 * And return.
536 */
537 return ret;
538}
539
540/* ----------------------------------------------------------------------
541 * End of recursive solver code.
542 */
543
544/* ----------------------------------------------------------------------
545 * Less capable non-recursive solver. This one is used to check
546 * solubility of a grid as we gradually remove numbers from it: by
547 * verifying a grid using this solver we can ensure it isn't _too_
548 * hard (e.g. does not actually require guessing and backtracking).
549 *
550 * It supports a variety of specific modes of reasoning. By
551 * enabling or disabling subsets of these modes we can arrange a
552 * range of difficulty levels.
553 */
554
555/*
556 * Modes of reasoning currently supported:
557 *
558 * - Positional elimination: a number must go in a particular
559 * square because all the other empty squares in a given
560 * row/col/blk are ruled out.
561 *
562 * - Numeric elimination: a square must have a particular number
563 * in because all the other numbers that could go in it are
564 * ruled out.
565 *
7c568a48 566 * - Intersectional analysis: given two domains which overlap
1d8e8ad8 567 * (hence one must be a block, and the other can be a row or
568 * col), if the possible locations for a particular number in
569 * one of the domains can be narrowed down to the overlap, then
570 * that number can be ruled out everywhere but the overlap in
571 * the other domain too.
572 *
7c568a48 573 * - Set elimination: if there is a subset of the empty squares
574 * within a domain such that the union of the possible numbers
575 * in that subset has the same size as the subset itself, then
576 * those numbers can be ruled out everywhere else in the domain.
577 * (For example, if there are five empty squares and the
578 * possible numbers in each are 12, 23, 13, 134 and 1345, then
579 * the first three empty squares form such a subset: the numbers
580 * 1, 2 and 3 _must_ be in those three squares in some
581 * permutation, and hence we can deduce none of them can be in
582 * the fourth or fifth squares.)
583 * + You can also see this the other way round, concentrating
584 * on numbers rather than squares: if there is a subset of
585 * the unplaced numbers within a domain such that the union
586 * of all their possible positions has the same size as the
587 * subset itself, then all other numbers can be ruled out for
588 * those positions. However, it turns out that this is
589 * exactly equivalent to the first formulation at all times:
590 * there is a 1-1 correspondence between suitable subsets of
591 * the unplaced numbers and suitable subsets of the unfilled
592 * places, found by taking the _complement_ of the union of
593 * the numbers' possible positions (or the spaces' possible
594 * contents).
1d8e8ad8 595 */
596
4846f788 597/*
598 * Within this solver, I'm going to transform all y-coordinates by
599 * inverting the significance of the block number and the position
600 * within the block. That is, we will start with the top row of
601 * each block in order, then the second row of each block in order,
602 * etc.
603 *
604 * This transformation has the enormous advantage that it means
605 * every row, column _and_ block is described by an arithmetic
606 * progression of coordinates within the cubic array, so that I can
607 * use the same very simple function to do blockwise, row-wise and
608 * column-wise elimination.
609 */
610#define YTRANS(y) (((y)%c)*r+(y)/c)
611#define YUNTRANS(y) (((y)%r)*c+(y)/r)
612
1d8e8ad8 613struct nsolve_usage {
614 int c, r, cr;
615 /*
616 * We set up a cubic array, indexed by x, y and digit; each
617 * element of this array is TRUE or FALSE according to whether
618 * or not that digit _could_ in principle go in that position.
619 *
620 * The way to index this array is cube[(x*cr+y)*cr+n-1].
4846f788 621 * y-coordinates in here are transformed.
1d8e8ad8 622 */
623 unsigned char *cube;
624 /*
625 * This is the grid in which we write down our final
4846f788 626 * deductions. y-coordinates in here are _not_ transformed.
1d8e8ad8 627 */
628 digit *grid;
629 /*
630 * Now we keep track, at a slightly higher level, of what we
631 * have yet to work out, to prevent doing the same deduction
632 * many times.
633 */
634 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
635 unsigned char *row;
636 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
637 unsigned char *col;
638 /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
639 unsigned char *blk;
640};
4846f788 641#define cubepos(x,y,n) (((x)*usage->cr+(y))*usage->cr+(n)-1)
642#define cube(x,y,n) (usage->cube[cubepos(x,y,n)])
1d8e8ad8 643
644/*
645 * Function called when we are certain that a particular square has
4846f788 646 * a particular number in it. The y-coordinate passed in here is
647 * transformed.
1d8e8ad8 648 */
649static void nsolve_place(struct nsolve_usage *usage, int x, int y, int n)
650{
651 int c = usage->c, r = usage->r, cr = usage->cr;
652 int i, j, bx, by;
653
654 assert(cube(x,y,n));
655
656 /*
657 * Rule out all other numbers in this square.
658 */
659 for (i = 1; i <= cr; i++)
660 if (i != n)
661 cube(x,y,i) = FALSE;
662
663 /*
664 * Rule out this number in all other positions in the row.
665 */
666 for (i = 0; i < cr; i++)
667 if (i != y)
668 cube(x,i,n) = FALSE;
669
670 /*
671 * Rule out this number in all other positions in the column.
672 */
673 for (i = 0; i < cr; i++)
674 if (i != x)
675 cube(i,y,n) = FALSE;
676
677 /*
678 * Rule out this number in all other positions in the block.
679 */
680 bx = (x/r)*r;
4846f788 681 by = y % r;
1d8e8ad8 682 for (i = 0; i < r; i++)
683 for (j = 0; j < c; j++)
4846f788 684 if (bx+i != x || by+j*r != y)
685 cube(bx+i,by+j*r,n) = FALSE;
1d8e8ad8 686
687 /*
688 * Enter the number in the result grid.
689 */
4846f788 690 usage->grid[YUNTRANS(y)*cr+x] = n;
1d8e8ad8 691
692 /*
693 * Cross out this number from the list of numbers left to place
694 * in its row, its column and its block.
695 */
696 usage->row[y*cr+n-1] = usage->col[x*cr+n-1] =
7c568a48 697 usage->blk[((y%r)*c+(x/r))*cr+n-1] = TRUE;
1d8e8ad8 698}
699
7c568a48 700static int nsolve_elim(struct nsolve_usage *usage, int start, int step
701#ifdef STANDALONE_SOLVER
702 , char *fmt, ...
703#endif
704 )
1d8e8ad8 705{
4846f788 706 int c = usage->c, r = usage->r, cr = c*r;
707 int fpos, m, i;
1d8e8ad8 708
709 /*
4846f788 710 * Count the number of set bits within this section of the
711 * cube.
1d8e8ad8 712 */
713 m = 0;
4846f788 714 fpos = -1;
715 for (i = 0; i < cr; i++)
716 if (usage->cube[start+i*step]) {
717 fpos = start+i*step;
1d8e8ad8 718 m++;
719 }
720
721 if (m == 1) {
4846f788 722 int x, y, n;
723 assert(fpos >= 0);
1d8e8ad8 724
4846f788 725 n = 1 + fpos % cr;
726 y = fpos / cr;
727 x = y / cr;
728 y %= cr;
1d8e8ad8 729
3ddae0ff 730 if (!usage->grid[YUNTRANS(y)*cr+x]) {
7c568a48 731#ifdef STANDALONE_SOLVER
732 if (solver_show_working) {
733 va_list ap;
734 va_start(ap, fmt);
735 vprintf(fmt, ap);
736 va_end(ap);
737 printf(":\n placing %d at (%d,%d)\n",
738 n, 1+x, 1+YUNTRANS(y));
739 }
740#endif
3ddae0ff 741 nsolve_place(usage, x, y, n);
742 return TRUE;
743 }
1d8e8ad8 744 }
745
746 return FALSE;
747}
748
7c568a48 749static int nsolve_intersect(struct nsolve_usage *usage,
750 int start1, int step1, int start2, int step2
751#ifdef STANDALONE_SOLVER
752 , char *fmt, ...
753#endif
754 )
755{
756 int c = usage->c, r = usage->r, cr = c*r;
757 int ret, i;
758
759 /*
760 * Loop over the first domain and see if there's any set bit
761 * not also in the second.
762 */
763 for (i = 0; i < cr; i++) {
764 int p = start1+i*step1;
765 if (usage->cube[p] &&
766 !(p >= start2 && p < start2+cr*step2 &&
767 (p - start2) % step2 == 0))
768 return FALSE; /* there is, so we can't deduce */
769 }
770
771 /*
772 * We have determined that all set bits in the first domain are
773 * within its overlap with the second. So loop over the second
774 * domain and remove all set bits that aren't also in that
775 * overlap; return TRUE iff we actually _did_ anything.
776 */
777 ret = FALSE;
778 for (i = 0; i < cr; i++) {
779 int p = start2+i*step2;
780 if (usage->cube[p] &&
781 !(p >= start1 && p < start1+cr*step1 && (p - start1) % step1 == 0))
782 {
783#ifdef STANDALONE_SOLVER
784 if (solver_show_working) {
785 int px, py, pn;
786
787 if (!ret) {
788 va_list ap;
789 va_start(ap, fmt);
790 vprintf(fmt, ap);
791 va_end(ap);
792 printf(":\n");
793 }
794
795 pn = 1 + p % cr;
796 py = p / cr;
797 px = py / cr;
798 py %= cr;
799
800 printf(" ruling out %d at (%d,%d)\n",
801 pn, 1+px, 1+YUNTRANS(py));
802 }
803#endif
804 ret = TRUE; /* we did something */
805 usage->cube[p] = 0;
806 }
807 }
808
809 return ret;
810}
811
812static int nsolve_set(struct nsolve_usage *usage,
813 int start, int step1, int step2
814#ifdef STANDALONE_SOLVER
815 , char *fmt, ...
816#endif
817 )
818{
819 int c = usage->c, r = usage->r, cr = c*r;
820 int i, j, n, count;
821 unsigned char *grid = snewn(cr*cr, unsigned char);
822 unsigned char *rowidx = snewn(cr, unsigned char);
823 unsigned char *colidx = snewn(cr, unsigned char);
824 unsigned char *set = snewn(cr, unsigned char);
825
826 /*
827 * We are passed a cr-by-cr matrix of booleans. Our first job
828 * is to winnow it by finding any definite placements - i.e.
829 * any row with a solitary 1 - and discarding that row and the
830 * column containing the 1.
831 */
832 memset(rowidx, TRUE, cr);
833 memset(colidx, TRUE, cr);
834 for (i = 0; i < cr; i++) {
835 int count = 0, first = -1;
836 for (j = 0; j < cr; j++)
837 if (usage->cube[start+i*step1+j*step2])
838 first = j, count++;
839 if (count == 0) {
840 /*
841 * This condition actually marks a completely insoluble
842 * (i.e. internally inconsistent) puzzle. We return and
843 * report no progress made.
844 */
845 return FALSE;
846 }
847 if (count == 1)
848 rowidx[i] = colidx[first] = FALSE;
849 }
850
851 /*
852 * Convert each of rowidx/colidx from a list of 0s and 1s to a
853 * list of the indices of the 1s.
854 */
855 for (i = j = 0; i < cr; i++)
856 if (rowidx[i])
857 rowidx[j++] = i;
858 n = j;
859 for (i = j = 0; i < cr; i++)
860 if (colidx[i])
861 colidx[j++] = i;
862 assert(n == j);
863
864 /*
865 * And create the smaller matrix.
866 */
867 for (i = 0; i < n; i++)
868 for (j = 0; j < n; j++)
869 grid[i*cr+j] = usage->cube[start+rowidx[i]*step1+colidx[j]*step2];
870
871 /*
872 * Having done that, we now have a matrix in which every row
873 * has at least two 1s in. Now we search to see if we can find
874 * a rectangle of zeroes (in the set-theoretic sense of
875 * `rectangle', i.e. a subset of rows crossed with a subset of
876 * columns) whose width and height add up to n.
877 */
878
879 memset(set, 0, n);
880 count = 0;
881 while (1) {
882 /*
883 * We have a candidate set. If its size is <=1 or >=n-1
884 * then we move on immediately.
885 */
886 if (count > 1 && count < n-1) {
887 /*
888 * The number of rows we need is n-count. See if we can
889 * find that many rows which each have a zero in all
890 * the positions listed in `set'.
891 */
892 int rows = 0;
893 for (i = 0; i < n; i++) {
894 int ok = TRUE;
895 for (j = 0; j < n; j++)
896 if (set[j] && grid[i*cr+j]) {
897 ok = FALSE;
898 break;
899 }
900 if (ok)
901 rows++;
902 }
903
904 /*
905 * We expect never to be able to get _more_ than
906 * n-count suitable rows: this would imply that (for
907 * example) there are four numbers which between them
908 * have at most three possible positions, and hence it
909 * indicates a faulty deduction before this point or
910 * even a bogus clue.
911 */
912 assert(rows <= n - count);
913 if (rows >= n - count) {
914 int progress = FALSE;
915
916 /*
917 * We've got one! Now, for each row which _doesn't_
918 * satisfy the criterion, eliminate all its set
919 * bits in the positions _not_ listed in `set'.
920 * Return TRUE (meaning progress has been made) if
921 * we successfully eliminated anything at all.
922 *
923 * This involves referring back through
924 * rowidx/colidx in order to work out which actual
925 * positions in the cube to meddle with.
926 */
927 for (i = 0; i < n; i++) {
928 int ok = TRUE;
929 for (j = 0; j < n; j++)
930 if (set[j] && grid[i*cr+j]) {
931 ok = FALSE;
932 break;
933 }
934 if (!ok) {
935 for (j = 0; j < n; j++)
936 if (!set[j] && grid[i*cr+j]) {
937 int fpos = (start+rowidx[i]*step1+
938 colidx[j]*step2);
939#ifdef STANDALONE_SOLVER
940 if (solver_show_working) {
941 int px, py, pn;
942
943 if (!progress) {
944 va_list ap;
945 va_start(ap, fmt);
946 vprintf(fmt, ap);
947 va_end(ap);
948 printf(":\n");
949 }
950
951 pn = 1 + fpos % cr;
952 py = fpos / cr;
953 px = py / cr;
954 py %= cr;
955
956 printf(" ruling out %d at (%d,%d)\n",
957 pn, 1+px, 1+YUNTRANS(py));
958 }
959#endif
960 progress = TRUE;
961 usage->cube[fpos] = FALSE;
962 }
963 }
964 }
965
966 if (progress) {
967 sfree(set);
968 sfree(colidx);
969 sfree(rowidx);
970 sfree(grid);
971 return TRUE;
972 }
973 }
974 }
975
976 /*
977 * Binary increment: change the rightmost 0 to a 1, and
978 * change all 1s to the right of it to 0s.
979 */
980 i = n;
981 while (i > 0 && set[i-1])
982 set[--i] = 0, count--;
983 if (i > 0)
984 set[--i] = 1, count++;
985 else
986 break; /* done */
987 }
988
989 sfree(set);
990 sfree(colidx);
991 sfree(rowidx);
992 sfree(grid);
993
994 return FALSE;
995}
996
1d8e8ad8 997static int nsolve(int c, int r, digit *grid)
998{
999 struct nsolve_usage *usage;
1000 int cr = c*r;
1001 int x, y, n;
7c568a48 1002 int diff = DIFF_BLOCK;
1d8e8ad8 1003
1004 /*
1005 * Set up a usage structure as a clean slate (everything
1006 * possible).
1007 */
1008 usage = snew(struct nsolve_usage);
1009 usage->c = c;
1010 usage->r = r;
1011 usage->cr = cr;
1012 usage->cube = snewn(cr*cr*cr, unsigned char);
1013 usage->grid = grid; /* write straight back to the input */
1014 memset(usage->cube, TRUE, cr*cr*cr);
1015
1016 usage->row = snewn(cr * cr, unsigned char);
1017 usage->col = snewn(cr * cr, unsigned char);
1018 usage->blk = snewn(cr * cr, unsigned char);
1019 memset(usage->row, FALSE, cr * cr);
1020 memset(usage->col, FALSE, cr * cr);
1021 memset(usage->blk, FALSE, cr * cr);
1022
1023 /*
1024 * Place all the clue numbers we are given.
1025 */
1026 for (x = 0; x < cr; x++)
1027 for (y = 0; y < cr; y++)
1028 if (grid[y*cr+x])
4846f788 1029 nsolve_place(usage, x, YTRANS(y), grid[y*cr+x]);
1d8e8ad8 1030
1031 /*
1032 * Now loop over the grid repeatedly trying all permitted modes
1033 * of reasoning. The loop terminates if we complete an
1034 * iteration without making any progress; we then return
1035 * failure or success depending on whether the grid is full or
1036 * not.
1037 */
1038 while (1) {
7c568a48 1039 /*
1040 * I'd like to write `continue;' inside each of the
1041 * following loops, so that the solver returns here after
1042 * making some progress. However, I can't specify that I
1043 * want to continue an outer loop rather than the innermost
1044 * one, so I'm apologetically resorting to a goto.
1045 */
3ddae0ff 1046 cont:
1047
1d8e8ad8 1048 /*
1049 * Blockwise positional elimination.
1050 */
4846f788 1051 for (x = 0; x < cr; x += r)
1d8e8ad8 1052 for (y = 0; y < r; y++)
1053 for (n = 1; n <= cr; n++)
4846f788 1054 if (!usage->blk[(y*c+(x/r))*cr+n-1] &&
7c568a48 1055 nsolve_elim(usage, cubepos(x,y,n), r*cr
1056#ifdef STANDALONE_SOLVER
1057 , "positional elimination,"
1058 " block (%d,%d)", 1+x/r, 1+y
1059#endif
1060 )) {
1061 diff = max(diff, DIFF_BLOCK);
3ddae0ff 1062 goto cont;
7c568a48 1063 }
1d8e8ad8 1064
1065 /*
1066 * Row-wise positional elimination.
1067 */
1068 for (y = 0; y < cr; y++)
1069 for (n = 1; n <= cr; n++)
1070 if (!usage->row[y*cr+n-1] &&
7c568a48 1071 nsolve_elim(usage, cubepos(0,y,n), cr*cr
1072#ifdef STANDALONE_SOLVER
1073 , "positional elimination,"
1074 " row %d", 1+YUNTRANS(y)
1075#endif
1076 )) {
1077 diff = max(diff, DIFF_SIMPLE);
3ddae0ff 1078 goto cont;
7c568a48 1079 }
1d8e8ad8 1080 /*
1081 * Column-wise positional elimination.
1082 */
1083 for (x = 0; x < cr; x++)
1084 for (n = 1; n <= cr; n++)
1085 if (!usage->col[x*cr+n-1] &&
7c568a48 1086 nsolve_elim(usage, cubepos(x,0,n), cr
1087#ifdef STANDALONE_SOLVER
1088 , "positional elimination," " column %d", 1+x
1089#endif
1090 )) {
1091 diff = max(diff, DIFF_SIMPLE);
3ddae0ff 1092 goto cont;
7c568a48 1093 }
1d8e8ad8 1094
1095 /*
1096 * Numeric elimination.
1097 */
1098 for (x = 0; x < cr; x++)
1099 for (y = 0; y < cr; y++)
4846f788 1100 if (!usage->grid[YUNTRANS(y)*cr+x] &&
7c568a48 1101 nsolve_elim(usage, cubepos(x,y,1), 1
1102#ifdef STANDALONE_SOLVER
1103 , "numeric elimination at (%d,%d)", 1+x,
1104 1+YUNTRANS(y)
1105#endif
1106 )) {
1107 diff = max(diff, DIFF_SIMPLE);
1108 goto cont;
1109 }
1110
1111 /*
1112 * Intersectional analysis, rows vs blocks.
1113 */
1114 for (y = 0; y < cr; y++)
1115 for (x = 0; x < cr; x += r)
1116 for (n = 1; n <= cr; n++)
1117 if (!usage->row[y*cr+n-1] &&
1118 !usage->blk[((y%r)*c+(x/r))*cr+n-1] &&
1119 (nsolve_intersect(usage, cubepos(0,y,n), cr*cr,
1120 cubepos(x,y%r,n), r*cr
1121#ifdef STANDALONE_SOLVER
1122 , "intersectional analysis,"
1123 " row %d vs block (%d,%d)",
b37c4d5f 1124 1+YUNTRANS(y), 1+x/r, 1+y%r
7c568a48 1125#endif
1126 ) ||
1127 nsolve_intersect(usage, cubepos(x,y%r,n), r*cr,
1128 cubepos(0,y,n), cr*cr
1129#ifdef STANDALONE_SOLVER
1130 , "intersectional analysis,"
1131 " block (%d,%d) vs row %d",
b37c4d5f 1132 1+x/r, 1+y%r, 1+YUNTRANS(y)
7c568a48 1133#endif
1134 ))) {
1135 diff = max(diff, DIFF_INTERSECT);
1136 goto cont;
1137 }
1138
1139 /*
1140 * Intersectional analysis, columns vs blocks.
1141 */
1142 for (x = 0; x < cr; x++)
1143 for (y = 0; y < r; y++)
1144 for (n = 1; n <= cr; n++)
1145 if (!usage->col[x*cr+n-1] &&
1146 !usage->blk[(y*c+(x/r))*cr+n-1] &&
1147 (nsolve_intersect(usage, cubepos(x,0,n), cr,
1148 cubepos((x/r)*r,y,n), r*cr
1149#ifdef STANDALONE_SOLVER
1150 , "intersectional analysis,"
1151 " column %d vs block (%d,%d)",
1152 1+x, 1+x/r, 1+y
1153#endif
1154 ) ||
1155 nsolve_intersect(usage, cubepos((x/r)*r,y,n), r*cr,
1156 cubepos(x,0,n), cr
1157#ifdef STANDALONE_SOLVER
1158 , "intersectional analysis,"
1159 " block (%d,%d) vs column %d",
1160 1+x/r, 1+y, 1+x
1161#endif
1162 ))) {
1163 diff = max(diff, DIFF_INTERSECT);
1164 goto cont;
1165 }
1166
1167 /*
1168 * Blockwise set elimination.
1169 */
1170 for (x = 0; x < cr; x += r)
1171 for (y = 0; y < r; y++)
1172 if (nsolve_set(usage, cubepos(x,y,1), r*cr, 1
1173#ifdef STANDALONE_SOLVER
1174 , "set elimination, block (%d,%d)", 1+x/r, 1+y
1175#endif
1176 )) {
1177 diff = max(diff, DIFF_SET);
1178 goto cont;
1179 }
1180
1181 /*
1182 * Row-wise set elimination.
1183 */
1184 for (y = 0; y < cr; y++)
1185 if (nsolve_set(usage, cubepos(0,y,1), cr*cr, 1
1186#ifdef STANDALONE_SOLVER
1187 , "set elimination, row %d", 1+YUNTRANS(y)
1188#endif
1189 )) {
1190 diff = max(diff, DIFF_SET);
1191 goto cont;
1192 }
1193
1194 /*
1195 * Column-wise set elimination.
1196 */
1197 for (x = 0; x < cr; x++)
1198 if (nsolve_set(usage, cubepos(x,0,1), cr, 1
1199#ifdef STANDALONE_SOLVER
1200 , "set elimination, column %d", 1+x
1201#endif
1202 )) {
1203 diff = max(diff, DIFF_SET);
1204 goto cont;
1205 }
1d8e8ad8 1206
1207 /*
1208 * If we reach here, we have made no deductions in this
1209 * iteration, so the algorithm terminates.
1210 */
1211 break;
1212 }
1213
1214 sfree(usage->cube);
1215 sfree(usage->row);
1216 sfree(usage->col);
1217 sfree(usage->blk);
1218 sfree(usage);
1219
1220 for (x = 0; x < cr; x++)
1221 for (y = 0; y < cr; y++)
1222 if (!grid[y*cr+x])
7c568a48 1223 return DIFF_IMPOSSIBLE;
1224 return diff;
1d8e8ad8 1225}
1226
1227/* ----------------------------------------------------------------------
1228 * End of non-recursive solver code.
1229 */
1230
1231/*
1232 * Check whether a grid contains a valid complete puzzle.
1233 */
1234static int check_valid(int c, int r, digit *grid)
1235{
1236 int cr = c*r;
1237 unsigned char *used;
1238 int x, y, n;
1239
1240 used = snewn(cr, unsigned char);
1241
1242 /*
1243 * Check that each row contains precisely one of everything.
1244 */
1245 for (y = 0; y < cr; y++) {
1246 memset(used, FALSE, cr);
1247 for (x = 0; x < cr; x++)
1248 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
1249 used[grid[y*cr+x]-1] = TRUE;
1250 for (n = 0; n < cr; n++)
1251 if (!used[n]) {
1252 sfree(used);
1253 return FALSE;
1254 }
1255 }
1256
1257 /*
1258 * Check that each column contains precisely one of everything.
1259 */
1260 for (x = 0; x < cr; x++) {
1261 memset(used, FALSE, cr);
1262 for (y = 0; y < cr; y++)
1263 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
1264 used[grid[y*cr+x]-1] = TRUE;
1265 for (n = 0; n < cr; n++)
1266 if (!used[n]) {
1267 sfree(used);
1268 return FALSE;
1269 }
1270 }
1271
1272 /*
1273 * Check that each block contains precisely one of everything.
1274 */
1275 for (x = 0; x < cr; x += r) {
1276 for (y = 0; y < cr; y += c) {
1277 int xx, yy;
1278 memset(used, FALSE, cr);
1279 for (xx = x; xx < x+r; xx++)
1280 for (yy = 0; yy < y+c; yy++)
1281 if (grid[yy*cr+xx] > 0 && grid[yy*cr+xx] <= cr)
1282 used[grid[yy*cr+xx]-1] = TRUE;
1283 for (n = 0; n < cr; n++)
1284 if (!used[n]) {
1285 sfree(used);
1286 return FALSE;
1287 }
1288 }
1289 }
1290
1291 sfree(used);
1292 return TRUE;
1293}
1294
ef57b17d 1295static void symmetry_limit(game_params *params, int *xlim, int *ylim, int s)
1296{
1297 int c = params->c, r = params->r, cr = c*r;
1298
1299 switch (s) {
1300 case SYMM_NONE:
1301 *xlim = *ylim = cr;
1302 break;
1303 case SYMM_ROT2:
1304 *xlim = (cr+1) / 2;
1305 *ylim = cr;
1306 break;
1307 case SYMM_REF4:
1308 case SYMM_ROT4:
1309 *xlim = *ylim = (cr+1) / 2;
1310 break;
1311 }
1312}
1313
1314static int symmetries(game_params *params, int x, int y, int *output, int s)
1315{
1316 int c = params->c, r = params->r, cr = c*r;
1317 int i = 0;
1318
1319 *output++ = x;
1320 *output++ = y;
1321 i++;
1322
1323 switch (s) {
1324 case SYMM_NONE:
1325 break; /* just x,y is all we need */
1326 case SYMM_REF4:
1327 case SYMM_ROT4:
1328 switch (s) {
1329 case SYMM_REF4:
1330 *output++ = cr - 1 - x;
1331 *output++ = y;
1332 i++;
1333
1334 *output++ = x;
1335 *output++ = cr - 1 - y;
1336 i++;
1337 break;
1338 case SYMM_ROT4:
1339 *output++ = cr - 1 - y;
1340 *output++ = x;
1341 i++;
1342
1343 *output++ = y;
1344 *output++ = cr - 1 - x;
1345 i++;
1346 break;
1347 }
1348 /* fall through */
1349 case SYMM_ROT2:
1350 *output++ = cr - 1 - x;
1351 *output++ = cr - 1 - y;
1352 i++;
1353 break;
1354 }
1355
1356 return i;
1357}
1358
3220eba4 1359struct game_aux_info {
1360 int c, r;
1361 digit *grid;
1362};
1363
6f2d8d7c 1364static char *new_game_seed(game_params *params, random_state *rs,
1365 game_aux_info **aux)
1d8e8ad8 1366{
1367 int c = params->c, r = params->r, cr = c*r;
1368 int area = cr*cr;
1369 digit *grid, *grid2;
1370 struct xy { int x, y; } *locs;
1371 int nlocs;
1372 int ret;
1373 char *seed;
ef57b17d 1374 int coords[16], ncoords;
1375 int xlim, ylim;
de60d8bd 1376 int maxdiff, recursing;
1d8e8ad8 1377
1378 /*
7c568a48 1379 * Adjust the maximum difficulty level to be consistent with
1380 * the puzzle size: all 2x2 puzzles appear to be Trivial
1381 * (DIFF_BLOCK) so we cannot hold out for even a Basic
1382 * (DIFF_SIMPLE) one.
1d8e8ad8 1383 */
7c568a48 1384 maxdiff = params->diff;
1385 if (c == 2 && r == 2)
1386 maxdiff = DIFF_BLOCK;
1d8e8ad8 1387
7c568a48 1388 grid = snewn(area, digit);
ef57b17d 1389 locs = snewn(area, struct xy);
1d8e8ad8 1390 grid2 = snewn(area, digit);
1d8e8ad8 1391
7c568a48 1392 /*
1393 * Loop until we get a grid of the required difficulty. This is
1394 * nasty, but it seems to be unpleasantly hard to generate
1395 * difficult grids otherwise.
1396 */
1397 do {
1398 /*
1399 * Start the recursive solver with an empty grid to generate a
1400 * random solved state.
1401 */
1402 memset(grid, 0, area);
1403 ret = rsolve(c, r, grid, rs, 1);
1404 assert(ret == 1);
1405 assert(check_valid(c, r, grid));
1406
3220eba4 1407 /*
1408 * Save the solved grid in the aux_info.
1409 */
1410 {
1411 game_aux_info *ai = snew(game_aux_info);
1412 ai->c = c;
1413 ai->r = r;
1414 ai->grid = snewn(cr * cr, digit);
1415 memcpy(ai->grid, grid, cr * cr * sizeof(digit));
1416 *aux = ai;
1417 }
1418
7c568a48 1419 /*
1420 * Now we have a solved grid, start removing things from it
1421 * while preserving solubility.
1422 */
1423 symmetry_limit(params, &xlim, &ylim, params->symm);
de60d8bd 1424 recursing = FALSE;
7c568a48 1425 while (1) {
1426 int x, y, i, j;
1427
1428 /*
1429 * Iterate over the grid and enumerate all the filled
1430 * squares we could empty.
1431 */
1432 nlocs = 0;
1433
1434 for (x = 0; x < xlim; x++)
1435 for (y = 0; y < ylim; y++)
1436 if (grid[y*cr+x]) {
1437 locs[nlocs].x = x;
1438 locs[nlocs].y = y;
1439 nlocs++;
1440 }
1441
1442 /*
1443 * Now shuffle that list.
1444 */
1445 for (i = nlocs; i > 1; i--) {
1446 int p = random_upto(rs, i);
1447 if (p != i-1) {
1448 struct xy t = locs[p];
1449 locs[p] = locs[i-1];
1450 locs[i-1] = t;
1451 }
1452 }
1453
1454 /*
1455 * Now loop over the shuffled list and, for each element,
1456 * see whether removing that element (and its reflections)
1457 * from the grid will still leave the grid soluble by
1458 * nsolve.
1459 */
1460 for (i = 0; i < nlocs; i++) {
de60d8bd 1461 int ret;
1462
7c568a48 1463 x = locs[i].x;
1464 y = locs[i].y;
1465
1466 memcpy(grid2, grid, area);
1467 ncoords = symmetries(params, x, y, coords, params->symm);
1468 for (j = 0; j < ncoords; j++)
1469 grid2[coords[2*j+1]*cr+coords[2*j]] = 0;
1470
de60d8bd 1471 if (recursing)
1472 ret = (rsolve(c, r, grid2, NULL, 2) == 1);
1473 else
1474 ret = (nsolve(c, r, grid2) <= maxdiff);
1475
1476 if (ret) {
7c568a48 1477 for (j = 0; j < ncoords; j++)
1478 grid[coords[2*j+1]*cr+coords[2*j]] = 0;
1479 break;
1480 }
1481 }
1482
1483 if (i == nlocs) {
1484 /*
de60d8bd 1485 * There was nothing we could remove without
1486 * destroying solvability. If we're trying to
1487 * generate a recursion-only grid and haven't
1488 * switched over to rsolve yet, we now do;
1489 * otherwise we give up.
7c568a48 1490 */
de60d8bd 1491 if (maxdiff == DIFF_RECURSIVE && !recursing) {
1492 recursing = TRUE;
1493 } else {
1494 break;
1495 }
7c568a48 1496 }
1497 }
1d8e8ad8 1498
7c568a48 1499 memcpy(grid2, grid, area);
de60d8bd 1500 } while (nsolve(c, r, grid2) < maxdiff);
1d8e8ad8 1501
1d8e8ad8 1502 sfree(grid2);
1503 sfree(locs);
1504
1d8e8ad8 1505 /*
1506 * Now we have the grid as it will be presented to the user.
1507 * Encode it in a game seed.
1508 */
1509 {
1510 char *p;
1511 int run, i;
1512
1513 seed = snewn(5 * area, char);
1514 p = seed;
1515 run = 0;
1516 for (i = 0; i <= area; i++) {
1517 int n = (i < area ? grid[i] : -1);
1518
1519 if (!n)
1520 run++;
1521 else {
1522 if (run) {
1523 while (run > 0) {
1524 int c = 'a' - 1 + run;
1525 if (run > 26)
1526 c = 'z';
1527 *p++ = c;
1528 run -= c - ('a' - 1);
1529 }
1530 } else {
1531 /*
1532 * If there's a number in the very top left or
1533 * bottom right, there's no point putting an
1534 * unnecessary _ before or after it.
1535 */
1536 if (p > seed && n > 0)
1537 *p++ = '_';
1538 }
1539 if (n > 0)
1540 p += sprintf(p, "%d", n);
1541 run = 0;
1542 }
1543 }
1544 assert(p - seed < 5 * area);
1545 *p++ = '\0';
1546 seed = sresize(seed, p - seed, char);
1547 }
1548
1549 sfree(grid);
1550
1551 return seed;
1552}
1553
2ac6d24e 1554static void game_free_aux_info(game_aux_info *aux)
6f2d8d7c 1555{
3220eba4 1556 sfree(aux->grid);
1557 sfree(aux);
6f2d8d7c 1558}
1559
1d8e8ad8 1560static char *validate_seed(game_params *params, char *seed)
1561{
1562 int area = params->r * params->r * params->c * params->c;
1563 int squares = 0;
1564
1565 while (*seed) {
1566 int n = *seed++;
1567 if (n >= 'a' && n <= 'z') {
1568 squares += n - 'a' + 1;
1569 } else if (n == '_') {
1570 /* do nothing */;
1571 } else if (n > '0' && n <= '9') {
1572 squares++;
1573 while (*seed >= '0' && *seed <= '9')
1574 seed++;
1575 } else
1576 return "Invalid character in game specification";
1577 }
1578
1579 if (squares < area)
1580 return "Not enough data to fill grid";
1581
1582 if (squares > area)
1583 return "Too much data to fit in grid";
1584
1585 return NULL;
1586}
1587
1588static game_state *new_game(game_params *params, char *seed)
1589{
1590 game_state *state = snew(game_state);
1591 int c = params->c, r = params->r, cr = c*r, area = cr * cr;
1592 int i;
1593
1594 state->c = params->c;
1595 state->r = params->r;
1596
1597 state->grid = snewn(area, digit);
1598 state->immutable = snewn(area, unsigned char);
1599 memset(state->immutable, FALSE, area);
1600
2ac6d24e 1601 state->completed = state->cheated = FALSE;
1d8e8ad8 1602
1603 i = 0;
1604 while (*seed) {
1605 int n = *seed++;
1606 if (n >= 'a' && n <= 'z') {
1607 int run = n - 'a' + 1;
1608 assert(i + run <= area);
1609 while (run-- > 0)
1610 state->grid[i++] = 0;
1611 } else if (n == '_') {
1612 /* do nothing */;
1613 } else if (n > '0' && n <= '9') {
1614 assert(i < area);
1615 state->immutable[i] = TRUE;
1616 state->grid[i++] = atoi(seed-1);
1617 while (*seed >= '0' && *seed <= '9')
1618 seed++;
1619 } else {
1620 assert(!"We can't get here");
1621 }
1622 }
1623 assert(i == area);
1624
1625 return state;
1626}
1627
1628static game_state *dup_game(game_state *state)
1629{
1630 game_state *ret = snew(game_state);
1631 int c = state->c, r = state->r, cr = c*r, area = cr * cr;
1632
1633 ret->c = state->c;
1634 ret->r = state->r;
1635
1636 ret->grid = snewn(area, digit);
1637 memcpy(ret->grid, state->grid, area);
1638
1639 ret->immutable = snewn(area, unsigned char);
1640 memcpy(ret->immutable, state->immutable, area);
1641
1642 ret->completed = state->completed;
2ac6d24e 1643 ret->cheated = state->cheated;
1d8e8ad8 1644
1645 return ret;
1646}
1647
1648static void free_game(game_state *state)
1649{
1650 sfree(state->immutable);
1651 sfree(state->grid);
1652 sfree(state);
1653}
1654
3220eba4 1655static game_state *solve_game(game_state *state, game_aux_info *ai,
2ac6d24e 1656 char **error)
1657{
1658 game_state *ret;
3220eba4 1659 int c = state->c, r = state->r, cr = c*r;
2ac6d24e 1660 int rsolve_ret;
1661
2ac6d24e 1662 ret = dup_game(state);
1663 ret->completed = ret->cheated = TRUE;
1664
3220eba4 1665 /*
1666 * If we already have the solution in the aux_info, save
1667 * ourselves some time.
1668 */
1669 if (ai) {
1670
1671 assert(c == ai->c);
1672 assert(r == ai->r);
1673 memcpy(ret->grid, ai->grid, cr * cr * sizeof(digit));
1674
1675 } else {
1676 rsolve_ret = rsolve(c, r, ret->grid, NULL, 2);
1677
1678 if (rsolve_ret != 1) {
1679 free_game(ret);
1680 if (rsolve_ret == 0)
1681 *error = "No solution exists for this puzzle";
1682 else
1683 *error = "Multiple solutions exist for this puzzle";
1684 return NULL;
1685 }
2ac6d24e 1686 }
1687
1688 return ret;
1689}
1690
9b4b03d3 1691static char *grid_text_format(int c, int r, digit *grid)
1692{
1693 int cr = c*r;
1694 int x, y;
1695 int maxlen;
1696 char *ret, *p;
1697
1698 /*
1699 * There are cr lines of digits, plus r-1 lines of block
1700 * separators. Each line contains cr digits, cr-1 separating
1701 * spaces, and c-1 two-character block separators. Thus, the
1702 * total length of a line is 2*cr+2*c-3 (not counting the
1703 * newline), and there are cr+r-1 of them.
1704 */
1705 maxlen = (cr+r-1) * (2*cr+2*c-2);
1706 ret = snewn(maxlen+1, char);
1707 p = ret;
1708
1709 for (y = 0; y < cr; y++) {
1710 for (x = 0; x < cr; x++) {
1711 int ch = grid[y * cr + x];
1712 if (ch == 0)
1713 ch = ' ';
1714 else if (ch <= 9)
1715 ch = '0' + ch;
1716 else
1717 ch = 'a' + ch-10;
1718 *p++ = ch;
1719 if (x+1 < cr) {
1720 *p++ = ' ';
1721 if ((x+1) % r == 0) {
1722 *p++ = '|';
1723 *p++ = ' ';
1724 }
1725 }
1726 }
1727 *p++ = '\n';
1728 if (y+1 < cr && (y+1) % c == 0) {
1729 for (x = 0; x < cr; x++) {
1730 *p++ = '-';
1731 if (x+1 < cr) {
1732 *p++ = '-';
1733 if ((x+1) % r == 0) {
1734 *p++ = '+';
1735 *p++ = '-';
1736 }
1737 }
1738 }
1739 *p++ = '\n';
1740 }
1741 }
1742
1743 assert(p - ret == maxlen);
1744 *p = '\0';
1745 return ret;
1746}
1747
1748static char *game_text_format(game_state *state)
1749{
1750 return grid_text_format(state->c, state->r, state->grid);
1751}
1752
1d8e8ad8 1753struct game_ui {
1754 /*
1755 * These are the coordinates of the currently highlighted
1756 * square on the grid, or -1,-1 if there isn't one. When there
1757 * is, pressing a valid number or letter key or Space will
1758 * enter that number or letter in the grid.
1759 */
1760 int hx, hy;
1761};
1762
1763static game_ui *new_ui(game_state *state)
1764{
1765 game_ui *ui = snew(game_ui);
1766
1767 ui->hx = ui->hy = -1;
1768
1769 return ui;
1770}
1771
1772static void free_ui(game_ui *ui)
1773{
1774 sfree(ui);
1775}
1776
1777static game_state *make_move(game_state *from, game_ui *ui, int x, int y,
1778 int button)
1779{
1780 int c = from->c, r = from->r, cr = c*r;
1781 int tx, ty;
1782 game_state *ret;
1783
3c833d45 1784 button &= ~MOD_NUM_KEYPAD; /* we treat this the same as normal */
1785
ae812854 1786 tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
1787 ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
1d8e8ad8 1788
1789 if (tx >= 0 && tx < cr && ty >= 0 && ty < cr && button == LEFT_BUTTON) {
1790 if (tx == ui->hx && ty == ui->hy) {
1791 ui->hx = ui->hy = -1;
1792 } else {
1793 ui->hx = tx;
1794 ui->hy = ty;
1795 }
1796 return from; /* UI activity occurred */
1797 }
1798
1799 if (ui->hx != -1 && ui->hy != -1 &&
1800 ((button >= '1' && button <= '9' && button - '0' <= cr) ||
1801 (button >= 'a' && button <= 'z' && button - 'a' + 10 <= cr) ||
1802 (button >= 'A' && button <= 'Z' && button - 'A' + 10 <= cr) ||
1803 button == ' ')) {
1804 int n = button - '0';
1805 if (button >= 'A' && button <= 'Z')
1806 n = button - 'A' + 10;
1807 if (button >= 'a' && button <= 'z')
1808 n = button - 'a' + 10;
1809 if (button == ' ')
1810 n = 0;
1811
1812 if (from->immutable[ui->hy*cr+ui->hx])
1813 return NULL; /* can't overwrite this square */
1814
1815 ret = dup_game(from);
1816 ret->grid[ui->hy*cr+ui->hx] = n;
1817 ui->hx = ui->hy = -1;
1818
1819 /*
1820 * We've made a real change to the grid. Check to see
1821 * if the game has been completed.
1822 */
1823 if (!ret->completed && check_valid(c, r, ret->grid)) {
1824 ret->completed = TRUE;
1825 }
1826
1827 return ret; /* made a valid move */
1828 }
1829
1830 return NULL;
1831}
1832
1833/* ----------------------------------------------------------------------
1834 * Drawing routines.
1835 */
1836
1837struct game_drawstate {
1838 int started;
1839 int c, r, cr;
1840 digit *grid;
1841 unsigned char *hl;
1842};
1843
1844#define XSIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
1845#define YSIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
1846
1847static void game_size(game_params *params, int *x, int *y)
1848{
1849 int c = params->c, r = params->r, cr = c*r;
1850
1851 *x = XSIZE(cr);
1852 *y = YSIZE(cr);
1853}
1854
1855static float *game_colours(frontend *fe, game_state *state, int *ncolours)
1856{
1857 float *ret = snewn(3 * NCOLOURS, float);
1858
1859 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1860
1861 ret[COL_GRID * 3 + 0] = 0.0F;
1862 ret[COL_GRID * 3 + 1] = 0.0F;
1863 ret[COL_GRID * 3 + 2] = 0.0F;
1864
1865 ret[COL_CLUE * 3 + 0] = 0.0F;
1866 ret[COL_CLUE * 3 + 1] = 0.0F;
1867 ret[COL_CLUE * 3 + 2] = 0.0F;
1868
1869 ret[COL_USER * 3 + 0] = 0.0F;
1870 ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
1871 ret[COL_USER * 3 + 2] = 0.0F;
1872
1873 ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0];
1874 ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
1875 ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
1876
1877 *ncolours = NCOLOURS;
1878 return ret;
1879}
1880
1881static game_drawstate *game_new_drawstate(game_state *state)
1882{
1883 struct game_drawstate *ds = snew(struct game_drawstate);
1884 int c = state->c, r = state->r, cr = c*r;
1885
1886 ds->started = FALSE;
1887 ds->c = c;
1888 ds->r = r;
1889 ds->cr = cr;
1890 ds->grid = snewn(cr*cr, digit);
1891 memset(ds->grid, 0, cr*cr);
1892 ds->hl = snewn(cr*cr, unsigned char);
1893 memset(ds->hl, 0, cr*cr);
1894
1895 return ds;
1896}
1897
1898static void game_free_drawstate(game_drawstate *ds)
1899{
1900 sfree(ds->hl);
1901 sfree(ds->grid);
1902 sfree(ds);
1903}
1904
1905static void draw_number(frontend *fe, game_drawstate *ds, game_state *state,
1906 int x, int y, int hl)
1907{
1908 int c = state->c, r = state->r, cr = c*r;
1909 int tx, ty;
1910 int cx, cy, cw, ch;
1911 char str[2];
1912
1913 if (ds->grid[y*cr+x] == state->grid[y*cr+x] && ds->hl[y*cr+x] == hl)
1914 return; /* no change required */
1915
1916 tx = BORDER + x * TILE_SIZE + 2;
1917 ty = BORDER + y * TILE_SIZE + 2;
1918
1919 cx = tx;
1920 cy = ty;
1921 cw = TILE_SIZE-3;
1922 ch = TILE_SIZE-3;
1923
1924 if (x % r)
1925 cx--, cw++;
1926 if ((x+1) % r)
1927 cw++;
1928 if (y % c)
1929 cy--, ch++;
1930 if ((y+1) % c)
1931 ch++;
1932
1933 clip(fe, cx, cy, cw, ch);
1934
1935 /* background needs erasing? */
1936 if (ds->grid[y*cr+x] || ds->hl[y*cr+x] != hl)
1937 draw_rect(fe, cx, cy, cw, ch, hl ? COL_HIGHLIGHT : COL_BACKGROUND);
1938
1939 /* new number needs drawing? */
1940 if (state->grid[y*cr+x]) {
1941 str[1] = '\0';
1942 str[0] = state->grid[y*cr+x] + '0';
1943 if (str[0] > '9')
1944 str[0] += 'a' - ('9'+1);
1945 draw_text(fe, tx + TILE_SIZE/2, ty + TILE_SIZE/2,
1946 FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
1947 state->immutable[y*cr+x] ? COL_CLUE : COL_USER, str);
1948 }
1949
1950 unclip(fe);
1951
1952 draw_update(fe, cx, cy, cw, ch);
1953
1954 ds->grid[y*cr+x] = state->grid[y*cr+x];
1955 ds->hl[y*cr+x] = hl;
1956}
1957
1958static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1959 game_state *state, int dir, game_ui *ui,
1960 float animtime, float flashtime)
1961{
1962 int c = state->c, r = state->r, cr = c*r;
1963 int x, y;
1964
1965 if (!ds->started) {
1966 /*
1967 * The initial contents of the window are not guaranteed
1968 * and can vary with front ends. To be on the safe side,
1969 * all games should start by drawing a big
1970 * background-colour rectangle covering the whole window.
1971 */
1972 draw_rect(fe, 0, 0, XSIZE(cr), YSIZE(cr), COL_BACKGROUND);
1973
1974 /*
1975 * Draw the grid.
1976 */
1977 for (x = 0; x <= cr; x++) {
1978 int thick = (x % r ? 0 : 1);
1979 draw_rect(fe, BORDER + x*TILE_SIZE - thick, BORDER-1,
1980 1+2*thick, cr*TILE_SIZE+3, COL_GRID);
1981 }
1982 for (y = 0; y <= cr; y++) {
1983 int thick = (y % c ? 0 : 1);
1984 draw_rect(fe, BORDER-1, BORDER + y*TILE_SIZE - thick,
1985 cr*TILE_SIZE+3, 1+2*thick, COL_GRID);
1986 }
1987 }
1988
1989 /*
1990 * Draw any numbers which need redrawing.
1991 */
1992 for (x = 0; x < cr; x++) {
1993 for (y = 0; y < cr; y++) {
1994 draw_number(fe, ds, state, x, y,
1995 (x == ui->hx && y == ui->hy) ||
1996 (flashtime > 0 &&
1997 (flashtime <= FLASH_TIME/3 ||
1998 flashtime >= FLASH_TIME*2/3)));
1999 }
2000 }
2001
2002 /*
2003 * Update the _entire_ grid if necessary.
2004 */
2005 if (!ds->started) {
2006 draw_update(fe, 0, 0, XSIZE(cr), YSIZE(cr));
2007 ds->started = TRUE;
2008 }
2009}
2010
2011static float game_anim_length(game_state *oldstate, game_state *newstate,
2012 int dir)
2013{
2014 return 0.0F;
2015}
2016
2017static float game_flash_length(game_state *oldstate, game_state *newstate,
2018 int dir)
2019{
2ac6d24e 2020 if (!oldstate->completed && newstate->completed &&
2021 !oldstate->cheated && !newstate->cheated)
1d8e8ad8 2022 return FLASH_TIME;
2023 return 0.0F;
2024}
2025
2026static int game_wants_statusbar(void)
2027{
2028 return FALSE;
2029}
2030
2031#ifdef COMBINED
2032#define thegame solo
2033#endif
2034
2035const struct game thegame = {
1d228b10 2036 "Solo", "games.solo",
1d8e8ad8 2037 default_params,
2038 game_fetch_preset,
2039 decode_params,
2040 encode_params,
2041 free_params,
2042 dup_params,
1d228b10 2043 TRUE, game_configure, custom_params,
1d8e8ad8 2044 validate_params,
2045 new_game_seed,
6f2d8d7c 2046 game_free_aux_info,
1d8e8ad8 2047 validate_seed,
2048 new_game,
2049 dup_game,
2050 free_game,
2ac6d24e 2051 TRUE, solve_game,
9b4b03d3 2052 TRUE, game_text_format,
1d8e8ad8 2053 new_ui,
2054 free_ui,
2055 make_move,
2056 game_size,
2057 game_colours,
2058 game_new_drawstate,
2059 game_free_drawstate,
2060 game_redraw,
2061 game_anim_length,
2062 game_flash_length,
2063 game_wants_statusbar,
2064};
3ddae0ff 2065
2066#ifdef STANDALONE_SOLVER
2067
7c568a48 2068/*
2069 * gcc -DSTANDALONE_SOLVER -o solosolver solo.c malloc.c
2070 */
2071
3ddae0ff 2072void frontend_default_colour(frontend *fe, float *output) {}
2073void draw_text(frontend *fe, int x, int y, int fonttype, int fontsize,
2074 int align, int colour, char *text) {}
2075void draw_rect(frontend *fe, int x, int y, int w, int h, int colour) {}
2076void draw_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) {}
2077void draw_polygon(frontend *fe, int *coords, int npoints,
2078 int fill, int colour) {}
2079void clip(frontend *fe, int x, int y, int w, int h) {}
2080void unclip(frontend *fe) {}
2081void start_draw(frontend *fe) {}
2082void draw_update(frontend *fe, int x, int y, int w, int h) {}
2083void end_draw(frontend *fe) {}
7c568a48 2084unsigned long random_bits(random_state *state, int bits)
2085{ assert(!"Shouldn't get randomness"); return 0; }
2086unsigned long random_upto(random_state *state, unsigned long limit)
2087{ assert(!"Shouldn't get randomness"); return 0; }
3ddae0ff 2088
2089void fatal(char *fmt, ...)
2090{
2091 va_list ap;
2092
2093 fprintf(stderr, "fatal error: ");
2094
2095 va_start(ap, fmt);
2096 vfprintf(stderr, fmt, ap);
2097 va_end(ap);
2098
2099 fprintf(stderr, "\n");
2100 exit(1);
2101}
2102
2103int main(int argc, char **argv)
2104{
2105 game_params *p;
2106 game_state *s;
7c568a48 2107 int recurse = TRUE;
3ddae0ff 2108 char *id = NULL, *seed, *err;
2109 int y, x;
7c568a48 2110 int grade = FALSE;
3ddae0ff 2111
2112 while (--argc > 0) {
2113 char *p = *++argv;
2114 if (!strcmp(p, "-r")) {
2115 recurse = TRUE;
2116 } else if (!strcmp(p, "-n")) {
2117 recurse = FALSE;
7c568a48 2118 } else if (!strcmp(p, "-v")) {
2119 solver_show_working = TRUE;
2120 recurse = FALSE;
2121 } else if (!strcmp(p, "-g")) {
2122 grade = TRUE;
2123 recurse = FALSE;
3ddae0ff 2124 } else if (*p == '-') {
2125 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0]);
2126 return 1;
2127 } else {
2128 id = p;
2129 }
2130 }
2131
2132 if (!id) {
7c568a48 2133 fprintf(stderr, "usage: %s [-n | -r | -g | -v] <game_id>\n", argv[0]);
3ddae0ff 2134 return 1;
2135 }
2136
2137 seed = strchr(id, ':');
2138 if (!seed) {
2139 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
2140 return 1;
2141 }
2142 *seed++ = '\0';
2143
2144 p = decode_params(id);
2145 err = validate_seed(p, seed);
2146 if (err) {
2147 fprintf(stderr, "%s: %s\n", argv[0], err);
2148 return 1;
2149 }
2150 s = new_game(p, seed);
2151
2152 if (recurse) {
2153 int ret = rsolve(p->c, p->r, s->grid, NULL, 2);
2154 if (ret > 1) {
7c568a48 2155 fprintf(stderr, "%s: rsolve: multiple solutions detected\n",
2156 argv[0]);
3ddae0ff 2157 }
2158 } else {
7c568a48 2159 int ret = nsolve(p->c, p->r, s->grid);
2160 if (grade) {
2161 if (ret == DIFF_IMPOSSIBLE) {
2162 /*
2163 * Now resort to rsolve to determine whether it's
2164 * really soluble.
2165 */
2166 ret = rsolve(p->c, p->r, s->grid, NULL, 2);
2167 if (ret == 0)
2168 ret = DIFF_IMPOSSIBLE;
2169 else if (ret == 1)
2170 ret = DIFF_RECURSIVE;
2171 else
2172 ret = DIFF_AMBIGUOUS;
2173 }
d5958d3f 2174 printf("Difficulty rating: %s\n",
2175 ret==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)":
2176 ret==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
2177 ret==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
2178 ret==DIFF_SET ? "Advanced (set elimination required)":
2179 ret==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
2180 ret==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
2181 ret==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
7c568a48 2182 "INTERNAL ERROR: unrecognised difficulty code");
2183 }
3ddae0ff 2184 }
2185
9b4b03d3 2186 printf("%s\n", grid_text_format(p->c, p->r, s->grid));
3ddae0ff 2187
2188 return 0;
2189}
2190
2191#endif