rsa-recover.c: First stage cleanup: hoist variable declarations.
[catacomb] / pub / rsa-recover.c
1 /* -*-c-*-
2 *
3 * Recover RSA parameters
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "mp.h"
31 #include "mpmont.h"
32 #include "rsa.h"
33
34 /*----- Main code ---------------------------------------------------------*/
35
36 /* --- @rsa_recover@ --- *
37 *
38 * Arguments: @rsa_priv *rp@ = pointer to parameter block
39 *
40 * Returns: Zero if all went well, nonzero if the parameters make no
41 * sense.
42 *
43 * Use: Derives the full set of RSA parameters given a minimal set.
44 *
45 * On failure, the parameter block might be partially filled in,
46 * but the @rsa_privfree@ function will be able to free it
47 * successfully.
48 */
49
50 int rsa_recover(rsa_priv *rp)
51 {
52 int i;
53 size_t s;
54 mpmont mm;
55 mp a; mpw aw;
56 mp *g = MP_NEW, *r = MP_NEW, *t = MP_NEW;
57 mp *m1 = MP_NEW, *z = MP_NEW, *zz = MP_NEW;
58 mp *phi = MP_NEW, *p1 = MP_NEW, *q1 = MP_NEW;
59
60 /* --- If there is no modulus, calculate it --- */
61
62 if (!rp->n) {
63 if (!rp->p || !rp->q)
64 return (-1);
65 rp->n = mp_mul(MP_NEW, rp->p, rp->q);
66 }
67
68 /* --- If there are no factors, compute them --- */
69
70 else if (!rp->p || !rp->q) {
71
72 /* --- If one is missing, use simple division to recover the other --- */
73
74 if (rp->p || rp->q) {
75 if (rp->p)
76 mp_div(&rp->q, &r, rp->n, rp->p);
77 else
78 mp_div(&rp->p, &r, rp->n, rp->q);
79 if (!MP_EQ(r, MP_ZERO)) {
80 mp_drop(r);
81 return (-1);
82 }
83 mp_drop(r);
84 }
85
86 /* --- Otherwise use the public and private moduli --- */
87
88 else if (!rp->e || !rp->d)
89 return (-1);
90 else {
91
92 /* --- Work out the appropriate exponent --- *
93 *
94 * I need to compute %$s$% and %$t$% such that %$2^s t = e d - 1$%, and
95 * %$t$% is odd.
96 */
97
98 t = mp_mul(t, rp->e, rp->d);
99 t = mp_sub(t, t, MP_ONE);
100 t = mp_odd(t, t, &s);
101
102 /* --- Set up for the exponentiation --- */
103
104 mpmont_create(&mm, rp->n);
105 m1 = mp_sub(m1, rp->n, mm.r);
106
107 /* --- Now for the main loop --- *
108 *
109 * Choose candidate integers and attempt to factor the modulus.
110 */
111
112 mp_build(&a, &aw, &aw + 1);
113 i = 0;
114 for (;;) {
115 again:
116
117 /* --- Choose a random %$a$% and calculate %$z = a^t \bmod n$% --- *
118 *
119 * If %$z \equiv 1$% or %$z \equiv -1 \pmod n$% then this iteration
120 * is a failure.
121 */
122
123 aw = primetab[i++];
124 z = mpmont_mul(&mm, z, &a, mm.r2);
125 z = mpmont_expr(&mm, z, z, t);
126 if (MP_EQ(z, mm.r) || MP_EQ(z, m1))
127 continue;
128
129 /* --- Now square until something interesting happens --- *
130 *
131 * Compute %$z^{2i} \bmod n$%. Eventually, I'll either get %$-1$% or
132 * %$1$%. If the former, the number is uninteresting, and I need to
133 * restart. If the latter, the previous number minus 1 has a common
134 * factor with %$n$%.
135 */
136
137 for (;;) {
138 zz = mp_sqr(zz, z);
139 zz = mpmont_reduce(&mm, zz, zz);
140 if (MP_EQ(zz, mm.r)) {
141 mp_drop(zz);
142 goto done;
143 } else if (MP_EQ(zz, m1)) {
144 mp_drop(zz);
145 goto again;
146 }
147 mp_drop(z);
148 z = zz;
149 zz = MP_NEW;
150 }
151 }
152
153 /* --- Do the factoring --- *
154 *
155 * Here's how it actually works. I've found an interesting square
156 * root of %$1 \pmod n$%. Any square root of 1 must be congruent to
157 * %$\pm 1$% modulo both %$p$% and %$q$%. Both congruent to %$1$% is
158 * boring, as is both congruent to %$-1$%. Subtracting one from the
159 * result makes it congruent to %$0$% modulo %$p$% or %$q$% (and
160 * nobody cares which), and hence can be extracted by a GCD
161 * operation.
162 */
163
164 done:
165 z = mpmont_reduce(&mm, z, z);
166 z = mp_sub(z, z, MP_ONE);
167 rp->p = MP_NEW;
168 mp_gcd(&rp->p, 0, 0, rp->n, z);
169 rp->q = MP_NEW;
170 mp_div(&rp->q, 0, rp->n, rp->p);
171 mp_drop(z);
172 mp_drop(t);
173 mp_drop(m1);
174 if (MP_CMP(rp->p, <, rp->q)) {
175 z = rp->p;
176 rp->p = rp->q;
177 rp->q = z;
178 }
179 mpmont_destroy(&mm);
180 }
181 }
182
183 /* --- If %$e$% or %$d$% is missing, recalculate it --- */
184
185 if (!rp->e || !rp->d) {
186
187 /* --- Compute %$\varphi(n)$% --- */
188
189 phi = mp_sub(phi, rp->n, rp->p);
190 phi = mp_sub(phi, phi, rp->q);
191 phi = mp_add(phi, phi, MP_ONE);
192 p1 = mp_sub(p1, rp->p, MP_ONE);
193 q1 = mp_sub(q1, rp->q, MP_ONE);
194 mp_gcd(&g, 0, 0, p1, q1);
195 mp_div(&phi, 0, phi, g);
196 mp_drop(p1); p1 = MP_NEW;
197 mp_drop(q1); q1 = MP_NEW;
198
199 /* --- Recover the other exponent --- */
200
201 if (rp->e)
202 mp_gcd(&g, 0, &rp->d, phi, rp->e);
203 else if (rp->d)
204 mp_gcd(&g, 0, &rp->e, phi, rp->d);
205 else {
206 mp_drop(phi);
207 mp_drop(g);
208 return (-1);
209 }
210
211 mp_drop(phi);
212 if (!MP_EQ(g, MP_ONE)) {
213 mp_drop(g);
214 return (-1);
215 }
216 mp_drop(g);
217 }
218
219 /* --- Compute %$q^{-1} \bmod p$% --- */
220
221 if (!rp->q_inv)
222 mp_gcd(0, 0, &rp->q_inv, rp->p, rp->q);
223
224 /* --- Compute %$d \bmod (p - 1)$% and %$d \bmod (q - 1)$% --- */
225
226 if (!rp->dp) {
227 p1 = mp_sub(p1, rp->p, MP_ONE);
228 mp_div(0, &rp->dp, rp->d, p1);
229 mp_drop(p1);
230 }
231 if (!rp->dq) {
232 q1 = mp_sub(q1, rp->q, MP_ONE);
233 mp_div(0, &rp->dq, rp->d, q1);
234 mp_drop(q1);
235 }
236
237 /* --- Done --- */
238
239 return (0);
240 }
241
242 /*----- That's all, folks -------------------------------------------------*/