progs/perftest.c: Use from Glibc syscall numbers.
[catacomb] / pub / rsa-recover.c
1 /* -*-c-*-
2 *
3 * Recover RSA parameters
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "mp.h"
31 #include "mpmont.h"
32 #include "rsa.h"
33
34 /*----- Main code ---------------------------------------------------------*/
35
36 /* --- @rsa_recover@ --- *
37 *
38 * Arguments: @rsa_priv *rp@ = pointer to parameter block
39 *
40 * Returns: Zero if all went well, nonzero if the parameters make no
41 * sense.
42 *
43 * Use: Derives the full set of RSA parameters given a minimal set.
44 *
45 * On failure, the parameter block might be partially filled in,
46 * but the @rsa_privfree@ function will be able to free it
47 * successfully.
48 */
49
50 int rsa_recover(rsa_priv *rp)
51 {
52 int rc = -1;
53 int i;
54 size_t s;
55 mpmont mm;
56 mp a; mpw aw;
57 mp *g = MP_NEW, *r = MP_NEW, *t = MP_NEW, *zt;
58 mp *m1 = MP_NEW, *z = MP_NEW, *zz = MP_NEW;
59 mp *phi = MP_NEW, *p1 = MP_NEW, *q1 = MP_NEW;
60
61 mm.r = 0;
62
63 /* --- If there is no modulus, calculate it --- */
64
65 if (!rp->n) {
66 if (!rp->p || !rp->q) goto out;
67 rp->n = mp_mul(MP_NEW, rp->p, rp->q);
68 }
69
70 /* --- If there are no factors, compute them --- */
71
72 else if (!rp->p || !rp->q) {
73
74 /* --- If one is missing, use simple division to recover the other --- */
75
76 if (rp->p || rp->q) {
77 if (rp->p) mp_div(&rp->q, &r, rp->n, rp->p);
78 else mp_div(&rp->p, &r, rp->n, rp->q);
79 if (!MP_EQ(r, MP_ZERO)) goto out;
80 }
81
82 /* --- Otherwise use the public and private moduli --- */
83
84 else if (!rp->e || !rp->d)
85 goto out;
86 else {
87
88 /* --- Work out the appropriate exponent --- *
89 *
90 * I need to compute %$s$% and %$t$% such that %$2^s t = e d - 1$%, and
91 * %$t$% is odd.
92 */
93
94 t = mp_mul(t, rp->e, rp->d);
95 t = mp_sub(t, t, MP_ONE);
96 t = mp_odd(t, t, &s);
97
98 /* --- Set up for the exponentiation --- */
99
100 if (mpmont_create(&mm, rp->n)) goto out;
101 m1 = mp_sub(m1, rp->n, mm.r);
102
103 /* --- Now for the main loop --- *
104 *
105 * Choose candidate integers and attempt to factor the modulus.
106 */
107
108 mp_build(&a, &aw, &aw + 1);
109 i = 0;
110
111 again:
112
113 /* --- Choose a random %$a$% and calculate %$z = a^t \bmod n$% --- *
114 *
115 * If %$z \equiv 1$% or %$z \equiv -1 \pmod n$% then this iteration
116 * is a failure.
117 */
118
119 if (i > NPRIME) goto out;
120 aw = primetab[i++];
121 z = mpmont_mul(&mm, z, &a, mm.r2);
122 z = mpmont_expr(&mm, z, z, t);
123 if (MP_EQ(z, mm.r) || MP_EQ(z, m1)) goto again;
124
125 /* --- Now square until something interesting happens --- *
126 *
127 * Compute %$z^{2i} \bmod n$%. Eventually, I'll either get %$-1$% or
128 * %$1$%. If the former, the number is uninteresting, and I need to
129 * restart. If the latter, the previous number minus 1 has a common
130 * factor with %$n$%.
131 */
132
133 for (;;) {
134 zz = mp_sqr(zz, z);
135 zz = mpmont_reduce(&mm, zz, zz);
136 if (MP_EQ(zz, mm.r)) goto done;
137 else if (MP_EQ(zz, m1)) goto again;
138 zt = z; z = zz; zz = zt;
139 }
140
141 /* --- Do the factoring --- *
142 *
143 * Here's how it actually works. I've found an interesting square
144 * root of %$1 \pmod n$%. Any square root of 1 must be congruent to
145 * %$\pm 1$% modulo both %$p$% and %$q$%. Both congruent to %$1$% is
146 * boring, as is both congruent to %$-1$%. Subtracting one from the
147 * result makes it congruent to %$0$% modulo %$p$% or %$q$% (and
148 * nobody cares which), and hence can be extracted by a GCD
149 * operation.
150 */
151
152 done:
153 z = mpmont_reduce(&mm, z, z);
154 z = mp_sub(z, z, MP_ONE);
155 mp_gcd(&rp->p, 0, 0, rp->n, z);
156 mp_div(&rp->q, 0, rp->n, rp->p);
157 if (MP_CMP(rp->p, <, rp->q))
158 { zt = rp->p; rp->p = rp->q; rp->q = zt; }
159 }
160 }
161
162 /* --- If %$e$% or %$d$% is missing, recalculate it --- */
163
164 if (!rp->e || !rp->d) {
165
166 /* --- Compute %$\varphi(n)$% --- */
167
168 phi = mp_sub(phi, rp->n, rp->p);
169 phi = mp_sub(phi, phi, rp->q);
170 phi = mp_add(phi, phi, MP_ONE);
171 p1 = mp_sub(p1, rp->p, MP_ONE);
172 q1 = mp_sub(q1, rp->q, MP_ONE);
173 mp_gcd(&g, 0, 0, p1, q1);
174 mp_div(&phi, 0, phi, g);
175
176 /* --- Recover the other exponent --- */
177
178 if (rp->e) mp_gcd(&g, 0, &rp->d, phi, rp->e);
179 else if (rp->d) mp_gcd(&g, 0, &rp->e, phi, rp->d);
180 else goto out;
181 if (!MP_EQ(g, MP_ONE)) goto out;
182 }
183
184 /* --- Compute %$q^{-1} \bmod p$% --- */
185
186 if (!rp->q_inv) {
187 mp_gcd(&g, 0, &rp->q_inv, rp->p, rp->q);
188 if (!MP_EQ(g, MP_ONE)) goto out;
189 }
190
191 /* --- Compute %$d \bmod (p - 1)$% and %$d \bmod (q - 1)$% --- */
192
193 if (!rp->dp) {
194 p1 = mp_sub(p1, rp->p, MP_ONE);
195 mp_div(0, &rp->dp, rp->d, p1);
196 }
197 if (!rp->dq) {
198 q1 = mp_sub(q1, rp->q, MP_ONE);
199 mp_div(0, &rp->dq, rp->d, q1);
200 }
201
202 /* --- Done --- */
203
204 rc = 0;
205 out:
206 mp_drop(g); mp_drop(r); mp_drop(t);
207 mp_drop(m1); mp_drop(z); mp_drop(zz);
208 mp_drop(phi); mp_drop(p1); mp_drop(q1);
209 if (mm.r) mpmont_destroy(&mm);
210 return (rc);
211 }
212
213 /*----- That's all, folks -------------------------------------------------*/