base/dispatch.[ch]: Detect availability of the x86 `RDRAND' instruction.
[catacomb] / base / dispatch.c
1 /* -*-c-*-
2 *
3 * CPU-specific dispatch
4 *
5 * (c) 2015 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31
32 #include <ctype.h>
33 #include <stdarg.h>
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37
38 #include <mLib/macros.h>
39
40 #include "dispatch.h"
41
42 /*----- Intel x86/AMD64 feature probing -----------------------------------*/
43
44 #if CPUFAM_X86 || CPUFAM_AMD64
45
46 # define EFLAGS_ID (1u << 21)
47 # define CPUID1D_SSE2 (1u << 26)
48 # define CPUID1D_FXSR (1u << 24)
49 # define CPUID1C_AESNI (1u << 25)
50 # define CPUID1C_RDRAND (1u << 30)
51
52 struct cpuid { unsigned a, b, c, d; };
53
54 /* --- @cpuid@ --- *
55 *
56 * Arguments: @struct cpuid *cc@ = where to write the result
57 * @unsigned a, c@ = EAX and ECX registers to set
58 *
59 * Returns: ---
60 *
61 * Use: Minimal C wrapper around the x86 `CPUID' instruction. Checks
62 * that the instruction is actually available before invoking
63 * it; fills the output structure with zero if it's not going to
64 * work.
65 */
66
67 #ifdef __GNUC__
68 # if CPUFAM_X86
69 static __inline__ unsigned getflags(void)
70 { unsigned f; __asm__ ("pushf; popl %0" : "=g" (f)); return (f); }
71 static __inline__ unsigned setflags(unsigned f)
72 {
73 unsigned ff;
74 __asm__ ("pushf; pushl %1; popf; pushf; popl %0; popf"
75 : "=g" (ff)
76 : "g" (f));
77 return (ff);
78 }
79 # else
80 static __inline__ unsigned long getflags(void)
81 { unsigned long f; __asm__ ("pushf; popq %0" : "=g" (f)); return (f); }
82 static __inline__ unsigned long long setflags(unsigned long f)
83 {
84 unsigned long ff;
85 __asm__ ("pushf; pushq %1; popf; pushf; popq %0; popf"
86 : "=g" (ff)
87 : "g" (f));
88 return (ff);
89 }
90 # endif
91 #endif
92
93 static void cpuid(struct cpuid *cc, unsigned a, unsigned c)
94 {
95 #ifdef __GNUC__
96 unsigned f;
97 #endif
98
99 cc->a = cc->b = cc->c = cc->d = 0;
100
101 #ifdef __GNUC__
102 /* Stupid dance to detect whether the CPUID instruction is available. */
103 f = getflags();
104 if (!(setflags(f | EFLAGS_ID) & EFLAGS_ID) ||
105 setflags(f & ~EFLAGS_ID) & EFLAGS_ID) {
106 dispatch_debug("CPUID instruction not available");
107 return;
108 }
109 setflags(f);
110
111 /* Alas, EBX is magical in PIC code, so abuse ESI instead. This isn't
112 * pretty, but it works.
113 */
114 # if CPUFAM_X86
115 __asm__ ("pushl %%ebx; cpuid; movl %%ebx, %%esi; popl %%ebx"
116 : "=a" (cc->a), "=S" (cc->b), "=c" (cc->c), "=d" (cc->d)
117 : "a" (a) , "c" (c));
118 # elif CPUFAM_AMD64
119 __asm__ ("pushq %%rbx; cpuid; movl %%ebx, %%esi; popq %%rbx"
120 : "=a" (cc->a), "=S" (cc->b), "=c" (cc->c), "=d" (cc->d)
121 : "a" (a) , "c" (c));
122 # else
123 # error "I'm confused."
124 # endif
125 dispatch_debug("CPUID(%08x, %08x) -> %08x, %08x, %08x, %08x",
126 a, c, cc->a, cc->b, cc->c, cc->d);
127 #else
128 dispatch_debug("GNU inline assembler not available; can't CPUID");
129 #endif
130 }
131
132 static unsigned cpuid_maxleaf(void)
133 { struct cpuid c; cpuid(&c, 0, 0); return (c.a); }
134
135 /* --- @cpuid_features_p@ --- *
136 *
137 * Arguments: @unsigned dbits@ = bits to check in EDX
138 * @unsigned cbits@ = bits to check in ECX
139 *
140 * Returns: Nonzero if all the requested bits are set in the CPUID result
141 * on leaf 1.
142 */
143
144 static int cpuid_features_p(unsigned dbits, unsigned cbits)
145 {
146 struct cpuid c;
147 if (cpuid_maxleaf() < 1) return (0);
148 cpuid(&c, 1, 0);
149 return ((c.d & dbits) == dbits && (c.c & cbits) == cbits);
150 }
151
152 /* --- @xmm_registers_available_p@ --- *
153 *
154 * Arguments: ---
155 *
156 * Returns: Nonzero if the operating system has made the XMM registers
157 * available for use.
158 */
159
160 static int xmm_registers_available_p(void)
161 {
162 #ifdef __GNUC__
163 unsigned f;
164 /* This hack is by Agner Fog. Use FXSAVE/FXRSTOR to figure out whether the
165 * XMM registers are actually alive.
166 */
167 if (!cpuid_features_p(CPUID1D_FXSR, 0)) return (0);
168 # if CPUFAM_X86
169 __asm__ ("movl %%esp, %%edx; subl $512, %%esp; andl $~15, %%esp\n"
170 "fxsave (%%esp)\n"
171 "movl 160(%%esp), %%eax; xorl $0xaaaa5555, 160(%%esp)\n"
172 "fxrstor (%%esp); fxsave (%%esp)\n"
173 "movl 160(%%esp), %%ecx; movl %%eax, 160(%%esp)\n"
174 "fxrstor (%%esp); movl %%edx, %%esp\n"
175 "xorl %%ecx, %%eax"
176 : "=a" (f)
177 : /* no inputs */
178 : "%ecx", "%edx");
179 # elif CPUFAM_AMD64
180 __asm__ ("movq %%rsp, %%rdx; subq $512, %%rsp; andq $~15, %%rsp\n"
181 "fxsave (%%rsp)\n"
182 "movl 160(%%rsp), %%eax; xorl $0xaaaa5555, 160(%%rsp)\n"
183 "fxrstor (%%rsp); fxsave (%%rsp)\n"
184 "movl 160(%%rsp), %%ecx; movl %%eax, 160(%%rsp)\n"
185 "fxrstor (%%rsp); movq %%rdx, %%rsp\n"
186 "xorl %%ecx, %%eax"
187 : "=a" (f)
188 : /* no inputs */
189 : "%ecx", "%rdx");
190 # else
191 # error "I'm confused."
192 # endif
193 dispatch_debug("XMM registers %savailable", f ? "" : "not ");
194 return (f);
195 #else
196 dispatch_debug("GNU inline assembler not available; can't check for XMM");
197 return (0);
198 #endif
199 }
200
201 #endif
202
203 /*----- General feature probing using auxiliary vectors -------------------*/
204
205 /* Try to find the system's definitions for auxiliary vector entries. */
206 #ifdef HAVE_SYS_AUXV_H
207 # include <sys/auxv.h>
208 #else
209 # ifdef HAVE_LINUX_AUXVEC_H
210 # include <linux/auxvec.h>
211 # endif
212 # ifdef HAVE_ASM_HWCAP_H
213 # include <asm/hwcap.h>
214 # endif
215 #endif
216
217 /* The type of entries in the auxiliary vector. I'm assuming that `unsigned
218 * long' matches each platform's word length; if this is false then we'll
219 * need some host-specific tweaking here.
220 */
221 union auxval { long i; unsigned long u; const void *p; };
222 struct auxentry { unsigned long type; union auxval value; };
223
224 /* Register each CPU family's interest in the auxiliary vector. Make sure
225 * that the necessary entry types are defined. This is primarily ordered by
226 * entry type to minimize duplication.
227 */
228 #if defined(AT_HWCAP) && CPUFAM_ARMEL
229 # define WANT_ANY 1
230 # define WANT_AT_HWCAP(_) _(AT_HWCAP, u, hwcap)
231 #endif
232
233 /* If we couldn't find any interesting entries then we can switch all of this
234 * machinery off. Also do that if we have no means for atomic updates.
235 */
236 #if WANT_ANY && CPU_DISPATCH_P
237
238 /* The main output of this section is a bitmask of detected features. The
239 * least significant bit will be set if we've tried to probe. Always access
240 * this using `DISPATCH_LOAD' and `DISPATCH_STORE'.
241 */
242 static unsigned hwcaps = 0;
243
244 /* For each potentially interesting type which turned out not to exist or be
245 * wanted, define a dummy macro for the sake of the next step.
246 */
247 #ifndef WANT_AT_HWCAP
248 # define WANT_AT_HWCAP(_)
249 #endif
250
251 /* For each CPU family, define two lists.
252 *
253 * * `WANTAUX' is a list of the `WANT_AT_MUMBLE' macros which the CPU
254 * family tried to register interest in above. Each entry contains the
255 * interesting auxiliary vector entry type, the name of the union branch
256 * for its value, and the name of the slot in `struct auxprobe' in which
257 * to store the value.
258 *
259 * * `CAPMAP' is a list describing the output features which the CPU family
260 * intends to satisfy from the auxiliary vector. Each entry contains a
261 * feature name suffix, and the token name (for `check_env').
262 */
263 #if CPUFAM_ARMEL
264 # define WANTAUX(_) \
265 WANT_AT_HWCAP(_)
266 # define CAPMAP(_) \
267 _(ARM_VFP, "arm:vfp") \
268 _(ARM_NEON, "arm:neon") \
269 _(ARM_V4, "arm:v4") \
270 _(ARM_D32, "arm:d32")
271 #endif
272
273 /* Build the bitmask for `hwcaps' from the `CAPMAP' list. */
274 enum {
275 HFI_PROBED = 0,
276 #define HFI__ENUM(feat, tok) HFI_##feat,
277 CAPMAP(HFI__ENUM)
278 #undef HFI__ENUM
279 HFI__END
280 };
281 enum {
282 HF_PROBED = 1,
283 #define HF__FLAG(feat, tok) HF_##feat = 1 << HFI_##feat,
284 CAPMAP(HF__FLAG)
285 #undef HF__FLAG
286 HF__END
287 };
288
289 /* Build a structure in which we can capture the interesting data from the
290 * auxiliary vector.
291 */
292 #define AUXUTYPE_i long
293 #define AUXUTYPE_u unsigned long
294 #define AUXUTYPE_p const void *
295 struct auxprobe {
296 #define AUXPROBE__SLOT(type, ubranch, slot) AUXUTYPE_##ubranch slot;
297 WANTAUX(AUXPROBE__SLOT)
298 #undef AUXPROBE_SLOT
299 };
300
301 /* --- @probe_hwcaps@ --- *
302 *
303 * Arguments: ---
304 *
305 * Returns: ---
306 *
307 * Use: Attempt to find the auxiliary vector (which is well hidden)
308 * and discover interesting features from it.
309 */
310
311 static void probe_hwcaps(void)
312 {
313 unsigned hw = HF_PROBED;
314 struct auxprobe probed = { 0 };
315
316 /* Populate `probed' with the information we manage to retrieve from the
317 * auxiliary vector. Slots we couldn't find are left zero-valued.
318 */
319 #if defined(HAVE_GETAUXVAL)
320 /* Shiny new libc lets us request individual entry types. This is almost
321 * too easy.
322 */
323 # define CAP__GET(type, slot, ubranch) \
324 probed.slot.ubranch = (AUXUTYPE_##ubranch)getauxval(type);
325 WANTAUX(CAP__GET)
326 #else
327 /* Otherwise we're a bit stuck, really. Modern Linux kernels make a copy
328 * of the vector available in `/procc' so we could try that.
329 *
330 * The usual place is stuck on the end of the environment vector, but that
331 * may well have moved, and we have no way of telling whether it has or
332 * whether there was ever an auxiliary vector there at all; so don't do
333 * that.
334 */
335 {
336 FILE *fp = 0;
337 unsigned char *p = 0, *q = 0;
338 const struct auxentry *a;
339 size_t sz, off, n;
340
341 /* Open the file and read it into a memory chunk. */
342 if ((fp = fopen("/proc/self/auxv", "rb")) == 0) goto clean;
343 sz = 4096; off = 0;
344 if ((p = malloc(sz)) == 0) goto clean;
345 for (;;) {
346 n = fread(p + off, 1, sz - off, fp);
347 off += n;
348 if (off < sz) break;
349 sz *= 2; if ((q = realloc(p, sz)) == 0) break;
350 p = q;
351 }
352
353 /* Work through the vector (or as much of it as we found) and extract the
354 * types we're interested in.
355 */
356 for (a = (const struct auxentry *)p,
357 n = sz/sizeof(struct auxentry);
358 n--; a++) {
359 switch (a->type) {
360 #define CAP__SWITCH(type, ubranch, slot) \
361 case type: probed.slot = a->value.ubranch; break;
362 WANTAUX(CAP__SWITCH)
363 case AT_NULL: goto clean;
364 }
365 }
366
367 clean:
368 if (p) free(p);
369 if (fp) fclose(fp);
370 }
371 #endif
372
373 /* Each CPU family now has to pick through what was found and stashed in
374 * `probed', and set the appropriate flag bits in `hw'.
375 */
376 #if CPUFAM_ARMEL
377 if (probed.hwcap & HWCAP_VFPv3) hw |= HF_ARM_VFP;
378 if (probed.hwcap & HWCAP_NEON) hw |= HF_ARM_NEON;
379 if (probed.hwcap & HWCAP_VFPD32) hw |= HF_ARM_D32;
380 if (probed.hwcap & HWCAP_VFPv4) hw |= HF_ARM_V4;
381 #endif
382
383 /* Store the bitmask of features we probed for everyone to see. */
384 DISPATCH_STORE(hwcaps, hw);
385
386 /* Finally, make a report about the things we found. (Doing this earlier
387 * will pointlessly widen the window in which multiple threads will do the
388 * above auxiliary-vector probing.)
389 */
390 #define CAP__DEBUG(feat, tok) \
391 dispatch_debug("check auxv for feature `%s': %s", tok, \
392 hw & HF_##feat ? "available" : "absent");
393 CAPMAP(CAP__DEBUG)
394 #undef CAP__DEBUG
395 }
396
397 /* --- @get_hwcaps@ --- *
398 *
399 * Arguments: ---
400 *
401 * Returns: A mask of hardware capabilities and other features, as probed
402 * from the auxiliary vector.
403 */
404
405 static unsigned get_hwcaps(void)
406 {
407 unsigned hw;
408
409 DISPATCH_LOAD(hwcaps, hw);
410 if (!(hwcaps & HF_PROBED)) { probe_hwcaps(); DISPATCH_LOAD(hwcaps, hw); }
411 return (hw);
412 }
413
414 #endif
415
416 /*----- External interface ------------------------------------------------*/
417
418 /* --- @dispatch_debug@ --- *
419 *
420 * Arguments: @const char *fmt@ = a format string
421 * @...@ = additional arguments
422 *
423 * Returns: ---
424 *
425 * Use: Writes a formatted message to standard output if dispatch
426 * debugging is enabled.
427 */
428
429 void dispatch_debug(const char *fmt, ...)
430 {
431 va_list ap;
432 const char *e = getenv("CATACOMB_CPUDISPATCH_DEBUG");
433
434 if (e && *e != 'n' && *e != '0') {
435 va_start(ap, fmt);
436 fputs("Catacomb CPUDISPATCH: ", stderr);
437 vfprintf(stderr, fmt, ap);
438 fputc('\n', stderr);
439 va_end(ap);
440 }
441 }
442
443 /* --- @check_env@ --- *
444 *
445 * Arguments: @const char *ftok@ = feature token
446 *
447 * Returns: Zero if the feature is forced off; positive if it's forced
448 * on; negative if the user hasn't decided.
449 *
450 * Use: Checks the environment variable `CATACOMB_CPUFEAT' for the
451 * feature token @ftok@. The variable, if it exists, should be
452 * a space-separated sequence of `+tok' and `-tok' items. These
453 * tokens may end in `*', which matches any suffix.
454 */
455
456 static int IGNORABLE check_env(const char *ftok)
457 {
458 const char *p, *q, *pp;
459 int d;
460
461 p = getenv("CATACOMB_CPUFEAT");
462 if (!p) return (-1);
463
464 for (;;) {
465 while (isspace((unsigned char)*p)) p++;
466 if (!*p) return (-1);
467 switch (*p) {
468 case '+': d = +1; p++; break;
469 case '-': d = 0; p++; break;
470 default: d = -1; break;
471 }
472 for (q = p; *q && !isspace((unsigned char)*q); q++);
473 if (d >= 0) {
474 for (pp = ftok; p < q && *pp && *p == *pp; p++, pp++);
475 if ((p == q && !*pp) || (*p == '*' && p + 1 == q)) return (d);
476 }
477 p = q;
478 }
479 return (-1);
480 }
481
482 /* --- @cpu_feature_p@ --- *
483 *
484 * Arguments: @unsigned feat@ = a @CPUFEAT_...@ code
485 *
486 * Returns: Nonzero if the feature is available.
487 */
488
489 #include <stdio.h>
490
491 static int IGNORABLE
492 feat_debug(const char *ftok, const char *check, int verdict)
493 {
494 if (verdict >= 0) {
495 dispatch_debug("feature `%s': %s -> %s", ftok, check,
496 verdict ? "available" : "absent");
497 }
498 return (verdict);
499 }
500
501 int cpu_feature_p(int feat)
502 {
503 int IGNORABLE f;
504 IGNORE(f);
505 #define CASE_CPUFEAT(feat, ftok, cond) case CPUFEAT_##feat: \
506 if ((f = feat_debug(ftok, "environment override", \
507 check_env(ftok))) >= 0) \
508 return (f); \
509 else \
510 return (feat_debug(ftok, "runtime probe", cond));
511
512 switch (feat) {
513 #if CPUFAM_X86 || CPUFAM_AMD64
514 CASE_CPUFEAT(X86_SSE2, "x86:sse2",
515 xmm_registers_available_p() &&
516 cpuid_features_p(CPUID1D_SSE2, 0));
517 CASE_CPUFEAT(X86_AESNI, "x86:aesni",
518 xmm_registers_available_p() &&
519 cpuid_features_p(CPUID1D_SSE2, CPUID1C_AESNI));
520 CASE_CPUFEAT(X86_RDRAND, "x86:rdrand",
521 cpuid_features_p(0, CPUID1C_RDRAND));
522 #endif
523 #ifdef CAPMAP
524 # define FEATP__CASE(feat, tok) \
525 CASE_CPUFEAT(feat, tok, get_hwcaps() & HF_##feat)
526 CAPMAP(FEATP__CASE)
527 #undef FEATP__CASE
528 #endif
529 default:
530 dispatch_debug("denying unknown feature %d", feat);
531 return (0);
532 }
533 #undef CASE_CPUFEAT
534 }
535
536 /*----- That's all, folks -------------------------------------------------*/