math/mpmont.c: Factor out the computational core of the algorithm.
[catacomb] / math / mpmont.c
1 /* -*-c-*-
2 *
3 * Montgomery reduction
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "mp.h"
31 #include "mpmont.h"
32
33 /*----- Tweakables --------------------------------------------------------*/
34
35 /* --- @MPMONT_DISABLE@ --- *
36 *
37 * Replace all the clever Montgomery reduction with good old-fashioned long
38 * division.
39 */
40
41 /* #define MPMONT_DISABLE */
42
43 /*----- Low-level implementation ------------------------------------------*/
44
45 #ifndef MPMONT_DISABLE
46
47 /* --- @redccore@ --- *
48 *
49 * Arguments: @mpw *dv, *dvl@ = base and limit of source/destination
50 * @const mpw *mv@ = base of modulus %$m$%
51 * @size_t n@ = length of modulus
52 * @const mpw *mi@ = base of REDC coefficient %$m'$%
53 *
54 * Returns: ---
55 *
56 * Use: Let %$a$% be the input operand. Store in %$d$% the value
57 * %$a + (m' a \bmod R) m$%. The destination has space for at
58 * least %$2 n + 1$% words of result.
59 */
60
61 static void redccore(mpw *dv, mpw *dvl, const mpw *mv,
62 size_t n, const mpw *mi)
63 {
64 mpw mi0 = *mi;
65 size_t i;
66
67 for (i = 0; i < n; i++) {
68 MPX_UMLAN(dv, dvl, mv, mv + n, MPW(*dv*mi0));
69 dv++;
70 }
71 }
72
73 /* --- @redccore@ --- *
74 *
75 * Arguments: @mpw *dv, *dvl@ = base and limit of source/destination
76 * @const mpw *av, *avl@ = base and limit of first multiplicand
77 * @const mpw *bv, *bvl@ = base and limit of second multiplicand
78 * @const mpw *mv@ = base of modulus %$m$%
79 * @size_t n@ = length of modulus
80 * @const mpw *mi@ = base of REDC coefficient %$m'$%
81 *
82 * Returns: ---
83 *
84 * Use: Let %$a$% and %$b$% be the multiplicands. Let %$w = a b$%.
85 * Store in %$d$% the value %$a b + (m' a b \bmod R) m$%.
86 */
87
88 static void mulcore(mpw *dv, mpw *dvl,
89 const mpw *av, const mpw *avl,
90 const mpw *bv, const mpw *bvl,
91 const mpw *mv, size_t n, const mpw *mi)
92 {
93 mpw ai, b0, y, mi0 = *mi;
94 const mpw *tv, *tvl;
95 const mpw *mvl = mv + n;
96 size_t i = 0;
97
98 /* --- Initial setup --- */
99
100 MPX_ZERO(dv, dvl);
101 if (avl - av > bvl - bv) {
102 tv = av; av = bv; bv = tv;
103 tvl = avl; avl = bvl; bvl = tvl;
104 }
105 b0 = *bv;
106
107 /* --- Multiply, until we run out of multiplicand --- */
108
109 while (i < n && av < avl) {
110 ai = *av++;
111 y = MPW((*dv + ai*b0)*mi0);
112 MPX_UMLAN(dv, dvl, bv, bvl, ai);
113 MPX_UMLAN(dv, dvl, mv, mvl, y);
114 dv++; i++;
115 }
116
117 /* --- Continue reducing until we run out of modulus --- */
118
119 while (i < n) {
120 y = MPW(*dv*mi0);
121 MPX_UMLAN(dv, dvl, mv, mvl, y);
122 dv++; i++;
123 }
124 }
125
126 /* --- @finish@ --- *
127 *
128 * Arguments: @mpmont *mm@ = pointer to a Montgomery reduction context
129 * *mp *d@ = pointer to mostly-reduced operand
130 *
131 * Returns: ---
132 *
133 * Use: Applies the finishing touches to Montgomery reduction. The
134 * operand @d@ is a multiple of %$R%$ at this point, so it needs
135 * to be shifted down; the result might need a further
136 * subtraction to get it into the right interval; and we may
137 * need to do an additional subtraction if %$d$% is negative.
138 */
139
140 static void finish(mpmont *mm, mp *d)
141 {
142 mpw *dv = d->v, *dvl = d->vl;
143 size_t n = mm->n;
144
145 memmove(dv, dv + n, MPWS(dvl - (dv + n)));
146 dvl -= n;
147
148 if (MPX_UCMP(dv, dvl, >=, mm->m->v, mm->m->vl))
149 mpx_usub(dv, dvl, dv, dvl, mm->m->v, mm->m->vl);
150
151 if (d->f & MP_NEG) {
152 mpx_usub(dv, dvl, mm->m->v, mm->m->vl, dv, dvl);
153 d->f &= ~MP_NEG;
154 }
155
156 d->vl = dvl;
157 MP_SHRINK(d);
158 }
159
160 #endif
161
162 /*----- Reduction and multiplication --------------------------------------*/
163
164 /* --- @mpmont_create@ --- *
165 *
166 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
167 * @mp *m@ = modulus to use
168 *
169 * Returns: Zero on success, nonzero on error.
170 *
171 * Use: Initializes a Montgomery reduction context ready for use.
172 * The argument @m@ must be a positive odd integer.
173 */
174
175 #ifdef MPMONT_DISABLE
176
177 int mpmont_create(mpmont *mm, mp *m)
178 {
179 mp_shrink(m);
180 mm->m = MP_COPY(m);
181 mm->r = MP_ONE;
182 mm->r2 = MP_ONE;
183 mm->mi = MP_ONE;
184 return (0);
185 }
186
187 #else
188
189 int mpmont_create(mpmont *mm, mp *m)
190 {
191 size_t n = MP_LEN(m);
192 mp *r2 = mp_new(2 * n + 1, 0);
193 mp r;
194
195 /* --- Take a copy of the modulus --- */
196
197 if (!MP_POSP(m) || !MP_ODDP(m))
198 return (-1);
199 mm->m = MP_COPY(m);
200
201 /* --- Determine %$R^2$% --- */
202
203 mm->n = n;
204 MPX_ZERO(r2->v, r2->vl - 1);
205 r2->vl[-1] = 1;
206
207 /* --- Find the magic value @mi@ --- */
208
209 mp_build(&r, r2->v + n, r2->vl);
210 mm->mi = mp_modinv(MP_NEW, m, &r);
211 mm->mi = mp_sub(mm->mi, &r, mm->mi);
212
213 /* --- Discover the values %$R \bmod m$% and %$R^2 \bmod m$% --- */
214
215 mm->r2 = MP_NEW;
216 mp_div(0, &mm->r2, r2, m);
217 mm->r = mpmont_reduce(mm, MP_NEW, mm->r2);
218 MP_DROP(r2);
219 return (0);
220 }
221
222 #endif
223
224 /* --- @mpmont_destroy@ --- *
225 *
226 * Arguments: @mpmont *mm@ = pointer to a Montgomery reduction context
227 *
228 * Returns: ---
229 *
230 * Use: Disposes of a context when it's no longer of any use to
231 * anyone.
232 */
233
234 void mpmont_destroy(mpmont *mm)
235 {
236 MP_DROP(mm->m);
237 MP_DROP(mm->r);
238 MP_DROP(mm->r2);
239 MP_DROP(mm->mi);
240 }
241
242 /* --- @mpmont_reduce@ --- *
243 *
244 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
245 * @mp *d@ = destination
246 * @mp *a@ = source, assumed positive
247 *
248 * Returns: Result, %$a R^{-1} \bmod m$%.
249 */
250
251 #ifdef MPMONT_DISABLE
252
253 mp *mpmont_reduce(mpmont *mm, mp *d, mp *a)
254 {
255 mp_div(0, &d, a, mm->m);
256 return (d);
257 }
258
259 #else
260
261 mp *mpmont_reduce(mpmont *mm, mp *d, mp *a)
262 {
263 size_t n = mm->n;
264
265 /* --- Check for serious Karatsuba reduction --- */
266
267 if (n > MPK_THRESH * 3) {
268 mp al;
269 mpw *vl;
270 mp *u;
271
272 if (MP_LEN(a) >= n) vl = a->v + n;
273 else vl = a->vl;
274 mp_build(&al, a->v, vl);
275 u = mp_mul(MP_NEW, &al, mm->mi);
276 if (MP_LEN(u) > n) u->vl = u->v + n;
277 u = mp_mul(u, u, mm->m);
278 d = mp_add(d, a, u);
279 MP_ENSURE(d, n);
280 mp_drop(u);
281 }
282
283 /* --- Otherwise do it the hard way --- */
284
285 else {
286 a = MP_COPY(a);
287 if (d) MP_DROP(d);
288 d = a;
289 MP_DEST(d, 2*mm->n + 1, a->f);
290 redccore(d->v, d->vl, mm->m->v, mm->n, mm->mi->v);
291 }
292
293 /* --- Wrap everything up --- */
294
295 finish(mm, d);
296 return (d);
297 }
298
299 #endif
300
301 /* --- @mpmont_mul@ --- *
302 *
303 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
304 * @mp *d@ = destination
305 * @mp *a, *b@ = sources, assumed positive
306 *
307 * Returns: Result, %$a b R^{-1} \bmod m$%.
308 */
309
310 #ifdef MPMONT_DISABLE
311
312 mp *mpmont_mul(mpmont *mm, mp *d, mp *a, mp *b)
313 {
314 d = mp_mul(d, a, b);
315 mp_div(0, &d, d, mm->m);
316 return (d);
317 }
318
319 #else
320
321 mp *mpmont_mul(mpmont *mm, mp *d, mp *a, mp *b)
322 {
323 if (mm->n > MPK_THRESH * 3) {
324 d = mp_mul(d, a, b);
325 d = mpmont_reduce(mm, d, d);
326 } else {
327 a = MP_COPY(a);
328 b = MP_COPY(b);
329 MP_DEST(d, 2*mm->n + 1, a->f | b->f | MP_UNDEF);
330 mulcore(d->v, d->vl, a->v, a->vl, b->v, b->vl,
331 mm->m->v, mm->n, mm->mi->v);
332 d->f = ((a->f | b->f) & MP_BURN) | ((a->f ^ b->f) & MP_NEG);
333 finish(mm, d);
334 MP_DROP(a); MP_DROP(b);
335 }
336
337 return (d);
338 }
339
340 #endif
341
342 /*----- Test rig ----------------------------------------------------------*/
343
344 #ifdef TEST_RIG
345
346 static int tcreate(dstr *v)
347 {
348 mp *m = *(mp **)v[0].buf;
349 mp *mi = *(mp **)v[1].buf;
350 mp *r = *(mp **)v[2].buf;
351 mp *r2 = *(mp **)v[3].buf;
352
353 mpmont mm;
354 int ok = 1;
355
356 mpmont_create(&mm, m);
357
358 if (mm.mi->v[0] != mi->v[0]) {
359 fprintf(stderr, "\n*** bad mi: found %lu, expected %lu",
360 (unsigned long)mm.mi->v[0], (unsigned long)mi->v[0]);
361 fputs("\nm = ", stderr); mp_writefile(m, stderr, 10);
362 fputc('\n', stderr);
363 ok = 0;
364 }
365
366 if (!MP_EQ(mm.r, r)) {
367 fputs("\n*** bad r", stderr);
368 fputs("\nm = ", stderr); mp_writefile(m, stderr, 10);
369 fputs("\nexpected ", stderr); mp_writefile(r, stderr, 10);
370 fputs("\n found ", stderr); mp_writefile(mm.r, stderr, 10);
371 fputc('\n', stderr);
372 ok = 0;
373 }
374
375 if (!MP_EQ(mm.r2, r2)) {
376 fputs("\n*** bad r2", stderr);
377 fputs("\nm = ", stderr); mp_writefile(m, stderr, 10);
378 fputs("\nexpected ", stderr); mp_writefile(r2, stderr, 10);
379 fputs("\n found ", stderr); mp_writefile(mm.r2, stderr, 10);
380 fputc('\n', stderr);
381 ok = 0;
382 }
383
384 MP_DROP(m);
385 MP_DROP(mi);
386 MP_DROP(r);
387 MP_DROP(r2);
388 mpmont_destroy(&mm);
389 assert(mparena_count(MPARENA_GLOBAL) == 0);
390 return (ok);
391 }
392
393 static int tmul(dstr *v)
394 {
395 mp *m = *(mp **)v[0].buf;
396 mp *a = *(mp **)v[1].buf;
397 mp *b = *(mp **)v[2].buf;
398 mp *r = *(mp **)v[3].buf;
399 int ok = 1;
400
401 mpmont mm;
402 mpmont_create(&mm, m);
403
404 {
405 mp *qr = mp_mul(MP_NEW, a, b);
406 mp_div(0, &qr, qr, m);
407
408 if (!MP_EQ(qr, r)) {
409 fputs("\n*** classical modmul failed", stderr);
410 fputs("\n m = ", stderr); mp_writefile(m, stderr, 10);
411 fputs("\n a = ", stderr); mp_writefile(a, stderr, 10);
412 fputs("\n b = ", stderr); mp_writefile(b, stderr, 10);
413 fputs("\n r = ", stderr); mp_writefile(r, stderr, 10);
414 fputs("\nqr = ", stderr); mp_writefile(qr, stderr, 10);
415 fputc('\n', stderr);
416 ok = 0;
417 }
418
419 mp_drop(qr);
420 }
421
422 {
423 mp *ar = mpmont_mul(&mm, MP_NEW, a, mm.r2);
424 mp *br = mpmont_mul(&mm, MP_NEW, b, mm.r2);
425 mp *mr = mpmont_mul(&mm, MP_NEW, ar, br);
426 mr = mpmont_reduce(&mm, mr, mr);
427 if (!MP_EQ(mr, r)) {
428 fputs("\n*** montgomery modmul failed", stderr);
429 fputs("\n m = ", stderr); mp_writefile(m, stderr, 10);
430 fputs("\n a = ", stderr); mp_writefile(a, stderr, 10);
431 fputs("\n b = ", stderr); mp_writefile(b, stderr, 10);
432 fputs("\n r = ", stderr); mp_writefile(r, stderr, 10);
433 fputs("\nmr = ", stderr); mp_writefile(mr, stderr, 10);
434 fputc('\n', stderr);
435 ok = 0;
436 }
437 MP_DROP(ar); MP_DROP(br);
438 mp_drop(mr);
439 }
440
441
442 MP_DROP(m);
443 MP_DROP(a);
444 MP_DROP(b);
445 MP_DROP(r);
446 mpmont_destroy(&mm);
447 assert(mparena_count(MPARENA_GLOBAL) == 0);
448 return ok;
449 }
450
451 static test_chunk tests[] = {
452 { "create", tcreate, { &type_mp, &type_mp, &type_mp, &type_mp, 0 } },
453 { "mul", tmul, { &type_mp, &type_mp, &type_mp, &type_mp, 0 } },
454 { 0, 0, { 0 } },
455 };
456
457 int main(int argc, char *argv[])
458 {
459 sub_init();
460 test_run(argc, argv, tests, SRCDIR "/t/mpmont");
461 return (0);
462 }
463
464 #endif
465
466 /*----- That's all, folks -------------------------------------------------*/