progs/perftest.c: Use from Glibc syscall numbers.
[catacomb] / math / mpmont.c
1 /* -*-c-*-
2 *
3 * Montgomery reduction
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31 #include "dispatch.h"
32 #include "mp.h"
33 #include "mpmont.h"
34
35 /*----- Tweakables --------------------------------------------------------*/
36
37 /* --- @MPMONT_DISABLE@ --- *
38 *
39 * Replace all the clever Montgomery reduction with good old-fashioned long
40 * division.
41 */
42
43 /* #define MPMONT_DISABLE */
44
45 #define MPMONT_KTHRESH (16*MPK_THRESH)
46
47 /*----- Low-level implementation ------------------------------------------*/
48
49 #ifndef MPMONT_DISABLE
50
51 /* --- @redccore@ --- *
52 *
53 * Arguments: @mpw *dv, *dvl@ = base and limit of source/destination
54 * @const mpw *mv@ = base of modulus %$m$%
55 * @size_t n@ = length of modulus
56 * @const mpw *mi@ = base of REDC coefficient %$m'$%
57 *
58 * Returns: ---
59 *
60 * Use: Let %$a$% be the input operand. Store in %$d$% the value
61 * %$a + (m' a \bmod R) m$%. The destination has space for at
62 * least %$2 n + 1$% words of result.
63 */
64
65 CPU_DISPATCH(static, (void), void, redccore,
66 (mpw *dv, mpw *dvl, const mpw *mv, size_t n, const mpw *mi),
67 (dv, dvl, mv, n, mi), pick_redccore, simple_redccore);
68
69 static void simple_redccore(mpw *dv, mpw *dvl, const mpw *mv,
70 size_t n, const mpw *mi)
71 {
72 mpw mi0 = *mi;
73 size_t i;
74
75 for (i = 0; i < n; i++) {
76 MPX_UMLAN(dv, dvl, mv, mv + n, MPW(*dv*mi0));
77 dv++;
78 }
79 }
80
81 #define MAYBE_REDC4(impl) \
82 extern void mpxmont_redc4_##impl(mpw *dv, mpw *dvl, const mpw *mv, \
83 size_t n, const mpw *mi); \
84 static void maybe_redc4_##impl(mpw *dv, mpw *dvl, const mpw *mv, \
85 size_t n, const mpw *mi) \
86 { \
87 if (n%4) simple_redccore(dv, dvl, mv, n, mi); \
88 else mpxmont_redc4_##impl(dv, dvl, mv, n, mi); \
89 }
90
91 #if CPUFAM_X86
92 MAYBE_REDC4(x86_sse2)
93 MAYBE_REDC4(x86_avx)
94 #endif
95
96 #if CPUFAM_AMD64
97 MAYBE_REDC4(amd64_sse2)
98 MAYBE_REDC4(amd64_avx)
99 #endif
100
101 #if CPUFAM_ARMEL
102 MAYBE_REDC4(arm_neon)
103 #endif
104
105 #if CPUFAM_ARM64
106 MAYBE_REDC4(arm64_simd)
107 #endif
108
109 static redccore__functype *pick_redccore(void)
110 {
111 #if CPUFAM_X86
112 DISPATCH_PICK_COND(mpmont_reduce, maybe_redc4_x86_avx,
113 cpu_feature_p(CPUFEAT_X86_AVX));
114 DISPATCH_PICK_COND(mpmont_reduce, maybe_redc4_x86_sse2,
115 cpu_feature_p(CPUFEAT_X86_SSE2));
116 #endif
117 #if CPUFAM_AMD64
118 DISPATCH_PICK_COND(mpmont_reduce, maybe_redc4_amd64_avx,
119 cpu_feature_p(CPUFEAT_X86_AVX));
120 DISPATCH_PICK_COND(mpmont_reduce, maybe_redc4_amd64_sse2,
121 cpu_feature_p(CPUFEAT_X86_SSE2));
122 #endif
123 #if CPUFAM_ARMEL
124 DISPATCH_PICK_COND(mpmont_reduce, maybe_redc4_arm_neon,
125 cpu_feature_p(CPUFEAT_ARM_NEON));
126 #endif
127 #if CPUFAM_ARM64
128 DISPATCH_PICK_COND(mpmont_reduce, maybe_redc4_arm64_simd,
129 cpu_feature_p(CPUFEAT_ARM_NEON));
130 #endif
131 DISPATCH_PICK_FALLBACK(mpmont_reduce, simple_redccore);
132 }
133
134 /* --- @mulcore@ --- *
135 *
136 * Arguments: @mpw *dv, *dvl@ = base and limit of source/destination
137 * @const mpw *av, *avl@ = base and limit of first multiplicand
138 * @const mpw *bv, *bvl@ = base and limit of second multiplicand
139 * @const mpw *mv@ = base of modulus %$m$%
140 * @size_t n@ = length of modulus
141 * @const mpw *mi@ = base of REDC coefficient %$m'$%
142 *
143 * Returns: ---
144 *
145 * Use: Let %$a$% and %$b$% be the multiplicands. Let %$w = a b$%.
146 * Store in %$d$% the value %$a b + (m' a b \bmod R) m$%.
147 */
148
149 CPU_DISPATCH(static, (void), void, mulcore,
150 (mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
151 const mpw *bv, const mpw *bvl, const mpw *mv,
152 size_t n, const mpw *mi),
153 (dv, dvl, av, avl, bv, bvl, mv, n, mi),
154 pick_mulcore, simple_mulcore);
155
156 static void simple_mulcore(mpw *dv, mpw *dvl,
157 const mpw *av, const mpw *avl,
158 const mpw *bv, const mpw *bvl,
159 const mpw *mv, size_t n, const mpw *mi)
160 {
161 mpw ai, b0, y, mi0 = *mi;
162 const mpw *tv, *tvl;
163 const mpw *mvl = mv + n;
164 size_t i = 0;
165
166 /* --- Initial setup --- */
167
168 MPX_ZERO(dv, dvl);
169 if (avl - av > bvl - bv) {
170 tv = av; av = bv; bv = tv;
171 tvl = avl; avl = bvl; bvl = tvl;
172 }
173 b0 = *bv;
174
175 /* --- Multiply, until we run out of multiplicand --- */
176
177 while (i < n && av < avl) {
178 ai = *av++;
179 y = MPW((*dv + ai*b0)*mi0);
180 MPX_UMLAN(dv, dvl, bv, bvl, ai);
181 MPX_UMLAN(dv, dvl, mv, mvl, y);
182 dv++; i++;
183 }
184
185 /* --- Continue reducing until we run out of modulus --- */
186
187 while (i < n) {
188 y = MPW(*dv*mi0);
189 MPX_UMLAN(dv, dvl, mv, mvl, y);
190 dv++; i++;
191 }
192 }
193
194 #define MAYBE_MUL4(impl) \
195 extern void mpxmont_mul4_##impl(mpw *dv, \
196 const mpw *av, const mpw *bv, \
197 const mpw *mv, \
198 size_t n, const mpw *mi); \
199 static void maybe_mul4_##impl(mpw *dv, mpw *dvl, \
200 const mpw *av, const mpw *avl, \
201 const mpw *bv, const mpw *bvl, \
202 const mpw *mv, size_t n, const mpw *mi) \
203 { \
204 size_t an = avl - av, bn = bvl - bv; \
205 if (n%4 || an != n || bn != n) \
206 simple_mulcore(dv, dvl, av, avl, bv, bvl, mv, n, mi); \
207 else { \
208 mpxmont_mul4_##impl(dv, av, bv, mv, n, mi); \
209 MPX_ZERO(dv + 2*n + 1, dvl); \
210 } \
211 }
212
213 #if CPUFAM_X86
214 MAYBE_MUL4(x86_sse2)
215 MAYBE_MUL4(x86_avx)
216 #endif
217
218 #if CPUFAM_AMD64
219 MAYBE_MUL4(amd64_sse2)
220 MAYBE_MUL4(amd64_avx)
221 #endif
222
223 #if CPUFAM_ARMEL
224 MAYBE_MUL4(arm_neon)
225 #endif
226
227 #if CPUFAM_ARM64
228 MAYBE_MUL4(arm64_simd)
229 #endif
230
231 static mulcore__functype *pick_mulcore(void)
232 {
233 #if CPUFAM_X86
234 DISPATCH_PICK_COND(mpmont_mul, maybe_mul4_x86_avx,
235 cpu_feature_p(CPUFEAT_X86_AVX));
236 DISPATCH_PICK_COND(mpmont_mul, maybe_mul4_x86_sse2,
237 cpu_feature_p(CPUFEAT_X86_SSE2));
238 #endif
239 #if CPUFAM_AMD64
240 DISPATCH_PICK_COND(mpmont_mul, maybe_mul4_amd64_avx,
241 cpu_feature_p(CPUFEAT_X86_AVX));
242 DISPATCH_PICK_COND(mpmont_mul, maybe_mul4_amd64_sse2,
243 cpu_feature_p(CPUFEAT_X86_SSE2));
244 #endif
245 #if CPUFAM_ARMEL
246 DISPATCH_PICK_COND(mpmont_mul, maybe_mul4_arm_neon,
247 cpu_feature_p(CPUFEAT_ARM_NEON));
248 #endif
249 #if CPUFAM_ARM64
250 DISPATCH_PICK_COND(mpmont_mul, maybe_mul4_arm64_simd,
251 cpu_feature_p(CPUFEAT_ARM_NEON));
252 #endif
253 DISPATCH_PICK_FALLBACK(mpmont_mul, simple_mulcore);
254 }
255
256 /* --- @finish@ --- *
257 *
258 * Arguments: @const mpmont *mm@ = pointer to a Montgomery reduction
259 * context
260 * *mp *d@ = pointer to mostly-reduced operand
261 *
262 * Returns: ---
263 *
264 * Use: Applies the finishing touches to Montgomery reduction. The
265 * operand @d@ is a multiple of %$R%$ at this point, so it needs
266 * to be shifted down; the result might need a further
267 * subtraction to get it into the right interval; and we may
268 * need to do an additional subtraction if %$d$% is negative.
269 */
270
271 static void finish(const mpmont *mm, mp *d)
272 {
273 mpw *dv = d->v, *dvl = d->vl;
274 size_t n = mm->n;
275
276 memmove(dv, dv + n, MPWS(dvl - (dv + n)));
277 dvl -= n;
278
279 if (MPX_UCMP(dv, dvl, >=, mm->m->v, mm->m->vl))
280 mpx_usub(dv, dvl, dv, dvl, mm->m->v, mm->m->vl);
281
282 if (d->f & MP_NEG) {
283 mpx_usub(dv, dvl, mm->m->v, mm->m->vl, dv, dvl);
284 d->f &= ~MP_NEG;
285 }
286
287 d->vl = dvl;
288 MP_SHRINK(d);
289 }
290
291 #endif
292
293 /*----- Reduction and multiplication --------------------------------------*/
294
295 /* --- @mpmont_create@ --- *
296 *
297 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
298 * @mp *m@ = modulus to use
299 *
300 * Returns: Zero on success, nonzero on error.
301 *
302 * Use: Initializes a Montgomery reduction context ready for use.
303 * The argument @m@ must be a positive odd integer.
304 */
305
306 #ifdef MPMONT_DISABLE
307
308 int mpmont_create(mpmont *mm, mp *m)
309 {
310 mp_shrink(m);
311 mm->m = MP_COPY(m);
312 mm->r = MP_ONE;
313 mm->r2 = MP_ONE;
314 mm->mi = MP_ONE;
315 return (0);
316 }
317
318 #else
319
320 int mpmont_create(mpmont *mm, mp *m)
321 {
322 size_t n = MP_LEN(m);
323 mp *r2 = mp_new(2 * n + 1, 0);
324 mp r;
325
326 /* --- Take a copy of the modulus --- */
327
328 if (!MP_POSP(m) || !MP_ODDP(m))
329 return (-1);
330 mm->m = MP_COPY(m);
331
332 /* --- Determine %$R^2$% --- */
333
334 mm->n = n;
335 MPX_ZERO(r2->v, r2->vl - 1);
336 r2->vl[-1] = 1;
337
338 /* --- Find the magic value @mi@ --- */
339
340 mp_build(&r, r2->v + n, r2->vl);
341 mm->mi = mp_modinv(MP_NEW, m, &r);
342 mm->mi = mp_sub(mm->mi, &r, mm->mi);
343 MP_ENSURE(mm->mi, n);
344
345 /* --- Discover the values %$R \bmod m$% and %$R^2 \bmod m$% --- */
346
347 mm->r2 = MP_NEW;
348 mp_div(0, &mm->r2, r2, m);
349 mm->r = mpmont_reduce(mm, MP_NEW, mm->r2);
350 MP_DROP(r2);
351 return (0);
352 }
353
354 #endif
355
356 /* --- @mpmont_destroy@ --- *
357 *
358 * Arguments: @mpmont *mm@ = pointer to a Montgomery reduction context
359 *
360 * Returns: ---
361 *
362 * Use: Disposes of a context when it's no longer of any use to
363 * anyone.
364 */
365
366 void mpmont_destroy(mpmont *mm)
367 {
368 MP_DROP(mm->m);
369 MP_DROP(mm->r);
370 MP_DROP(mm->r2);
371 MP_DROP(mm->mi);
372 }
373
374 /* --- @mpmont_reduce@ --- *
375 *
376 * Arguments: @const mpmont *mm@ = pointer to Montgomery reduction context
377 * @mp *d@ = destination
378 * @mp *a@ = source, assumed positive
379 *
380 * Returns: Result, %$a R^{-1} \bmod m$%.
381 */
382
383 #ifdef MPMONT_DISABLE
384
385 mp *mpmont_reduce(const mpmont *mm, mp *d, mp *a)
386 {
387 mp_div(0, &d, a, mm->m);
388 return (d);
389 }
390
391 #else
392
393 mp *mpmont_reduce(const mpmont *mm, mp *d, mp *a)
394 {
395 size_t n = mm->n;
396
397 /* --- Check for serious Karatsuba reduction --- */
398
399 if (n > MPMONT_KTHRESH) {
400 mp al;
401 mpw *vl;
402 mp *u;
403
404 if (MP_LEN(a) >= n) vl = a->v + n;
405 else vl = a->vl;
406 mp_build(&al, a->v, vl);
407 u = mp_mul(MP_NEW, &al, mm->mi);
408 if (MP_LEN(u) > n) u->vl = u->v + n;
409 u = mp_mul(u, u, mm->m);
410 d = mp_add(d, a, u);
411 MP_ENSURE(d, n);
412 mp_drop(u);
413 }
414
415 /* --- Otherwise do it the hard way --- */
416
417 else {
418 a = MP_COPY(a);
419 if (d) MP_DROP(d);
420 d = a;
421 MP_DEST(d, 2*mm->n + 1, a->f);
422 redccore(d->v, d->vl, mm->m->v, mm->n, mm->mi->v);
423 }
424
425 /* --- Wrap everything up --- */
426
427 finish(mm, d);
428 return (d);
429 }
430
431 #endif
432
433 /* --- @mpmont_mul@ --- *
434 *
435 * Arguments: @const mpmont *mm@ = pointer to Montgomery reduction context
436 * @mp *d@ = destination
437 * @mp *a, *b@ = sources, assumed positive
438 *
439 * Returns: Result, %$a b R^{-1} \bmod m$%.
440 */
441
442 #ifdef MPMONT_DISABLE
443
444 mp *mpmont_mul(const mpmont *mm, mp *d, mp *a, mp *b)
445 {
446 d = mp_mul(d, a, b);
447 mp_div(0, &d, d, mm->m);
448 return (d);
449 }
450
451 #else
452
453 mp *mpmont_mul(const mpmont *mm, mp *d, mp *a, mp *b)
454 {
455 size_t n = mm->n;
456
457 if (n > MPMONT_KTHRESH) {
458 d = mp_mul(d, a, b);
459 d = mpmont_reduce(mm, d, d);
460 } else {
461 a = MP_COPY(a); b = MP_COPY(b);
462 MP_DEST(d, 2*n + 1, a->f | b->f | MP_UNDEF);
463 mulcore(d->v, d->vl, a->v, a->vl, b->v, b->vl,
464 mm->m->v, mm->n, mm->mi->v);
465 d->f = ((a->f | b->f) & MP_BURN) | ((a->f ^ b->f) & MP_NEG);
466 finish(mm, d);
467 MP_DROP(a); MP_DROP(b);
468 }
469
470 return (d);
471 }
472
473 #endif
474
475 /*----- Test rig ----------------------------------------------------------*/
476
477 #ifdef TEST_RIG
478
479 #ifdef ENABLE_ASM_DEBUG
480 # include "regdump.h"
481 #endif
482
483 static int tcreate(dstr *v)
484 {
485 mp *m = *(mp **)v[0].buf;
486 mp *mi = *(mp **)v[1].buf;
487 mp *r = *(mp **)v[2].buf;
488 mp *r2 = *(mp **)v[3].buf;
489
490 mpmont mm;
491 int ok = 1;
492
493 mpmont_create(&mm, m);
494
495 if (mm.mi->v[0] != mi->v[0]) {
496 fprintf(stderr, "\n*** bad mi: found %lu, expected %lu",
497 (unsigned long)mm.mi->v[0], (unsigned long)mi->v[0]);
498 fputs("\nm = ", stderr); mp_writefile(m, stderr, 10);
499 fputc('\n', stderr);
500 ok = 0;
501 }
502
503 if (!MP_EQ(mm.r, r)) {
504 fputs("\n*** bad r", stderr);
505 fputs("\nm = ", stderr); mp_writefile(m, stderr, 10);
506 fputs("\nexpected ", stderr); mp_writefile(r, stderr, 10);
507 fputs("\n found ", stderr); mp_writefile(mm.r, stderr, 10);
508 fputc('\n', stderr);
509 ok = 0;
510 }
511
512 if (!MP_EQ(mm.r2, r2)) {
513 fputs("\n*** bad r2", stderr);
514 fputs("\nm = ", stderr); mp_writefile(m, stderr, 10);
515 fputs("\nexpected ", stderr); mp_writefile(r2, stderr, 10);
516 fputs("\n found ", stderr); mp_writefile(mm.r2, stderr, 10);
517 fputc('\n', stderr);
518 ok = 0;
519 }
520
521 MP_DROP(m);
522 MP_DROP(mi);
523 MP_DROP(r);
524 MP_DROP(r2);
525 mpmont_destroy(&mm);
526 assert(mparena_count(MPARENA_GLOBAL) == 0);
527 return (ok);
528 }
529
530 static int tmul(dstr *v)
531 {
532 mp *m = *(mp **)v[0].buf;
533 mp *a = *(mp **)v[1].buf;
534 mp *b = *(mp **)v[2].buf;
535 mp *r = *(mp **)v[3].buf;
536 int ok = 1;
537
538 mpmont mm;
539 mpmont_create(&mm, m);
540
541 {
542 mp *qr = mp_mul(MP_NEW, a, b);
543 mp_div(0, &qr, qr, m);
544
545 if (!MP_EQ(qr, r)) {
546 fputs("\n*** classical modmul failed", stderr);
547 fputs("\n m = ", stderr); mp_writefile(m, stderr, 10);
548 fputs("\n a = ", stderr); mp_writefile(a, stderr, 10);
549 fputs("\n b = ", stderr); mp_writefile(b, stderr, 10);
550 fputs("\n r = ", stderr); mp_writefile(r, stderr, 10);
551 fputs("\nqr = ", stderr); mp_writefile(qr, stderr, 10);
552 fputc('\n', stderr);
553 ok = 0;
554 }
555
556 mp_drop(qr);
557 }
558
559 {
560 mp *ar = mpmont_mul(&mm, MP_NEW, a, mm.r2);
561 mp *br = mpmont_mul(&mm, MP_NEW, b, mm.r2);
562 mp *mr = mpmont_mul(&mm, MP_NEW, ar, br);
563 mr = mpmont_reduce(&mm, mr, mr);
564 if (!MP_EQ(mr, r)) {
565 fputs("\n*** montgomery modmul failed", stderr);
566 fputs("\n m = ", stderr); mp_writefile(m, stderr, 10);
567 fputs("\n a = ", stderr); mp_writefile(a, stderr, 10);
568 fputs("\n b = ", stderr); mp_writefile(b, stderr, 10);
569 fputs("\n r = ", stderr); mp_writefile(r, stderr, 10);
570 fputs("\nmr = ", stderr); mp_writefile(mr, stderr, 10);
571 fputc('\n', stderr);
572 ok = 0;
573 }
574 MP_DROP(ar); MP_DROP(br);
575 mp_drop(mr);
576 }
577
578 MP_DROP(m);
579 MP_DROP(a);
580 MP_DROP(b);
581 MP_DROP(r);
582 mpmont_destroy(&mm);
583 assert(mparena_count(MPARENA_GLOBAL) == 0);
584 return ok;
585 }
586
587 static test_chunk tests[] = {
588 { "create", tcreate, { &type_mp, &type_mp, &type_mp, &type_mp, 0 } },
589 { "mul", tmul, { &type_mp, &type_mp, &type_mp, &type_mp, 0 } },
590 { 0, 0, { 0 } },
591 };
592
593 int main(int argc, char *argv[])
594 {
595 sub_init();
596 #ifdef ENABLE_ASM_DEBUG
597 regdump_init();
598 #endif
599 test_run(argc, argv, tests, SRCDIR "/t/mpmont");
600 return (0);
601 }
602
603 #endif
604
605 /*----- That's all, folks -------------------------------------------------*/