math/, pub/: Generate primes with exactly the right size.
[catacomb] / pub / rsa-gen.c
1 /* -*-c-*-
2 *
3 * RSA parameter generation
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include <mLib/dstr.h>
31
32 #include "grand.h"
33 #include "mp.h"
34 #include "mpint.h"
35 #include "pgen.h"
36 #include "rsa.h"
37 #include "strongprime.h"
38
39 /*----- Main code ---------------------------------------------------------*/
40
41 /* --- @rsa_gen@ --- *
42 *
43 * Arguments: @rsa_priv *rp@ = pointer to block to be filled in
44 * @unsigned nbits@ = required modulus size in bits
45 * @grand *r@ = random number source
46 * @unsigned n@ = number of attempts to make
47 * @pgen_proc *event@ = event handler function
48 * @void *ectx@ = argument for the event handler
49 *
50 * Returns: Zero if all went well, nonzero otherwise.
51 *
52 * Use: Constructs a pair of strong RSA primes and other useful RSA
53 * parameters. A small encryption exponent is chosen if
54 * possible.
55 */
56
57 int rsa_gen(rsa_priv *rp, unsigned nbits, grand *r, unsigned n,
58 pgen_proc *event, void *ectx)
59 {
60 pgen_gcdstepctx g;
61 mp *phi = MP_NEW;
62
63 /* --- Bits of initialization --- */
64
65 rp->e = mp_fromulong(MP_NEW, 0x10001);
66 rp->d = MP_NEW;
67
68 /* --- Generate strong primes %$p$% and %$q$% --- *
69 *
70 * Constrain the GCD of @q@ to ensure that overly small private exponents
71 * are impossible. Current results suggest that if %$d < n^{0.29}$% then
72 * it can be guessed fairly easily. This implementation is rather more
73 * conservative about that sort of thing.
74 */
75
76 again:
77 if ((rp->p = strongprime("p", MP_NEWSEC, nbits/2, r, n, event, ectx)) == 0)
78 goto fail_p;
79
80 /* --- Do painful fiddling with GCD steppers --- *
81 *
82 * Also, arrange that %$q \ge \lceil 2^{N-1}/p \rceil$%, so that %$p q$%
83 * has the right length.
84 */
85
86 {
87 mp *q;
88 mp *t = MP_NEW, *u = MP_NEW;
89 rabin rb;
90
91 if ((q = strongprime_setup("q", MP_NEWSEC, &g.jp, nbits / 2,
92 r, n, event, ectx)) == 0)
93 goto fail_q;
94 t = mp_lsl(t, MP_ONE, nbits - 1);
95 mp_div(&t, &u, t, rp->p);
96 if (!MP_ZEROP(u)) t = mp_add(t, t, MP_ONE);
97 if (MP_CMP(q, <, t)) q = mp_leastcongruent(q, t, q, g.jp.m);
98
99 g.r = mp_lsr(MP_NEW, rp->p, 1);
100 g.g = MP_NEW;
101 g.max = MP_256;
102 q = pgen("q", q, q, event, ectx, n, pgen_gcdstep, &g,
103 rabin_iters(nbits/2), pgen_test, &rb);
104 pfilt_destroy(&g.jp);
105 mp_drop(g.r);
106 if (!q) {
107 mp_drop(g.g);
108 if (n)
109 goto fail_q;
110 mp_drop(rp->p);
111 goto again;
112 }
113 rp->q = q;
114 }
115
116 /* --- Ensure that %$p > q$% --- *
117 *
118 * Also ensure that %$p$% and %$q$% are sufficiently different to deter
119 * square-root-based factoring methods.
120 */
121
122 phi = mp_sub(phi, rp->p, rp->q);
123 if (MP_LEN(phi) * 4 < MP_LEN(rp->p) * 3 ||
124 MP_LEN(phi) * 4 < MP_LEN(rp->q) * 3) {
125 mp_drop(rp->p);
126 mp_drop(g.g);
127 if (n)
128 goto fail_q;
129 mp_drop(rp->q);
130 goto again;
131 }
132
133 if (MP_NEGP(phi)) {
134 mp *z = rp->p;
135 rp->p = rp->q;
136 rp->q = z;
137 }
138
139 /* --- Work out the modulus and the CRT coefficient --- */
140
141 rp->n = mp_mul(MP_NEW, rp->p, rp->q);
142 rp->q_inv = mp_modinv(MP_NEW, rp->q, rp->p);
143
144 /* --- Work out %$\varphi(n) = (p - 1)(q - 1)$% --- *
145 *
146 * Save on further multiplications by noting that %$n = pq$% is known and
147 * that %$(p - 1)(q - 1) = pq - p - q + 1$%. To minimize the size of @d@
148 * (useful for performance reasons, although not very because an overly
149 * small @d@ will be rejected for security reasons) this is then divided by
150 * %$\gcd(p - 1, q - 1)$%.
151 */
152
153 phi = mp_sub(phi, rp->n, rp->p);
154 phi = mp_sub(phi, phi, rp->q);
155 phi = mp_add(phi, phi, MP_ONE);
156 phi = mp_lsr(phi, phi, 1);
157 mp_div(&phi, 0, phi, g.g);
158
159 /* --- Decide on a public exponent --- *
160 *
161 * Simultaneously compute the private exponent.
162 */
163
164 mp_gcd(&g.g, 0, &rp->d, phi, rp->e);
165 if (!MP_EQ(g.g, MP_ONE) && MP_LEN(rp->d) * 4 > MP_LEN(rp->n) * 3)
166 goto fail_e;
167
168 /* --- Work out exponent residues --- */
169
170 rp->dp = MP_NEW; phi = mp_sub(phi, rp->p, MP_ONE);
171 mp_div(0, &rp->dp, rp->d, phi);
172
173 rp->dq = MP_NEW; phi = mp_sub(phi, rp->q, MP_ONE);
174 mp_div(0, &rp->dq, rp->d, phi);
175
176 /* --- Done --- */
177
178 mp_drop(phi);
179 mp_drop(g.g);
180 return (0);
181
182 /* --- Tidy up when something goes wrong --- */
183
184 fail_e:
185 mp_drop(g.g);
186 mp_drop(phi);
187 mp_drop(rp->n);
188 mp_drop(rp->q_inv);
189 mp_drop(rp->q);
190 fail_q:
191 mp_drop(rp->p);
192 fail_p:
193 mp_drop(rp->e);
194 if (rp->d)
195 mp_drop(rp->d);
196 return (-1);
197 }
198
199 /*----- That's all, folks -------------------------------------------------*/