progs/perftest.c: Use from Glibc syscall numbers.
[catacomb] / pub / rsa-gen.c
1 /* -*-c-*-
2 *
3 * RSA parameter generation
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include <mLib/dstr.h>
31
32 #include "grand.h"
33 #include "mp.h"
34 #include "mpint.h"
35 #include "pgen.h"
36 #include "rsa.h"
37 #include "strongprime.h"
38
39 /*----- Main code ---------------------------------------------------------*/
40
41 /* --- @rsa_gen@, @rsa_gen_e --- *
42 *
43 * Arguments: @rsa_priv *rp@ = pointer to block to be filled in
44 * @unsigned nbits@ = required modulus size in bits
45 * @mp *e@ = public exponent
46 * @grand *r@ = random number source
47 * @unsigned n@ = number of attempts to make
48 * @pgen_proc *event@ = event handler function
49 * @void *ectx@ = argument for the event handler
50 *
51 * Returns: Zero if all went well, nonzero otherwise.
52 *
53 * Use: Constructs a pair of strong RSA primes and other useful RSA
54 * parameters. A small encryption exponent is chosen if
55 * possible.
56 */
57
58 static int genprime(mp **pp, mp **dd, const char *name,
59 unsigned nbits, mp *e,
60 grand *r, unsigned nsteps, pgen_proc *event, void *ectx)
61 {
62 pgen_jumpctx jctx; pfilt j;
63 mp *p = MP_NEWSEC, *t = MP_NEW, *u = MP_NEW;
64 rabin rb;
65 mpw p3, j3, a;
66 int rc = -1;
67
68 j.m = MP_NEW;
69
70 /* Find a start position for the search. */
71 p = strongprime_setup(name, p, &j, nbits, r, nsteps, event, ectx);
72 if (!p) goto end;
73
74 /* Special handling for e = 3. */
75 if (MP_EQ(e, MP_THREE)) {
76 /* We must have p == 2 (mod 3): if p == 0 (mod 3) then p is not prime; if
77 * p == 1 (mod 3) then e|(p - 1). So fiddle the start position and jump
78 * context to allow for this.
79 */
80
81 /* Figure out the residues of the start position and jump. */
82 mp_div(0, &t, p, MP_THREE); p3 = t->v[0];
83 mp_div(0, &u, j.m, MP_THREE); j3 = u->v[0];
84
85 /* If the jump is a multiple of three already, then we're stuffed unless
86 * the start position is 2 (mod 3). This shouldn't happen, since the
87 * jump should be twice a multiple of two large primes, which will be
88 * nonzero (mod 3).
89 *
90 * Set a = (2 - p) j mod 3. Then p' = p + a j == p (mod j), and p' ==
91 * p + (2 - p) j^2 == 2 (mod 3).
92 */
93 assert(j3 != 0);
94 a = ((2 - p3)*j3)%3;
95 if (a == 1) p = mp_add(p, p, j.m);
96 else if (a == 2) { t = mp_lsl(t, j.m, 1); p = mp_add(p, p, t); }
97
98 /* Finally, multiply j by three to make sure it preserves this
99 * congruence.
100 */
101 pfilt_muladd(&j, &j, 3, 0);
102 }
103
104 /* Set the search going. */
105 jctx.j = &j;
106 p = pgen(name, p, p, event, ectx,
107 nsteps, pgen_jump, &jctx,
108 rabin_iters(nbits), pgen_test, &rb);
109
110 if (!p) goto end;
111
112 /* Check the GCD constraint. */
113 t = mp_sub(t, p, MP_ONE);
114 mp_gcd(&t, &u, 0, e, t);
115 if (!MP_EQ(t, MP_ONE)) goto end;
116
117 /* All is good. */
118 mp_drop(*pp); *pp = p; p = 0;
119 mp_drop(*dd); *dd = u; u = 0;
120 rc = 0;
121 end:
122 mp_drop(p); mp_drop(t); mp_drop(u);
123 mp_drop(j.m);
124 return (rc);
125 }
126
127 int rsa_gen_e(rsa_priv *rp, unsigned nbits, mp *e,
128 grand *r, unsigned nsteps, pgen_proc *event, void *ectx)
129 {
130 mp *p = MP_NEWSEC, *q = MP_NEWSEC, *n = MP_NEW;
131 mp *dp = MP_NEWSEC, *dq = MP_NEWSEC;
132 mp *t = MP_NEW, *u = MP_NEW, *v = MP_NEW;
133 mp *tt;
134 int rc = -1;
135
136 #define RETRY(what) \
137 do { if (nsteps) goto fail; else goto retry_##what; } while (0)
138
139 /* Find the first prime. */
140 retry_all:
141 retry_p:
142 if (genprime(&p, &dp, "p", nbits/2, e, r, nsteps, event, ectx))
143 RETRY(p);
144
145 /* Find the second prime. */
146 retry_q:
147 if (genprime(&q, &dq, "q", nbits/2, e, r, nsteps, event, ectx))
148 RETRY(q);
149
150 /* Check that gcd(p - 1, q - 1) is sufficiently large. */
151 u = mp_sub(u, p, MP_ONE);
152 v = mp_sub(v, q, MP_ONE);
153 mp_gcd(&t, 0, 0, u, v);
154 if (mp_bits(t) >= 8) RETRY(all);
155
156 /* Arrange for p > q. */
157 if (MP_CMP(p, <, q)) {
158 tt = p; p = q; q = tt;
159 tt = dp; dp = dq; dq = tt;
160 }
161
162 /* Check that the modulus is the right size. */
163 n = mp_mul(n, p, q);
164 if (mp_bits(n) != nbits) RETRY(all);
165
166 /* Now we want to calculate d. The unit-group exponent is λ = lcm(p - 1,
167 * q - 1), so d == e^-1 (mod λ).
168 */
169 u = mp_mul(u, u, v);
170 mp_div(&t, 0, u, t);
171 rp->d = mp_modinv(MP_NEW, e, t);
172
173 /* All done. */
174 rp->e = MP_COPY(e);
175 rp->q_inv = mp_modinv(MP_NEW, q, p);
176 rp->p = p; p = 0; rp->dp = dp; dp = 0;
177 rp->q = q; q = 0; rp->dq = dq; dq = 0;
178 rp->n = n; n = 0;
179 rc = 0;
180
181 fail:
182 mp_drop(p); mp_drop(dp);
183 mp_drop(q); mp_drop(dq);
184 mp_drop(n);
185 mp_drop(t); mp_drop(u); mp_drop(v);
186 return (rc);
187 }
188
189 int rsa_gen(rsa_priv *rp, unsigned nbits,
190 grand *r, unsigned nsteps, pgen_proc *event, void *ectx)
191 {
192 mp *f4 = mp_fromulong(MP_NEW, 65537);
193 int rc = rsa_gen_e(rp, nbits, f4, r, nsteps, event, ectx);
194 mp_drop(f4); return (rc);
195 }
196
197 /*----- That's all, folks -------------------------------------------------*/