Fix overrun in @mpx_lsr@.
[u/mdw/catacomb] / mpx.c
1 /* -*-c-*-
2 *
3 * $Id: mpx.c,v 1.19 2004/04/03 03:29:40 mdw Exp $
4 *
5 * Low-level multiprecision arithmetic
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpx.c,v $
33 * Revision 1.19 2004/04/03 03:29:40 mdw
34 * Fix overrun in @mpx_lsr@.
35 *
36 * Revision 1.18 2004/04/01 12:50:09 mdw
37 * Add cyclic group abstraction, with test code. Separate off exponentation
38 * functions for better static linking. Fix a buttload of bugs on the way.
39 * Generally ensure that negative exponents do inversion correctly. Add
40 * table of standard prime-field subgroups. (Binary field subgroups are
41 * currently unimplemented but easy to add if anyone ever finds a good one.)
42 *
43 * Revision 1.17 2004/03/27 00:04:46 mdw
44 * Implement efficient reduction for pleasant-looking primes.
45 *
46 * Revision 1.16 2003/05/16 09:09:24 mdw
47 * Fix @mp_lsl2c@. Turns out to be surprisingly tricky.
48 *
49 * Revision 1.15 2002/10/20 01:12:31 mdw
50 * Two's complement I/O fixes.
51 *
52 * Revision 1.14 2002/10/19 18:55:08 mdw
53 * Fix overflows in shift primitives.
54 *
55 * Revision 1.13 2002/10/19 17:56:50 mdw
56 * Fix bit operations. Test them (a bit) better.
57 *
58 * Revision 1.12 2002/10/06 22:52:50 mdw
59 * Pile of changes for supporting two's complement properly.
60 *
61 * Revision 1.11 2001/04/03 19:36:05 mdw
62 * Add some simple bitwise operations so that Perl can use them.
63 *
64 * Revision 1.10 2000/10/08 12:06:12 mdw
65 * Provide @mpx_ueq@ for rapidly testing equality of two integers.
66 *
67 * Revision 1.9 2000/06/26 07:52:50 mdw
68 * Portability fix for the bug fix.
69 *
70 * Revision 1.8 2000/06/25 12:59:02 mdw
71 * (mpx_udiv): Fix bug in quotient digit estimation.
72 *
73 * Revision 1.7 1999/12/22 15:49:07 mdw
74 * New function for division by a small integer.
75 *
76 * Revision 1.6 1999/11/20 22:43:44 mdw
77 * Integrate testing for MPX routines.
78 *
79 * Revision 1.5 1999/11/20 22:23:27 mdw
80 * Add function versions of some low-level macros with wider use.
81 *
82 * Revision 1.4 1999/11/17 18:04:09 mdw
83 * Add two's-complement functionality. Improve mpx_udiv a little by
84 * performing the multiplication of the divisor by q with the subtraction
85 * from r.
86 *
87 * Revision 1.3 1999/11/13 01:57:31 mdw
88 * Remove stray debugging code.
89 *
90 * Revision 1.2 1999/11/13 01:50:59 mdw
91 * Multiprecision routines finished and tested.
92 *
93 * Revision 1.1 1999/09/03 08:41:12 mdw
94 * Initial import.
95 *
96 */
97
98 /*----- Header files ------------------------------------------------------*/
99
100 #include <assert.h>
101 #include <stdio.h>
102 #include <stdlib.h>
103 #include <string.h>
104
105 #include <mLib/bits.h>
106
107 #include "mptypes.h"
108 #include "mpx.h"
109 #include "bitops.h"
110
111 /*----- Loading and storing -----------------------------------------------*/
112
113 /* --- @mpx_storel@ --- *
114 *
115 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
116 * @void *pp@ = pointer to octet array
117 * @size_t sz@ = size of octet array
118 *
119 * Returns: ---
120 *
121 * Use: Stores an MP in an octet array, least significant octet
122 * first. High-end octets are silently discarded if there
123 * isn't enough space for them.
124 */
125
126 void mpx_storel(const mpw *v, const mpw *vl, void *pp, size_t sz)
127 {
128 mpw n, w = 0;
129 octet *p = pp, *q = p + sz;
130 unsigned bits = 0;
131
132 while (p < q) {
133 if (bits < 8) {
134 if (v >= vl) {
135 *p++ = U8(w);
136 break;
137 }
138 n = *v++;
139 *p++ = U8(w | n << bits);
140 w = n >> (8 - bits);
141 bits += MPW_BITS - 8;
142 } else {
143 *p++ = U8(w);
144 w >>= 8;
145 bits -= 8;
146 }
147 }
148 memset(p, 0, q - p);
149 }
150
151 /* --- @mpx_loadl@ --- *
152 *
153 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
154 * @const void *pp@ = pointer to octet array
155 * @size_t sz@ = size of octet array
156 *
157 * Returns: ---
158 *
159 * Use: Loads an MP in an octet array, least significant octet
160 * first. High-end octets are ignored if there isn't enough
161 * space for them.
162 */
163
164 void mpx_loadl(mpw *v, mpw *vl, const void *pp, size_t sz)
165 {
166 unsigned n;
167 mpw w = 0;
168 const octet *p = pp, *q = p + sz;
169 unsigned bits = 0;
170
171 if (v >= vl)
172 return;
173 while (p < q) {
174 n = U8(*p++);
175 w |= n << bits;
176 bits += 8;
177 if (bits >= MPW_BITS) {
178 *v++ = MPW(w);
179 w = n >> (MPW_BITS - bits + 8);
180 bits -= MPW_BITS;
181 if (v >= vl)
182 return;
183 }
184 }
185 *v++ = w;
186 MPX_ZERO(v, vl);
187 }
188
189 /* --- @mpx_storeb@ --- *
190 *
191 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
192 * @void *pp@ = pointer to octet array
193 * @size_t sz@ = size of octet array
194 *
195 * Returns: ---
196 *
197 * Use: Stores an MP in an octet array, most significant octet
198 * first. High-end octets are silently discarded if there
199 * isn't enough space for them.
200 */
201
202 void mpx_storeb(const mpw *v, const mpw *vl, void *pp, size_t sz)
203 {
204 mpw n, w = 0;
205 octet *p = pp, *q = p + sz;
206 unsigned bits = 0;
207
208 while (q > p) {
209 if (bits < 8) {
210 if (v >= vl) {
211 *--q = U8(w);
212 break;
213 }
214 n = *v++;
215 *--q = U8(w | n << bits);
216 w = n >> (8 - bits);
217 bits += MPW_BITS - 8;
218 } else {
219 *--q = U8(w);
220 w >>= 8;
221 bits -= 8;
222 }
223 }
224 memset(p, 0, q - p);
225 }
226
227 /* --- @mpx_loadb@ --- *
228 *
229 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
230 * @const void *pp@ = pointer to octet array
231 * @size_t sz@ = size of octet array
232 *
233 * Returns: ---
234 *
235 * Use: Loads an MP in an octet array, most significant octet
236 * first. High-end octets are ignored if there isn't enough
237 * space for them.
238 */
239
240 void mpx_loadb(mpw *v, mpw *vl, const void *pp, size_t sz)
241 {
242 unsigned n;
243 mpw w = 0;
244 const octet *p = pp, *q = p + sz;
245 unsigned bits = 0;
246
247 if (v >= vl)
248 return;
249 while (q > p) {
250 n = U8(*--q);
251 w |= n << bits;
252 bits += 8;
253 if (bits >= MPW_BITS) {
254 *v++ = MPW(w);
255 w = n >> (MPW_BITS - bits + 8);
256 bits -= MPW_BITS;
257 if (v >= vl)
258 return;
259 }
260 }
261 *v++ = w;
262 MPX_ZERO(v, vl);
263 }
264
265 /* --- @mpx_storel2cn@ --- *
266 *
267 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
268 * @void *pp@ = pointer to octet array
269 * @size_t sz@ = size of octet array
270 *
271 * Returns: ---
272 *
273 * Use: Stores a negative MP in an octet array, least significant
274 * octet first, as two's complement. High-end octets are
275 * silently discarded if there isn't enough space for them.
276 * This obviously makes the output bad.
277 */
278
279 void mpx_storel2cn(const mpw *v, const mpw *vl, void *pp, size_t sz)
280 {
281 unsigned c = 1;
282 unsigned b = 0;
283 mpw n, w = 0;
284 octet *p = pp, *q = p + sz;
285 unsigned bits = 0;
286
287 while (p < q) {
288 if (bits < 8) {
289 if (v >= vl) {
290 b = w;
291 break;
292 }
293 n = *v++;
294 b = w | n << bits;
295 w = n >> (8 - bits);
296 bits += MPW_BITS - 8;
297 } else {
298 b = w;
299 w >>= 8;
300 bits -= 8;
301 }
302 b = U8(~b + c);
303 c = c && !b;
304 *p++ = b;
305 }
306 while (p < q) {
307 b = U8(~b + c);
308 c = c && !b;
309 *p++ = b;
310 b = 0;
311 }
312 }
313
314 /* --- @mpx_loadl2cn@ --- *
315 *
316 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
317 * @const void *pp@ = pointer to octet array
318 * @size_t sz@ = size of octet array
319 *
320 * Returns: ---
321 *
322 * Use: Loads a negative MP in an octet array, least significant
323 * octet first, as two's complement. High-end octets are
324 * ignored if there isn't enough space for them. This probably
325 * means you made the wrong choice coming here.
326 */
327
328 void mpx_loadl2cn(mpw *v, mpw *vl, const void *pp, size_t sz)
329 {
330 unsigned n;
331 unsigned c = 1;
332 mpw w = 0;
333 const octet *p = pp, *q = p + sz;
334 unsigned bits = 0;
335
336 if (v >= vl)
337 return;
338 while (p < q) {
339 n = U8(~(*p++) + c);
340 c = c && !n;
341 w |= n << bits;
342 bits += 8;
343 if (bits >= MPW_BITS) {
344 *v++ = MPW(w);
345 w = n >> (MPW_BITS - bits + 8);
346 bits -= MPW_BITS;
347 if (v >= vl)
348 return;
349 }
350 }
351 *v++ = w;
352 MPX_ZERO(v, vl);
353 }
354
355 /* --- @mpx_storeb2cn@ --- *
356 *
357 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
358 * @void *pp@ = pointer to octet array
359 * @size_t sz@ = size of octet array
360 *
361 * Returns: ---
362 *
363 * Use: Stores a negative MP in an octet array, most significant
364 * octet first, as two's complement. High-end octets are
365 * silently discarded if there isn't enough space for them,
366 * which probably isn't what you meant.
367 */
368
369 void mpx_storeb2cn(const mpw *v, const mpw *vl, void *pp, size_t sz)
370 {
371 mpw n, w = 0;
372 unsigned b = 0;
373 unsigned c = 1;
374 octet *p = pp, *q = p + sz;
375 unsigned bits = 0;
376
377 while (q > p) {
378 if (bits < 8) {
379 if (v >= vl) {
380 b = w;
381 break;
382 }
383 n = *v++;
384 b = w | n << bits;
385 w = n >> (8 - bits);
386 bits += MPW_BITS - 8;
387 } else {
388 b = w;
389 w >>= 8;
390 bits -= 8;
391 }
392 b = U8(~b + c);
393 c = c && !b;
394 *--q = b;
395 }
396 while (q > p) {
397 b = ~b + c;
398 c = c && !(b & 0xff);
399 *--q = b;
400 b = 0;
401 }
402 }
403
404 /* --- @mpx_loadb2cn@ --- *
405 *
406 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
407 * @const void *pp@ = pointer to octet array
408 * @size_t sz@ = size of octet array
409 *
410 * Returns: ---
411 *
412 * Use: Loads a negative MP in an octet array, most significant octet
413 * first as two's complement. High-end octets are ignored if
414 * there isn't enough space for them. This probably means you
415 * chose this function wrongly.
416 */
417
418 void mpx_loadb2cn(mpw *v, mpw *vl, const void *pp, size_t sz)
419 {
420 unsigned n;
421 unsigned c = 1;
422 mpw w = 0;
423 const octet *p = pp, *q = p + sz;
424 unsigned bits = 0;
425
426 if (v >= vl)
427 return;
428 while (q > p) {
429 n = U8(~(*--q) + c);
430 c = c && !n;
431 w |= n << bits;
432 bits += 8;
433 if (bits >= MPW_BITS) {
434 *v++ = MPW(w);
435 w = n >> (MPW_BITS - bits + 8);
436 bits -= MPW_BITS;
437 if (v >= vl)
438 return;
439 }
440 }
441 *v++ = w;
442 MPX_ZERO(v, vl);
443 }
444
445 /*----- Logical shifting --------------------------------------------------*/
446
447 /* --- @mpx_lsl@ --- *
448 *
449 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
450 * @const mpw *av, *avl@ = source vector base and limit
451 * @size_t n@ = number of bit positions to shift by
452 *
453 * Returns: ---
454 *
455 * Use: Performs a logical shift left operation on an integer.
456 */
457
458 void mpx_lsl(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
459 {
460 size_t nw;
461 unsigned nb;
462
463 /* --- Trivial special case --- */
464
465 if (n == 0)
466 MPX_COPY(dv, dvl, av, avl);
467
468 /* --- Single bit shifting --- */
469
470 else if (n == 1) {
471 mpw w = 0;
472 while (av < avl) {
473 mpw t;
474 if (dv >= dvl)
475 goto done;
476 t = *av++;
477 *dv++ = MPW((t << 1) | w);
478 w = t >> (MPW_BITS - 1);
479 }
480 if (dv >= dvl)
481 goto done;
482 *dv++ = MPW(w);
483 MPX_ZERO(dv, dvl);
484 goto done;
485 }
486
487 /* --- Break out word and bit shifts for more sophisticated work --- */
488
489 nw = n / MPW_BITS;
490 nb = n % MPW_BITS;
491
492 /* --- Handle a shift by a multiple of the word size --- */
493
494 if (nb == 0) {
495 if (nw >= dvl - dv)
496 MPX_ZERO(dv, dvl);
497 else {
498 MPX_COPY(dv + nw, dvl, av, avl);
499 memset(dv, 0, MPWS(nw));
500 }
501 }
502
503 /* --- And finally the difficult case --- *
504 *
505 * This is a little convoluted, because I have to start from the end and
506 * work backwards to avoid overwriting the source, if they're both the same
507 * block of memory.
508 */
509
510 else {
511 mpw w;
512 size_t nr = MPW_BITS - nb;
513 size_t dvn = dvl - dv;
514 size_t avn = avl - av;
515
516 if (dvn <= nw) {
517 MPX_ZERO(dv, dvl);
518 goto done;
519 }
520
521 if (dvn > avn + nw) {
522 size_t off = avn + nw + 1;
523 MPX_ZERO(dv + off, dvl);
524 dvl = dv + off;
525 w = 0;
526 } else {
527 avl = av + dvn - nw;
528 w = *--avl << nb;
529 }
530
531 while (avl > av) {
532 mpw t = *--avl;
533 *--dvl = (t >> nr) | w;
534 w = t << nb;
535 }
536
537 *--dvl = w;
538 MPX_ZERO(dv, dvl);
539 }
540
541 done:;
542 }
543
544 /* --- @mpx_lslc@ --- *
545 *
546 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
547 * @const mpw *av, *avl@ = source vector base and limit
548 * @size_t n@ = number of bit positions to shift by
549 *
550 * Returns: ---
551 *
552 * Use: Performs a logical shift left operation on an integer, only
553 * it fills in the bits with ones instead of zeroes.
554 */
555
556 void mpx_lslc(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
557 {
558 size_t nw;
559 unsigned nb;
560
561 /* --- Trivial special case --- */
562
563 if (n == 0)
564 MPX_COPY(dv, dvl, av, avl);
565
566 /* --- Single bit shifting --- */
567
568 else if (n == 1) {
569 mpw w = 1;
570 while (av < avl) {
571 mpw t;
572 if (dv >= dvl)
573 goto done;
574 t = *av++;
575 *dv++ = MPW((t << 1) | w);
576 w = t >> (MPW_BITS - 1);
577 }
578 if (dv >= dvl)
579 goto done;
580 *dv++ = MPW(w);
581 MPX_ZERO(dv, dvl);
582 goto done;
583 }
584
585 /* --- Break out word and bit shifts for more sophisticated work --- */
586
587 nw = n / MPW_BITS;
588 nb = n % MPW_BITS;
589
590 /* --- Handle a shift by a multiple of the word size --- */
591
592 if (nb == 0) {
593 if (nw >= dvl - dv)
594 MPX_ONE(dv, dvl);
595 else {
596 MPX_COPY(dv + nw, dvl, av, avl);
597 MPX_ONE(dv, dv + nw);
598 }
599 }
600
601 /* --- And finally the difficult case --- *
602 *
603 * This is a little convoluted, because I have to start from the end and
604 * work backwards to avoid overwriting the source, if they're both the same
605 * block of memory.
606 */
607
608 else {
609 mpw w;
610 size_t nr = MPW_BITS - nb;
611 size_t dvn = dvl - dv;
612 size_t avn = avl - av;
613
614 if (dvn <= nw) {
615 MPX_ONE(dv, dvl);
616 goto done;
617 }
618
619 if (dvn > avn + nw) {
620 size_t off = avn + nw + 1;
621 MPX_ZERO(dv + off, dvl);
622 dvl = dv + off;
623 w = 0;
624 } else {
625 avl = av + dvn - nw;
626 w = *--avl << nb;
627 }
628
629 while (avl > av) {
630 mpw t = *--avl;
631 *--dvl = (t >> nr) | w;
632 w = t << nb;
633 }
634
635 *--dvl = (MPW_MAX >> nr) | w;
636 MPX_ONE(dv, dvl);
637 }
638
639 done:;
640 }
641
642 /* --- @mpx_lsr@ --- *
643 *
644 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
645 * @const mpw *av, *avl@ = source vector base and limit
646 * @size_t n@ = number of bit positions to shift by
647 *
648 * Returns: ---
649 *
650 * Use: Performs a logical shift right operation on an integer.
651 */
652
653 void mpx_lsr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
654 {
655 size_t nw;
656 unsigned nb;
657
658 /* --- Trivial special case --- */
659
660 if (n == 0)
661 MPX_COPY(dv, dvl, av, avl);
662
663 /* --- Single bit shifting --- */
664
665 else if (n == 1) {
666 mpw w = av < avl ? *av++ >> 1 : 0;
667 while (av < avl) {
668 mpw t;
669 if (dv >= dvl)
670 goto done;
671 t = *av++;
672 *dv++ = MPW((t << (MPW_BITS - 1)) | w);
673 w = t >> 1;
674 }
675 if (dv >= dvl)
676 goto done;
677 *dv++ = MPW(w);
678 MPX_ZERO(dv, dvl);
679 goto done;
680 }
681
682 /* --- Break out word and bit shifts for more sophisticated work --- */
683
684 nw = n / MPW_BITS;
685 nb = n % MPW_BITS;
686
687 /* --- Handle a shift by a multiple of the word size --- */
688
689 if (nb == 0) {
690 if (nw >= avl - av)
691 MPX_ZERO(dv, dvl);
692 else
693 MPX_COPY(dv, dvl, av + nw, avl);
694 }
695
696 /* --- And finally the difficult case --- */
697
698 else {
699 mpw w;
700 size_t nr = MPW_BITS - nb;
701
702 av += nw;
703 w = av < avl ? *av++ : 0;
704 while (av < avl) {
705 mpw t;
706 if (dv >= dvl)
707 goto done;
708 t = *av++;
709 *dv++ = MPW((w >> nb) | (t << nr));
710 w = t;
711 }
712 if (dv < dvl) {
713 *dv++ = MPW(w >> nb);
714 MPX_ZERO(dv, dvl);
715 }
716 }
717
718 done:;
719 }
720
721 /*----- Bitwise operations ------------------------------------------------*/
722
723 /* --- @mpx_bitop@ --- *
724 *
725 * Arguments: @mpw *dv, *dvl@ = destination vector
726 * @const mpw *av, *avl@ = first source vector
727 * @const mpw *bv, *bvl@ = second source vector
728 *
729 * Returns: ---
730 *
731 * Use; Provides the dyadic boolean functions.
732 */
733
734 #define MPX_BITBINOP(string) \
735 \
736 void mpx_bit##string(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, \
737 const mpw *bv, const mpw *bvl) \
738 { \
739 MPX_SHRINK(av, avl); \
740 MPX_SHRINK(bv, bvl); \
741 \
742 while (dv < dvl) { \
743 mpw a, b; \
744 a = (av < avl) ? *av++ : 0; \
745 b = (bv < bvl) ? *bv++ : 0; \
746 *dv++ = B##string(a, b); \
747 } \
748 }
749
750 MPX_DOBIN(MPX_BITBINOP)
751
752 void mpx_not(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
753 {
754 MPX_SHRINK(av, avl);
755
756 while (dv < dvl) {
757 mpw a;
758 a = (av < avl) ? *av++ : 0;
759 *dv++ = ~a;
760 }
761 }
762
763 /*----- Unsigned arithmetic -----------------------------------------------*/
764
765 /* --- @mpx_2c@ --- *
766 *
767 * Arguments: @mpw *dv, *dvl@ = destination vector
768 * @const mpw *v, *vl@ = source vector
769 *
770 * Returns: ---
771 *
772 * Use: Calculates the two's complement of @v@.
773 */
774
775 void mpx_2c(mpw *dv, mpw *dvl, const mpw *v, const mpw *vl)
776 {
777 mpw c = 0;
778 while (dv < dvl && v < vl)
779 *dv++ = c = MPW(~*v++);
780 if (dv < dvl) {
781 if (c > MPW_MAX / 2)
782 c = MPW(~0);
783 while (dv < dvl)
784 *dv++ = c;
785 }
786 MPX_UADDN(dv, dvl, 1);
787 }
788
789 /* --- @mpx_ueq@ --- *
790 *
791 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
792 * @const mpw *bv, *bvl@ = second argument vector base and limit
793 *
794 * Returns: Nonzero if the two vectors are equal.
795 *
796 * Use: Performs an unsigned integer test for equality.
797 */
798
799 int mpx_ueq(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
800 {
801 MPX_SHRINK(av, avl);
802 MPX_SHRINK(bv, bvl);
803 if (avl - av != bvl - bv)
804 return (0);
805 while (av < avl) {
806 if (*av++ != *bv++)
807 return (0);
808 }
809 return (1);
810 }
811
812 /* --- @mpx_ucmp@ --- *
813 *
814 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
815 * @const mpw *bv, *bvl@ = second argument vector base and limit
816 *
817 * Returns: Less than, equal to, or greater than zero depending on
818 * whether @a@ is less than, equal to or greater than @b@,
819 * respectively.
820 *
821 * Use: Performs an unsigned integer comparison.
822 */
823
824 int mpx_ucmp(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
825 {
826 MPX_SHRINK(av, avl);
827 MPX_SHRINK(bv, bvl);
828
829 if (avl - av > bvl - bv)
830 return (+1);
831 else if (avl - av < bvl - bv)
832 return (-1);
833 else while (avl > av) {
834 mpw a = *--avl, b = *--bvl;
835 if (a > b)
836 return (+1);
837 else if (a < b)
838 return (-1);
839 }
840 return (0);
841 }
842
843 /* --- @mpx_uadd@ --- *
844 *
845 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
846 * @const mpw *av, *avl@ = first addend vector base and limit
847 * @const mpw *bv, *bvl@ = second addend vector base and limit
848 *
849 * Returns: ---
850 *
851 * Use: Performs unsigned integer addition. If the result overflows
852 * the destination vector, high-order bits are discarded. This
853 * means that two's complement addition happens more or less for
854 * free, although that's more a side-effect than anything else.
855 * The result vector may be equal to either or both source
856 * vectors, but may not otherwise overlap them.
857 */
858
859 void mpx_uadd(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
860 const mpw *bv, const mpw *bvl)
861 {
862 mpw c = 0;
863
864 while (av < avl || bv < bvl) {
865 mpw a, b;
866 mpd x;
867 if (dv >= dvl)
868 return;
869 a = (av < avl) ? *av++ : 0;
870 b = (bv < bvl) ? *bv++ : 0;
871 x = (mpd)a + (mpd)b + c;
872 *dv++ = MPW(x);
873 c = x >> MPW_BITS;
874 }
875 if (dv < dvl) {
876 *dv++ = c;
877 MPX_ZERO(dv, dvl);
878 }
879 }
880
881 /* --- @mpx_uaddn@ --- *
882 *
883 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
884 * @mpw n@ = other addend
885 *
886 * Returns: ---
887 *
888 * Use: Adds a small integer to a multiprecision number.
889 */
890
891 void mpx_uaddn(mpw *dv, mpw *dvl, mpw n) { MPX_UADDN(dv, dvl, n); }
892
893 /* --- @mpx_uaddnlsl@ --- *
894 *
895 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
896 * @mpw a@ = second argument
897 * @unsigned o@ = offset in bits
898 *
899 * Returns: ---
900 *
901 * Use: Computes %$d + 2^o a$%. If the result overflows then
902 * high-order bits are discarded, as usual. We must have
903 * @0 < o < MPW_BITS@.
904 */
905
906 void mpx_uaddnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
907 {
908 mpd x = (mpd)a << o;
909
910 while (x && dv < dvl) {
911 x += *dv;
912 *dv++ = MPW(x);
913 x >>= MPW_BITS;
914 }
915 }
916
917 /* --- @mpx_usub@ --- *
918 *
919 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
920 * @const mpw *av, *avl@ = first argument vector base and limit
921 * @const mpw *bv, *bvl@ = second argument vector base and limit
922 *
923 * Returns: ---
924 *
925 * Use: Performs unsigned integer subtraction. If the result
926 * overflows the destination vector, high-order bits are
927 * discarded. This means that two's complement subtraction
928 * happens more or less for free, althuogh that's more a side-
929 * effect than anything else. The result vector may be equal to
930 * either or both source vectors, but may not otherwise overlap
931 * them.
932 */
933
934 void mpx_usub(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
935 const mpw *bv, const mpw *bvl)
936 {
937 mpw c = 0;
938
939 while (av < avl || bv < bvl) {
940 mpw a, b;
941 mpd x;
942 if (dv >= dvl)
943 return;
944 a = (av < avl) ? *av++ : 0;
945 b = (bv < bvl) ? *bv++ : 0;
946 x = (mpd)a - (mpd)b - c;
947 *dv++ = MPW(x);
948 if (x >> MPW_BITS)
949 c = 1;
950 else
951 c = 0;
952 }
953 if (c)
954 c = MPW_MAX;
955 while (dv < dvl)
956 *dv++ = c;
957 }
958
959 /* --- @mpx_usubn@ --- *
960 *
961 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
962 * @n@ = subtrahend
963 *
964 * Returns: ---
965 *
966 * Use: Subtracts a small integer from a multiprecision number.
967 */
968
969 void mpx_usubn(mpw *dv, mpw *dvl, mpw n) { MPX_USUBN(dv, dvl, n); }
970
971 /* --- @mpx_uaddnlsl@ --- *
972 *
973 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
974 * @mpw a@ = second argument
975 * @unsigned o@ = offset in bits
976 *
977 * Returns: ---
978 *
979 * Use: Computes %$d + 2^o a$%. If the result overflows then
980 * high-order bits are discarded, as usual. We must have
981 * @0 < o < MPW_BITS@.
982 */
983
984 void mpx_usubnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
985 {
986 mpw b = a >> (MPW_BITS - o);
987 a <<= o;
988
989 if (dv < dvl) {
990 mpd x = (mpd)*dv - (mpd)a;
991 *dv++ = MPW(x);
992 if (x >> MPW_BITS)
993 b++;
994 MPX_USUBN(dv, dvl, b);
995 }
996 }
997
998 /* --- @mpx_umul@ --- *
999 *
1000 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
1001 * @const mpw *av, *avl@ = multiplicand vector base and limit
1002 * @const mpw *bv, *bvl@ = multiplier vector base and limit
1003 *
1004 * Returns: ---
1005 *
1006 * Use: Performs unsigned integer multiplication. If the result
1007 * overflows the desination vector, high-order bits are
1008 * discarded. The result vector may not overlap the argument
1009 * vectors in any way.
1010 */
1011
1012 void mpx_umul(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
1013 const mpw *bv, const mpw *bvl)
1014 {
1015 /* --- This is probably worthwhile on a multiply --- */
1016
1017 MPX_SHRINK(av, avl);
1018 MPX_SHRINK(bv, bvl);
1019
1020 /* --- Deal with a multiply by zero --- */
1021
1022 if (bv == bvl) {
1023 MPX_ZERO(dv, dvl);
1024 return;
1025 }
1026
1027 /* --- Do the initial multiply and initialize the accumulator --- */
1028
1029 MPX_UMULN(dv, dvl, av, avl, *bv++);
1030
1031 /* --- Do the remaining multiply/accumulates --- */
1032
1033 while (dv < dvl && bv < bvl) {
1034 mpw m = *bv++;
1035 mpw c = 0;
1036 const mpw *avv = av;
1037 mpw *dvv = ++dv;
1038
1039 while (avv < avl) {
1040 mpd x;
1041 if (dvv >= dvl)
1042 goto next;
1043 x = (mpd)*dvv + (mpd)m * (mpd)*avv++ + c;
1044 *dvv++ = MPW(x);
1045 c = x >> MPW_BITS;
1046 }
1047 MPX_UADDN(dvv, dvl, c);
1048 next:;
1049 }
1050 }
1051
1052 /* --- @mpx_umuln@ --- *
1053 *
1054 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
1055 * @const mpw *av, *avl@ = multiplicand vector base and limit
1056 * @mpw m@ = multiplier
1057 *
1058 * Returns: ---
1059 *
1060 * Use: Multiplies a multiprecision integer by a single-word value.
1061 * The destination and source may be equal. The destination
1062 * is completely cleared after use.
1063 */
1064
1065 void mpx_umuln(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
1066 {
1067 MPX_UMULN(dv, dvl, av, avl, m);
1068 }
1069
1070 /* --- @mpx_umlan@ --- *
1071 *
1072 * Arguments: @mpw *dv, *dvl@ = destination/accumulator base and limit
1073 * @const mpw *av, *avl@ = multiplicand vector base and limit
1074 * @mpw m@ = multiplier
1075 *
1076 * Returns: ---
1077 *
1078 * Use: Multiplies a multiprecision integer by a single-word value
1079 * and adds the result to an accumulator.
1080 */
1081
1082 void mpx_umlan(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
1083 {
1084 MPX_UMLAN(dv, dvl, av, avl, m);
1085 }
1086
1087 /* --- @mpx_usqr@ --- *
1088 *
1089 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
1090 * @const mpw *av, *av@ = source vector base and limit
1091 *
1092 * Returns: ---
1093 *
1094 * Use: Performs unsigned integer squaring. The result vector must
1095 * not overlap the source vector in any way.
1096 */
1097
1098 void mpx_usqr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
1099 {
1100 MPX_ZERO(dv, dvl);
1101
1102 /* --- Main loop --- */
1103
1104 while (av < avl) {
1105 const mpw *avv = av;
1106 mpw *dvv = dv;
1107 mpw a = *av;
1108 mpd c;
1109
1110 /* --- Stop if I've run out of destination --- */
1111
1112 if (dvv >= dvl)
1113 break;
1114
1115 /* --- Work out the square at this point in the proceedings --- */
1116
1117 {
1118 mpd x = (mpd)a * (mpd)a + *dvv;
1119 *dvv++ = MPW(x);
1120 c = MPW(x >> MPW_BITS);
1121 }
1122
1123 /* --- Now fix up the rest of the vector upwards --- */
1124
1125 avv++;
1126 while (dvv < dvl && avv < avl) {
1127 mpd x = (mpd)a * (mpd)*avv++;
1128 mpd y = ((x << 1) & MPW_MAX) + c + *dvv;
1129 c = (x >> (MPW_BITS - 1)) + (y >> MPW_BITS);
1130 *dvv++ = MPW(y);
1131 }
1132 while (dvv < dvl && c) {
1133 mpd x = c + *dvv;
1134 *dvv++ = MPW(x);
1135 c = x >> MPW_BITS;
1136 }
1137
1138 /* --- Get ready for the next round --- */
1139
1140 av++;
1141 dv += 2;
1142 }
1143 }
1144
1145 /* --- @mpx_udiv@ --- *
1146 *
1147 * Arguments: @mpw *qv, *qvl@ = quotient vector base and limit
1148 * @mpw *rv, *rvl@ = dividend/remainder vector base and limit
1149 * @const mpw *dv, *dvl@ = divisor vector base and limit
1150 * @mpw *sv, *svl@ = scratch workspace
1151 *
1152 * Returns: ---
1153 *
1154 * Use: Performs unsigned integer division. If the result overflows
1155 * the quotient vector, high-order bits are discarded. (Clearly
1156 * the remainder vector can't overflow.) The various vectors
1157 * may not overlap in any way. Yes, I know it's a bit odd
1158 * requiring the dividend to be in the result position but it
1159 * does make some sense really. The remainder must have
1160 * headroom for at least two extra words. The scratch space
1161 * must be at least one word larger than the divisor.
1162 */
1163
1164 void mpx_udiv(mpw *qv, mpw *qvl, mpw *rv, mpw *rvl,
1165 const mpw *dv, const mpw *dvl,
1166 mpw *sv, mpw *svl)
1167 {
1168 unsigned norm = 0;
1169 size_t scale;
1170 mpw d, dd;
1171
1172 /* --- Initialize the quotient --- */
1173
1174 MPX_ZERO(qv, qvl);
1175
1176 /* --- Perform some sanity checks --- */
1177
1178 MPX_SHRINK(dv, dvl);
1179 assert(((void)"division by zero in mpx_udiv", dv < dvl));
1180
1181 /* --- Normalize the divisor --- *
1182 *
1183 * The algorithm requires that the divisor be at least two digits long.
1184 * This is easy to fix.
1185 */
1186
1187 {
1188 unsigned b;
1189
1190 d = dvl[-1];
1191 for (b = MPW_BITS / 2; b; b >>= 1) {
1192 if (d <= (MPW_MAX >> b)) {
1193 d <<= b;
1194 norm += b;
1195 }
1196 }
1197 if (dv + 1 == dvl)
1198 norm += MPW_BITS;
1199 }
1200
1201 /* --- Normalize the dividend/remainder to match --- */
1202
1203 if (norm) {
1204 mpx_lsl(rv, rvl, rv, rvl, norm);
1205 mpx_lsl(sv, svl, dv, dvl, norm);
1206 dv = sv;
1207 dvl = svl;
1208 MPX_SHRINK(dv, dvl);
1209 }
1210
1211 MPX_SHRINK(rv, rvl);
1212 d = dvl[-1];
1213 dd = dvl[-2];
1214
1215 /* --- Work out the relative scales --- */
1216
1217 {
1218 size_t rvn = rvl - rv;
1219 size_t dvn = dvl - dv;
1220
1221 /* --- If the divisor is clearly larger, notice this --- */
1222
1223 if (dvn > rvn) {
1224 mpx_lsr(rv, rvl, rv, rvl, norm);
1225 return;
1226 }
1227
1228 scale = rvn - dvn;
1229 }
1230
1231 /* --- Calculate the most significant quotient digit --- *
1232 *
1233 * Because the divisor has its top bit set, this can only happen once. The
1234 * pointer arithmetic is a little contorted, to make sure that the
1235 * behaviour is defined.
1236 */
1237
1238 if (MPX_UCMP(rv + scale, rvl, >=, dv, dvl)) {
1239 mpx_usub(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1240 if (qvl - qv > scale)
1241 qv[scale] = 1;
1242 }
1243
1244 /* --- Now for the main loop --- */
1245
1246 {
1247 mpw *rvv = rvl - 2;
1248
1249 while (scale) {
1250 mpw q;
1251 mpd rh;
1252
1253 /* --- Get an estimate for the next quotient digit --- */
1254
1255 mpw r = rvv[1];
1256 mpw rr = rvv[0];
1257 mpw rrr = *--rvv;
1258
1259 scale--;
1260 rh = ((mpd)r << MPW_BITS) | rr;
1261 if (r == d)
1262 q = MPW_MAX;
1263 else
1264 q = MPW(rh / d);
1265
1266 /* --- Refine the estimate --- */
1267
1268 {
1269 mpd yh = (mpd)d * q;
1270 mpd yy = (mpd)dd * q;
1271 mpw yl;
1272
1273 if (yy > MPW_MAX)
1274 yh += yy >> MPW_BITS;
1275 yl = MPW(yy);
1276
1277 while (yh > rh || (yh == rh && yl > rrr)) {
1278 q--;
1279 yh -= d;
1280 if (yl < dd)
1281 yh--;
1282 yl = MPW(yl - dd);
1283 }
1284 }
1285
1286 /* --- Remove a chunk from the dividend --- */
1287
1288 {
1289 mpw *svv;
1290 const mpw *dvv;
1291 mpw mc = 0, sc = 0;
1292
1293 /* --- Calculate the size of the chunk --- *
1294 *
1295 * This does the whole job of calculating @r >> scale - qd@.
1296 */
1297
1298 for (svv = rv + scale, dvv = dv;
1299 dvv < dvl && svv < rvl;
1300 svv++, dvv++) {
1301 mpd x = (mpd)*dvv * (mpd)q + mc;
1302 mc = x >> MPW_BITS;
1303 x = (mpd)*svv - MPW(x) - sc;
1304 *svv = MPW(x);
1305 if (x >> MPW_BITS)
1306 sc = 1;
1307 else
1308 sc = 0;
1309 }
1310
1311 if (svv < rvl) {
1312 mpd x = (mpd)*svv - mc - sc;
1313 *svv++ = MPW(x);
1314 if (x >> MPW_BITS)
1315 sc = MPW_MAX;
1316 else
1317 sc = 0;
1318 while (svv < rvl)
1319 *svv++ = sc;
1320 }
1321
1322 /* --- Fix if the quotient was too large --- *
1323 *
1324 * This doesn't seem to happen very often.
1325 */
1326
1327 if (rvl[-1] > MPW_MAX / 2) {
1328 mpx_uadd(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1329 q--;
1330 }
1331 }
1332
1333 /* --- Done for another iteration --- */
1334
1335 if (qvl - qv > scale)
1336 qv[scale] = q;
1337 r = rr;
1338 rr = rrr;
1339 }
1340 }
1341
1342 /* --- Now fiddle with unnormalizing and things --- */
1343
1344 mpx_lsr(rv, rvl, rv, rvl, norm);
1345 }
1346
1347 /* --- @mpx_udivn@ --- *
1348 *
1349 * Arguments: @mpw *qv, *qvl@ = storage for the quotient (may overlap
1350 * dividend)
1351 * @const mpw *rv, *rvl@ = dividend
1352 * @mpw d@ = single-precision divisor
1353 *
1354 * Returns: Remainder after divison.
1355 *
1356 * Use: Performs a single-precision division operation.
1357 */
1358
1359 mpw mpx_udivn(mpw *qv, mpw *qvl, const mpw *rv, const mpw *rvl, mpw d)
1360 {
1361 size_t i;
1362 size_t ql = qvl - qv;
1363 mpd r = 0;
1364
1365 i = rvl - rv;
1366 while (i > 0) {
1367 i--;
1368 r = (r << MPW_BITS) | rv[i];
1369 if (i < ql)
1370 qv[i] = r / d;
1371 r %= d;
1372 }
1373 return (MPW(r));
1374 }
1375
1376 /*----- Test rig ----------------------------------------------------------*/
1377
1378 #ifdef TEST_RIG
1379
1380 #include <mLib/alloc.h>
1381 #include <mLib/dstr.h>
1382 #include <mLib/quis.h>
1383 #include <mLib/testrig.h>
1384
1385 #include "mpscan.h"
1386
1387 #define ALLOC(v, vl, sz) do { \
1388 size_t _sz = (sz); \
1389 mpw *_vv = xmalloc(MPWS(_sz)); \
1390 mpw *_vvl = _vv + _sz; \
1391 (v) = _vv; \
1392 (vl) = _vvl; \
1393 } while (0)
1394
1395 #define LOAD(v, vl, d) do { \
1396 const dstr *_d = (d); \
1397 mpw *_v, *_vl; \
1398 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
1399 mpx_loadb(_v, _vl, _d->buf, _d->len); \
1400 (v) = _v; \
1401 (vl) = _vl; \
1402 } while (0)
1403
1404 #define MAX(x, y) ((x) > (y) ? (x) : (y))
1405
1406 static void dumpbits(const char *msg, const void *pp, size_t sz)
1407 {
1408 const octet *p = pp;
1409 fputs(msg, stderr);
1410 for (; sz; sz--)
1411 fprintf(stderr, " %02x", *p++);
1412 fputc('\n', stderr);
1413 }
1414
1415 static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
1416 {
1417 fputs(msg, stderr);
1418 MPX_SHRINK(v, vl);
1419 while (v < vl)
1420 fprintf(stderr, " %08lx", (unsigned long)*--vl);
1421 fputc('\n', stderr);
1422 }
1423
1424 static int chkscan(const mpw *v, const mpw *vl,
1425 const void *pp, size_t sz, int step)
1426 {
1427 mpscan mps;
1428 const octet *p = pp;
1429 unsigned bit = 0;
1430 int ok = 1;
1431
1432 mpscan_initx(&mps, v, vl);
1433 while (sz) {
1434 unsigned x = *p;
1435 int i;
1436 p += step;
1437 for (i = 0; i < 8 && MPSCAN_STEP(&mps); i++) {
1438 if (MPSCAN_BIT(&mps) != (x & 1)) {
1439 fprintf(stderr,
1440 "\n*** error, step %i, bit %u, expected %u, found %u\n",
1441 step, bit, x & 1, MPSCAN_BIT(&mps));
1442 ok = 0;
1443 }
1444 x >>= 1;
1445 bit++;
1446 }
1447 sz--;
1448 }
1449
1450 return (ok);
1451 }
1452
1453 static int loadstore(dstr *v)
1454 {
1455 dstr d = DSTR_INIT;
1456 size_t sz = MPW_RQ(v->len) * 2, diff;
1457 mpw *m, *ml;
1458 int ok = 1;
1459
1460 dstr_ensure(&d, v->len);
1461 m = xmalloc(MPWS(sz));
1462
1463 for (diff = 0; diff < sz; diff += 5) {
1464 size_t oct;
1465
1466 ml = m + sz - diff;
1467
1468 mpx_loadl(m, ml, v->buf, v->len);
1469 if (!chkscan(m, ml, v->buf, v->len, +1))
1470 ok = 0;
1471 MPX_OCTETS(oct, m, ml);
1472 mpx_storel(m, ml, d.buf, d.sz);
1473 if (memcmp(d.buf, v->buf, oct) != 0) {
1474 dumpbits("\n*** storel failed", d.buf, d.sz);
1475 ok = 0;
1476 }
1477
1478 mpx_loadb(m, ml, v->buf, v->len);
1479 if (!chkscan(m, ml, v->buf + v->len - 1, v->len, -1))
1480 ok = 0;
1481 MPX_OCTETS(oct, m, ml);
1482 mpx_storeb(m, ml, d.buf, d.sz);
1483 if (memcmp(d.buf + d.sz - oct, v->buf + v->len - oct, oct) != 0) {
1484 dumpbits("\n*** storeb failed", d.buf, d.sz);
1485 ok = 0;
1486 }
1487 }
1488
1489 if (!ok)
1490 dumpbits("input data", v->buf, v->len);
1491
1492 free(m);
1493 dstr_destroy(&d);
1494 return (ok);
1495 }
1496
1497 static int twocl(dstr *v)
1498 {
1499 dstr d = DSTR_INIT;
1500 mpw *m, *ml;
1501 size_t sz;
1502 int ok = 1;
1503
1504 sz = v[0].len; if (v[1].len > sz) sz = v[1].len;
1505 dstr_ensure(&d, sz);
1506
1507 sz = MPW_RQ(sz);
1508 m = xmalloc(MPWS(sz));
1509 ml = m + sz;
1510
1511 mpx_loadl(m, ml, v[0].buf, v[0].len);
1512 mpx_storel2cn(m, ml, d.buf, v[1].len);
1513 if (memcmp(d.buf, v[1].buf, v[1].len)) {
1514 dumpbits("\n*** storel2cn failed", d.buf, v[1].len);
1515 ok = 0;
1516 }
1517
1518 mpx_loadl2cn(m, ml, v[1].buf, v[1].len);
1519 mpx_storel(m, ml, d.buf, v[0].len);
1520 if (memcmp(d.buf, v[0].buf, v[0].len)) {
1521 dumpbits("\n*** loadl2cn failed", d.buf, v[0].len);
1522 ok = 0;
1523 }
1524
1525 if (!ok) {
1526 dumpbits("pos", v[0].buf, v[0].len);
1527 dumpbits("neg", v[1].buf, v[1].len);
1528 }
1529
1530 free(m);
1531 dstr_destroy(&d);
1532
1533 return (ok);
1534 }
1535
1536 static int twocb(dstr *v)
1537 {
1538 dstr d = DSTR_INIT;
1539 mpw *m, *ml;
1540 size_t sz;
1541 int ok = 1;
1542
1543 sz = v[0].len; if (v[1].len > sz) sz = v[1].len;
1544 dstr_ensure(&d, sz);
1545
1546 sz = MPW_RQ(sz);
1547 m = xmalloc(MPWS(sz));
1548 ml = m + sz;
1549
1550 mpx_loadb(m, ml, v[0].buf, v[0].len);
1551 mpx_storeb2cn(m, ml, d.buf, v[1].len);
1552 if (memcmp(d.buf, v[1].buf, v[1].len)) {
1553 dumpbits("\n*** storeb2cn failed", d.buf, v[1].len);
1554 ok = 0;
1555 }
1556
1557 mpx_loadb2cn(m, ml, v[1].buf, v[1].len);
1558 mpx_storeb(m, ml, d.buf, v[0].len);
1559 if (memcmp(d.buf, v[0].buf, v[0].len)) {
1560 dumpbits("\n*** loadb2cn failed", d.buf, v[0].len);
1561 ok = 0;
1562 }
1563
1564 if (!ok) {
1565 dumpbits("pos", v[0].buf, v[0].len);
1566 dumpbits("neg", v[1].buf, v[1].len);
1567 }
1568
1569 free(m);
1570 dstr_destroy(&d);
1571
1572 return (ok);
1573 }
1574
1575 static int lsl(dstr *v)
1576 {
1577 mpw *a, *al;
1578 int n = *(int *)v[1].buf;
1579 mpw *c, *cl;
1580 mpw *d, *dl;
1581 int ok = 1;
1582
1583 LOAD(a, al, &v[0]);
1584 LOAD(c, cl, &v[2]);
1585 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1586
1587 mpx_lsl(d, dl, a, al, n);
1588 if (!mpx_ueq(d, dl, c, cl)) {
1589 fprintf(stderr, "\n*** lsl(%i) failed\n", n);
1590 dumpmp(" a", a, al);
1591 dumpmp("expected", c, cl);
1592 dumpmp(" result", d, dl);
1593 ok = 0;
1594 }
1595
1596 free(a); free(c); free(d);
1597 return (ok);
1598 }
1599
1600 static int lslc(dstr *v)
1601 {
1602 mpw *a, *al;
1603 int n = *(int *)v[1].buf;
1604 mpw *c, *cl;
1605 mpw *d, *dl;
1606 int ok = 1;
1607
1608 LOAD(a, al, &v[0]);
1609 LOAD(c, cl, &v[2]);
1610 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1611
1612 mpx_lslc(d, dl, a, al, n);
1613 if (!mpx_ueq(d, dl, c, cl)) {
1614 fprintf(stderr, "\n*** lslc(%i) failed\n", n);
1615 dumpmp(" a", a, al);
1616 dumpmp("expected", c, cl);
1617 dumpmp(" result", d, dl);
1618 ok = 0;
1619 }
1620
1621 free(a); free(c); free(d);
1622 return (ok);
1623 }
1624
1625 static int lsr(dstr *v)
1626 {
1627 mpw *a, *al;
1628 int n = *(int *)v[1].buf;
1629 mpw *c, *cl;
1630 mpw *d, *dl;
1631 int ok = 1;
1632
1633 LOAD(a, al, &v[0]);
1634 LOAD(c, cl, &v[2]);
1635 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS + 1);
1636
1637 mpx_lsr(d, dl, a, al, n);
1638 if (!mpx_ueq(d, dl, c, cl)) {
1639 fprintf(stderr, "\n*** lsr(%i) failed\n", n);
1640 dumpmp(" a", a, al);
1641 dumpmp("expected", c, cl);
1642 dumpmp(" result", d, dl);
1643 ok = 0;
1644 }
1645
1646 free(a); free(c); free(d);
1647 return (ok);
1648 }
1649
1650 static int uadd(dstr *v)
1651 {
1652 mpw *a, *al;
1653 mpw *b, *bl;
1654 mpw *c, *cl;
1655 mpw *d, *dl;
1656 int ok = 1;
1657
1658 LOAD(a, al, &v[0]);
1659 LOAD(b, bl, &v[1]);
1660 LOAD(c, cl, &v[2]);
1661 ALLOC(d, dl, MAX(al - a, bl - b) + 1);
1662
1663 mpx_uadd(d, dl, a, al, b, bl);
1664 if (!mpx_ueq(d, dl, c, cl)) {
1665 fprintf(stderr, "\n*** uadd failed\n");
1666 dumpmp(" a", a, al);
1667 dumpmp(" b", b, bl);
1668 dumpmp("expected", c, cl);
1669 dumpmp(" result", d, dl);
1670 ok = 0;
1671 }
1672
1673 free(a); free(b); free(c); free(d);
1674 return (ok);
1675 }
1676
1677 static int usub(dstr *v)
1678 {
1679 mpw *a, *al;
1680 mpw *b, *bl;
1681 mpw *c, *cl;
1682 mpw *d, *dl;
1683 int ok = 1;
1684
1685 LOAD(a, al, &v[0]);
1686 LOAD(b, bl, &v[1]);
1687 LOAD(c, cl, &v[2]);
1688 ALLOC(d, dl, al - a);
1689
1690 mpx_usub(d, dl, a, al, b, bl);
1691 if (!mpx_ueq(d, dl, c, cl)) {
1692 fprintf(stderr, "\n*** usub failed\n");
1693 dumpmp(" a", a, al);
1694 dumpmp(" b", b, bl);
1695 dumpmp("expected", c, cl);
1696 dumpmp(" result", d, dl);
1697 ok = 0;
1698 }
1699
1700 free(a); free(b); free(c); free(d);
1701 return (ok);
1702 }
1703
1704 static int umul(dstr *v)
1705 {
1706 mpw *a, *al;
1707 mpw *b, *bl;
1708 mpw *c, *cl;
1709 mpw *d, *dl;
1710 int ok = 1;
1711
1712 LOAD(a, al, &v[0]);
1713 LOAD(b, bl, &v[1]);
1714 LOAD(c, cl, &v[2]);
1715 ALLOC(d, dl, (al - a) + (bl - b));
1716
1717 mpx_umul(d, dl, a, al, b, bl);
1718 if (!mpx_ueq(d, dl, c, cl)) {
1719 fprintf(stderr, "\n*** umul failed\n");
1720 dumpmp(" a", a, al);
1721 dumpmp(" b", b, bl);
1722 dumpmp("expected", c, cl);
1723 dumpmp(" result", d, dl);
1724 ok = 0;
1725 }
1726
1727 free(a); free(b); free(c); free(d);
1728 return (ok);
1729 }
1730
1731 static int usqr(dstr *v)
1732 {
1733 mpw *a, *al;
1734 mpw *c, *cl;
1735 mpw *d, *dl;
1736 int ok = 1;
1737
1738 LOAD(a, al, &v[0]);
1739 LOAD(c, cl, &v[1]);
1740 ALLOC(d, dl, 2 * (al - a));
1741
1742 mpx_usqr(d, dl, a, al);
1743 if (!mpx_ueq(d, dl, c, cl)) {
1744 fprintf(stderr, "\n*** usqr failed\n");
1745 dumpmp(" a", a, al);
1746 dumpmp("expected", c, cl);
1747 dumpmp(" result", d, dl);
1748 ok = 0;
1749 }
1750
1751 free(a); free(c); free(d);
1752 return (ok);
1753 }
1754
1755 static int udiv(dstr *v)
1756 {
1757 mpw *a, *al;
1758 mpw *b, *bl;
1759 mpw *q, *ql;
1760 mpw *r, *rl;
1761 mpw *qq, *qql;
1762 mpw *s, *sl;
1763 int ok = 1;
1764
1765 ALLOC(a, al, MPW_RQ(v[0].len) + 2); mpx_loadb(a, al, v[0].buf, v[0].len);
1766 LOAD(b, bl, &v[1]);
1767 LOAD(q, ql, &v[2]);
1768 LOAD(r, rl, &v[3]);
1769 ALLOC(qq, qql, al - a);
1770 ALLOC(s, sl, (bl - b) + 1);
1771
1772 mpx_udiv(qq, qql, a, al, b, bl, s, sl);
1773 if (!mpx_ueq(qq, qql, q, ql) ||
1774 !mpx_ueq(a, al, r, rl)) {
1775 fprintf(stderr, "\n*** udiv failed\n");
1776 dumpmp(" divisor", b, bl);
1777 dumpmp("expect r", r, rl);
1778 dumpmp("result r", a, al);
1779 dumpmp("expect q", q, ql);
1780 dumpmp("result q", qq, qql);
1781 ok = 0;
1782 }
1783
1784 free(a); free(b); free(r); free(q); free(s); free(qq);
1785 return (ok);
1786 }
1787
1788 static test_chunk defs[] = {
1789 { "load-store", loadstore, { &type_hex, 0 } },
1790 { "2cl", twocl, { &type_hex, &type_hex, } },
1791 { "2cb", twocb, { &type_hex, &type_hex, } },
1792 { "lsl", lsl, { &type_hex, &type_int, &type_hex, 0 } },
1793 { "lslc", lslc, { &type_hex, &type_int, &type_hex, 0 } },
1794 { "lsr", lsr, { &type_hex, &type_int, &type_hex, 0 } },
1795 { "uadd", uadd, { &type_hex, &type_hex, &type_hex, 0 } },
1796 { "usub", usub, { &type_hex, &type_hex, &type_hex, 0 } },
1797 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
1798 { "usqr", usqr, { &type_hex, &type_hex, 0 } },
1799 { "udiv", udiv, { &type_hex, &type_hex, &type_hex, &type_hex, 0 } },
1800 { 0, 0, { 0 } }
1801 };
1802
1803 int main(int argc, char *argv[])
1804 {
1805 test_run(argc, argv, defs, SRCDIR"/tests/mpx");
1806 return (0);
1807 }
1808
1809 #endif
1810
1811 /*----- That's all, folks -------------------------------------------------*/