Pile of changes for supporting two's complement properly.
[u/mdw/catacomb] / mp-arith.c
1 /* -*-c-*-
2 *
3 * $Id: mp-arith.c,v 1.11 2002/10/06 22:52:50 mdw Exp $
4 *
5 * Basic arithmetic on multiprecision integers
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mp-arith.c,v $
33 * Revision 1.11 2002/10/06 22:52:50 mdw
34 * Pile of changes for supporting two's complement properly.
35 *
36 * Revision 1.10 2001/04/03 19:36:05 mdw
37 * Add some simple bitwise operations so that Perl can use them.
38 *
39 * Revision 1.9 2000/10/08 15:48:35 mdw
40 * Rename Karatsuba constants now that we have @gfx_kmul@ too.
41 *
42 * Revision 1.8 2000/10/08 12:02:21 mdw
43 * Use @MP_EQ@ instead of @MP_CMP@.
44 *
45 * Revision 1.7 2000/06/22 19:02:53 mdw
46 * New function @mp_odd@ to extract powers of two from an integer. This is
47 * common code from the Rabin-Miller test, RSA key recovery and modular
48 * square-root extraction.
49 *
50 * Revision 1.6 2000/06/17 11:45:09 mdw
51 * Major memory management overhaul. Added arena support. Use the secure
52 * arena for secret integers. Replace and improve the MP management macros
53 * (e.g., replace MP_MODIFY by MP_DEST).
54 *
55 * Revision 1.5 1999/12/22 15:54:41 mdw
56 * Adjust Karatsuba parameters. Calculate destination size better.
57 *
58 * Revision 1.4 1999/12/13 15:35:16 mdw
59 * Slightly different rules on memory allocation.
60 *
61 * Revision 1.3 1999/12/11 10:57:43 mdw
62 * Karatsuba squaring algorithm.
63 *
64 * Revision 1.2 1999/12/10 23:18:39 mdw
65 * Change interface for suggested destinations.
66 *
67 * Revision 1.1 1999/11/17 18:02:16 mdw
68 * New multiprecision integer arithmetic suite.
69 *
70 */
71
72 /*----- Header files ------------------------------------------------------*/
73
74 #include "mp.h"
75
76 /*----- Macros ------------------------------------------------------------*/
77
78 #define MAX(x, y) ((x) >= (y) ? (x) : (y))
79
80 /*----- Main code ---------------------------------------------------------*/
81
82 /* --- @mp_lsl@, @mp_lsr@ --- *
83 *
84 * Arguments: @mp *d@ = destination
85 * @mp *a@ = source
86 * @size_t n@ = number of bits to move
87 *
88 * Returns: Result, @a@ shifted left or right by @n@.
89 */
90
91 mp *mp_lsl(mp *d, mp *a, size_t n)
92 {
93 MP_DEST(d, MP_LEN(a) + (n + MPW_BITS - 1) / MPW_BITS, a->f);
94 mpx_lsl(d->v, d->vl, a->v, a->vl, n);
95 d->f = a->f & (MP_NEG | MP_BURN);
96 MP_SHRINK(d);
97 return (d);
98 }
99
100 mp *mp_lsr(mp *d, mp *a, size_t n)
101 {
102 MP_DEST(d, MP_LEN(a), a->f);
103 mpx_lsr(d->v, d->vl, a->v, a->vl, n);
104 d->f = a->f & (MP_NEG | MP_BURN);
105 MP_SHRINK(d);
106 return (d);
107 }
108
109 /* --- @mp_lsl2c@, @mp_lsr2c@ --- *
110 *
111 * Arguments: @mp *d@ = destination
112 * @mp *a@ = source
113 * @size_t n@ = number of bits to move
114 *
115 * Returns: Result, @a@ shifted left or right by @n@. Handles the
116 * pretence of sign-extension for negative numbers.
117 */
118
119 mp *mp_lsl2c(mp *d, mp *a, size_t n)
120 {
121 if (!(a->f & MP_NEG))
122 return (mp_lsl(d, a, n));
123 d = mp_not2c(d, a);
124 d = mp_lsl(d, d, n);
125 d = mp_not2c(d, d);
126 return (d);
127 }
128
129 mp *mp_lsr2c(mp *d, mp *a, size_t n)
130 {
131 if (!(a->f & MP_NEG))
132 return (mp_lsr(d, a, n));
133 d = mp_not2c(d, a);
134 d = mp_lsr(d, d, n);
135 d = mp_not2c(d, d);
136 return (d);
137 }
138
139 /* --- @mp_testbit@ --- *
140 *
141 * Arguments: @mp *x@ = a large integer
142 * @size_t n@ = which bit to test
143 *
144 * Returns: Nonzero if the bit is set, zero if not.
145 */
146
147 int mp_testbit(mp *x, size_t n)
148 {
149 size_t o;
150 if (n > MPW_BITS * MP_LEN(x))
151 return (0);
152 o = n / MPW_BITS;
153 n %= MPW_BITS;
154 return ((x->v[o] >> n) & 1);
155 }
156
157 /* --- @mp_testbit2c@ --- *
158 *
159 * Arguments: @mp *x@ = a large integer
160 * @size_t n@ = which bit to test
161 *
162 * Returns: Nonzero if the bit is set, zero if not. Fakes up two's
163 * complement representation.
164 */
165
166 int mp_testbit2c(mp *x, size_t n)
167 {
168 int r;
169 if (x->f & MP_NEG)
170 return (mp_testbit(x, n));
171 x = mp_not2c(MP_NEW, x);
172 r = !mp_testbit(x, n);
173 MP_DROP(x);
174 return (r);
175 }
176
177 /* --- @mp_eq@ --- *
178 *
179 * Arguments: @const mp *a, *b@ = two numbers
180 *
181 * Returns: Nonzero if the numbers are equal.
182 */
183
184 int mp_eq(const mp *a, const mp *b) { return (MP_EQ(a, b)); }
185
186 /* --- @mp_cmp@ --- *
187 *
188 * Arguments: @const mp *a, *b@ = two numbers
189 *
190 * Returns: Less than, equal to or greater than zero, according to
191 * whether @a@ is less than, equal to or greater than @b@.
192 */
193
194 int mp_cmp(const mp *a, const mp *b)
195 {
196 if (!((a->f ^ b->f) & MP_NEG))
197 return (mpx_ucmp(a->v, a->vl, b->v, b->vl));
198 else if (a->f & MP_NEG)
199 return (-1);
200 else
201 return (+1);
202 }
203
204 /* --- @mp_bitop@ --- *
205 *
206 * Arguments: @mp *d@ = destination
207 * @mp *a, *b@ = sources
208 *
209 * Returns: The result of the given bitwise operation. These functions
210 * don't handle negative numbers at all sensibly. For that, use
211 * the @...2c@ variants. The functions are named after the
212 * truth tables they generate:
213 *
214 * a: 0011
215 * b: 0101
216 * @mpx_bitXXXX@
217 */
218
219 #define MP_BITBINOP(string) \
220 \
221 mp *mp_bit##string(mp *d, mp *a, mp *b) \
222 { \
223 MP_DEST(d, MAX(MP_LEN(a), MP_LEN(b)), a->f | b->f); \
224 mpx_bit##string(d->v, d->vl, a->v, a->vl, b->v, b->vl); \
225 d->f = (a->f | b->f) & MP_BURN; \
226 MP_SHRINK(d); \
227 return (d); \
228 }
229
230 MPX_DOBIN(MP_BITBINOP)
231
232 /* --- @mp_not@ --- *
233 *
234 * Arguments: @mp *d@ = destination
235 * @mp *a@ = source
236 *
237 * Returns: The bitwise complement of the source.
238 */
239
240 mp *mp_not(mp *d, mp *a)
241 {
242 MP_DEST(d, MP_LEN(a), a->f);
243 mpx_not(d->v, d->vl, a->v, a->vl);
244 d->f = a->f & MP_BURN;
245 MP_SHRINK(d);
246 return (d);
247 }
248
249 /* --- @mp_bitop2c@ --- *
250 *
251 * Arguments: @mp *d@ = destination
252 * @mp *a, *b@ = sources
253 *
254 * Returns: The result of the given bitwise operation. Negative numbers
255 * are treated as two's complement, sign-extended infinitely to
256 * the left. The functions are named after the truth tables
257 * they generate:
258 *
259 * a: 0011
260 * b: 0101
261 * @mpx_bitXXXX@
262 */
263
264 /* --- How this actually works --- *
265 *
266 * The two arguments are inverted (with a sign-swap) if they're currently
267 * negative. This means that we end up using a different function (one which
268 * reinverts as we go) for the main operation. Also, if the sign would be
269 * negative at the end, we preinvert the output and then invert again with a
270 * sign-swap.
271 *
272 * Start with: wxyz WXYZ
273 * If @a@ negative: yzwx or YZWX
274 * If @b@ negative: xwzy XWZY
275 * If both negative: zyxw ZYXW
276 */
277
278 #define MP_BIT2CBINOP(n, base, an, bn, abn, p_base, p_an, p_bn, p_abn) \
279 \
280 mp *mp_bit##n##2c(mp *d, mp *a, mp *b) \
281 { \
282 if (!((a->f | b->f) & MP_NEG)) { /* Both positive */ \
283 d = mp_bit##base(d, a, b); \
284 p_base \
285 } else if (!(b->f & MP_NEG)) { /* Only @b@ positive */ \
286 MP_COPY(b); \
287 d = mp_not2c(d, a); \
288 d = mp_bit##an(d, d, b); \
289 MP_DROP(b); \
290 p_an \
291 } else if (!(a->f & MP_NEG)) { /* Only @a@ positive */ \
292 MP_COPY(a); \
293 d = mp_not2c(d, b); \
294 d = mp_bit##bn(d, a, d); \
295 MP_DROP(a); \
296 p_bn \
297 } else { /* Both negative */ \
298 mp *t = mp_not2c(MP_NEW, a); \
299 mp *d = mp_not2c(d, b); \
300 d = mp_bit##abn(d, t, d); \
301 MP_DROP(t); \
302 p_abn \
303 } \
304 return (d); \
305 } \
306
307 #define NEG d = mp_not2c(d, d);
308 #define POS
309 MP_BIT2CBINOP(0000, 0000, 0000, 0000, 0000, POS, POS, POS, POS)
310 MP_BIT2CBINOP(0001, 0001, 0100, 0010, 0111, POS, POS, POS, NEG)
311 MP_BIT2CBINOP(0010, 0010, 0111, 0001, 0100, POS, NEG, POS, POS)
312 MP_BIT2CBINOP(0011, 0011, 0011, 0011, 0011, POS, NEG, POS, NEG)
313 MP_BIT2CBINOP(0100, 0100, 0001, 0111, 0010, POS, POS, NEG, POS)
314 MP_BIT2CBINOP(0101, 0101, 0101, 0101, 0101, POS, POS, NEG, NEG)
315 MP_BIT2CBINOP(0110, 0110, 0110, 0110, 0110, POS, NEG, NEG, POS)
316 MP_BIT2CBINOP(0111, 0111, 0010, 0100, 0001, POS, NEG, NEG, NEG)
317 MP_BIT2CBINOP(1000, 0111, 0010, 0100, 0001, NEG, POS, POS, POS)
318 MP_BIT2CBINOP(1001, 0110, 0110, 0110, 0110, NEG, POS, POS, NEG)
319 MP_BIT2CBINOP(1010, 0101, 0101, 0101, 0101, NEG, NEG, POS, POS)
320 MP_BIT2CBINOP(1011, 0100, 0001, 0111, 0010, NEG, NEG, POS, NEG)
321 MP_BIT2CBINOP(1100, 0011, 0011, 0011, 0011, NEG, POS, NEG, POS)
322 MP_BIT2CBINOP(1101, 0010, 0111, 0001, 0100, NEG, POS, NEG, NEG)
323 MP_BIT2CBINOP(1110, 0001, 0100, 0010, 0111, NEG, NEG, NEG, POS)
324 MP_BIT2CBINOP(1111, 0000, 0000, 0000, 0000, NEG, NEG, NEG, NEG)
325 #undef NEG
326 #undef POS
327
328 /* --- @mp_not2c@ --- *
329 *
330 * Arguments: @mp *d@ = destination
331 * @mp *a@ = source
332 *
333 * Returns: The sign-extended complement of the argument.
334 */
335
336 mp *mp_not2c(mp *d, mp *a)
337 {
338 mpw one = 1;
339
340 MP_DEST(d, MP_LEN(a) + 1, a->f);
341 if (d == a) {
342 if (a->f & MP_NEG)
343 MPX_USUBN(d->v, d->vl, 1);
344 else
345 MPX_UADDN(d->v, d->vl, 1);
346 } else {
347 if (a->f & MP_NEG)
348 mpx_usub(d->v, d->vl, a->v, a->vl, &one, &one + 1);
349 else
350 mpx_uadd(d->v, d->vl, a->v, a->vl, &one, &one + 1);
351 }
352 d->f = (a->f & (MP_NEG | MP_BURN)) ^ MP_NEG;
353 MP_SHRINK(d);
354 return (d);
355 }
356
357 /* --- @mp_add@ --- *
358 *
359 * Arguments: @mp *d@ = destination
360 * @mp *a, *b@ = sources
361 *
362 * Returns: Result, @a@ added to @b@.
363 */
364
365 mp *mp_add(mp *d, mp *a, mp *b)
366 {
367 MP_DEST(d, MAX(MP_LEN(a), MP_LEN(b)) + 1, a->f | b->f);
368 if (!((a->f ^ b->f) & MP_NEG))
369 mpx_uadd(d->v, d->vl, a->v, a->vl, b->v, b->vl);
370 else {
371 if (MPX_UCMP(a->v, a->vl, <, b->v, b->vl)) {
372 mp *t = a; a = b; b = t;
373 }
374 mpx_usub(d->v, d->vl, a->v, a->vl, b->v, b->vl);
375 }
376 d->f = ((a->f | b->f) & MP_BURN) | (a->f & MP_NEG);
377 MP_SHRINK(d);
378 return (d);
379 }
380
381 /* --- @mp_sub@ --- *
382 *
383 * Arguments: @mp *d@ = destination
384 * @mp *a, *b@ = sources
385 *
386 * Returns: Result, @b@ subtracted from @a@.
387 */
388
389 mp *mp_sub(mp *d, mp *a, mp *b)
390 {
391 unsigned sgn = 0;
392 MP_DEST(d, MAX(MP_LEN(a), MP_LEN(b)) + 1, a->f | b->f);
393 if ((a->f ^ b->f) & MP_NEG)
394 mpx_uadd(d->v, d->vl, a->v, a->vl, b->v, b->vl);
395 else {
396 if (MPX_UCMP(a->v, a->vl, <, b->v, b->vl)) {
397 mp *t = a; a = b; b = t;
398 sgn = MP_NEG;
399 }
400 mpx_usub(d->v, d->vl, a->v, a->vl, b->v, b->vl);
401 }
402 d->f = ((a->f | b->f) & MP_BURN) | ((a->f ^ sgn) & MP_NEG);
403 MP_SHRINK(d);
404 return (d);
405 }
406
407 /* --- @mp_mul@ --- *
408 *
409 * Arguments: @mp *d@ = destination
410 * @mp *a, *b@ = sources
411 *
412 * Returns: Result, @a@ multiplied by @b@.
413 */
414
415 mp *mp_mul(mp *d, mp *a, mp *b)
416 {
417 a = MP_COPY(a);
418 b = MP_COPY(b);
419
420 if (MP_LEN(a) <= MPK_THRESH || MP_LEN(b) <= MPK_THRESH) {
421 MP_DEST(d, MP_LEN(a) + MP_LEN(b), a->f | b->f | MP_UNDEF);
422 mpx_umul(d->v, d->vl, a->v, a->vl, b->v, b->vl);
423 } else {
424 size_t m = 2 * MAX(MP_LEN(a), MP_LEN(b)) + 2;
425 mpw *s;
426 MP_DEST(d, m, a->f | b->f | MP_UNDEF);
427 m += MPK_SLOP;
428 s = mpalloc(d->a, m);
429 mpx_kmul(d->v, d->vl, a->v, a->vl, b->v, b->vl, s, s + m);
430 mpfree(d->a, s);
431 }
432
433 d->f = ((a->f | b->f) & MP_BURN) | ((a->f ^ b->f) & MP_NEG);
434 MP_SHRINK(d);
435 MP_DROP(a);
436 MP_DROP(b);
437 return (d);
438 }
439
440 /* --- @mp_sqr@ --- *
441 *
442 * Arguments: @mp *d@ = destination
443 * @mp *a@ = source
444 *
445 * Returns: Result, @a@ squared.
446 */
447
448 mp *mp_sqr(mp *d, mp *a)
449 {
450 size_t m = MP_LEN(a);
451
452 a = MP_COPY(a);
453 MP_DEST(d, 2 * m + 2, a->f | MP_UNDEF);
454 if (m > MPK_THRESH) {
455 mpw *s;
456 m = 2 * (m + 1) + MPK_SLOP;
457 s = mpalloc(d->a, m);
458 mpx_ksqr(d->v, d->vl, a->v, a->vl, s, s + m);
459 mpfree(d->a, s);
460 } else
461 mpx_usqr(d->v, d->vl, a->v, a->vl);
462 d->f = a->f & MP_BURN;
463 MP_SHRINK(d);
464 MP_DROP(a);
465 return (d);
466 }
467
468 /* --- @mp_div@ --- *
469 *
470 * Arguments: @mp **qq, **rr@ = destination, quotient and remainder
471 * @mp *a, *b@ = sources
472 *
473 * Use: Calculates the quotient and remainder when @a@ is divided by
474 * @b@. The destinations @*qq@ and @*rr@ must be distinct.
475 * Either of @qq@ or @rr@ may be null to indicate that the
476 * result is irrelevant. (Discarding both results is silly.)
477 * There is a performance advantage if @a == *rr@.
478 *
479 * The behaviour when @a@ and @b@ have the same sign is
480 * straightforward. When the signs differ, this implementation
481 * chooses @r@ to have the same sign as @b@, rather than the
482 * more normal choice that the remainder has the same sign as
483 * the dividend. This makes modular arithmetic a little more
484 * straightforward.
485 */
486
487 void mp_div(mp **qq, mp **rr, mp *a, mp *b)
488 {
489 mp *r = rr ? *rr : MP_NEW;
490 mp *q = qq ? *qq : MP_NEW;
491 mpw *sv, *svl;
492
493 /* --- Set the remainder up right --- *
494 *
495 * Just in case the divisor is larger, be able to cope with this. It's not
496 * important in @mpx_udiv@, but it is here because of the sign correction.
497 */
498
499 b = MP_COPY(b);
500 a = MP_COPY(a);
501 if (r)
502 MP_DROP(r);
503 r = a;
504 MP_DEST(r, MP_LEN(a) + 2, a->f | b->f);
505
506 /* --- Fix up the quotient too --- */
507
508 r = MP_COPY(r);
509 MP_DEST(q, MP_LEN(r), r->f | MP_UNDEF);
510 MP_DROP(r);
511
512 /* --- Set up some temporary workspace --- */
513
514 {
515 size_t rq = MP_LEN(b) + 1;
516 sv = mpalloc(r->a, rq);
517 svl = sv + rq;
518 }
519
520 /* --- Perform the calculation --- */
521
522 mpx_udiv(q->v, q->vl, r->v, r->vl, b->v, b->vl, sv, svl);
523
524 /* --- Sort out the sign of the results --- *
525 *
526 * If the signs of the arguments differ, and the remainder is nonzero, I
527 * must add one to the absolute value of the quotient and subtract the
528 * remainder from @b@.
529 */
530
531 q->f = ((r->f | b->f) & MP_BURN) | ((r->f ^ b->f) & MP_NEG);
532 if (q->f & MP_NEG) {
533 mpw *v;
534 for (v = r->v; v < r->vl; v++) {
535 if (*v) {
536 MPX_UADDN(q->v, q->vl, 1);
537 mpx_usub(r->v, r->vl, b->v, b->vl, r->v, r->vl);
538 break;
539 }
540 }
541 }
542
543 r->f = ((r->f | b->f) & MP_BURN) | (b->f & MP_NEG);
544
545 /* --- Store the return values --- */
546
547 mpfree(r->a, sv);
548 MP_DROP(b);
549
550 if (!qq)
551 MP_DROP(q);
552 else {
553 MP_SHRINK(q);
554 *qq = q;
555 }
556
557 if (!rr)
558 MP_DROP(r);
559 else {
560 MP_SHRINK(r);
561 *rr = r;
562 }
563 }
564
565 /* --- @mp_odd@ --- *
566 *
567 * Arguments: @mp *d@ = pointer to destination integer
568 * @mp *m@ = pointer to source integer
569 * @size_t *s@ = where to store the power of 2
570 *
571 * Returns: An odd integer integer %$t$% such that %$m = 2^s t$%.
572 *
573 * Use: Computes a power of two and an odd integer which, when
574 * multiplied, give a specified result. This sort of thing is
575 * useful in number theory quite often.
576 */
577
578 mp *mp_odd(mp *d, mp *m, size_t *s)
579 {
580 size_t ss = 0;
581 const mpw *v, *vl;
582
583 v = m->v;
584 vl = m->vl;
585 for (; !*v && v < vl; v++)
586 ss += MPW_BITS;
587 if (v >= vl)
588 ss = 0;
589 else {
590 mpw x = *v;
591 mpw mask = MPW_MAX;
592 unsigned z = MPW_BITS / 2;
593
594 while (z) {
595 mask >>= z;
596 if (!(x & mask)) {
597 x >>= z;
598 ss += z;
599 }
600 z >>= 1;
601 }
602 }
603
604 *s = ss;
605 return (mp_lsr(d, m, ss));
606 }
607
608 /*----- Test rig ----------------------------------------------------------*/
609
610 #ifdef TEST_RIG
611
612 static int verify(const char *op, mp *expect, mp *result, mp *a, mp *b)
613 {
614 if (!MP_EQ(expect, result)) {
615 fprintf(stderr, "\n*** %s failed", op);
616 fputs("\n*** a = ", stderr); mp_writefile(a, stderr, 10);
617 fputs("\n*** b = ", stderr); mp_writefile(b, stderr, 10);
618 fputs("\n*** result = ", stderr); mp_writefile(result, stderr, 10);
619 fputs("\n*** expect = ", stderr); mp_writefile(expect, stderr, 10);
620 fputc('\n', stderr);
621 return (0);
622 }
623 return (1);
624 }
625
626 #define RIG(name, op) \
627 static int t##name(dstr *v) \
628 { \
629 mp *a = *(mp **)v[0].buf; \
630 mpw n = *(int *)v[1].buf; \
631 mp b; \
632 mp *r = *(mp **)v[2].buf; \
633 mp *c = op(MP_NEW, a, n); \
634 int ok; \
635 mp_build(&b, &n, &n + 1); \
636 ok = verify(#name, r, c, a, &b); \
637 mp_drop(a); mp_drop(c); mp_drop(r); \
638 assert(mparena_count(MPARENA_GLOBAL) == 0); \
639 return (ok); \
640 }
641
642 RIG(lsl, mp_lsl)
643 RIG(lsr, mp_lsr)
644 RIG(lsl2c, mp_lsl2c)
645 RIG(lsr2c, mp_lsr2c)
646
647 #undef RIG
648
649 #define RIG(name, op) \
650 static int t##name(dstr *v) \
651 { \
652 mp *a = *(mp **)v[0].buf; \
653 mp *b = *(mp **)v[1].buf; \
654 mp *r = *(mp **)v[2].buf; \
655 mp *c = op(MP_NEW, a, b); \
656 int ok = verify(#name, r, c, a, b); \
657 mp_drop(a); mp_drop(b); mp_drop(c); mp_drop(r); \
658 assert(mparena_count(MPARENA_GLOBAL) == 0); \
659 return (ok); \
660 }
661
662 RIG(add, mp_add)
663 RIG(sub, mp_sub)
664 RIG(mul, mp_mul)
665
666 #undef RIG
667
668 static int tdiv(dstr *v)
669 {
670 mp *a = *(mp **)v[0].buf;
671 mp *b = *(mp **)v[1].buf;
672 mp *q = *(mp **)v[2].buf;
673 mp *r = *(mp **)v[3].buf;
674 mp *c = MP_NEW, *d = MP_NEW;
675 int ok = 1;
676 mp_div(&c, &d, a, b);
677 ok &= verify("div(quotient)", q, c, a, b);
678 ok &= verify("div(remainder)", r, d, a, b);
679 mp_drop(a); mp_drop(b); mp_drop(c); mp_drop(d); mp_drop(r); mp_drop(q);
680 assert(mparena_count(MPARENA_GLOBAL) == 0);
681 return (ok);
682 }
683
684 static int tbin(dstr *v)
685 {
686 static mp *(*fn[])(mp *, mp *, mp *) = {
687 #define DO(string) mp_bit##string##2c,
688 MPX_DOBIN(DO)
689 #undef DO
690 };
691 int ok = 1;
692 unsigned op = 0;
693 mp *a = *(mp **)v[1].buf;
694 mp *b = *(mp **)v[2].buf;
695 mp *r = *(mp **)v[3].buf;
696 mp *c;
697
698 if (strcmp(v[0].buf, "and") == 0) op = 1;
699 else if (strcmp(v[0].buf, "or") == 0) op = 7;
700 else if (strcmp(v[0].buf, "nand") == 0) op = 14;
701 else if (strcmp(v[0].buf, "nor") == 0) op = 8;
702 else if (strcmp(v[0].buf, "xor") == 0) op = 6;
703 else {
704 char *p = v[0].buf;
705 while (*p) {
706 op <<= 1;
707 if (*p++ == '1')
708 op |= 1;
709 }
710 }
711
712 c = fn[op](MP_NEW, a, b);
713 ok = verify(v[0].buf, r, c, a, b);
714 mp_drop(a); mp_drop(b); mp_drop(r); mp_drop(c);
715 assert(mparena_count(MPARENA_GLOBAL) == 0);
716 return (ok);
717 }
718
719 static int todd(dstr *v)
720 {
721 mp *a = *(mp **)v[0].buf;
722 size_t rs = *(uint32 *)v[1].buf;
723 mp *rt = *(mp **)v[2].buf;
724 int ok = 1;
725 mp *t;
726 size_t s;
727 t = mp_odd(MP_NEW, a, &s);
728 if (s != rs || !MP_EQ(t, rt)) {
729 ok = 0;
730 fprintf(stderr, "\n*** odd failed");
731 fputs("\n*** a = ", stderr); mp_writefile(a, stderr, 10);
732 fprintf(stderr, "\n*** s = %lu", (unsigned long)s);
733 fputs("\n*** t = ", stderr); mp_writefile(t, stderr, 10);
734 fprintf(stderr, "\n*** rs = %lu", (unsigned long)rs);
735 fputs("\n*** rt = ", stderr); mp_writefile(rt, stderr, 10);
736 fputc('\n', stderr);
737 }
738 mp_drop(a);
739 mp_drop(rt);
740 mp_drop(t);
741 return (ok);
742 }
743
744 static test_chunk tests[] = {
745 { "lsl", tlsl, { &type_mp, &type_int, &type_mp, 0 } },
746 { "lsr", tlsr, { &type_mp, &type_int, &type_mp, 0 } },
747 { "lsl2c", tlsl2c, { &type_mp, &type_int, &type_mp, 0 } },
748 { "lsr2c", tlsr2c, { &type_mp, &type_int, &type_mp, 0 } },
749 { "add", tadd, { &type_mp, &type_mp, &type_mp, 0 } },
750 { "sub", tsub, { &type_mp, &type_mp, &type_mp, 0 } },
751 { "mul", tmul, { &type_mp, &type_mp, &type_mp, 0 } },
752 { "div", tdiv, { &type_mp, &type_mp, &type_mp, &type_mp, 0 } },
753 { "bin2c", tbin, { &type_string, &type_mp, &type_mp, &type_mp, 0 } },
754 { "odd", todd, { &type_mp, &type_uint32, &type_mp, 0 } },
755 { 0, 0, { 0 } },
756 };
757
758 int main(int argc, char *argv[])
759 {
760 sub_init();
761 test_run(argc, argv, tests, SRCDIR "/tests/mp");
762 return (0);
763 }
764
765 #endif
766
767 /*----- That's all, folks -------------------------------------------------*/