New cipher.
[u/mdw/catacomb] / rijndael-mktab.c
1 /* -*-c-*-
2 *
3 * $Id: rijndael-mktab.c,v 1.1 2000/06/17 11:56:07 mdw Exp $
4 *
5 * Build precomputed tables for the Rijndael block cipher
6 *
7 * (c) 2000 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: rijndael-mktab.c,v $
33 * Revision 1.1 2000/06/17 11:56:07 mdw
34 * New cipher.
35 *
36 */
37
38 /*----- Header files ------------------------------------------------------*/
39
40 #include <assert.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43
44 #include <mLib/bits.h>
45
46 /*----- Magic variables ---------------------------------------------------*/
47
48 static octet s[256], si[256];
49 static uint32 t[4][256], ti[4][256];
50 static uint32 u[4][256];
51 static octet rc[32];
52
53 /*----- Main code ---------------------------------------------------------*/
54
55 /* --- @mul@ --- *
56 *
57 * Arguments: @unsigned x, y@ = polynomials over %$\mathrm{GF}(2^8)$%
58 * @unsigned m@ = modulus
59 *
60 * Returns: The product of two polynomials.
61 *
62 * Use: Computes a product of polynomials, quite slowly.
63 */
64
65 static unsigned mul(unsigned x, unsigned y, unsigned m)
66 {
67 unsigned a = 0;
68 unsigned i;
69
70 for (i = 0; i < 8; i++) {
71 if (y & 1)
72 a ^= x;
73 y >>= 1;
74 x <<= 1;
75 if (x & 0x100)
76 x ^= m;
77 }
78
79 return (a);
80 }
81
82 /* --- @sbox@ --- *
83 *
84 * Build the S-box.
85 *
86 * This is built from multiplicative inversion in the group
87 * %$\mathrm{GF}(2^8)[x]/p(x)$%, where %$p(x) = x^8 + x^4 + x^3 + x + 1$%,
88 * followed by an affine transformation treating inputs as vectors over
89 * %$\mathrm{GF}(2)$%. The result is a horrible function.
90 *
91 * The inversion is done slightly sneakily, by building log and antilog
92 * tables. Let %$a$% be an element of the finite field. If the inverse of
93 * %$a$% is %$a^{-1}$%, then %$\log a a^{-1} = 0$%. Hence
94 * %$\log a = -\log a^{-1}$%. This saves fiddling about with Euclidean
95 * algorithm.
96 */
97
98 #define S_MOD 0x11b
99
100 static void sbox(void)
101 {
102 octet log[256], alog[256];
103 unsigned x;
104 unsigned i;
105 unsigned g;
106
107 /* --- Find a suitable generator, and build log tables --- */
108
109 log[0] = 0;
110 for (g = 2; g < 256; g++) {
111 x = 1;
112 for (i = 0; i < 256; i++) {
113 log[x] = i;
114 alog[i] = x;
115 x = mul(x, g, S_MOD);
116 if (x == 1 && i != 254)
117 goto again;
118 }
119 goto done;
120 again:;
121 }
122 fprintf(stderr, "couldn't find generator\n");
123 exit(EXIT_FAILURE);
124 done:;
125
126 /* --- Now grind through and do the affine transform --- *
127 *
128 * The matrix multiply is an AND and a parity op. The add is an XOR.
129 */
130
131 for (i = 0; i < 256; i++) {
132 unsigned j;
133 unsigned m = 0xf8;
134 unsigned v = i ? alog[255 - log[i]] : 0;
135
136 assert(i == 0 || mul(i, v, S_MOD) == 1);
137
138 x = 0;
139 for (j = 0; j < 8; j++) {
140 unsigned r;
141 r = v & m;
142 r = (r >> 4) ^ r;
143 r = (r >> 2) ^ r;
144 r = (r >> 1) ^ r;
145 x = (x << 1) | (r & 1);
146 m = ROR8(m, 1);
147 }
148 x ^= 0x63;
149 s[i] = x;
150 si[x] = i;
151 }
152 }
153
154 /* --- @tbox@ --- *
155 *
156 * Construct the t tables for doing the round function efficiently.
157 */
158
159 static void tbox(void)
160 {
161 unsigned i;
162
163 for (i = 0; i < 256; i++) {
164 uint32 a, b, c, d;
165 uint32 w;
166
167 /* --- Build a forwards t-box entry --- */
168
169 a = s[i];
170 b = a << 1; if (b & 0x100) b ^= S_MOD;
171 c = a ^ b;
172 w = (b << 0) | (a << 8) | (a << 16) | (c << 24);
173 t[0][i] = w;
174 t[1][i] = ROL32(w, 8);
175 t[2][i] = ROL32(w, 16);
176 t[3][i] = ROL32(w, 24);
177
178 /* --- Build a backwards t-box entry --- */
179
180 a = mul(si[i], 0x0e, S_MOD);
181 b = mul(si[i], 0x09, S_MOD);
182 c = mul(si[i], 0x0d, S_MOD);
183 d = mul(si[i], 0x0b, S_MOD);
184 w = (a << 0) | (b << 8) | (c << 16) | (d << 24);
185 ti[0][i] = w;
186 ti[1][i] = ROL32(w, 8);
187 ti[2][i] = ROL32(w, 16);
188 ti[3][i] = ROL32(w, 24);
189 }
190 }
191
192 /* --- @ubox@ --- *
193 *
194 * Construct the tables for performing the decryption key schedule.
195 */
196
197 static void ubox(void)
198 {
199 unsigned i;
200
201 for (i = 0; i < 256; i++) {
202 uint32 a, b, c, d;
203 uint32 w;
204 a = mul(i, 0x0e, S_MOD);
205 b = mul(i, 0x09, S_MOD);
206 c = mul(i, 0x0d, S_MOD);
207 d = mul(i, 0x0b, S_MOD);
208 w = (a << 0) | (b << 8) | (c << 16) | (d << 24);
209 u[0][i] = w;
210 u[1][i] = ROL32(w, 8);
211 u[2][i] = ROL32(w, 16);
212 u[3][i] = ROL32(w, 24);
213 }
214 }
215
216 /* --- Round constants --- */
217
218 void rcon(void)
219 {
220 unsigned r = 1;
221 int i;
222
223 for (i = 0; i < sizeof(rc); i++) {
224 rc[i] = r;
225 r <<= 1;
226 if (r & 0x100)
227 r ^= S_MOD;
228 }
229 }
230
231 /* --- @main@ --- */
232
233 int main(void)
234 {
235 int i, j;
236
237 puts("\
238 /* -*-c-*-\n\
239 *\n\
240 * Rijndael tables [generated]\n\
241 */\n\
242 \n\
243 #ifndef CATACOMB_RIJNDAEL_TAB_H\n\
244 #define CATACOMB_RIJNDAEL_TAB_H\n\
245 ");
246
247 /* --- Write out the S-box --- */
248
249 sbox();
250 fputs("\
251 /* --- The byte substitution and its inverse --- */\n\
252 \n\
253 #define RIJNDAEL_S { \\\n\
254 ", stdout);
255 for (i = 0; i < 256; i++) {
256 printf("0x%02x", s[i]);
257 if (i == 255)
258 fputs(" \\\n}\n\n", stdout);
259 else if (i % 8 == 7)
260 fputs(", \\\n ", stdout);
261 else
262 fputs(", ", stdout);
263 }
264
265 fputs("\
266 #define RIJNDAEL_SI { \\\n\
267 ", stdout);
268 for (i = 0; i < 256; i++) {
269 printf("0x%02x", si[i]);
270 if (i == 255)
271 fputs(" \\\n}\n\n", stdout);
272 else if (i % 8 == 7)
273 fputs(", \\\n ", stdout);
274 else
275 fputs(", ", stdout);
276 }
277
278 /* --- Write out the big t tables --- */
279
280 tbox();
281 fputs("\
282 /* --- The big round tables --- */\n\
283 \n\
284 #define RIJNDAEL_T { \\\n\
285 { ", stdout);
286 for (j = 0; j < 4; j++) {
287 for (i = 0; i < 256; i++) {
288 printf("0x%08x", t[j][i]);
289 if (i == 255) {
290 if (j == 3)
291 fputs(" } \\\n}\n\n", stdout);
292 else
293 fputs(" }, \\\n\
294 \\\n\
295 { ", stdout);
296 } else if (i % 4 == 3)
297 fputs(", \\\n ", stdout);
298 else
299 fputs(", ", stdout);
300 }
301 }
302
303 fputs("\
304 #define RIJNDAEL_TI { \\\n\
305 { ", stdout);
306 for (j = 0; j < 4; j++) {
307 for (i = 0; i < 256; i++) {
308 printf("0x%08x", ti[j][i]);
309 if (i == 255) {
310 if (j == 3)
311 fputs(" } \\\n}\n\n", stdout);
312 else
313 fputs(" }, \\\n\
314 \\\n\
315 { ", stdout);
316 } else if (i % 4 == 3)
317 fputs(", \\\n ", stdout);
318 else
319 fputs(", ", stdout);
320 }
321 }
322
323 /* --- Write out the big u tables --- */
324
325 ubox();
326 fputs("\
327 /* --- The decryption key schedule tables --- */\n\
328 \n\
329 #define RIJNDAEL_U { \\\n\
330 { ", stdout);
331 for (j = 0; j < 4; j++) {
332 for (i = 0; i < 256; i++) {
333 printf("0x%08x", u[j][i]);
334 if (i == 255) {
335 if (j == 3)
336 fputs(" } \\\n}\n\n", stdout);
337 else
338 fputs(" }, \\\n\
339 \\\n\
340 { ", stdout);
341 } else if (i % 4 == 3)
342 fputs(", \\\n ", stdout);
343 else
344 fputs(", ", stdout);
345 }
346 }
347
348 /* --- Round constants --- */
349
350 rcon();
351 fputs("\
352 /* --- The round constants --- */\n\
353 \n\
354 #define RIJNDAEL_RCON { \\\n\
355 ", stdout);
356 for (i = 0; i < sizeof(rc); i++) {
357 printf("0x%02x", rc[i]);
358 if (i == sizeof(rc) - 1)
359 fputs(" \\\n}\n\n", stdout);
360 else if (i % 8 == 7)
361 fputs(", \\\n ", stdout);
362 else
363 fputs(", ", stdout);
364 }
365
366 /* --- Done --- */
367
368 puts("#endif");
369
370 if (fclose(stdout)) {
371 fprintf(stderr, "error writing data\n");
372 exit(EXIT_FAILURE);
373 }
374
375 return (0);
376 }
377
378 /*----- That's all, folks -------------------------------------------------*/