Add cyclic group abstraction, with test code. Separate off exponentation
[u/mdw/catacomb] / mpx.c
1 /* -*-c-*-
2 *
3 * $Id: mpx.c,v 1.18 2004/04/01 12:50:09 mdw Exp $
4 *
5 * Low-level multiprecision arithmetic
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mpx.c,v $
33 * Revision 1.18 2004/04/01 12:50:09 mdw
34 * Add cyclic group abstraction, with test code. Separate off exponentation
35 * functions for better static linking. Fix a buttload of bugs on the way.
36 * Generally ensure that negative exponents do inversion correctly. Add
37 * table of standard prime-field subgroups. (Binary field subgroups are
38 * currently unimplemented but easy to add if anyone ever finds a good one.)
39 *
40 * Revision 1.17 2004/03/27 00:04:46 mdw
41 * Implement efficient reduction for pleasant-looking primes.
42 *
43 * Revision 1.16 2003/05/16 09:09:24 mdw
44 * Fix @mp_lsl2c@. Turns out to be surprisingly tricky.
45 *
46 * Revision 1.15 2002/10/20 01:12:31 mdw
47 * Two's complement I/O fixes.
48 *
49 * Revision 1.14 2002/10/19 18:55:08 mdw
50 * Fix overflows in shift primitives.
51 *
52 * Revision 1.13 2002/10/19 17:56:50 mdw
53 * Fix bit operations. Test them (a bit) better.
54 *
55 * Revision 1.12 2002/10/06 22:52:50 mdw
56 * Pile of changes for supporting two's complement properly.
57 *
58 * Revision 1.11 2001/04/03 19:36:05 mdw
59 * Add some simple bitwise operations so that Perl can use them.
60 *
61 * Revision 1.10 2000/10/08 12:06:12 mdw
62 * Provide @mpx_ueq@ for rapidly testing equality of two integers.
63 *
64 * Revision 1.9 2000/06/26 07:52:50 mdw
65 * Portability fix for the bug fix.
66 *
67 * Revision 1.8 2000/06/25 12:59:02 mdw
68 * (mpx_udiv): Fix bug in quotient digit estimation.
69 *
70 * Revision 1.7 1999/12/22 15:49:07 mdw
71 * New function for division by a small integer.
72 *
73 * Revision 1.6 1999/11/20 22:43:44 mdw
74 * Integrate testing for MPX routines.
75 *
76 * Revision 1.5 1999/11/20 22:23:27 mdw
77 * Add function versions of some low-level macros with wider use.
78 *
79 * Revision 1.4 1999/11/17 18:04:09 mdw
80 * Add two's-complement functionality. Improve mpx_udiv a little by
81 * performing the multiplication of the divisor by q with the subtraction
82 * from r.
83 *
84 * Revision 1.3 1999/11/13 01:57:31 mdw
85 * Remove stray debugging code.
86 *
87 * Revision 1.2 1999/11/13 01:50:59 mdw
88 * Multiprecision routines finished and tested.
89 *
90 * Revision 1.1 1999/09/03 08:41:12 mdw
91 * Initial import.
92 *
93 */
94
95 /*----- Header files ------------------------------------------------------*/
96
97 #include <assert.h>
98 #include <stdio.h>
99 #include <stdlib.h>
100 #include <string.h>
101
102 #include <mLib/bits.h>
103
104 #include "mptypes.h"
105 #include "mpx.h"
106 #include "bitops.h"
107
108 /*----- Loading and storing -----------------------------------------------*/
109
110 /* --- @mpx_storel@ --- *
111 *
112 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
113 * @void *pp@ = pointer to octet array
114 * @size_t sz@ = size of octet array
115 *
116 * Returns: ---
117 *
118 * Use: Stores an MP in an octet array, least significant octet
119 * first. High-end octets are silently discarded if there
120 * isn't enough space for them.
121 */
122
123 void mpx_storel(const mpw *v, const mpw *vl, void *pp, size_t sz)
124 {
125 mpw n, w = 0;
126 octet *p = pp, *q = p + sz;
127 unsigned bits = 0;
128
129 while (p < q) {
130 if (bits < 8) {
131 if (v >= vl) {
132 *p++ = U8(w);
133 break;
134 }
135 n = *v++;
136 *p++ = U8(w | n << bits);
137 w = n >> (8 - bits);
138 bits += MPW_BITS - 8;
139 } else {
140 *p++ = U8(w);
141 w >>= 8;
142 bits -= 8;
143 }
144 }
145 memset(p, 0, q - p);
146 }
147
148 /* --- @mpx_loadl@ --- *
149 *
150 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
151 * @const void *pp@ = pointer to octet array
152 * @size_t sz@ = size of octet array
153 *
154 * Returns: ---
155 *
156 * Use: Loads an MP in an octet array, least significant octet
157 * first. High-end octets are ignored if there isn't enough
158 * space for them.
159 */
160
161 void mpx_loadl(mpw *v, mpw *vl, const void *pp, size_t sz)
162 {
163 unsigned n;
164 mpw w = 0;
165 const octet *p = pp, *q = p + sz;
166 unsigned bits = 0;
167
168 if (v >= vl)
169 return;
170 while (p < q) {
171 n = U8(*p++);
172 w |= n << bits;
173 bits += 8;
174 if (bits >= MPW_BITS) {
175 *v++ = MPW(w);
176 w = n >> (MPW_BITS - bits + 8);
177 bits -= MPW_BITS;
178 if (v >= vl)
179 return;
180 }
181 }
182 *v++ = w;
183 MPX_ZERO(v, vl);
184 }
185
186 /* --- @mpx_storeb@ --- *
187 *
188 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
189 * @void *pp@ = pointer to octet array
190 * @size_t sz@ = size of octet array
191 *
192 * Returns: ---
193 *
194 * Use: Stores an MP in an octet array, most significant octet
195 * first. High-end octets are silently discarded if there
196 * isn't enough space for them.
197 */
198
199 void mpx_storeb(const mpw *v, const mpw *vl, void *pp, size_t sz)
200 {
201 mpw n, w = 0;
202 octet *p = pp, *q = p + sz;
203 unsigned bits = 0;
204
205 while (q > p) {
206 if (bits < 8) {
207 if (v >= vl) {
208 *--q = U8(w);
209 break;
210 }
211 n = *v++;
212 *--q = U8(w | n << bits);
213 w = n >> (8 - bits);
214 bits += MPW_BITS - 8;
215 } else {
216 *--q = U8(w);
217 w >>= 8;
218 bits -= 8;
219 }
220 }
221 memset(p, 0, q - p);
222 }
223
224 /* --- @mpx_loadb@ --- *
225 *
226 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
227 * @const void *pp@ = pointer to octet array
228 * @size_t sz@ = size of octet array
229 *
230 * Returns: ---
231 *
232 * Use: Loads an MP in an octet array, most significant octet
233 * first. High-end octets are ignored if there isn't enough
234 * space for them.
235 */
236
237 void mpx_loadb(mpw *v, mpw *vl, const void *pp, size_t sz)
238 {
239 unsigned n;
240 mpw w = 0;
241 const octet *p = pp, *q = p + sz;
242 unsigned bits = 0;
243
244 if (v >= vl)
245 return;
246 while (q > p) {
247 n = U8(*--q);
248 w |= n << bits;
249 bits += 8;
250 if (bits >= MPW_BITS) {
251 *v++ = MPW(w);
252 w = n >> (MPW_BITS - bits + 8);
253 bits -= MPW_BITS;
254 if (v >= vl)
255 return;
256 }
257 }
258 *v++ = w;
259 MPX_ZERO(v, vl);
260 }
261
262 /* --- @mpx_storel2cn@ --- *
263 *
264 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
265 * @void *pp@ = pointer to octet array
266 * @size_t sz@ = size of octet array
267 *
268 * Returns: ---
269 *
270 * Use: Stores a negative MP in an octet array, least significant
271 * octet first, as two's complement. High-end octets are
272 * silently discarded if there isn't enough space for them.
273 * This obviously makes the output bad.
274 */
275
276 void mpx_storel2cn(const mpw *v, const mpw *vl, void *pp, size_t sz)
277 {
278 unsigned c = 1;
279 unsigned b = 0;
280 mpw n, w = 0;
281 octet *p = pp, *q = p + sz;
282 unsigned bits = 0;
283
284 while (p < q) {
285 if (bits < 8) {
286 if (v >= vl) {
287 b = w;
288 break;
289 }
290 n = *v++;
291 b = w | n << bits;
292 w = n >> (8 - bits);
293 bits += MPW_BITS - 8;
294 } else {
295 b = w;
296 w >>= 8;
297 bits -= 8;
298 }
299 b = U8(~b + c);
300 c = c && !b;
301 *p++ = b;
302 }
303 while (p < q) {
304 b = U8(~b + c);
305 c = c && !b;
306 *p++ = b;
307 b = 0;
308 }
309 }
310
311 /* --- @mpx_loadl2cn@ --- *
312 *
313 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
314 * @const void *pp@ = pointer to octet array
315 * @size_t sz@ = size of octet array
316 *
317 * Returns: ---
318 *
319 * Use: Loads a negative MP in an octet array, least significant
320 * octet first, as two's complement. High-end octets are
321 * ignored if there isn't enough space for them. This probably
322 * means you made the wrong choice coming here.
323 */
324
325 void mpx_loadl2cn(mpw *v, mpw *vl, const void *pp, size_t sz)
326 {
327 unsigned n;
328 unsigned c = 1;
329 mpw w = 0;
330 const octet *p = pp, *q = p + sz;
331 unsigned bits = 0;
332
333 if (v >= vl)
334 return;
335 while (p < q) {
336 n = U8(~(*p++) + c);
337 c = c && !n;
338 w |= n << bits;
339 bits += 8;
340 if (bits >= MPW_BITS) {
341 *v++ = MPW(w);
342 w = n >> (MPW_BITS - bits + 8);
343 bits -= MPW_BITS;
344 if (v >= vl)
345 return;
346 }
347 }
348 *v++ = w;
349 MPX_ZERO(v, vl);
350 }
351
352 /* --- @mpx_storeb2cn@ --- *
353 *
354 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
355 * @void *pp@ = pointer to octet array
356 * @size_t sz@ = size of octet array
357 *
358 * Returns: ---
359 *
360 * Use: Stores a negative MP in an octet array, most significant
361 * octet first, as two's complement. High-end octets are
362 * silently discarded if there isn't enough space for them,
363 * which probably isn't what you meant.
364 */
365
366 void mpx_storeb2cn(const mpw *v, const mpw *vl, void *pp, size_t sz)
367 {
368 mpw n, w = 0;
369 unsigned b = 0;
370 unsigned c = 1;
371 octet *p = pp, *q = p + sz;
372 unsigned bits = 0;
373
374 while (q > p) {
375 if (bits < 8) {
376 if (v >= vl) {
377 b = w;
378 break;
379 }
380 n = *v++;
381 b = w | n << bits;
382 w = n >> (8 - bits);
383 bits += MPW_BITS - 8;
384 } else {
385 b = w;
386 w >>= 8;
387 bits -= 8;
388 }
389 b = U8(~b + c);
390 c = c && !b;
391 *--q = b;
392 }
393 while (q > p) {
394 b = ~b + c;
395 c = c && !(b & 0xff);
396 *--q = b;
397 b = 0;
398 }
399 }
400
401 /* --- @mpx_loadb2cn@ --- *
402 *
403 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
404 * @const void *pp@ = pointer to octet array
405 * @size_t sz@ = size of octet array
406 *
407 * Returns: ---
408 *
409 * Use: Loads a negative MP in an octet array, most significant octet
410 * first as two's complement. High-end octets are ignored if
411 * there isn't enough space for them. This probably means you
412 * chose this function wrongly.
413 */
414
415 void mpx_loadb2cn(mpw *v, mpw *vl, const void *pp, size_t sz)
416 {
417 unsigned n;
418 unsigned c = 1;
419 mpw w = 0;
420 const octet *p = pp, *q = p + sz;
421 unsigned bits = 0;
422
423 if (v >= vl)
424 return;
425 while (q > p) {
426 n = U8(~(*--q) + c);
427 c = c && !n;
428 w |= n << bits;
429 bits += 8;
430 if (bits >= MPW_BITS) {
431 *v++ = MPW(w);
432 w = n >> (MPW_BITS - bits + 8);
433 bits -= MPW_BITS;
434 if (v >= vl)
435 return;
436 }
437 }
438 *v++ = w;
439 MPX_ZERO(v, vl);
440 }
441
442 /*----- Logical shifting --------------------------------------------------*/
443
444 /* --- @mpx_lsl@ --- *
445 *
446 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
447 * @const mpw *av, *avl@ = source vector base and limit
448 * @size_t n@ = number of bit positions to shift by
449 *
450 * Returns: ---
451 *
452 * Use: Performs a logical shift left operation on an integer.
453 */
454
455 void mpx_lsl(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
456 {
457 size_t nw;
458 unsigned nb;
459
460 /* --- Trivial special case --- */
461
462 if (n == 0)
463 MPX_COPY(dv, dvl, av, avl);
464
465 /* --- Single bit shifting --- */
466
467 else if (n == 1) {
468 mpw w = 0;
469 while (av < avl) {
470 mpw t;
471 if (dv >= dvl)
472 goto done;
473 t = *av++;
474 *dv++ = MPW((t << 1) | w);
475 w = t >> (MPW_BITS - 1);
476 }
477 if (dv >= dvl)
478 goto done;
479 *dv++ = MPW(w);
480 MPX_ZERO(dv, dvl);
481 goto done;
482 }
483
484 /* --- Break out word and bit shifts for more sophisticated work --- */
485
486 nw = n / MPW_BITS;
487 nb = n % MPW_BITS;
488
489 /* --- Handle a shift by a multiple of the word size --- */
490
491 if (nb == 0) {
492 if (nw >= dvl - dv)
493 MPX_ZERO(dv, dvl);
494 else {
495 MPX_COPY(dv + nw, dvl, av, avl);
496 memset(dv, 0, MPWS(nw));
497 }
498 }
499
500 /* --- And finally the difficult case --- *
501 *
502 * This is a little convoluted, because I have to start from the end and
503 * work backwards to avoid overwriting the source, if they're both the same
504 * block of memory.
505 */
506
507 else {
508 mpw w;
509 size_t nr = MPW_BITS - nb;
510 size_t dvn = dvl - dv;
511 size_t avn = avl - av;
512
513 if (dvn <= nw) {
514 MPX_ZERO(dv, dvl);
515 goto done;
516 }
517
518 if (dvn > avn + nw) {
519 size_t off = avn + nw + 1;
520 MPX_ZERO(dv + off, dvl);
521 dvl = dv + off;
522 w = 0;
523 } else {
524 avl = av + dvn - nw;
525 w = *--avl << nb;
526 }
527
528 while (avl > av) {
529 mpw t = *--avl;
530 *--dvl = (t >> nr) | w;
531 w = t << nb;
532 }
533
534 *--dvl = w;
535 MPX_ZERO(dv, dvl);
536 }
537
538 done:;
539 }
540
541 /* --- @mpx_lslc@ --- *
542 *
543 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
544 * @const mpw *av, *avl@ = source vector base and limit
545 * @size_t n@ = number of bit positions to shift by
546 *
547 * Returns: ---
548 *
549 * Use: Performs a logical shift left operation on an integer, only
550 * it fills in the bits with ones instead of zeroes.
551 */
552
553 void mpx_lslc(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
554 {
555 size_t nw;
556 unsigned nb;
557
558 /* --- Trivial special case --- */
559
560 if (n == 0)
561 MPX_COPY(dv, dvl, av, avl);
562
563 /* --- Single bit shifting --- */
564
565 else if (n == 1) {
566 mpw w = 1;
567 while (av < avl) {
568 mpw t;
569 if (dv >= dvl)
570 goto done;
571 t = *av++;
572 *dv++ = MPW((t << 1) | w);
573 w = t >> (MPW_BITS - 1);
574 }
575 if (dv >= dvl)
576 goto done;
577 *dv++ = MPW(w);
578 MPX_ZERO(dv, dvl);
579 goto done;
580 }
581
582 /* --- Break out word and bit shifts for more sophisticated work --- */
583
584 nw = n / MPW_BITS;
585 nb = n % MPW_BITS;
586
587 /* --- Handle a shift by a multiple of the word size --- */
588
589 if (nb == 0) {
590 if (nw >= dvl - dv)
591 MPX_ONE(dv, dvl);
592 else {
593 MPX_COPY(dv + nw, dvl, av, avl);
594 MPX_ONE(dv, dv + nw);
595 }
596 }
597
598 /* --- And finally the difficult case --- *
599 *
600 * This is a little convoluted, because I have to start from the end and
601 * work backwards to avoid overwriting the source, if they're both the same
602 * block of memory.
603 */
604
605 else {
606 mpw w;
607 size_t nr = MPW_BITS - nb;
608 size_t dvn = dvl - dv;
609 size_t avn = avl - av;
610
611 if (dvn <= nw) {
612 MPX_ONE(dv, dvl);
613 goto done;
614 }
615
616 if (dvn > avn + nw) {
617 size_t off = avn + nw + 1;
618 MPX_ZERO(dv + off, dvl);
619 dvl = dv + off;
620 w = 0;
621 } else {
622 avl = av + dvn - nw;
623 w = *--avl << nb;
624 }
625
626 while (avl > av) {
627 mpw t = *--avl;
628 *--dvl = (t >> nr) | w;
629 w = t << nb;
630 }
631
632 *--dvl = (MPW_MAX >> nr) | w;
633 MPX_ONE(dv, dvl);
634 }
635
636 done:;
637 }
638
639 /* --- @mpx_lsr@ --- *
640 *
641 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
642 * @const mpw *av, *avl@ = source vector base and limit
643 * @size_t n@ = number of bit positions to shift by
644 *
645 * Returns: ---
646 *
647 * Use: Performs a logical shift right operation on an integer.
648 */
649
650 void mpx_lsr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, size_t n)
651 {
652 size_t nw;
653 unsigned nb;
654
655 /* --- Trivial special case --- */
656
657 if (n == 0)
658 MPX_COPY(dv, dvl, av, avl);
659
660 /* --- Single bit shifting --- */
661
662 else if (n == 1) {
663 mpw w = *av++ >> 1;
664 while (av < avl) {
665 mpw t;
666 if (dv >= dvl)
667 goto done;
668 t = *av++;
669 *dv++ = MPW((t << (MPW_BITS - 1)) | w);
670 w = t >> 1;
671 }
672 if (dv >= dvl)
673 goto done;
674 *dv++ = MPW(w);
675 MPX_ZERO(dv, dvl);
676 goto done;
677 }
678
679 /* --- Break out word and bit shifts for more sophisticated work --- */
680
681 nw = n / MPW_BITS;
682 nb = n % MPW_BITS;
683
684 /* --- Handle a shift by a multiple of the word size --- */
685
686 if (nb == 0) {
687 if (nw >= avl - av)
688 MPX_ZERO(dv, dvl);
689 else
690 MPX_COPY(dv, dvl, av + nw, avl);
691 }
692
693 /* --- And finally the difficult case --- */
694
695 else {
696 mpw w;
697 size_t nr = MPW_BITS - nb;
698
699 av += nw;
700 w = av < avl ? *av++ : 0;
701 while (av < avl) {
702 mpw t;
703 if (dv >= dvl)
704 goto done;
705 t = *av++;
706 *dv++ = MPW((w >> nb) | (t << nr));
707 w = t;
708 }
709 if (dv < dvl) {
710 *dv++ = MPW(w >> nb);
711 MPX_ZERO(dv, dvl);
712 }
713 }
714
715 done:;
716 }
717
718 /*----- Bitwise operations ------------------------------------------------*/
719
720 /* --- @mpx_bitop@ --- *
721 *
722 * Arguments: @mpw *dv, *dvl@ = destination vector
723 * @const mpw *av, *avl@ = first source vector
724 * @const mpw *bv, *bvl@ = second source vector
725 *
726 * Returns: ---
727 *
728 * Use; Provides the dyadic boolean functions.
729 */
730
731 #define MPX_BITBINOP(string) \
732 \
733 void mpx_bit##string(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, \
734 const mpw *bv, const mpw *bvl) \
735 { \
736 MPX_SHRINK(av, avl); \
737 MPX_SHRINK(bv, bvl); \
738 \
739 while (dv < dvl) { \
740 mpw a, b; \
741 a = (av < avl) ? *av++ : 0; \
742 b = (bv < bvl) ? *bv++ : 0; \
743 *dv++ = B##string(a, b); \
744 } \
745 }
746
747 MPX_DOBIN(MPX_BITBINOP)
748
749 void mpx_not(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
750 {
751 MPX_SHRINK(av, avl);
752
753 while (dv < dvl) {
754 mpw a;
755 a = (av < avl) ? *av++ : 0;
756 *dv++ = ~a;
757 }
758 }
759
760 /*----- Unsigned arithmetic -----------------------------------------------*/
761
762 /* --- @mpx_2c@ --- *
763 *
764 * Arguments: @mpw *dv, *dvl@ = destination vector
765 * @const mpw *v, *vl@ = source vector
766 *
767 * Returns: ---
768 *
769 * Use: Calculates the two's complement of @v@.
770 */
771
772 void mpx_2c(mpw *dv, mpw *dvl, const mpw *v, const mpw *vl)
773 {
774 mpw c = 0;
775 while (dv < dvl && v < vl)
776 *dv++ = c = MPW(~*v++);
777 if (dv < dvl) {
778 if (c > MPW_MAX / 2)
779 c = MPW(~0);
780 while (dv < dvl)
781 *dv++ = c;
782 }
783 MPX_UADDN(dv, dvl, 1);
784 }
785
786 /* --- @mpx_ueq@ --- *
787 *
788 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
789 * @const mpw *bv, *bvl@ = second argument vector base and limit
790 *
791 * Returns: Nonzero if the two vectors are equal.
792 *
793 * Use: Performs an unsigned integer test for equality.
794 */
795
796 int mpx_ueq(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
797 {
798 MPX_SHRINK(av, avl);
799 MPX_SHRINK(bv, bvl);
800 if (avl - av != bvl - bv)
801 return (0);
802 while (av < avl) {
803 if (*av++ != *bv++)
804 return (0);
805 }
806 return (1);
807 }
808
809 /* --- @mpx_ucmp@ --- *
810 *
811 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
812 * @const mpw *bv, *bvl@ = second argument vector base and limit
813 *
814 * Returns: Less than, equal to, or greater than zero depending on
815 * whether @a@ is less than, equal to or greater than @b@,
816 * respectively.
817 *
818 * Use: Performs an unsigned integer comparison.
819 */
820
821 int mpx_ucmp(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
822 {
823 MPX_SHRINK(av, avl);
824 MPX_SHRINK(bv, bvl);
825
826 if (avl - av > bvl - bv)
827 return (+1);
828 else if (avl - av < bvl - bv)
829 return (-1);
830 else while (avl > av) {
831 mpw a = *--avl, b = *--bvl;
832 if (a > b)
833 return (+1);
834 else if (a < b)
835 return (-1);
836 }
837 return (0);
838 }
839
840 /* --- @mpx_uadd@ --- *
841 *
842 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
843 * @const mpw *av, *avl@ = first addend vector base and limit
844 * @const mpw *bv, *bvl@ = second addend vector base and limit
845 *
846 * Returns: ---
847 *
848 * Use: Performs unsigned integer addition. If the result overflows
849 * the destination vector, high-order bits are discarded. This
850 * means that two's complement addition happens more or less for
851 * free, although that's more a side-effect than anything else.
852 * The result vector may be equal to either or both source
853 * vectors, but may not otherwise overlap them.
854 */
855
856 void mpx_uadd(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
857 const mpw *bv, const mpw *bvl)
858 {
859 mpw c = 0;
860
861 while (av < avl || bv < bvl) {
862 mpw a, b;
863 mpd x;
864 if (dv >= dvl)
865 return;
866 a = (av < avl) ? *av++ : 0;
867 b = (bv < bvl) ? *bv++ : 0;
868 x = (mpd)a + (mpd)b + c;
869 *dv++ = MPW(x);
870 c = x >> MPW_BITS;
871 }
872 if (dv < dvl) {
873 *dv++ = c;
874 MPX_ZERO(dv, dvl);
875 }
876 }
877
878 /* --- @mpx_uaddn@ --- *
879 *
880 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
881 * @mpw n@ = other addend
882 *
883 * Returns: ---
884 *
885 * Use: Adds a small integer to a multiprecision number.
886 */
887
888 void mpx_uaddn(mpw *dv, mpw *dvl, mpw n) { MPX_UADDN(dv, dvl, n); }
889
890 /* --- @mpx_uaddnlsl@ --- *
891 *
892 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
893 * @mpw a@ = second argument
894 * @unsigned o@ = offset in bits
895 *
896 * Returns: ---
897 *
898 * Use: Computes %$d + 2^o a$%. If the result overflows then
899 * high-order bits are discarded, as usual. We must have
900 * @0 < o < MPW_BITS@.
901 */
902
903 void mpx_uaddnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
904 {
905 mpd x = (mpd)a << o;
906
907 while (x && dv < dvl) {
908 x += *dv;
909 *dv++ = MPW(x);
910 x >>= MPW_BITS;
911 }
912 }
913
914 /* --- @mpx_usub@ --- *
915 *
916 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
917 * @const mpw *av, *avl@ = first argument vector base and limit
918 * @const mpw *bv, *bvl@ = second argument vector base and limit
919 *
920 * Returns: ---
921 *
922 * Use: Performs unsigned integer subtraction. If the result
923 * overflows the destination vector, high-order bits are
924 * discarded. This means that two's complement subtraction
925 * happens more or less for free, althuogh that's more a side-
926 * effect than anything else. The result vector may be equal to
927 * either or both source vectors, but may not otherwise overlap
928 * them.
929 */
930
931 void mpx_usub(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
932 const mpw *bv, const mpw *bvl)
933 {
934 mpw c = 0;
935
936 while (av < avl || bv < bvl) {
937 mpw a, b;
938 mpd x;
939 if (dv >= dvl)
940 return;
941 a = (av < avl) ? *av++ : 0;
942 b = (bv < bvl) ? *bv++ : 0;
943 x = (mpd)a - (mpd)b - c;
944 *dv++ = MPW(x);
945 if (x >> MPW_BITS)
946 c = 1;
947 else
948 c = 0;
949 }
950 if (c)
951 c = MPW_MAX;
952 while (dv < dvl)
953 *dv++ = c;
954 }
955
956 /* --- @mpx_usubn@ --- *
957 *
958 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
959 * @n@ = subtrahend
960 *
961 * Returns: ---
962 *
963 * Use: Subtracts a small integer from a multiprecision number.
964 */
965
966 void mpx_usubn(mpw *dv, mpw *dvl, mpw n) { MPX_USUBN(dv, dvl, n); }
967
968 /* --- @mpx_uaddnlsl@ --- *
969 *
970 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
971 * @mpw a@ = second argument
972 * @unsigned o@ = offset in bits
973 *
974 * Returns: ---
975 *
976 * Use: Computes %$d + 2^o a$%. If the result overflows then
977 * high-order bits are discarded, as usual. We must have
978 * @0 < o < MPW_BITS@.
979 */
980
981 void mpx_usubnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
982 {
983 mpw b = a >> (MPW_BITS - o);
984 a <<= o;
985
986 if (dv < dvl) {
987 mpd x = (mpd)*dv - (mpd)a;
988 *dv++ = MPW(x);
989 if (x >> MPW_BITS)
990 b++;
991 MPX_USUBN(dv, dvl, b);
992 }
993 }
994
995 /* --- @mpx_umul@ --- *
996 *
997 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
998 * @const mpw *av, *avl@ = multiplicand vector base and limit
999 * @const mpw *bv, *bvl@ = multiplier vector base and limit
1000 *
1001 * Returns: ---
1002 *
1003 * Use: Performs unsigned integer multiplication. If the result
1004 * overflows the desination vector, high-order bits are
1005 * discarded. The result vector may not overlap the argument
1006 * vectors in any way.
1007 */
1008
1009 void mpx_umul(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
1010 const mpw *bv, const mpw *bvl)
1011 {
1012 /* --- This is probably worthwhile on a multiply --- */
1013
1014 MPX_SHRINK(av, avl);
1015 MPX_SHRINK(bv, bvl);
1016
1017 /* --- Deal with a multiply by zero --- */
1018
1019 if (bv == bvl) {
1020 MPX_ZERO(dv, dvl);
1021 return;
1022 }
1023
1024 /* --- Do the initial multiply and initialize the accumulator --- */
1025
1026 MPX_UMULN(dv, dvl, av, avl, *bv++);
1027
1028 /* --- Do the remaining multiply/accumulates --- */
1029
1030 while (dv < dvl && bv < bvl) {
1031 mpw m = *bv++;
1032 mpw c = 0;
1033 const mpw *avv = av;
1034 mpw *dvv = ++dv;
1035
1036 while (avv < avl) {
1037 mpd x;
1038 if (dvv >= dvl)
1039 goto next;
1040 x = (mpd)*dvv + (mpd)m * (mpd)*avv++ + c;
1041 *dvv++ = MPW(x);
1042 c = x >> MPW_BITS;
1043 }
1044 MPX_UADDN(dvv, dvl, c);
1045 next:;
1046 }
1047 }
1048
1049 /* --- @mpx_umuln@ --- *
1050 *
1051 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
1052 * @const mpw *av, *avl@ = multiplicand vector base and limit
1053 * @mpw m@ = multiplier
1054 *
1055 * Returns: ---
1056 *
1057 * Use: Multiplies a multiprecision integer by a single-word value.
1058 * The destination and source may be equal. The destination
1059 * is completely cleared after use.
1060 */
1061
1062 void mpx_umuln(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
1063 {
1064 MPX_UMULN(dv, dvl, av, avl, m);
1065 }
1066
1067 /* --- @mpx_umlan@ --- *
1068 *
1069 * Arguments: @mpw *dv, *dvl@ = destination/accumulator base and limit
1070 * @const mpw *av, *avl@ = multiplicand vector base and limit
1071 * @mpw m@ = multiplier
1072 *
1073 * Returns: ---
1074 *
1075 * Use: Multiplies a multiprecision integer by a single-word value
1076 * and adds the result to an accumulator.
1077 */
1078
1079 void mpx_umlan(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
1080 {
1081 MPX_UMLAN(dv, dvl, av, avl, m);
1082 }
1083
1084 /* --- @mpx_usqr@ --- *
1085 *
1086 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
1087 * @const mpw *av, *av@ = source vector base and limit
1088 *
1089 * Returns: ---
1090 *
1091 * Use: Performs unsigned integer squaring. The result vector must
1092 * not overlap the source vector in any way.
1093 */
1094
1095 void mpx_usqr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
1096 {
1097 MPX_ZERO(dv, dvl);
1098
1099 /* --- Main loop --- */
1100
1101 while (av < avl) {
1102 const mpw *avv = av;
1103 mpw *dvv = dv;
1104 mpw a = *av;
1105 mpd c;
1106
1107 /* --- Stop if I've run out of destination --- */
1108
1109 if (dvv >= dvl)
1110 break;
1111
1112 /* --- Work out the square at this point in the proceedings --- */
1113
1114 {
1115 mpd x = (mpd)a * (mpd)a + *dvv;
1116 *dvv++ = MPW(x);
1117 c = MPW(x >> MPW_BITS);
1118 }
1119
1120 /* --- Now fix up the rest of the vector upwards --- */
1121
1122 avv++;
1123 while (dvv < dvl && avv < avl) {
1124 mpd x = (mpd)a * (mpd)*avv++;
1125 mpd y = ((x << 1) & MPW_MAX) + c + *dvv;
1126 c = (x >> (MPW_BITS - 1)) + (y >> MPW_BITS);
1127 *dvv++ = MPW(y);
1128 }
1129 while (dvv < dvl && c) {
1130 mpd x = c + *dvv;
1131 *dvv++ = MPW(x);
1132 c = x >> MPW_BITS;
1133 }
1134
1135 /* --- Get ready for the next round --- */
1136
1137 av++;
1138 dv += 2;
1139 }
1140 }
1141
1142 /* --- @mpx_udiv@ --- *
1143 *
1144 * Arguments: @mpw *qv, *qvl@ = quotient vector base and limit
1145 * @mpw *rv, *rvl@ = dividend/remainder vector base and limit
1146 * @const mpw *dv, *dvl@ = divisor vector base and limit
1147 * @mpw *sv, *svl@ = scratch workspace
1148 *
1149 * Returns: ---
1150 *
1151 * Use: Performs unsigned integer division. If the result overflows
1152 * the quotient vector, high-order bits are discarded. (Clearly
1153 * the remainder vector can't overflow.) The various vectors
1154 * may not overlap in any way. Yes, I know it's a bit odd
1155 * requiring the dividend to be in the result position but it
1156 * does make some sense really. The remainder must have
1157 * headroom for at least two extra words. The scratch space
1158 * must be at least one word larger than the divisor.
1159 */
1160
1161 void mpx_udiv(mpw *qv, mpw *qvl, mpw *rv, mpw *rvl,
1162 const mpw *dv, const mpw *dvl,
1163 mpw *sv, mpw *svl)
1164 {
1165 unsigned norm = 0;
1166 size_t scale;
1167 mpw d, dd;
1168
1169 /* --- Initialize the quotient --- */
1170
1171 MPX_ZERO(qv, qvl);
1172
1173 /* --- Perform some sanity checks --- */
1174
1175 MPX_SHRINK(dv, dvl);
1176 assert(((void)"division by zero in mpx_udiv", dv < dvl));
1177
1178 /* --- Normalize the divisor --- *
1179 *
1180 * The algorithm requires that the divisor be at least two digits long.
1181 * This is easy to fix.
1182 */
1183
1184 {
1185 unsigned b;
1186
1187 d = dvl[-1];
1188 for (b = MPW_BITS / 2; b; b >>= 1) {
1189 if (d <= (MPW_MAX >> b)) {
1190 d <<= b;
1191 norm += b;
1192 }
1193 }
1194 if (dv + 1 == dvl)
1195 norm += MPW_BITS;
1196 }
1197
1198 /* --- Normalize the dividend/remainder to match --- */
1199
1200 if (norm) {
1201 mpx_lsl(rv, rvl, rv, rvl, norm);
1202 mpx_lsl(sv, svl, dv, dvl, norm);
1203 dv = sv;
1204 dvl = svl;
1205 MPX_SHRINK(dv, dvl);
1206 }
1207
1208 MPX_SHRINK(rv, rvl);
1209 d = dvl[-1];
1210 dd = dvl[-2];
1211
1212 /* --- Work out the relative scales --- */
1213
1214 {
1215 size_t rvn = rvl - rv;
1216 size_t dvn = dvl - dv;
1217
1218 /* --- If the divisor is clearly larger, notice this --- */
1219
1220 if (dvn > rvn) {
1221 mpx_lsr(rv, rvl, rv, rvl, norm);
1222 return;
1223 }
1224
1225 scale = rvn - dvn;
1226 }
1227
1228 /* --- Calculate the most significant quotient digit --- *
1229 *
1230 * Because the divisor has its top bit set, this can only happen once. The
1231 * pointer arithmetic is a little contorted, to make sure that the
1232 * behaviour is defined.
1233 */
1234
1235 if (MPX_UCMP(rv + scale, rvl, >=, dv, dvl)) {
1236 mpx_usub(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1237 if (qvl - qv > scale)
1238 qv[scale] = 1;
1239 }
1240
1241 /* --- Now for the main loop --- */
1242
1243 {
1244 mpw *rvv = rvl - 2;
1245
1246 while (scale) {
1247 mpw q;
1248 mpd rh;
1249
1250 /* --- Get an estimate for the next quotient digit --- */
1251
1252 mpw r = rvv[1];
1253 mpw rr = rvv[0];
1254 mpw rrr = *--rvv;
1255
1256 scale--;
1257 rh = ((mpd)r << MPW_BITS) | rr;
1258 if (r == d)
1259 q = MPW_MAX;
1260 else
1261 q = MPW(rh / d);
1262
1263 /* --- Refine the estimate --- */
1264
1265 {
1266 mpd yh = (mpd)d * q;
1267 mpd yy = (mpd)dd * q;
1268 mpw yl;
1269
1270 if (yy > MPW_MAX)
1271 yh += yy >> MPW_BITS;
1272 yl = MPW(yy);
1273
1274 while (yh > rh || (yh == rh && yl > rrr)) {
1275 q--;
1276 yh -= d;
1277 if (yl < dd)
1278 yh--;
1279 yl = MPW(yl - dd);
1280 }
1281 }
1282
1283 /* --- Remove a chunk from the dividend --- */
1284
1285 {
1286 mpw *svv;
1287 const mpw *dvv;
1288 mpw mc = 0, sc = 0;
1289
1290 /* --- Calculate the size of the chunk --- *
1291 *
1292 * This does the whole job of calculating @r >> scale - qd@.
1293 */
1294
1295 for (svv = rv + scale, dvv = dv;
1296 dvv < dvl && svv < rvl;
1297 svv++, dvv++) {
1298 mpd x = (mpd)*dvv * (mpd)q + mc;
1299 mc = x >> MPW_BITS;
1300 x = (mpd)*svv - MPW(x) - sc;
1301 *svv = MPW(x);
1302 if (x >> MPW_BITS)
1303 sc = 1;
1304 else
1305 sc = 0;
1306 }
1307
1308 if (svv < rvl) {
1309 mpd x = (mpd)*svv - mc - sc;
1310 *svv++ = MPW(x);
1311 if (x >> MPW_BITS)
1312 sc = MPW_MAX;
1313 else
1314 sc = 0;
1315 while (svv < rvl)
1316 *svv++ = sc;
1317 }
1318
1319 /* --- Fix if the quotient was too large --- *
1320 *
1321 * This doesn't seem to happen very often.
1322 */
1323
1324 if (rvl[-1] > MPW_MAX / 2) {
1325 mpx_uadd(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1326 q--;
1327 }
1328 }
1329
1330 /* --- Done for another iteration --- */
1331
1332 if (qvl - qv > scale)
1333 qv[scale] = q;
1334 r = rr;
1335 rr = rrr;
1336 }
1337 }
1338
1339 /* --- Now fiddle with unnormalizing and things --- */
1340
1341 mpx_lsr(rv, rvl, rv, rvl, norm);
1342 }
1343
1344 /* --- @mpx_udivn@ --- *
1345 *
1346 * Arguments: @mpw *qv, *qvl@ = storage for the quotient (may overlap
1347 * dividend)
1348 * @const mpw *rv, *rvl@ = dividend
1349 * @mpw d@ = single-precision divisor
1350 *
1351 * Returns: Remainder after divison.
1352 *
1353 * Use: Performs a single-precision division operation.
1354 */
1355
1356 mpw mpx_udivn(mpw *qv, mpw *qvl, const mpw *rv, const mpw *rvl, mpw d)
1357 {
1358 size_t i;
1359 size_t ql = qvl - qv;
1360 mpd r = 0;
1361
1362 i = rvl - rv;
1363 while (i > 0) {
1364 i--;
1365 r = (r << MPW_BITS) | rv[i];
1366 if (i < ql)
1367 qv[i] = r / d;
1368 r %= d;
1369 }
1370 return (MPW(r));
1371 }
1372
1373 /*----- Test rig ----------------------------------------------------------*/
1374
1375 #ifdef TEST_RIG
1376
1377 #include <mLib/alloc.h>
1378 #include <mLib/dstr.h>
1379 #include <mLib/quis.h>
1380 #include <mLib/testrig.h>
1381
1382 #include "mpscan.h"
1383
1384 #define ALLOC(v, vl, sz) do { \
1385 size_t _sz = (sz); \
1386 mpw *_vv = xmalloc(MPWS(_sz)); \
1387 mpw *_vvl = _vv + _sz; \
1388 (v) = _vv; \
1389 (vl) = _vvl; \
1390 } while (0)
1391
1392 #define LOAD(v, vl, d) do { \
1393 const dstr *_d = (d); \
1394 mpw *_v, *_vl; \
1395 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
1396 mpx_loadb(_v, _vl, _d->buf, _d->len); \
1397 (v) = _v; \
1398 (vl) = _vl; \
1399 } while (0)
1400
1401 #define MAX(x, y) ((x) > (y) ? (x) : (y))
1402
1403 static void dumpbits(const char *msg, const void *pp, size_t sz)
1404 {
1405 const octet *p = pp;
1406 fputs(msg, stderr);
1407 for (; sz; sz--)
1408 fprintf(stderr, " %02x", *p++);
1409 fputc('\n', stderr);
1410 }
1411
1412 static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
1413 {
1414 fputs(msg, stderr);
1415 MPX_SHRINK(v, vl);
1416 while (v < vl)
1417 fprintf(stderr, " %08lx", (unsigned long)*--vl);
1418 fputc('\n', stderr);
1419 }
1420
1421 static int chkscan(const mpw *v, const mpw *vl,
1422 const void *pp, size_t sz, int step)
1423 {
1424 mpscan mps;
1425 const octet *p = pp;
1426 unsigned bit = 0;
1427 int ok = 1;
1428
1429 mpscan_initx(&mps, v, vl);
1430 while (sz) {
1431 unsigned x = *p;
1432 int i;
1433 p += step;
1434 for (i = 0; i < 8 && MPSCAN_STEP(&mps); i++) {
1435 if (MPSCAN_BIT(&mps) != (x & 1)) {
1436 fprintf(stderr,
1437 "\n*** error, step %i, bit %u, expected %u, found %u\n",
1438 step, bit, x & 1, MPSCAN_BIT(&mps));
1439 ok = 0;
1440 }
1441 x >>= 1;
1442 bit++;
1443 }
1444 sz--;
1445 }
1446
1447 return (ok);
1448 }
1449
1450 static int loadstore(dstr *v)
1451 {
1452 dstr d = DSTR_INIT;
1453 size_t sz = MPW_RQ(v->len) * 2, diff;
1454 mpw *m, *ml;
1455 int ok = 1;
1456
1457 dstr_ensure(&d, v->len);
1458 m = xmalloc(MPWS(sz));
1459
1460 for (diff = 0; diff < sz; diff += 5) {
1461 size_t oct;
1462
1463 ml = m + sz - diff;
1464
1465 mpx_loadl(m, ml, v->buf, v->len);
1466 if (!chkscan(m, ml, v->buf, v->len, +1))
1467 ok = 0;
1468 MPX_OCTETS(oct, m, ml);
1469 mpx_storel(m, ml, d.buf, d.sz);
1470 if (memcmp(d.buf, v->buf, oct) != 0) {
1471 dumpbits("\n*** storel failed", d.buf, d.sz);
1472 ok = 0;
1473 }
1474
1475 mpx_loadb(m, ml, v->buf, v->len);
1476 if (!chkscan(m, ml, v->buf + v->len - 1, v->len, -1))
1477 ok = 0;
1478 MPX_OCTETS(oct, m, ml);
1479 mpx_storeb(m, ml, d.buf, d.sz);
1480 if (memcmp(d.buf + d.sz - oct, v->buf + v->len - oct, oct) != 0) {
1481 dumpbits("\n*** storeb failed", d.buf, d.sz);
1482 ok = 0;
1483 }
1484 }
1485
1486 if (!ok)
1487 dumpbits("input data", v->buf, v->len);
1488
1489 free(m);
1490 dstr_destroy(&d);
1491 return (ok);
1492 }
1493
1494 static int twocl(dstr *v)
1495 {
1496 dstr d = DSTR_INIT;
1497 mpw *m, *ml;
1498 size_t sz;
1499 int ok = 1;
1500
1501 sz = v[0].len; if (v[1].len > sz) sz = v[1].len;
1502 dstr_ensure(&d, sz);
1503
1504 sz = MPW_RQ(sz);
1505 m = xmalloc(MPWS(sz));
1506 ml = m + sz;
1507
1508 mpx_loadl(m, ml, v[0].buf, v[0].len);
1509 mpx_storel2cn(m, ml, d.buf, v[1].len);
1510 if (memcmp(d.buf, v[1].buf, v[1].len)) {
1511 dumpbits("\n*** storel2cn failed", d.buf, v[1].len);
1512 ok = 0;
1513 }
1514
1515 mpx_loadl2cn(m, ml, v[1].buf, v[1].len);
1516 mpx_storel(m, ml, d.buf, v[0].len);
1517 if (memcmp(d.buf, v[0].buf, v[0].len)) {
1518 dumpbits("\n*** loadl2cn failed", d.buf, v[0].len);
1519 ok = 0;
1520 }
1521
1522 if (!ok) {
1523 dumpbits("pos", v[0].buf, v[0].len);
1524 dumpbits("neg", v[1].buf, v[1].len);
1525 }
1526
1527 free(m);
1528 dstr_destroy(&d);
1529
1530 return (ok);
1531 }
1532
1533 static int twocb(dstr *v)
1534 {
1535 dstr d = DSTR_INIT;
1536 mpw *m, *ml;
1537 size_t sz;
1538 int ok = 1;
1539
1540 sz = v[0].len; if (v[1].len > sz) sz = v[1].len;
1541 dstr_ensure(&d, sz);
1542
1543 sz = MPW_RQ(sz);
1544 m = xmalloc(MPWS(sz));
1545 ml = m + sz;
1546
1547 mpx_loadb(m, ml, v[0].buf, v[0].len);
1548 mpx_storeb2cn(m, ml, d.buf, v[1].len);
1549 if (memcmp(d.buf, v[1].buf, v[1].len)) {
1550 dumpbits("\n*** storeb2cn failed", d.buf, v[1].len);
1551 ok = 0;
1552 }
1553
1554 mpx_loadb2cn(m, ml, v[1].buf, v[1].len);
1555 mpx_storeb(m, ml, d.buf, v[0].len);
1556 if (memcmp(d.buf, v[0].buf, v[0].len)) {
1557 dumpbits("\n*** loadb2cn failed", d.buf, v[0].len);
1558 ok = 0;
1559 }
1560
1561 if (!ok) {
1562 dumpbits("pos", v[0].buf, v[0].len);
1563 dumpbits("neg", v[1].buf, v[1].len);
1564 }
1565
1566 free(m);
1567 dstr_destroy(&d);
1568
1569 return (ok);
1570 }
1571
1572 static int lsl(dstr *v)
1573 {
1574 mpw *a, *al;
1575 int n = *(int *)v[1].buf;
1576 mpw *c, *cl;
1577 mpw *d, *dl;
1578 int ok = 1;
1579
1580 LOAD(a, al, &v[0]);
1581 LOAD(c, cl, &v[2]);
1582 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1583
1584 mpx_lsl(d, dl, a, al, n);
1585 if (!mpx_ueq(d, dl, c, cl)) {
1586 fprintf(stderr, "\n*** lsl(%i) failed\n", n);
1587 dumpmp(" a", a, al);
1588 dumpmp("expected", c, cl);
1589 dumpmp(" result", d, dl);
1590 ok = 0;
1591 }
1592
1593 free(a); free(c); free(d);
1594 return (ok);
1595 }
1596
1597 static int lslc(dstr *v)
1598 {
1599 mpw *a, *al;
1600 int n = *(int *)v[1].buf;
1601 mpw *c, *cl;
1602 mpw *d, *dl;
1603 int ok = 1;
1604
1605 LOAD(a, al, &v[0]);
1606 LOAD(c, cl, &v[2]);
1607 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1608
1609 mpx_lslc(d, dl, a, al, n);
1610 if (!mpx_ueq(d, dl, c, cl)) {
1611 fprintf(stderr, "\n*** lslc(%i) failed\n", n);
1612 dumpmp(" a", a, al);
1613 dumpmp("expected", c, cl);
1614 dumpmp(" result", d, dl);
1615 ok = 0;
1616 }
1617
1618 free(a); free(c); free(d);
1619 return (ok);
1620 }
1621
1622 static int lsr(dstr *v)
1623 {
1624 mpw *a, *al;
1625 int n = *(int *)v[1].buf;
1626 mpw *c, *cl;
1627 mpw *d, *dl;
1628 int ok = 1;
1629
1630 LOAD(a, al, &v[0]);
1631 LOAD(c, cl, &v[2]);
1632 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS + 1);
1633
1634 mpx_lsr(d, dl, a, al, n);
1635 if (!mpx_ueq(d, dl, c, cl)) {
1636 fprintf(stderr, "\n*** lsr(%i) failed\n", n);
1637 dumpmp(" a", a, al);
1638 dumpmp("expected", c, cl);
1639 dumpmp(" result", d, dl);
1640 ok = 0;
1641 }
1642
1643 free(a); free(c); free(d);
1644 return (ok);
1645 }
1646
1647 static int uadd(dstr *v)
1648 {
1649 mpw *a, *al;
1650 mpw *b, *bl;
1651 mpw *c, *cl;
1652 mpw *d, *dl;
1653 int ok = 1;
1654
1655 LOAD(a, al, &v[0]);
1656 LOAD(b, bl, &v[1]);
1657 LOAD(c, cl, &v[2]);
1658 ALLOC(d, dl, MAX(al - a, bl - b) + 1);
1659
1660 mpx_uadd(d, dl, a, al, b, bl);
1661 if (!mpx_ueq(d, dl, c, cl)) {
1662 fprintf(stderr, "\n*** uadd failed\n");
1663 dumpmp(" a", a, al);
1664 dumpmp(" b", b, bl);
1665 dumpmp("expected", c, cl);
1666 dumpmp(" result", d, dl);
1667 ok = 0;
1668 }
1669
1670 free(a); free(b); free(c); free(d);
1671 return (ok);
1672 }
1673
1674 static int usub(dstr *v)
1675 {
1676 mpw *a, *al;
1677 mpw *b, *bl;
1678 mpw *c, *cl;
1679 mpw *d, *dl;
1680 int ok = 1;
1681
1682 LOAD(a, al, &v[0]);
1683 LOAD(b, bl, &v[1]);
1684 LOAD(c, cl, &v[2]);
1685 ALLOC(d, dl, al - a);
1686
1687 mpx_usub(d, dl, a, al, b, bl);
1688 if (!mpx_ueq(d, dl, c, cl)) {
1689 fprintf(stderr, "\n*** usub failed\n");
1690 dumpmp(" a", a, al);
1691 dumpmp(" b", b, bl);
1692 dumpmp("expected", c, cl);
1693 dumpmp(" result", d, dl);
1694 ok = 0;
1695 }
1696
1697 free(a); free(b); free(c); free(d);
1698 return (ok);
1699 }
1700
1701 static int umul(dstr *v)
1702 {
1703 mpw *a, *al;
1704 mpw *b, *bl;
1705 mpw *c, *cl;
1706 mpw *d, *dl;
1707 int ok = 1;
1708
1709 LOAD(a, al, &v[0]);
1710 LOAD(b, bl, &v[1]);
1711 LOAD(c, cl, &v[2]);
1712 ALLOC(d, dl, (al - a) + (bl - b));
1713
1714 mpx_umul(d, dl, a, al, b, bl);
1715 if (!mpx_ueq(d, dl, c, cl)) {
1716 fprintf(stderr, "\n*** umul failed\n");
1717 dumpmp(" a", a, al);
1718 dumpmp(" b", b, bl);
1719 dumpmp("expected", c, cl);
1720 dumpmp(" result", d, dl);
1721 ok = 0;
1722 }
1723
1724 free(a); free(b); free(c); free(d);
1725 return (ok);
1726 }
1727
1728 static int usqr(dstr *v)
1729 {
1730 mpw *a, *al;
1731 mpw *c, *cl;
1732 mpw *d, *dl;
1733 int ok = 1;
1734
1735 LOAD(a, al, &v[0]);
1736 LOAD(c, cl, &v[1]);
1737 ALLOC(d, dl, 2 * (al - a));
1738
1739 mpx_usqr(d, dl, a, al);
1740 if (!mpx_ueq(d, dl, c, cl)) {
1741 fprintf(stderr, "\n*** usqr failed\n");
1742 dumpmp(" a", a, al);
1743 dumpmp("expected", c, cl);
1744 dumpmp(" result", d, dl);
1745 ok = 0;
1746 }
1747
1748 free(a); free(c); free(d);
1749 return (ok);
1750 }
1751
1752 static int udiv(dstr *v)
1753 {
1754 mpw *a, *al;
1755 mpw *b, *bl;
1756 mpw *q, *ql;
1757 mpw *r, *rl;
1758 mpw *qq, *qql;
1759 mpw *s, *sl;
1760 int ok = 1;
1761
1762 ALLOC(a, al, MPW_RQ(v[0].len) + 2); mpx_loadb(a, al, v[0].buf, v[0].len);
1763 LOAD(b, bl, &v[1]);
1764 LOAD(q, ql, &v[2]);
1765 LOAD(r, rl, &v[3]);
1766 ALLOC(qq, qql, al - a);
1767 ALLOC(s, sl, (bl - b) + 1);
1768
1769 mpx_udiv(qq, qql, a, al, b, bl, s, sl);
1770 if (!mpx_ueq(qq, qql, q, ql) ||
1771 !mpx_ueq(a, al, r, rl)) {
1772 fprintf(stderr, "\n*** udiv failed\n");
1773 dumpmp(" divisor", b, bl);
1774 dumpmp("expect r", r, rl);
1775 dumpmp("result r", a, al);
1776 dumpmp("expect q", q, ql);
1777 dumpmp("result q", qq, qql);
1778 ok = 0;
1779 }
1780
1781 free(a); free(b); free(r); free(q); free(s); free(qq);
1782 return (ok);
1783 }
1784
1785 static test_chunk defs[] = {
1786 { "load-store", loadstore, { &type_hex, 0 } },
1787 { "2cl", twocl, { &type_hex, &type_hex, } },
1788 { "2cb", twocb, { &type_hex, &type_hex, } },
1789 { "lsl", lsl, { &type_hex, &type_int, &type_hex, 0 } },
1790 { "lslc", lslc, { &type_hex, &type_int, &type_hex, 0 } },
1791 { "lsr", lsr, { &type_hex, &type_int, &type_hex, 0 } },
1792 { "uadd", uadd, { &type_hex, &type_hex, &type_hex, 0 } },
1793 { "usub", usub, { &type_hex, &type_hex, &type_hex, 0 } },
1794 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
1795 { "usqr", usqr, { &type_hex, &type_hex, 0 } },
1796 { "udiv", udiv, { &type_hex, &type_hex, &type_hex, &type_hex, 0 } },
1797 { 0, 0, { 0 } }
1798 };
1799
1800 int main(int argc, char *argv[])
1801 {
1802 test_run(argc, argv, defs, SRCDIR"/tests/mpx");
1803 return (0);
1804 }
1805
1806 #endif
1807
1808 /*----- That's all, folks -------------------------------------------------*/