Bit setting and clearing functions.
[u/mdw/catacomb] / mp.h
1 /* -*-c-*-
2 *
3 * $Id: mp.h,v 1.14 2002/10/15 00:19:40 mdw Exp $
4 *
5 * Simple multiprecision arithmetic
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mp.h,v $
33 * Revision 1.14 2002/10/15 00:19:40 mdw
34 * Bit setting and clearing functions.
35 *
36 * Revision 1.13 2002/10/06 22:52:50 mdw
37 * Pile of changes for supporting two's complement properly.
38 *
39 * Revision 1.12 2001/06/16 12:57:43 mdw
40 * Move the @mpmont_factor@ structure and rename it now that it's used for
41 * Barrett simultaneous exponentiation too.
42 *
43 * Revision 1.11 2001/04/03 19:36:05 mdw
44 * Add some simple bitwise operations so that Perl can use them.
45 *
46 * Revision 1.10 2000/10/08 12:03:16 mdw
47 * Provide @mp_eq@ and @MP_EQ@ for rapidly testing equality of two
48 * integers.
49 *
50 * Revision 1.9 2000/07/29 17:03:31 mdw
51 * Add support for left-to-right bitscanning, for use in modular
52 * exponentiation.
53 *
54 * Revision 1.8 2000/06/22 19:02:01 mdw
55 * Add new functions.
56 *
57 * Revision 1.7 2000/06/17 11:45:09 mdw
58 * Major memory management overhaul. Added arena support. Use the secure
59 * arena for secret integers. Replace and improve the MP management macros
60 * (e.g., replace MP_MODIFY by MP_DEST).
61 *
62 * Revision 1.6 1999/12/10 23:19:46 mdw
63 * Minor bugfixes. New interface for suggested destinations.
64 *
65 * Revision 1.5 1999/11/22 20:50:37 mdw
66 * Add support for computing Jacobi symbols.
67 *
68 * Revision 1.4 1999/11/21 22:13:02 mdw
69 * Add mp version of MPX_BITS.
70 *
71 * Revision 1.3 1999/11/19 13:19:14 mdw
72 * Fix const annotation.
73 *
74 * Revision 1.2 1999/11/17 18:02:16 mdw
75 * New multiprecision integer arithmetic suite.
76 *
77 */
78
79 #ifndef CATACOMB_MP_H
80 #define CATACOMB_MP_H
81
82 #ifdef __cplusplus
83 extern "C" {
84 #endif
85
86 /*----- Header files ------------------------------------------------------*/
87
88 #include <assert.h>
89 #include <string.h>
90
91 #include <mLib/sub.h>
92
93 #ifndef CATACOMB_MPW_H
94 # include "mpw.h"
95 #endif
96
97 #ifndef CATACOMB_ARENA_H
98 # include "arena.h"
99 #endif
100
101 #ifndef CATACOMB_MPARENA_H
102 # include "mparena.h"
103 #endif
104
105 #ifndef CATACOMB_MPX_H
106 # include "mpx.h"
107 #endif
108
109 /*----- Data structures ---------------------------------------------------*/
110
111 /* --- A multiprecision integer --- */
112
113 typedef struct mp {
114 mpw *v, *vl; /* Vector of digits, current limit */
115 size_t sz; /* Size of digit buffer in words */
116 mparena *a; /* Arena for buffer allocation */
117 unsigned f; /* Flags (see below) */
118 unsigned ref; /* Reference counter */
119 } mp;
120
121 #define MP_NEG 1u /* Negative (signed magnitude) */
122 #define MP_BURN 2u /* Secret (viral flag) */
123 #define MP_CONST 4u /* Uses strange memory allocation */
124 #define MP_UNDEF 8u /* Contains nothing interesting */
125 #define MP_DESTROYED 16u /* Has been destroyed */
126
127 /* --- A factor for simultaneous exponentation --- *
128 *
129 * Used by the Montgomery and Barrett exponentiators.
130 */
131
132 typedef struct mp_expfactor {
133 mp *base;
134 mp *exp;
135 } mp_expfactor;
136
137 /*----- Useful constants --------------------------------------------------*/
138
139 extern mp mp_const[];
140
141 #define MP_ZERO (&mp_const[0])
142 #define MP_ONE (&mp_const[1])
143 #define MP_TWO (&mp_const[2])
144 #define MP_THREE (&mp_const[3])
145 #define MP_FOUR (&mp_const[4])
146 #define MP_FIVE (&mp_const[5])
147 #define MP_TEN (&mp_const[6])
148 #define MP_256 (&mp_const[7])
149 #define MP_MONE (&mp_const[8])
150
151 #define MP_NEW ((mp *)0)
152 #define MP_NEWSEC (&mp_const[9])
153
154 /*----- Trivial macros ----------------------------------------------------*/
155
156 /* --- @MP_LEN@ --- *
157 *
158 * Arguments: @mp *m@ = pointer to a multiprecision integer
159 *
160 * Returns: Length of the integer, in words.
161 */
162
163 #define MP_LEN(m) ((m)->vl - ((m)->v))
164
165 /*----- Memory management and reference counting --------------------------*/
166
167 /* --- @mp_new@ --- *
168 *
169 * Arguments: @size_t sz@ = size of vector required
170 * @unsigned f@ = flags to set
171 *
172 * Returns: Pointer to a new MP structure.
173 *
174 * Use: Allocates a new multiprecision integer. The data space is
175 * allocated from either the standard global or secret arena,
176 * depending on the initial flags requested.
177 */
178
179 extern mp *mp_new(size_t /*sz*/, unsigned /*f*/);
180
181 /* --- @mp_create@ --- *
182 *
183 * Arguments: @size_t sz@ = size of vector required
184 *
185 * Returns: Pointer to pristine new MP structure with enough memory
186 * bolted onto it.
187 *
188 * Use: Creates a new multiprecision integer with indeterminate
189 * contents. The integer has a single reference.
190 */
191
192 extern mp *mp_create(size_t /*sz*/);
193
194 /* --- @mp_createsecure@ --- *
195 *
196 * Arguments: @size_t sz@ = size of vector required
197 *
198 * Returns: Pointer to pristine new MP structure with enough memory
199 * bolted onto it.
200 *
201 * Use: Creates a new multiprecision integer with indeterminate
202 * contents. The integer has a single reference. The integer's
203 * data space is allocated from the secure arena. Its burn flag
204 * is set.
205 */
206
207 extern mp *mp_createsecure(size_t /*sz*/);
208
209 /* --- @mp_build@ --- *
210 *
211 * Arguments: @mp *m@ = pointer to an MP block to fill in
212 * @mpw *v@ = pointer to a word array
213 * @mpw *vl@ = pointer just past end of array
214 *
215 * Returns: ---
216 *
217 * Use: Creates a multiprecision integer representing some smallish
218 * number. You must provide storage for the number and dispose
219 * of it when you've finished with it. The number is marked as
220 * constant while it exists.
221 */
222
223 extern void mp_build(mp */*m*/, mpw */*v*/, mpw */*vl*/);
224
225 /* --- @mp_destroy@ --- *
226 *
227 * Arguments: @mp *m@ = pointer to a multiprecision integer
228 *
229 * Returns: ---
230 *
231 * Use: Destroys a multiprecision integer. The reference count isn't
232 * checked. Don't use this function if you don't know what
233 * you're doing: use @mp_drop@ instead.
234 */
235
236 extern void mp_destroy(mp */*m*/);
237
238 /* --- @mp_copy@ --- *
239 *
240 * Arguments: @mp *m@ = pointer to a multiprecision integer
241 *
242 * Returns: A copy of the given multiprecision integer.
243 *
244 * Use: Copies the given integer. In fact you just get another
245 * reference to the same old one again.
246 */
247
248 extern mp *mp_copy(mp */*m*/);
249
250 #define MP_COPY(m) ((m)->ref++, (m))
251
252 /* --- @mp_drop@ --- *
253 *
254 * Arguments: @mp *m@ = pointer to a multiprecision integer
255 *
256 * Returns: ---
257 *
258 * Use: Drops a reference to an integer which isn't wanted any more.
259 * If there are no more references, the integer is destroyed.
260 */
261
262 extern void mp_drop(mp */*m*/);
263
264 #define MP_DROP(m) do { \
265 mp *_mm = (m); \
266 _mm->ref--; \
267 if (_mm->ref == 0 && !(_mm->f & MP_CONST)) \
268 mp_destroy(_mm); \
269 } while (0)
270
271 /* --- @mp_split@ --- *
272 *
273 * Arguments: @mp *m@ = pointer to a multiprecision integer
274 *
275 * Returns: A reference to the same integer, possibly with a different
276 * address.
277 *
278 * Use: Splits off a modifiable version of the integer referred to.
279 */
280
281 extern mp *mp_split(mp */*m*/);
282
283 #define MP_SPLIT(m) do { \
284 mp *_m = (m); \
285 if ((_m->f & MP_CONST) || _m->ref > 1) { \
286 size_t _len = MP_LEN(_m); \
287 mp *_mm = mp_new(_len, _m->f); \
288 if (!(_m->f & MP_UNDEF)) \
289 memcpy(_mm->v, _m->v, MPWS(_len)); \
290 _m->ref--; \
291 _m = _mm; \
292 } \
293 (m) = _m; \
294 } while (0)
295
296 /* --- @mp_resize@ --- *
297 *
298 * Arguments: @mp *m@ = pointer to a multiprecision integer
299 * @size_t sz@ = new size
300 *
301 * Returns: ---
302 *
303 * Use: Resizes the vector containing the integer's digits. The new
304 * size must be at least as large as the current integer's
305 * length. This isn't really intended for client use.
306 */
307
308 extern void mp_resize(mp */*m*/, size_t /*sz*/);
309
310 #define MP_RESIZE(m, ssz) do { \
311 mp *_m = (m); \
312 size_t _sz = (ssz); \
313 mparena *_a = (_m->f & MP_BURN) ? MPARENA_SECURE : MPARENA_GLOBAL; \
314 mpw *_v; \
315 size_t _len = MP_LEN(_m); \
316 assert(((void)"can't make size less than length", _sz >= _len)); \
317 _v = mpalloc(_a, _sz); \
318 if (!(_m->f & MP_UNDEF)) \
319 memcpy(_v, _m->v, MPWS(_len)); \
320 if (_m->f & MP_BURN) \
321 memset(_m->v, 0, MPWS(_m->sz)); \
322 mpfree(_m->a, _m->v); \
323 _m->a = _a; \
324 _m->v = _v; \
325 _m->vl = _v + _len; \
326 } while (0)
327
328 /* --- @mp_ensure@ --- *
329 *
330 * Arguments: @mp *m@ = pointer to a multiprecision integer
331 * @size_t sz@ = required size
332 *
333 * Returns: ---
334 *
335 * Use: Ensures that the integer has enough space for @sz@ digits.
336 * The value is not changed.
337 */
338
339 extern void mp_ensure(mp */*m*/, size_t /*sz*/);
340
341 #define MP_ENSURE(m, ssz) do { \
342 mp *_m = (m); \
343 size_t _ssz = (ssz); \
344 size_t _len = MP_LEN(_m); \
345 if (_ssz >= _len) { \
346 if (_ssz > _m->sz) \
347 mp_resize(_m, _ssz); \
348 if (!(_m->f & MP_UNDEF) && _ssz > _len) \
349 memset(_m->vl, 0, MPWS(_ssz - _len)); \
350 _m->vl = _m->v + _ssz; \
351 } \
352 } while (0)
353
354 /* --- @mp_dest@ --- *
355 *
356 * Arguments: @mp *m@ = a suggested destination integer
357 * @size_t sz@ = size required for result, in digits
358 * @unsigned f@ = various flags
359 *
360 * Returns: A pointer to an appropriate destination.
361 *
362 * Use: Converts a suggested destination into a real destination with
363 * the required properties. If the real destination is @d@,
364 * then the following properties will hold:
365 *
366 * * @d@ will have exactly one reference.
367 *
368 * * If @m@ is not @MP_NEW@, then the contents of @m@ will not
369 * change, unless @f@ has the @MP_UNDEF@ flag set.
370 *
371 * * If @m@ is not @MP_NEW@, then he reference count of @m@ on
372 * entry is equal to the sum of the counts of @d@ and @m@ on
373 * exit.
374 *
375 * * The size of @d@ will be at least @sz@.
376 *
377 * * If @f@ has the @MP_BURN@ flag set, then @d@ will be
378 * allocated from @MPARENA_SECURE@.
379 *
380 * Understanding this function is crucial to using Catacomb's
381 * multiprecision integer library effectively.
382 */
383
384 extern mp *mp_dest(mp */*m*/, size_t /*sz*/, unsigned /*f*/);
385
386 #define MP_DEST(m, ssz, f) do { \
387 mp *_m = (m); \
388 size_t _ssz = (ssz); \
389 unsigned _f = (f); \
390 _m = mp_dest(_m, _ssz, _f); \
391 (m) = _m; \
392 } while (0)
393
394 /*----- Size manipulation -------------------------------------------------*/
395
396 /* --- @mp_shrink@ --- *
397 *
398 * Arguments: @mp *m@ = pointer to a multiprecision integer
399 *
400 * Returns: ---
401 *
402 * Use: Reduces the recorded length of an integer. This doesn't
403 * reduce the amount of memory used, although it can improve
404 * performance a bit. To reduce memory, use @mp_minimize@
405 * instead. This can't change the value of an integer, and is
406 * therefore safe to use even when there are multiple
407 * references.
408 */
409
410 extern void mp_shrink(mp */*m*/);
411
412 #define MP_SHRINK(m) do { \
413 mp *_mm = (m); \
414 MPX_SHRINK(_mm->v, _mm->vl); \
415 if (!MP_LEN(_mm)) \
416 _mm->f &= ~MP_NEG; \
417 } while (0)
418
419 /* --- @mp_minimize@ --- *
420 *
421 * Arguments: @mp *m@ = pointer to a multiprecision integer
422 *
423 * Returns: ---
424 *
425 * Use: Reduces the amount of memory an integer uses. It's best to
426 * do this to numbers which aren't going to change in the
427 * future.
428 */
429
430 extern void mp_minimize(mp */*m*/);
431
432 /*----- Bit scanning ------------------------------------------------------*/
433
434 #ifndef CATACOMB_MPSCAN_H
435 # include "mpscan.h"
436 #endif
437
438 /* --- @mp_scan@ --- *
439 *
440 * Arguments: @mpscan *sc@ = pointer to bitscanner block
441 * @const mp *m@ = pointer to a multiprecision integer
442 *
443 * Returns: ---
444 *
445 * Use: Initializes a bitscanner on a multiprecision integer.
446 */
447
448 extern void mp_scan(mpscan */*sc*/, const mp */*m*/);
449
450 #define MP_SCAN(sc, m) do { \
451 const mp *_mm = (m); \
452 mpscan *_sc = (sc); \
453 MPSCAN_INITX(_sc, _mm->v, _mm->vl); \
454 } while (0)
455
456 /* --- @mp_rscan@ --- *
457 *
458 * Arguments: @mpscan *sc@ = pointer to bitscanner block
459 * @const mp *m@ = pointer to a multiprecision integer
460 *
461 * Returns: ---
462 *
463 * Use: Initializes a reverse bitscanner on a multiprecision
464 * integer.
465 */
466
467 extern void mp_rscan(mpscan */*sc*/, const mp */*m*/);
468
469 #define MP_RSCAN(sc, m) do { \
470 const mp *_mm = (m); \
471 mpscan *_sc = (sc); \
472 MPSCAN_RINITX(_sc, _mm->v, _mm->vl); \
473 } while (0)
474
475 /* --- Other bitscanning aliases --- */
476
477 #define mp_step mpscan_step
478 #define mp_bit mpscan_bit
479 #define mp_rstep mpscan_rstep
480 #define mp_rbit mpscan_rbit
481
482 #define MP_STEP MPSCAN_STEP
483 #define MP_BIT MPSCAN_BIT
484 #define MP_RSTEP MPSCAN_RSTEP
485 #define MP_RBIT MPSCAN_RBIT
486
487 /*----- Loading and storing -----------------------------------------------*/
488
489 /* --- @mp_octets@ --- *
490 *
491 * Arguments: @const mp *m@ = a multiprecision integer
492 *
493 * Returns: The number of octets required to represent @m@.
494 *
495 * Use: Calculates the external storage required for a multiprecision
496 * integer.
497 */
498
499 extern size_t mp_octets(const mp */*m*/);
500
501 /* --- @mp_octets2c@ --- *
502 *
503 * Arguments: @const mp *m@ = a multiprecision integer
504 *
505 * Returns: The number of octets required to represent @m@.
506 *
507 * Use: Calculates the external storage required for a multiprecision
508 * integer represented as two's complement.
509 */
510
511 extern size_t mp_octets2c(const mp */*m*/);
512
513 /* --- @mp_bits@ --- *
514 *
515 * Arguments: @const mp *m@ = a multiprecision integer
516 *
517 * Returns: The number of bits required to represent @m@.
518 *
519 * Use: Calculates the external storage required for a multiprecision
520 * integer.
521 */
522
523 extern unsigned long mp_bits(const mp */*m*/);
524
525 /* --- @mp_loadl@ --- *
526 *
527 * Arguments: @mp *d@ = destination
528 * @const void *pv@ = pointer to source data
529 * @size_t sz@ = size of the source data
530 *
531 * Returns: Resulting multiprecision number.
532 *
533 * Use: Loads a multiprecision number from an array of octets. The
534 * first byte in the array is the least significant. More
535 * formally, if the bytes are %$b_0, b_1, \ldots, b_{n-1}$%
536 * then the result is %$N = \sum_{0 \le i < n} b_i 2^{8i}$%.
537 */
538
539 extern mp *mp_loadl(mp */*d*/, const void */*pv*/, size_t /*sz*/);
540
541 /* --- @mp_storel@ --- *
542 *
543 * Arguments: @const mp *m@ = source
544 * @void *pv@ = pointer to output array
545 * @size_t sz@ = size of the output array
546 *
547 * Returns: ---
548 *
549 * Use: Stores a multiprecision number in an array of octets. The
550 * first byte in the array is the least significant. If the
551 * array is too small to represent the number, high-order bits
552 * are truncated; if the array is too large, high order bytes
553 * are filled with zeros. More formally, if the number is
554 * %$N = \sum{0 \le i} b_i 2^{8i}$% where %$0 \le b_i < 256$%,
555 * then the array is %$b_0, b_1, \ldots, b_{n-1}$%.
556 */
557
558 extern void mp_storel(const mp */*m*/, void */*pv*/, size_t /*sz*/);
559
560 /* --- @mp_loadb@ --- *
561 *
562 * Arguments: @mp *d@ = destination
563 * @const void *pv@ = pointer to source data
564 * @size_t sz@ = size of the source data
565 *
566 * Returns: Resulting multiprecision number.
567 *
568 * Use: Loads a multiprecision number from an array of octets. The
569 * last byte in the array is the least significant. More
570 * formally, if the bytes are %$b_{n-1}, b_{n-2}, \ldots, b_0$%
571 * then the result is %$N = \sum_{0 \le i < n} b_i 2^{8i}$%.
572 */
573
574 extern mp *mp_loadb(mp */*d*/, const void */*pv*/, size_t /*sz*/);
575
576 /* --- @mp_storeb@ --- *
577 *
578 * Arguments: @const mp *m@ = source
579 * @void *pv@ = pointer to output array
580 * @size_t sz@ = size of the output array
581 *
582 * Returns: ---
583 *
584 * Use: Stores a multiprecision number in an array of octets. The
585 * last byte in the array is the least significant. If the
586 * array is too small to represent the number, high-order bits
587 * are truncated; if the array is too large, high order bytes
588 * are filled with zeros. More formally, if the number is
589 * %$N = \sum{0 \le i} b_i 2^{8i}$% where %$0 \le b_i < 256$%,
590 * then the array is %$b_{n-1}, b_{n-2}, \ldots, b_0$%.
591 */
592
593 extern void mp_storeb(const mp */*m*/, void */*pv*/, size_t /*sz*/);
594
595 /* --- @mp_loadl2c@ --- *
596 *
597 * Arguments: @mp *d@ = destination
598 * @const void *pv@ = pointer to source data
599 * @size_t sz@ = size of the source data
600 *
601 * Returns: Resulting multiprecision number.
602 *
603 * Use: Loads a multiprecision number from an array of octets as
604 * two's complement. The first byte in the array is the least
605 * significant.
606 */
607
608 extern mp *mp_loadl2c(mp */*d*/, const void */*pv*/, size_t /*sz*/);
609
610 /* --- @mp_storel2c@ --- *
611 *
612 * Arguments: @const mp *m@ = source
613 * @void *pv@ = pointer to output array
614 * @size_t sz@ = size of the output array
615 *
616 * Returns: ---
617 *
618 * Use: Stores a multiprecision number in an array of octets as two's
619 * complement. The first byte in the array is the least
620 * significant. If the array is too small to represent the
621 * number, high-order bits are truncated; if the array is too
622 * large, high order bytes are sign-extended.
623 */
624
625 extern void mp_storel2c(const mp */*m*/, void */*pv*/, size_t /*sz*/);
626
627 /* --- @mp_loadb2c@ --- *
628 *
629 * Arguments: @mp *d@ = destination
630 * @const void *pv@ = pointer to source data
631 * @size_t sz@ = size of the source data
632 *
633 * Returns: Resulting multiprecision number.
634 *
635 * Use: Loads a multiprecision number from an array of octets as
636 * two's complement. The last byte in the array is the least
637 * significant.
638 */
639
640 extern mp *mp_loadb2c(mp */*d*/, const void */*pv*/, size_t /*sz*/);
641
642 /* --- @mp_storeb2c@ --- *
643 *
644 * Arguments: @const mp *m@ = source
645 * @void *pv@ = pointer to output array
646 * @size_t sz@ = size of the output array
647 *
648 * Returns: ---
649 *
650 * Use: Stores a multiprecision number in an array of octets, as
651 * two's complement. The last byte in the array is the least
652 * significant. If the array is too small to represent the
653 * number, high-order bits are truncated; if the array is too
654 * large, high order bytes are sign-extended.
655 */
656
657 extern void mp_storeb2c(const mp */*m*/, void */*pv*/, size_t /*sz*/);
658
659 /*----- Simple arithmetic -------------------------------------------------*/
660
661 /* --- @mp_lsl@, @mp_lsr@ --- *
662 *
663 * Arguments: @mp *d@ = destination
664 * @mp *a@ = source
665 * @size_t n@ = number of bits to move
666 *
667 * Returns: Result, @a@ shifted left or right by @n@.
668 */
669
670 extern mp *mp_lsl(mp */*d*/, mp */*a*/, size_t /*n*/);
671 extern mp *mp_lsr(mp */*d*/, mp */*a*/, size_t /*n*/);
672
673 /* --- @mp_lsl2c@, @mp_lsr2c@ --- *
674 *
675 * Arguments: @mp *d@ = destination
676 * @mp *a@ = source
677 * @size_t n@ = number of bits to move
678 *
679 * Returns: Result, @a@ shifted left or right by @n@. Handles the
680 * pretence of sign-extension for negative numbers.
681 */
682
683 extern mp *mp_lsl2c(mp */*d*/, mp */*a*/, size_t /*n*/);
684 extern mp *mp_lsr2c(mp */*d*/, mp */*a*/, size_t /*n*/);
685
686 /* --- @mp_testbit@ --- *
687 *
688 * Arguments: @mp *x@ = a large integer
689 * @unsigned long n@ = which bit to test
690 *
691 * Returns: Nonzero if the bit is set, zero if not.
692 */
693
694 extern int mp_testbit(mp */*x*/, unsigned long /*n*/);
695
696 /* --- @mp_testbit2c@ --- *
697 *
698 * Arguments: @mp *x@ = a large integer
699 * @unsigned long n@ = which bit to test
700 *
701 * Returns: Nonzero if the bit is set, zero if not. Fakes up two's
702 * complement representation.
703 */
704
705 extern int mp_testbit2c(mp */*x*/, unsigned long /*n*/);
706
707 /* --- @mp_eq@ --- *
708 *
709 * Arguments: @const mp *a, *b@ = two numbers
710 *
711 * Returns: Nonzero if the numbers are equal.
712 */
713
714 extern int mp_eq(const mp */*a*/, const mp */*b*/);
715
716 #define MP_EQ(a, b) \
717 ((((a)->f ^ (b)->f) & MP_NEG) == 0 && \
718 mpx_ueq((a)->v, (a)->vl, (b)->v, (b)->vl))
719
720 /* --- @mp_cmp@ --- *
721 *
722 * Arguments: @const mp *a, *b@ = two numbers
723 *
724 * Returns: Less than, equal to or greater than zero, according to
725 * whether @a@ is less than, equal to or greater than @b@.
726 */
727
728 extern int mp_cmp(const mp */*a*/, const mp */*b*/);
729
730 #define MP_CMP(a, op, b) (mp_cmp((a), (b)) op 0)
731
732 /* --- @mp_setbit@, @mp_clearbit@ --- *
733 *
734 * Arguments: @mp *d@ = a destination
735 * @mp *x@ = a large integer
736 * @unsigned long n@ = which bit to modify
737 *
738 * Returns: The argument @x@, with the appropriate bit set or cleared.
739 */
740
741 extern mp *mp_setbit(mp */*d*/, mp */*x*/, unsigned long /*n*/);
742 extern mp *mp_clearbit(mp */*d*/, mp */*x*/, unsigned long /*n*/);
743
744 /* --- @mp_setbit2c@, @mp_clearbit2c@ --- *
745 *
746 * Arguments: @mp *d@ = a destination
747 * @mp *x@ = a large integer
748 * @unsigned long n@ = which bit to modify
749 *
750 * Returns: The argument @x@, with the appropriate bit set or cleared.
751 * Fakes up two's complement representation.
752 */
753
754 extern mp *mp_setbit2c(mp */*d*/, mp */*x*/, unsigned long /*n*/);
755 extern mp *mp_clearbit2c(mp */*d*/, mp */*x*/, unsigned long /*n*/);
756
757 /* --- @mp_bitop@ --- *
758 *
759 * Arguments: @mp *d@ = destination
760 * @mp *a, *b@ = sources
761 *
762 * Returns: The result of the given bitwise operation. These functions
763 * don't handle negative numbers at all sensibly. For that, use
764 * the @...2c@ variants. The functions are named after the
765 * truth tables they generate:
766 *
767 * a: 0011
768 * b: 0101
769 * @mpx_bitXXXX@
770 */
771
772 #define MP_BITDECL(string) \
773 extern mp *mp_bit##string(mp */*d*/, mp */*a*/, mp */*b*/);
774 MPX_DOBIN(MP_BITDECL)
775
776 /* --- @mp_[n]and@, @mp_[n]or@, @mp_[n]xor@, @mp_not@ --- *
777 *
778 * Synonyms for the commonly-used functions.
779 */
780
781 #define mp_and mp_bit0001
782 #define mp_or mp_bit0111
783 #define mp_nand mp_bit1110
784 #define mp_nor mp_bit1000
785 #define mp_xor mp_bit0110
786
787 /* --- @mp_not@ --- *
788 *
789 * Arguments: @mp *d@ = destination
790 * @mp *a@ = source
791 *
792 * Returns: The bitwise complement of the source.
793 */
794
795 extern mp *mp_not(mp */*d*/, mp */*a*/);
796
797 /* --- @mp_bitop2c@ --- *
798 *
799 * Arguments: @mp *d@ = destination
800 * @mp *a, *b@ = sources
801 *
802 * Returns: The result of the given bitwise operation. Negative numbers
803 * are treated as two's complement, sign-extended infinitely to
804 * the left. The functions are named after the truth tables
805 * they generate:
806 *
807 * a: 0011
808 * b: 0101
809 * @mpx_bitXXXX@
810 */
811
812 #define MP_BIT2CDECL(string) \
813 extern mp *mp_bit##string##2c(mp */*d*/, mp */*a*/, mp */*b*/);
814 MPX_DOBIN(MP_BIT2CDECL)
815
816 /* --- @mp_[n]and@, @mp_[n]or@, @mp_[n]xor@, @mp_not@ --- *
817 *
818 * Synonyms for the commonly-used functions.
819 */
820
821 #define mp_and2c mp_bit00012c
822 #define mp_or2c mp_bit01112c
823 #define mp_nand2c mp_bit11102c
824 #define mp_nor2c mp_bit10002c
825 #define mp_xor2c mp_bit01102c
826
827 /* --- @mp_not2c@ --- *
828 *
829 * Arguments: @mp *d@ = destination
830 * @mp *a@ = source
831 *
832 * Returns: The sign-extended complement of the argument.
833 */
834
835 extern mp *mp_not2c(mp */*d*/, mp */*a*/);
836
837 /* --- @mp_add@ --- *
838 *
839 * Arguments: @mp *d@ = destination
840 * @mp *a, *b@ = sources
841 *
842 * Returns: Result, @a@ added to @b@.
843 */
844
845 extern mp *mp_add(mp */*d*/, mp */*a*/, mp */*b*/);
846
847 /* --- @mp_sub@ --- *
848 *
849 * Arguments: @mp *d@ = destination
850 * @mp *a, *b@ = sources
851 *
852 * Returns: Result, @b@ subtracted from @a@.
853 */
854
855 extern mp *mp_sub(mp */*d*/, mp */*a*/, mp */*b*/);
856
857 /* --- @mp_mul@ --- *
858 *
859 * Arguments: @mp *d@ = destination
860 * @mp *a, *b@ = sources
861 *
862 * Returns: Result, @a@ multiplied by @b@.
863 */
864
865 extern mp *mp_mul(mp */*d*/, mp */*a*/, mp */*b*/);
866
867 /* --- @mp_sqr@ --- *
868 *
869 * Arguments: @mp *d@ = destination
870 * @mp *a@ = source
871 *
872 * Returns: Result, @a@ squared.
873 */
874
875 extern mp *mp_sqr(mp */*d*/, mp */*a*/);
876
877 /* --- @mp_div@ --- *
878 *
879 * Arguments: @mp **qq, **rr@ = destination, quotient and remainder
880 * @mp *a, *b@ = sources
881 *
882 * Use: Calculates the quotient and remainder when @a@ is divided by
883 * @b@.
884 */
885
886 extern void mp_div(mp **/*qq*/, mp **/*rr*/, mp */*a*/, mp */*b*/);
887
888 /* --- @mp_odd@ --- *
889 *
890 * Arguments: @mp *d@ = pointer to destination integer
891 * @mp *m@ = pointer to source integer
892 * @size_t *s@ = where to store the power of 2
893 *
894 * Returns: An odd integer integer %$t$% such that %$m = 2^s t$%.
895 *
896 * Use: Computes a power of two and an odd integer which, when
897 * multiplied, give a specified result. This sort of thing is
898 * useful in number theory quite often.
899 */
900
901 extern mp *mp_odd(mp */*d*/, mp */*m*/, size_t */*s*/);
902
903 /*----- More advanced algorithms ------------------------------------------*/
904
905 /* --- @mp_sqrt@ --- *
906 *
907 * Arguments: @mp *d@ = pointer to destination integer
908 * @mp *a@ = (nonnegative) integer to take square root of
909 *
910 * Returns: The largest integer %$x$% such that %$x^2 \le a$%.
911 *
912 * Use: Computes integer square roots.
913 *
914 * The current implementation isn't very good: it uses the
915 * Newton-Raphson method to find an approximation to %$a$%. If
916 * there's any demand for a better version, I'll write one.
917 */
918
919 extern mp *mp_sqrt(mp */*d*/, mp */*a*/);
920
921 /* --- @mp_gcd@ --- *
922 *
923 * Arguments: @mp **gcd, **xx, **yy@ = where to write the results
924 * @mp *a, *b@ = sources (must be nonzero)
925 *
926 * Returns: ---
927 *
928 * Use: Calculates @gcd(a, b)@, and two numbers @x@ and @y@ such that
929 * @ax + by = gcd(a, b)@. This is useful for computing modular
930 * inverses. Neither @a@ nor @b@ may be zero.
931 */
932
933 extern void mp_gcd(mp **/*gcd*/, mp **/*xx*/, mp **/*yy*/,
934 mp */*a*/, mp */*b*/);
935
936 /* --- @mp_jacobi@ --- *
937 *
938 * Arguments: @mp *a@ = an integer less than @n@
939 * @mp *n@ = an odd integer
940 *
941 * Returns: @-1@, @0@ or @1@ -- the Jacobi symbol %$J(a, n)$%.
942 *
943 * Use: Computes the Jacobi symbol. If @n@ is prime, this is the
944 * Legendre symbol and is equal to 1 if and only if @a@ is a
945 * quadratic residue mod @n@. The result is zero if and only if
946 * @a@ and @n@ have a common factor greater than one.
947 */
948
949 extern int mp_jacobi(mp */*a*/, mp */*n*/);
950
951 /* --- @mp_modsqrt@ --- *
952 *
953 * Arguments: @mp *d@ = destination integer
954 * @mp *a@ = source integer
955 * @mp *p@ = modulus (must be prime)
956 *
957 * Returns: If %$a$% is a quadratic residue, a square root of %$a$%; else
958 * a null pointer.
959 *
960 * Use: Returns an integer %$x$% such that %$x^2 \equiv a \pmod{p}$%,
961 * if one exists; else a null pointer. This function will not
962 * work if %$p$% is composite: you must factor the modulus, take
963 * a square root mod each factor, and recombine the results
964 * using the Chinese Remainder Theorem.
965 */
966
967 extern mp *mp_modsqrt(mp */*d*/, mp */*a*/, mp */*p*/);
968
969 /*----- Test harness support ----------------------------------------------*/
970
971 #include <mLib/testrig.h>
972
973 #ifndef CATACOMB_MPTEXT_H
974 # include "mptext.h"
975 #endif
976
977 extern const test_type type_mp;
978
979 /*----- That's all, folks -------------------------------------------------*/
980
981 #ifdef __cplusplus
982 }
983 #endif
984
985 #endif