General robustification.
[u/mdw/catacomb] / mp.h
1 /* -*-c-*-
2 *
3 * $Id: mp.h,v 1.18 2004/04/03 03:32:05 mdw Exp $
4 *
5 * Simple multiprecision arithmetic
6 *
7 * (c) 1999 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30 /*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mp.h,v $
33 * Revision 1.18 2004/04/03 03:32:05 mdw
34 * General robustification.
35 *
36 * Revision 1.17 2003/05/16 09:09:24 mdw
37 * Fix @mp_lsl2c@. Turns out to be surprisingly tricky.
38 *
39 * Revision 1.16 2002/10/15 22:57:22 mdw
40 * Handy new comparison macros.
41 *
42 * Revision 1.15 2002/10/15 19:18:31 mdw
43 * New operation to negate numbers.
44 *
45 * Revision 1.14 2002/10/15 00:19:40 mdw
46 * Bit setting and clearing functions.
47 *
48 * Revision 1.13 2002/10/06 22:52:50 mdw
49 * Pile of changes for supporting two's complement properly.
50 *
51 * Revision 1.12 2001/06/16 12:57:43 mdw
52 * Move the @mpmont_factor@ structure and rename it now that it's used for
53 * Barrett simultaneous exponentiation too.
54 *
55 * Revision 1.11 2001/04/03 19:36:05 mdw
56 * Add some simple bitwise operations so that Perl can use them.
57 *
58 * Revision 1.10 2000/10/08 12:03:16 mdw
59 * Provide @mp_eq@ and @MP_EQ@ for rapidly testing equality of two
60 * integers.
61 *
62 * Revision 1.9 2000/07/29 17:03:31 mdw
63 * Add support for left-to-right bitscanning, for use in modular
64 * exponentiation.
65 *
66 * Revision 1.8 2000/06/22 19:02:01 mdw
67 * Add new functions.
68 *
69 * Revision 1.7 2000/06/17 11:45:09 mdw
70 * Major memory management overhaul. Added arena support. Use the secure
71 * arena for secret integers. Replace and improve the MP management macros
72 * (e.g., replace MP_MODIFY by MP_DEST).
73 *
74 * Revision 1.6 1999/12/10 23:19:46 mdw
75 * Minor bugfixes. New interface for suggested destinations.
76 *
77 * Revision 1.5 1999/11/22 20:50:37 mdw
78 * Add support for computing Jacobi symbols.
79 *
80 * Revision 1.4 1999/11/21 22:13:02 mdw
81 * Add mp version of MPX_BITS.
82 *
83 * Revision 1.3 1999/11/19 13:19:14 mdw
84 * Fix const annotation.
85 *
86 * Revision 1.2 1999/11/17 18:02:16 mdw
87 * New multiprecision integer arithmetic suite.
88 *
89 */
90
91 #ifndef CATACOMB_MP_H
92 #define CATACOMB_MP_H
93
94 #ifdef __cplusplus
95 extern "C" {
96 #endif
97
98 /*----- Header files ------------------------------------------------------*/
99
100 #include <assert.h>
101 #include <string.h>
102
103 #include <mLib/sub.h>
104
105 #ifndef CATACOMB_MPW_H
106 # include "mpw.h"
107 #endif
108
109 #ifndef CATACOMB_ARENA_H
110 # include "arena.h"
111 #endif
112
113 #ifndef CATACOMB_MPARENA_H
114 # include "mparena.h"
115 #endif
116
117 #ifndef CATACOMB_MPX_H
118 # include "mpx.h"
119 #endif
120
121 /*----- Data structures ---------------------------------------------------*/
122
123 /* --- A multiprecision integer --- */
124
125 typedef struct mp {
126 mpw *v, *vl; /* Vector of digits, current limit */
127 size_t sz; /* Size of digit buffer in words */
128 mparena *a; /* Arena for buffer allocation */
129 unsigned f; /* Flags (see below) */
130 unsigned ref; /* Reference counter */
131 } mp;
132
133 #define MP_NEG 1u /* Negative (signed magnitude) */
134 #define MP_BURN 2u /* Secret (viral flag) */
135 #define MP_CONST 4u /* Uses strange memory allocation */
136 #define MP_UNDEF 8u /* Contains nothing interesting */
137 #define MP_DESTROYED 16u /* Has been destroyed */
138
139 /* --- A factor for simultaneous exponentation --- *
140 *
141 * Used by the Montgomery and Barrett exponentiators.
142 */
143
144 typedef struct mp_expfactor {
145 mp *base;
146 mp *exp;
147 } mp_expfactor;
148
149 /*----- Useful constants --------------------------------------------------*/
150
151 extern mp mp_const[];
152
153 #define MP_ZERO (&mp_const[0])
154 #define MP_ONE (&mp_const[1])
155 #define MP_TWO (&mp_const[2])
156 #define MP_THREE (&mp_const[3])
157 #define MP_FOUR (&mp_const[4])
158 #define MP_FIVE (&mp_const[5])
159 #define MP_TEN (&mp_const[6])
160 #define MP_256 (&mp_const[7])
161 #define MP_MONE (&mp_const[8])
162
163 #define MP_NEW ((mp *)0)
164 #define MP_NEWSEC (&mp_const[9])
165
166 /*----- Trivial macros ----------------------------------------------------*/
167
168 /* --- @MP_LEN@ --- *
169 *
170 * Arguments: @mp *m@ = pointer to a multiprecision integer
171 *
172 * Returns: Length of the integer, in words.
173 */
174
175 #define MP_LEN(m) ((m)->vl - ((m)->v))
176
177 /*----- Memory management and reference counting --------------------------*/
178
179 /* --- @mp_new@ --- *
180 *
181 * Arguments: @size_t sz@ = size of vector required
182 * @unsigned f@ = flags to set
183 *
184 * Returns: Pointer to a new MP structure.
185 *
186 * Use: Allocates a new multiprecision integer. The data space is
187 * allocated from either the standard global or secret arena,
188 * depending on the initial flags requested.
189 */
190
191 extern mp *mp_new(size_t /*sz*/, unsigned /*f*/);
192
193 /* --- @mp_create@ --- *
194 *
195 * Arguments: @size_t sz@ = size of vector required
196 *
197 * Returns: Pointer to pristine new MP structure with enough memory
198 * bolted onto it.
199 *
200 * Use: Creates a new multiprecision integer with indeterminate
201 * contents. The integer has a single reference.
202 */
203
204 extern mp *mp_create(size_t /*sz*/);
205
206 /* --- @mp_createsecure@ --- *
207 *
208 * Arguments: @size_t sz@ = size of vector required
209 *
210 * Returns: Pointer to pristine new MP structure with enough memory
211 * bolted onto it.
212 *
213 * Use: Creates a new multiprecision integer with indeterminate
214 * contents. The integer has a single reference. The integer's
215 * data space is allocated from the secure arena. Its burn flag
216 * is set.
217 */
218
219 extern mp *mp_createsecure(size_t /*sz*/);
220
221 /* --- @mp_build@ --- *
222 *
223 * Arguments: @mp *m@ = pointer to an MP block to fill in
224 * @mpw *v@ = pointer to a word array
225 * @mpw *vl@ = pointer just past end of array
226 *
227 * Returns: ---
228 *
229 * Use: Creates a multiprecision integer representing some smallish
230 * number. You must provide storage for the number and dispose
231 * of it when you've finished with it. The number is marked as
232 * constant while it exists.
233 */
234
235 extern void mp_build(mp */*m*/, mpw */*v*/, mpw */*vl*/);
236
237 /* --- @mp_destroy@ --- *
238 *
239 * Arguments: @mp *m@ = pointer to a multiprecision integer
240 *
241 * Returns: ---
242 *
243 * Use: Destroys a multiprecision integer. The reference count isn't
244 * checked. Don't use this function if you don't know what
245 * you're doing: use @mp_drop@ instead.
246 */
247
248 extern void mp_destroy(mp */*m*/);
249
250 /* --- @mp_copy@ --- *
251 *
252 * Arguments: @mp *m@ = pointer to a multiprecision integer
253 *
254 * Returns: A copy of the given multiprecision integer.
255 *
256 * Use: Copies the given integer. In fact you just get another
257 * reference to the same old one again.
258 */
259
260 extern mp *mp_copy(mp */*m*/);
261
262 #define MP_COPY(m) ((m)->ref++, (m))
263
264 /* --- @mp_drop@ --- *
265 *
266 * Arguments: @mp *m@ = pointer to a multiprecision integer
267 *
268 * Returns: ---
269 *
270 * Use: Drops a reference to an integer which isn't wanted any more.
271 * If there are no more references, the integer is destroyed.
272 */
273
274 extern void mp_drop(mp */*m*/);
275
276 #define MP_DROP(m) do { \
277 mp *_mm = (m); \
278 _mm->ref--; \
279 if (_mm->ref == 0 && !(_mm->f & MP_CONST)) \
280 mp_destroy(_mm); \
281 } while (0)
282
283 /* --- @mp_split@ --- *
284 *
285 * Arguments: @mp *m@ = pointer to a multiprecision integer
286 *
287 * Returns: A reference to the same integer, possibly with a different
288 * address.
289 *
290 * Use: Splits off a modifiable version of the integer referred to.
291 */
292
293 extern mp *mp_split(mp */*m*/);
294
295 #define MP_SPLIT(m) do { \
296 mp *_m = (m); \
297 if ((_m->f & MP_CONST) || _m->ref > 1) { \
298 size_t _len = MP_LEN(_m); \
299 mp *_mm = mp_new(_len, _m->f); \
300 if (!(_m->f & MP_UNDEF)) \
301 memcpy(_mm->v, _m->v, MPWS(_len)); \
302 _m->ref--; \
303 _m = _mm; \
304 } \
305 (m) = _m; \
306 } while (0)
307
308 /* --- @mp_resize@ --- *
309 *
310 * Arguments: @mp *m@ = pointer to a multiprecision integer
311 * @size_t sz@ = new size
312 *
313 * Returns: ---
314 *
315 * Use: Resizes the vector containing the integer's digits. The new
316 * size must be at least as large as the current integer's
317 * length. This isn't really intended for client use.
318 */
319
320 extern void mp_resize(mp */*m*/, size_t /*sz*/);
321
322 #define MP_RESIZE(m, ssz) do { \
323 mp *_m = (m); \
324 size_t _sz = (ssz); \
325 mparena *_a = (_m->f & MP_BURN) ? MPARENA_SECURE : MPARENA_GLOBAL; \
326 mpw *_v; \
327 size_t _len = MP_LEN(_m); \
328 assert(((void)"can't make size less than length", _sz >= _len)); \
329 _v = mpalloc(_a, _sz); \
330 if (!(_m->f & MP_UNDEF)) \
331 memcpy(_v, _m->v, MPWS(_len)); \
332 if (_m->f & MP_BURN) \
333 memset(_m->v, 0, MPWS(_m->sz)); \
334 mpfree(_m->a, _m->v); \
335 _m->a = _a; \
336 _m->v = _v; \
337 _m->vl = _v + _len; \
338 } while (0)
339
340 /* --- @mp_ensure@ --- *
341 *
342 * Arguments: @mp *m@ = pointer to a multiprecision integer
343 * @size_t sz@ = required size
344 *
345 * Returns: ---
346 *
347 * Use: Ensures that the integer has enough space for @sz@ digits.
348 * The value is not changed.
349 */
350
351 extern void mp_ensure(mp */*m*/, size_t /*sz*/);
352
353 #define MP_ENSURE(m, ssz) do { \
354 mp *_m = (m); \
355 size_t _ssz = (ssz); \
356 size_t _len = MP_LEN(_m); \
357 if (_ssz >= _len) { \
358 if (_ssz > _m->sz) \
359 mp_resize(_m, _ssz); \
360 if (!(_m->f & MP_UNDEF) && _ssz > _len) \
361 memset(_m->vl, 0, MPWS(_ssz - _len)); \
362 _m->vl = _m->v + _ssz; \
363 } \
364 } while (0)
365
366 /* --- @mp_dest@ --- *
367 *
368 * Arguments: @mp *m@ = a suggested destination integer
369 * @size_t sz@ = size required for result, in digits
370 * @unsigned f@ = various flags
371 *
372 * Returns: A pointer to an appropriate destination.
373 *
374 * Use: Converts a suggested destination into a real destination with
375 * the required properties. If the real destination is @d@,
376 * then the following properties will hold:
377 *
378 * * @d@ will have exactly one reference.
379 *
380 * * If @m@ is not @MP_NEW@, then the contents of @m@ will not
381 * change, unless @f@ has the @MP_UNDEF@ flag set.
382 *
383 * * If @m@ is not @MP_NEW@, then he reference count of @m@ on
384 * entry is equal to the sum of the counts of @d@ and @m@ on
385 * exit.
386 *
387 * * The size of @d@ will be at least @sz@.
388 *
389 * * If @f@ has the @MP_BURN@ flag set, then @d@ will be
390 * allocated from @MPARENA_SECURE@.
391 *
392 * Understanding this function is crucial to using Catacomb's
393 * multiprecision integer library effectively.
394 */
395
396 extern mp *mp_dest(mp */*m*/, size_t /*sz*/, unsigned /*f*/);
397
398 #define MP_DEST(m, ssz, f) do { \
399 mp *_m = (m); \
400 size_t _ssz = (ssz); \
401 unsigned _f = (f); \
402 _m = mp_dest(_m, _ssz, _f); \
403 (m) = _m; \
404 } while (0)
405
406 /*----- Size manipulation -------------------------------------------------*/
407
408 /* --- @mp_shrink@ --- *
409 *
410 * Arguments: @mp *m@ = pointer to a multiprecision integer
411 *
412 * Returns: ---
413 *
414 * Use: Reduces the recorded length of an integer. This doesn't
415 * reduce the amount of memory used, although it can improve
416 * performance a bit. To reduce memory, use @mp_minimize@
417 * instead. This can't change the value of an integer, and is
418 * therefore safe to use even when there are multiple
419 * references.
420 */
421
422 extern void mp_shrink(mp */*m*/);
423
424 #define MP_SHRINK(m) do { \
425 mp *_mm = (m); \
426 MPX_SHRINK(_mm->v, _mm->vl); \
427 if (!MP_LEN(_mm)) \
428 _mm->f &= ~MP_NEG; \
429 } while (0)
430
431 /* --- @mp_minimize@ --- *
432 *
433 * Arguments: @mp *m@ = pointer to a multiprecision integer
434 *
435 * Returns: ---
436 *
437 * Use: Reduces the amount of memory an integer uses. It's best to
438 * do this to numbers which aren't going to change in the
439 * future.
440 */
441
442 extern void mp_minimize(mp */*m*/);
443
444 /*----- Bit scanning ------------------------------------------------------*/
445
446 #ifndef CATACOMB_MPSCAN_H
447 # include "mpscan.h"
448 #endif
449
450 /* --- @mp_scan@ --- *
451 *
452 * Arguments: @mpscan *sc@ = pointer to bitscanner block
453 * @const mp *m@ = pointer to a multiprecision integer
454 *
455 * Returns: ---
456 *
457 * Use: Initializes a bitscanner on a multiprecision integer.
458 */
459
460 extern void mp_scan(mpscan */*sc*/, const mp */*m*/);
461
462 #define MP_SCAN(sc, m) do { \
463 const mp *_mm = (m); \
464 mpscan *_sc = (sc); \
465 MPSCAN_INITX(_sc, _mm->v, _mm->vl); \
466 } while (0)
467
468 /* --- @mp_rscan@ --- *
469 *
470 * Arguments: @mpscan *sc@ = pointer to bitscanner block
471 * @const mp *m@ = pointer to a multiprecision integer
472 *
473 * Returns: ---
474 *
475 * Use: Initializes a reverse bitscanner on a multiprecision
476 * integer.
477 */
478
479 extern void mp_rscan(mpscan */*sc*/, const mp */*m*/);
480
481 #define MP_RSCAN(sc, m) do { \
482 const mp *_mm = (m); \
483 mpscan *_sc = (sc); \
484 MPSCAN_RINITX(_sc, _mm->v, _mm->vl); \
485 } while (0)
486
487 /* --- Other bitscanning aliases --- */
488
489 #define mp_step mpscan_step
490 #define mp_bit mpscan_bit
491 #define mp_rstep mpscan_rstep
492 #define mp_rbit mpscan_rbit
493
494 #define MP_STEP MPSCAN_STEP
495 #define MP_BIT MPSCAN_BIT
496 #define MP_RSTEP MPSCAN_RSTEP
497 #define MP_RBIT MPSCAN_RBIT
498
499 /*----- Loading and storing -----------------------------------------------*/
500
501 /* --- @mp_octets@ --- *
502 *
503 * Arguments: @const mp *m@ = a multiprecision integer
504 *
505 * Returns: The number of octets required to represent @m@.
506 *
507 * Use: Calculates the external storage required for a multiprecision
508 * integer.
509 */
510
511 extern size_t mp_octets(const mp */*m*/);
512
513 /* --- @mp_octets2c@ --- *
514 *
515 * Arguments: @const mp *m@ = a multiprecision integer
516 *
517 * Returns: The number of octets required to represent @m@.
518 *
519 * Use: Calculates the external storage required for a multiprecision
520 * integer represented as two's complement.
521 */
522
523 extern size_t mp_octets2c(const mp */*m*/);
524
525 /* --- @mp_bits@ --- *
526 *
527 * Arguments: @const mp *m@ = a multiprecision integer
528 *
529 * Returns: The number of bits required to represent @m@.
530 *
531 * Use: Calculates the external storage required for a multiprecision
532 * integer.
533 */
534
535 extern unsigned long mp_bits(const mp */*m*/);
536
537 /* --- @mp_loadl@ --- *
538 *
539 * Arguments: @mp *d@ = destination
540 * @const void *pv@ = pointer to source data
541 * @size_t sz@ = size of the source data
542 *
543 * Returns: Resulting multiprecision number.
544 *
545 * Use: Loads a multiprecision number from an array of octets. The
546 * first byte in the array is the least significant. More
547 * formally, if the bytes are %$b_0, b_1, \ldots, b_{n-1}$%
548 * then the result is %$N = \sum_{0 \le i < n} b_i 2^{8i}$%.
549 */
550
551 extern mp *mp_loadl(mp */*d*/, const void */*pv*/, size_t /*sz*/);
552
553 /* --- @mp_storel@ --- *
554 *
555 * Arguments: @const mp *m@ = source
556 * @void *pv@ = pointer to output array
557 * @size_t sz@ = size of the output array
558 *
559 * Returns: ---
560 *
561 * Use: Stores a multiprecision number in an array of octets. The
562 * first byte in the array is the least significant. If the
563 * array is too small to represent the number, high-order bits
564 * are truncated; if the array is too large, high order bytes
565 * are filled with zeros. More formally, if the number is
566 * %$N = \sum{0 \le i} b_i 2^{8i}$% where %$0 \le b_i < 256$%,
567 * then the array is %$b_0, b_1, \ldots, b_{n-1}$%.
568 */
569
570 extern void mp_storel(const mp */*m*/, void */*pv*/, size_t /*sz*/);
571
572 /* --- @mp_loadb@ --- *
573 *
574 * Arguments: @mp *d@ = destination
575 * @const void *pv@ = pointer to source data
576 * @size_t sz@ = size of the source data
577 *
578 * Returns: Resulting multiprecision number.
579 *
580 * Use: Loads a multiprecision number from an array of octets. The
581 * last byte in the array is the least significant. More
582 * formally, if the bytes are %$b_{n-1}, b_{n-2}, \ldots, b_0$%
583 * then the result is %$N = \sum_{0 \le i < n} b_i 2^{8i}$%.
584 */
585
586 extern mp *mp_loadb(mp */*d*/, const void */*pv*/, size_t /*sz*/);
587
588 /* --- @mp_storeb@ --- *
589 *
590 * Arguments: @const mp *m@ = source
591 * @void *pv@ = pointer to output array
592 * @size_t sz@ = size of the output array
593 *
594 * Returns: ---
595 *
596 * Use: Stores a multiprecision number in an array of octets. The
597 * last byte in the array is the least significant. If the
598 * array is too small to represent the number, high-order bits
599 * are truncated; if the array is too large, high order bytes
600 * are filled with zeros. More formally, if the number is
601 * %$N = \sum{0 \le i} b_i 2^{8i}$% where %$0 \le b_i < 256$%,
602 * then the array is %$b_{n-1}, b_{n-2}, \ldots, b_0$%.
603 */
604
605 extern void mp_storeb(const mp */*m*/, void */*pv*/, size_t /*sz*/);
606
607 /* --- @mp_loadl2c@ --- *
608 *
609 * Arguments: @mp *d@ = destination
610 * @const void *pv@ = pointer to source data
611 * @size_t sz@ = size of the source data
612 *
613 * Returns: Resulting multiprecision number.
614 *
615 * Use: Loads a multiprecision number from an array of octets as
616 * two's complement. The first byte in the array is the least
617 * significant.
618 */
619
620 extern mp *mp_loadl2c(mp */*d*/, const void */*pv*/, size_t /*sz*/);
621
622 /* --- @mp_storel2c@ --- *
623 *
624 * Arguments: @const mp *m@ = source
625 * @void *pv@ = pointer to output array
626 * @size_t sz@ = size of the output array
627 *
628 * Returns: ---
629 *
630 * Use: Stores a multiprecision number in an array of octets as two's
631 * complement. The first byte in the array is the least
632 * significant. If the array is too small to represent the
633 * number, high-order bits are truncated; if the array is too
634 * large, high order bytes are sign-extended.
635 */
636
637 extern void mp_storel2c(const mp */*m*/, void */*pv*/, size_t /*sz*/);
638
639 /* --- @mp_loadb2c@ --- *
640 *
641 * Arguments: @mp *d@ = destination
642 * @const void *pv@ = pointer to source data
643 * @size_t sz@ = size of the source data
644 *
645 * Returns: Resulting multiprecision number.
646 *
647 * Use: Loads a multiprecision number from an array of octets as
648 * two's complement. The last byte in the array is the least
649 * significant.
650 */
651
652 extern mp *mp_loadb2c(mp */*d*/, const void */*pv*/, size_t /*sz*/);
653
654 /* --- @mp_storeb2c@ --- *
655 *
656 * Arguments: @const mp *m@ = source
657 * @void *pv@ = pointer to output array
658 * @size_t sz@ = size of the output array
659 *
660 * Returns: ---
661 *
662 * Use: Stores a multiprecision number in an array of octets, as
663 * two's complement. The last byte in the array is the least
664 * significant. If the array is too small to represent the
665 * number, high-order bits are truncated; if the array is too
666 * large, high order bytes are sign-extended.
667 */
668
669 extern void mp_storeb2c(const mp */*m*/, void */*pv*/, size_t /*sz*/);
670
671 /*----- Bit operations ----------------------------------------------------*/
672
673 /* --- @mp_not@ --- *
674 *
675 * Arguments: @mp *d@ = destination
676 * @mp *a@ = source
677 *
678 * Returns: The bitwise complement of the source.
679 */
680
681 extern mp *mp_not(mp */*d*/, mp */*a*/);
682
683 /* --- @mp_bitop@ --- *
684 *
685 * Arguments: @mp *d@ = destination
686 * @mp *a, *b@ = sources
687 *
688 * Returns: The result of the given bitwise operation. These functions
689 * don't handle negative numbers at all sensibly. For that, use
690 * the @...2c@ variants. The functions are named after the
691 * truth tables they generate:
692 *
693 * a: 0011
694 * b: 0101
695 * @mpx_bitXXXX@
696 */
697
698 #define MP_BITDECL(string) \
699 extern mp *mp_bit##string(mp */*d*/, mp */*a*/, mp */*b*/);
700 MPX_DOBIN(MP_BITDECL)
701
702 /* --- @mp_[n]and@, @mp_[n]or@, @mp_[n]xor@, @mp_not@ --- *
703 *
704 * Synonyms for the commonly-used functions.
705 */
706
707 #define mp_and mp_bit0001
708 #define mp_or mp_bit0111
709 #define mp_nand mp_bit1110
710 #define mp_nor mp_bit1000
711 #define mp_xor mp_bit0110
712
713 /* --- @mp_testbit@ --- *
714 *
715 * Arguments: @mp *x@ = a large integer
716 * @unsigned long n@ = which bit to test
717 *
718 * Returns: Nonzero if the bit is set, zero if not.
719 */
720
721 extern int mp_testbit(mp */*x*/, unsigned long /*n*/);
722
723 /* --- @mp_setbit@, @mp_clearbit@ --- *
724 *
725 * Arguments: @mp *d@ = a destination
726 * @mp *x@ = a large integer
727 * @unsigned long n@ = which bit to modify
728 *
729 * Returns: The argument @x@, with the appropriate bit set or cleared.
730 */
731
732 extern mp *mp_setbit(mp */*d*/, mp */*x*/, unsigned long /*n*/);
733 extern mp *mp_clearbit(mp */*d*/, mp */*x*/, unsigned long /*n*/);
734
735 /* --- @mp_lsl@, @mp_lslc@, @mp_lsr@ --- *
736 *
737 * Arguments: @mp *d@ = destination
738 * @mp *a@ = source
739 * @size_t n@ = number of bits to move
740 *
741 * Returns: Result, @a@ shifted left or right by @n@.
742 *
743 * Use: Bitwise shift operators. @mp_lslc@ fills the bits introduced
744 * on the right with ones instead of zeroes: it's used
745 * internally by @mp_lsl2c@, though it may be useful on its
746 * own.
747 */
748
749 extern mp *mp_lsl(mp */*d*/, mp */*a*/, size_t /*n*/);
750 extern mp *mp_lslc(mp */*d*/, mp */*a*/, size_t /*n*/);
751 extern mp *mp_lsr(mp */*d*/, mp */*a*/, size_t /*n*/);
752
753 /* --- @mp_not2c@ --- *
754 *
755 * Arguments: @mp *d@ = destination
756 * @mp *a@ = source
757 *
758 * Returns: The sign-extended complement of the argument.
759 */
760
761 extern mp *mp_not2c(mp */*d*/, mp */*a*/);
762
763 /* --- @mp_bitop2c@ --- *
764 *
765 * Arguments: @mp *d@ = destination
766 * @mp *a, *b@ = sources
767 *
768 * Returns: The result of the given bitwise operation. Negative numbers
769 * are treated as two's complement, sign-extended infinitely to
770 * the left. The functions are named after the truth tables
771 * they generate:
772 *
773 * a: 0011
774 * b: 0101
775 * @mpx_bitXXXX@
776 */
777
778 #define MP_BIT2CDECL(string) \
779 extern mp *mp_bit##string##2c(mp */*d*/, mp */*a*/, mp */*b*/);
780 MPX_DOBIN(MP_BIT2CDECL)
781
782 /* --- @mp_[n]and@, @mp_[n]or@, @mp_[n]xor@, @mp_not@ --- *
783 *
784 * Synonyms for the commonly-used functions.
785 */
786
787 #define mp_and2c mp_bit00012c
788 #define mp_or2c mp_bit01112c
789 #define mp_nand2c mp_bit11102c
790 #define mp_nor2c mp_bit10002c
791 #define mp_xor2c mp_bit01102c
792
793 /* --- @mp_lsl2c@, @mp_lsr2c@ --- *
794 *
795 * Arguments: @mp *d@ = destination
796 * @mp *a@ = source
797 * @size_t n@ = number of bits to move
798 *
799 * Returns: Result, @a@ shifted left or right by @n@. Handles the
800 * pretence of sign-extension for negative numbers.
801 */
802
803 extern mp *mp_lsl2c(mp */*d*/, mp */*a*/, size_t /*n*/);
804 extern mp *mp_lsr2c(mp */*d*/, mp */*a*/, size_t /*n*/);
805
806 /* --- @mp_testbit2c@ --- *
807 *
808 * Arguments: @mp *x@ = a large integer
809 * @unsigned long n@ = which bit to test
810 *
811 * Returns: Nonzero if the bit is set, zero if not. Fakes up two's
812 * complement representation.
813 */
814
815 extern int mp_testbit2c(mp */*x*/, unsigned long /*n*/);
816
817 /* --- @mp_setbit2c@, @mp_clearbit2c@ --- *
818 *
819 * Arguments: @mp *d@ = a destination
820 * @mp *x@ = a large integer
821 * @unsigned long n@ = which bit to modify
822 *
823 * Returns: The argument @x@, with the appropriate bit set or cleared.
824 * Fakes up two's complement representation.
825 */
826
827 extern mp *mp_setbit2c(mp */*d*/, mp */*x*/, unsigned long /*n*/);
828 extern mp *mp_clearbit2c(mp */*d*/, mp */*x*/, unsigned long /*n*/);
829
830 /*----- Comparisons -------------------------------------------------------*/
831
832 /* --- @mp_eq@ --- *
833 *
834 * Arguments: @const mp *a, *b@ = two numbers
835 *
836 * Returns: Nonzero if the numbers are equal.
837 */
838
839 extern int mp_eq(const mp */*a*/, const mp */*b*/);
840
841 #define MP_EQ(a, b) \
842 ((((a)->f ^ (b)->f) & MP_NEG) == 0 && \
843 mpx_ueq((a)->v, (a)->vl, (b)->v, (b)->vl))
844
845 /* --- @mp_cmp@ --- *
846 *
847 * Arguments: @const mp *a, *b@ = two numbers
848 *
849 * Returns: Less than, equal to or greater than zero, according to
850 * whether @a@ is less than, equal to or greater than @b@.
851 */
852
853 extern int mp_cmp(const mp */*a*/, const mp */*b*/);
854
855 #define MP_CMP(a, op, b) (mp_cmp((a), (b)) op 0)
856
857 /* --- Other handy macros --- */
858
859 #define MP_ISNEG(x) ((x)->f & MP_NEG)
860 #define MP_ISZERO(x) (!MP_LEN(x))
861 #define MP_ISPOS(x) (!MP_ISNEG(x) && !MP_ISZERO(x))
862 #define MP_ISODD(x) (!MP_ISZERO(x) && ((x)->v[0] & 1u))
863 #define MP_ISEVEN(x) (!MP_ISODD(x))
864
865 /*----- Arithmetic operations ---------------------------------------------*/
866
867 /* --- @mp_neg@ --- *
868 *
869 * Arguments: @mp *d@ = destination
870 * @mp *a@ = argument
871 *
872 * Returns: The negation of the argument.
873 *
874 * Use: Negates its argument.
875 */
876
877 extern mp *mp_neg(mp */*d*/, mp */*a*/);
878
879 /* --- @mp_add@ --- *
880 *
881 * Arguments: @mp *d@ = destination
882 * @mp *a, *b@ = sources
883 *
884 * Returns: Result, @a@ added to @b@.
885 */
886
887 extern mp *mp_add(mp */*d*/, mp */*a*/, mp */*b*/);
888
889 /* --- @mp_sub@ --- *
890 *
891 * Arguments: @mp *d@ = destination
892 * @mp *a, *b@ = sources
893 *
894 * Returns: Result, @b@ subtracted from @a@.
895 */
896
897 extern mp *mp_sub(mp */*d*/, mp */*a*/, mp */*b*/);
898
899 /* --- @mp_mul@ --- *
900 *
901 * Arguments: @mp *d@ = destination
902 * @mp *a, *b@ = sources
903 *
904 * Returns: Result, @a@ multiplied by @b@.
905 */
906
907 extern mp *mp_mul(mp */*d*/, mp */*a*/, mp */*b*/);
908
909 /* --- @mp_sqr@ --- *
910 *
911 * Arguments: @mp *d@ = destination
912 * @mp *a@ = source
913 *
914 * Returns: Result, @a@ squared.
915 */
916
917 extern mp *mp_sqr(mp */*d*/, mp */*a*/);
918
919 /* --- @mp_div@ --- *
920 *
921 * Arguments: @mp **qq, **rr@ = destination, quotient and remainder
922 * @mp *a, *b@ = sources
923 *
924 * Use: Calculates the quotient and remainder when @a@ is divided by
925 * @b@.
926 */
927
928 extern void mp_div(mp **/*qq*/, mp **/*rr*/, mp */*a*/, mp */*b*/);
929
930 /* --- @mp_odd@ --- *
931 *
932 * Arguments: @mp *d@ = pointer to destination integer
933 * @mp *m@ = pointer to source integer
934 * @size_t *s@ = where to store the power of 2
935 *
936 * Returns: An odd integer integer %$t$% such that %$m = 2^s t$%.
937 *
938 * Use: Computes a power of two and an odd integer which, when
939 * multiplied, give a specified result. This sort of thing is
940 * useful in number theory quite often.
941 */
942
943 extern mp *mp_odd(mp */*d*/, mp */*m*/, size_t */*s*/);
944
945 /*----- More advanced algorithms ------------------------------------------*/
946
947 /* --- @mp_sqrt@ --- *
948 *
949 * Arguments: @mp *d@ = pointer to destination integer
950 * @mp *a@ = (nonnegative) integer to take square root of
951 *
952 * Returns: The largest integer %$x$% such that %$x^2 \le a$%.
953 *
954 * Use: Computes integer square roots.
955 *
956 * The current implementation isn't very good: it uses the
957 * Newton-Raphson method to find an approximation to %$a$%. If
958 * there's any demand for a better version, I'll write one.
959 */
960
961 extern mp *mp_sqrt(mp */*d*/, mp */*a*/);
962
963 /* --- @mp_gcd@ --- *
964 *
965 * Arguments: @mp **gcd, **xx, **yy@ = where to write the results
966 * @mp *a, *b@ = sources (must be nonzero)
967 *
968 * Returns: ---
969 *
970 * Use: Calculates @gcd(a, b)@, and two numbers @x@ and @y@ such that
971 * @ax + by = gcd(a, b)@. This is useful for computing modular
972 * inverses. Neither @a@ nor @b@ may be zero.
973 */
974
975 extern void mp_gcd(mp **/*gcd*/, mp **/*xx*/, mp **/*yy*/,
976 mp */*a*/, mp */*b*/);
977
978 /* --- @mp_jacobi@ --- *
979 *
980 * Arguments: @mp *a@ = an integer less than @n@
981 * @mp *n@ = an odd integer
982 *
983 * Returns: @-1@, @0@ or @1@ -- the Jacobi symbol %$J(a, n)$%.
984 *
985 * Use: Computes the Jacobi symbol. If @n@ is prime, this is the
986 * Legendre symbol and is equal to 1 if and only if @a@ is a
987 * quadratic residue mod @n@. The result is zero if and only if
988 * @a@ and @n@ have a common factor greater than one.
989 */
990
991 extern int mp_jacobi(mp */*a*/, mp */*n*/);
992
993 /* --- @mp_modsqrt@ --- *
994 *
995 * Arguments: @mp *d@ = destination integer
996 * @mp *a@ = source integer
997 * @mp *p@ = modulus (must be prime)
998 *
999 * Returns: If %$a$% is a quadratic residue, a square root of %$a$%; else
1000 * a null pointer.
1001 *
1002 * Use: Returns an integer %$x$% such that %$x^2 \equiv a \pmod{p}$%,
1003 * if one exists; else a null pointer. This function will not
1004 * work if %$p$% is composite: you must factor the modulus, take
1005 * a square root mod each factor, and recombine the results
1006 * using the Chinese Remainder Theorem.
1007 */
1008
1009 extern mp *mp_modsqrt(mp */*d*/, mp */*a*/, mp */*p*/);
1010
1011 /*----- Test harness support ----------------------------------------------*/
1012
1013 #include <mLib/testrig.h>
1014
1015 #ifndef CATACOMB_MPTEXT_H
1016 # include "mptext.h"
1017 #endif
1018
1019 extern const test_type type_mp;
1020
1021 /*----- That's all, folks -------------------------------------------------*/
1022
1023 #ifdef __cplusplus
1024 }
1025 #endif
1026
1027 #endif