udpkey.c: Refactor the client side of the protocol.
[udpkey] / udpkey.c
1 /* -*-c-*-
2 *
3 * Request a key over UDP, or respond to such a request
4 *
5 * (c) 2012 Mark Wooding
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of udpkey.
11 *
12 * The udpkey program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * The udpkey program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with udpkey; if not, write to the Free Software Foundation,
24 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 */
26
27 /*----- Header files ------------------------------------------------------*/
28
29 #include <ctype.h>
30 #include <errno.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <time.h>
35
36 #include <sys/types.h>
37 #include <sys/time.h>
38 #include <unistd.h>
39 #include <fcntl.h>
40
41 #include <syslog.h>
42
43 #include <sys/socket.h>
44 #include <arpa/inet.h>
45 #include <netinet/in.h>
46 #include <netdb.h>
47
48 #include <mLib/alloc.h>
49 #include <mLib/buf.h>
50 #include <mLib/daemonize.h>
51 #include <mLib/dstr.h>
52 #include <mLib/fdflags.h>
53 #include <mLib/fwatch.h>
54 #include <mLib/hex.h>
55 #include <mLib/mdwopt.h>
56 #include <mLib/quis.h>
57 #include <mLib/report.h>
58 #include <mLib/sub.h>
59 #include <mLib/tv.h>
60
61 #include <catacomb/buf.h>
62 #include <catacomb/ct.h>
63 #include <catacomb/dh.h>
64 #include <catacomb/ec.h>
65 #include <catacomb/ec-keys.h>
66 #include <catacomb/gcipher.h>
67 #include <catacomb/gmac.h>
68 #include <catacomb/group.h>
69 #include <catacomb/key.h>
70 #include <catacomb/mp.h>
71 #include <catacomb/mprand.h>
72 #include <catacomb/noise.h>
73 #include <catacomb/rand.h>
74
75 #include <catacomb/rijndael-counter.h>
76 #include <catacomb/sha256.h>
77
78 #ifdef DEBUG
79 # define D(x) x
80 #else
81 # define D(x)
82 #endif
83
84 /*---- Static variables ---------------------------------------------------*/
85
86 static unsigned flags = 0;
87 #define f_bogus 1u
88 #define f_listen 2u
89 #define f_daemon 4u
90 #define f_syslog 8u
91
92 #define BUFSZ 65536
93 static unsigned char ibuf[BUFSZ], obuf[BUFSZ];
94
95 static key_file *kf;
96 static const char *kfname = "keyring";
97 static const char *pidfile;
98 static fwatch kfwatch;
99 static unsigned nq;
100
101 /*----- Miscellaneous utilities -------------------------------------------*/
102
103 /* Resolve NAME, storing the address in *ADDR. Exit on error. */
104 static void resolve(const char *name, struct in_addr *addr)
105 {
106 struct hostent *h;
107
108 if ((h = gethostbyname(name)) == 0)
109 die(1, "failed to resolve `%s': %s", name, hstrerror(h_errno));
110 if (h->h_addrtype != AF_INET)
111 die(1, "unexpected address type %d", h->h_addrtype);
112 memcpy(addr, h->h_addr, sizeof(struct in_addr));
113 }
114
115 /* Convert PORT to a port number (in host byte order). Exit on error. */
116 static unsigned short getport(const char *port)
117 {
118 unsigned long i = 0;
119 char *q;
120 int e = errno;
121
122 errno = 0;
123 if (!isdigit(*port) ||
124 (i = strtoul(port, &q, 0)) == 0 ||
125 i >= 65536 || *q || errno)
126 die(1, "invalid port number `%s'", port);
127 errno = e;
128 return ((unsigned short)i);
129 }
130
131 /* Read the file named by NAME into a buffer -- or at least an initial
132 * portion of it; set *P to the start and *SZ to the length. Return -1 if it
133 * didn't work. The buffer doesn't need to be freed: the data is stashed in
134 * ibuf.
135 */
136 static int snarf(const char *name, void **p, size_t *sz)
137 {
138 ssize_t n;
139 int fd;
140
141 if ((fd = open(name, O_RDONLY)) < 0) return (-1);
142 n = read(fd, ibuf, sizeof(ibuf));
143 close(fd);
144 if (n < 0) return (-1);
145 *p = ibuf; *sz = n;
146 return (0);
147 }
148
149 /* Complain about something. If f_syslog is set then complain to that;
150 * otherwise write to stderr. Don't use `%m' because that won't work when
151 * writing to stderr.
152 */
153 static void PRINTF_LIKE(2, 3) complain(int sev, const char *msg, ...)
154 {
155 va_list ap;
156
157 va_start(ap, msg);
158 if (flags & f_syslog)
159 vsyslog(sev, msg, ap);
160 else {
161 fprintf(stderr, "%s: ", QUIS);
162 vfprintf(stderr, msg, ap);
163 fputc('\n', stderr);
164 }
165 }
166
167 /*----- Reading key data --------------------------------------------------*/
168
169 struct kinfo {
170 group *g;
171 ge *X;
172 mp *x;
173 const gccipher *cc;
174 const gcmac *mc; size_t tagsz;
175 const gchash *hc;
176 };
177
178 /* Clear a kinfo structure so it can be freed without trouble. */
179 static void k_init(struct kinfo *k) { k->g = 0; k->x = 0; k->X = 0; }
180
181 /* Free a kinfo structure. This is safe on any initialized kinfo
182 * structure.
183 */
184 static void k_free(struct kinfo *k)
185 {
186 if (k->X) { G_DESTROY(k->g, k->X); k->X = 0; }
187 if (k->x) { MP_DROP(k->x); k->x = 0; }
188 if (k->g) { G_DESTROYGROUP(k->g); k->g = 0; }
189 }
190
191 /* Empty macro arguments are forbidden. But arguments are expended during
192 * replacement, not while the call is being processed, so this hack is OK.
193 * Unfortunately, if a potentially empty argument is passed on to another
194 * macro then it needs to be guarded with a use of EMPTY too...
195 */
196 #define EMPTY
197
198 /* Table of key types. Entries have the form
199 *
200 * _(name, NAME, SETGROUP, SETPRIV, SETPUB)
201 *
202 * The name and NAME are lower- and uppercase names for the type used for
203 * constructing various type name constant names. The code fragment SETGROUP
204 * initializes k->g given the name_{pub,priv} structure in p; SETPRIV and
205 * SETPUB set up k->x and k->X respectively. (In this last case, k->X will
206 * have been created as a group element already.)
207 */
208 #define KEYTYPES(_) \
209 \
210 _(dh, DH, \
211 { k->g = group_prime(&p.dp); }, \
212 { k->x = MP_COPY(p.x); }, \
213 { if (G_FROMINT(k->g, k->X, p.y)) { \
214 complain(LOG_ERR, "bad public key in `%s'", t->buf); \
215 goto fail; \
216 } \
217 }) \
218 \
219 _(ec, EC, \
220 { ec_info ei; const char *e; \
221 if ((e = ec_getinfo(&ei, p.cstr)) != 0) { \
222 complain(LOG_ERR, "bad elliptic curve in `%s': %s", t->buf, e); \
223 goto fail; \
224 } \
225 k->g = group_ec(&ei); \
226 }, \
227 { k->x = MP_COPY(p.x); }, \
228 { if (G_FROMEC(k->g, k->X, &p.p)) { \
229 complain(LOG_ERR, "bad public point in `%s'", t->buf); \
230 goto fail; \
231 } \
232 })
233
234 /* Define load_tywhich, where which is `pub' or `priv', to load a public or
235 * private key. Other parameters are as for the KEYTYPES list above.
236 */
237 #define KLOAD(ty, TY, which, WHICH, setgroup, setpriv, setpub) \
238 static int load_##ty##which(key_data *kd, struct kinfo *k, dstr *t) \
239 { \
240 key_packstruct kps[TY##_##WHICH##FETCHSZ]; \
241 key_packdef *kp; \
242 ty##_##which p; \
243 int rc; \
244 \
245 /* Extract the key data from the keydata. */ \
246 kp = key_fetchinit(ty##_##which##fetch, kps, &p); \
247 if ((rc = key_unpack(kp, kd, t)) != 0) { \
248 complain(LOG_ERR, "failed to unpack key `%s': %s", \
249 t->buf, key_strerror(rc)); \
250 goto fail; \
251 } \
252 \
253 /* Extract the components as abstract group elements. */ \
254 setgroup; \
255 setpriv; \
256 k->X = G_CREATE(k->g); \
257 setpub; \
258 \
259 /* Dispose of stuff we don't need. */ \
260 key_fetchdone(kp); \
261 return (0); \
262 \
263 /* Tidy up after mishaps. */ \
264 fail: \
265 k_free(k); \
266 key_fetchdone(kp); \
267 return (-1); \
268 }
269
270 /* Map over the KEYTYPES to declare the load_tywhich functions using KLOAD
271 * above.
272 */
273 #define KEYTYPE_KLOAD(ty, TY, setgroup, setpriv, setpub) \
274 KLOAD(ty, TY, priv, PRIV, setgroup, setpriv, \
275 { G_EXP(k->g, k->X, k->g->g, k->x); }) \
276 KLOAD(ty, TY, pub, PUB, setgroup, { }, setpub)
277 KEYTYPES(KEYTYPE_KLOAD)
278
279 /* Define a table of group key-loading operations. */
280 struct kload_ops {
281 const char *name;
282 int (*loadpriv)(key_data *, struct kinfo *, dstr *);
283 int (*loadpub)(key_data *, struct kinfo *, dstr *);
284 };
285
286 static const struct kload_ops kload_ops[] = {
287 #define KEYTYPE_OPS(ty, TY, setgroup, setpriv, setpub) \
288 { #ty, load_##ty##priv, load_##ty##pub },
289 KEYTYPES(KEYTYPE_OPS)
290 { 0 }
291 };
292
293 /* Load a private or public (indicated by PRIVP) key named TAG into a kinfo
294 * structure K. Also fill in the cipher suite selections extracted from the
295 * key attributes.
296 */
297 static int loadkey(const char *tag, struct kinfo *k, int privp)
298 {
299 const struct kload_ops *ops;
300 dstr d = DSTR_INIT, dd = DSTR_INIT;
301 key *ky;
302 key_data **kd;
303 const char *ty, *p;
304 char *q;
305 int tsz;
306 int rc;
307
308 /* Find the key data. */
309 if (key_qtag(kf, tag, &d, &ky, &kd)) {
310 complain(LOG_ERR, "unknown key tag `%s'", tag);
311 goto fail;
312 }
313
314 /* Find the key's group type and locate the group operations. */
315 ty = key_getattr(kf, ky, "group");
316 if (!ty && strncmp(ky->type, "udpkey-", 7) == 0) ty = ky->type + 7;
317 if (!ty) {
318 complain(LOG_ERR, "no group type for key %s", d.buf);
319 goto fail;
320 }
321 for (ops = kload_ops; ops->name; ops++) {
322 if (strcmp(ty, ops->name) == 0)
323 goto found;
324 }
325 complain(LOG_ERR, "unknown group type `%s' in key %s", ty, d.buf);
326 goto fail;
327
328 found:
329 /* Extract the key data into an appropriately abstract form. */
330 k->g = 0; k->x = 0; k->X = 0;
331 if ((rc = (privp ? ops->loadpriv : ops->loadpub)(*kd, k, &d)) != 0)
332 goto fail;
333
334 /* Extract the chosen symmetric cipher. */
335 if ((p = key_getattr(kf, ky, "cipher")) == 0)
336 k->cc = &rijndael_counter;
337 else if ((k->cc = gcipher_byname(p)) == 0) {
338 complain(LOG_ERR, "unknown cipher `%s' in key %s", p, d.buf);
339 goto fail;
340 }
341
342 /* And the chosen hash function. */
343 if ((p = key_getattr(kf, ky, "hash")) == 0)
344 k->hc = &sha256;
345 else if ((k->hc = ghash_byname(p)) == 0) {
346 complain(LOG_ERR, "unknown hash `%s' in key %s", p, d.buf);
347 goto fail;
348 }
349
350 /* And finally a MAC. This is more fiddly because we must handle (a)
351 * truncation and (b) defaulting based on the hash.
352 */
353 if ((p = key_getattr(kf, ky, "mac")) == 0)
354 dstr_putf(&dd, "%s-hmac", k->hc->name);
355 else
356 dstr_puts(&dd, p);
357 if ((q = strchr(dd.buf, '/')) != 0) *q++ = 0;
358 else q = 0;
359 if ((k->mc = gmac_byname(dd.buf)) == 0) {
360 complain(LOG_ERR, "unknown mac `%s' in key %s", dd.buf, d.buf);
361 goto fail;
362 }
363 if (!q)
364 k->tagsz = k->mc->hashsz/2;
365 else {
366 tsz = atoi(q);
367 if (tsz <= 0 || tsz%8 || tsz/8 > k->mc->hashsz) {
368 complain(LOG_ERR, "bad tag size `%s' for mac `%s' in key %s",
369 q, k->mc->name, d.buf);
370 goto fail;
371 }
372 k->tagsz = tsz/8;
373 }
374
375 /* Done. */
376 rc = 0;
377 goto done;
378
379 fail:
380 rc = -1;
381 done:
382 dstr_destroy(&d);
383 dstr_destroy(&dd);
384 return (rc);
385 }
386
387 static void keymoan(const char *file, int line, const char *err, void *p)
388 { complain(LOG_ERR, "%s:%d: %s", file, line, err); }
389
390 /* Update the keyring `kf' if the file has been changed since we last looked.
391 */
392 static void kfupdate(void)
393 {
394 key_file *kfnew;
395
396 if (!fwatch_update(&kfwatch, kfname)) return;
397 kfnew = CREATE(key_file);
398 if (key_open(kfnew, kfname, KOPEN_READ, keymoan, 0)) {
399 DESTROY(kfnew);
400 return;
401 }
402 key_close(kf);
403 DESTROY(kf);
404 kf = kfnew;
405 }
406
407 /*----- Low-level crypto operations ---------------------------------------*/
408
409 /* Derive a key, writing its address to *KK and size to *N. The size is
410 * compatible with the keysz rules KSZ. It is generated for the purpose of
411 * keying a WHAT (used for key separation and in error messages), and NAME is
412 * the name of the specific instance (e.g., `twofish-counter') from the class
413 * name. The kinfo structure K tells us which algorithms to use for the
414 * derivation. The group elements U and Z are the cryptographic inputs
415 * for the derivation.
416 *
417 * Basically all we do is compute H(what || U || Z).
418 */
419 static int derive(struct kinfo *k, ge *U, ge *Z,
420 const char *what, const char *name, const octet *ksz,
421 octet **kk, size_t *n)
422 {
423 buf b;
424 ghash *h;
425 octet *p;
426
427 /* Find a suitable key size. */
428 if ((*n = keysz(k->hc->hashsz, ksz)) == 0) {
429 complain(LOG_ERR,
430 "failed to find suitable key size for %s `%s' and hash `%s'",
431 what, name, k->hc->name);
432 return (-1);
433 }
434
435 /* Build the hash preimage. */
436 buf_init(&b, obuf, sizeof(obuf));
437 buf_put(&b, "udpkey-", 7);
438 buf_putstrz(&b, what);
439 G_TORAW(k->g, &b, U);
440 G_TORAW(k->g, &b, Z);
441 if (BBAD(&b)) {
442 complain(LOG_ERR, "overflow while deriving key (prepare preimage)!");
443 return (-1);
444 }
445
446 /* Derive the output key. */
447 h = GH_INIT(k->hc);
448 GH_HASH(h, BBASE(&b), BLEN(&b));
449 buf_init(&b, obuf, sizeof(obuf));
450 if ((p = buf_get(&b, h->ops->c->hashsz)) == 0) {
451 complain(LOG_ERR, "overflow while deriving key (output hash)!");
452 GH_DESTROY(h);
453 return (-1);
454 }
455 GH_DONE(h, p);
456 GH_DESTROY(h);
457 *kk = p;
458 return (0);
459 }
460
461 #ifdef DEBUG
462 static void debug_mp(const char *what, mp *x)
463 { fprintf(stderr, "%s: *** ", QUIS); MP_EPRINT(what, x); }
464 static void debug_ge(const char *what, group *g, ge *X)
465 {
466 fprintf(stderr, "%s: *** %s = ", QUIS, what);
467 group_writefile(g, X, stderr);
468 fputc('\n', stderr);
469 }
470 #endif
471
472 /*----- Protocol summary --------------------------------------------------*
473 *
474 * * Request
475 * memz KEYTAG tag of wanted secret
476 * ge U public vector
477 *
478 * * Response
479 * ge V public vector: V = v P
480 * ge W encrypted clue: W = R - Y = r P - v U
481 * mem[TAGSZ] TAG MAC tag on ciphertext
482 * mem[KSZ] CT secret, encrypted with Z = r X
483 */
484
485 /*----- Listening for requests --------------------------------------------*/
486
487 /* Rate limiting parameters.
488 *
489 * There's a probabilistic rate-limiting mechanism. A counter starts at 0.
490 * Every time we process a request, we increment the counter. The counter
491 * drops by RATE_REFILL every second. If the counter is below RATE_CREDIT
492 * then the request is processed; otherwise it is processed with probability
493 * 1/(counter - RATE_CREDIT).
494 */
495 #define RATE_REFILL 10 /* Credits per second. */
496 #define RATE_CREDIT 1000 /* Initial credit. */
497
498 static time_t now;
499
500 static int fetch_key(const char *tag, struct sockaddr_in *sin,
501 key **ky, struct kinfo *k)
502 {
503 dstr d = DSTR_INIT, dd = DSTR_INIT;
504 key_data **kkd;
505 char *p, *q;
506 const char *pp;
507 struct in_addr in;
508 int ch, mlen, rc = -1;
509
510 /* Find the key. */
511 kfupdate();
512 if (key_qtag(kf, tag, &d, ky, &kkd)) {
513 complain(LOG_WARNING, "unknown key tag `%s' from %s:%d",
514 tag, inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
515 goto done;
516 }
517
518 /* And make sure that it has the right shape. */
519 if (((*ky)->k->e & KF_ENCMASK) != KENC_BINARY) {
520 complain(LOG_ERR, "key %s is not plain binary data", d.buf);
521 goto done;
522 }
523
524 /* Find the list of clients, and look up the caller's address in the
525 * list. Entries have the form ADDRESS[/LEN][=TAG] and are separated by
526 * `;'.
527 */
528 if ((pp = key_getattr(kf, *ky, "clients")) == 0) {
529 complain(LOG_WARNING,
530 "key %s requested from %s:%d has no `clients' attribute",
531 d.buf, inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
532 goto done;
533 }
534 dstr_puts(&dd, pp);
535 p = dd.buf;
536 while (*p) {
537 q = p;
538 while (isdigit((unsigned char)*q) || *q == '.') q++;
539 ch = *q; *q++ = 0;
540 if (!inet_aton(p, &in)) goto skip;
541 if (ch != '/')
542 mlen = 32;
543 else {
544 p = q;
545 while (isdigit((unsigned char)*q)) q++;
546 ch = *q; *q++ = 0;
547 mlen = atoi(p);
548 }
549 if (((sin->sin_addr.s_addr ^ in.s_addr) &
550 htonl(0xffffffff << (32 - mlen))) == 0)
551 goto match;
552 skip:
553 if (!ch) break;
554 p = q;
555 while (*p && *p != ';') p++;
556 if (*p) p++;
557 }
558 complain(LOG_WARNING, "access to key %s denied to %s:%d",
559 d.buf, inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
560 goto done;
561
562 match:
563 /* Build a tag name for the caller's KEM key, either from the client
564 * match or the source address.
565 */
566 if (ch != '=') {
567 DRESET(&dd);
568 dstr_puts(&dd, "client-");
569 dstr_puts(&dd, inet_ntoa(sin->sin_addr));
570 p = dd.buf;
571 } else {
572 p = q;
573 while (*q && *q != ';') q++;
574 if (*q == ';') *q++ = 0;
575 }
576
577 /* Report the match. */
578 complain(LOG_NOTICE, "client %s:%d (`%s') requests key %s",
579 inet_ntoa(sin->sin_addr), ntohs(sin->sin_port), p, d.buf);
580
581 /* Load the KEM key. */
582 if (loadkey(p, k, 0)) goto done;
583 D( debug_ge("X", k.g, k.X); )
584
585 /* All complete. */
586 rc = 0;
587
588 done:
589 /* Clean everything up. */
590 dstr_destroy(&d);
591 dstr_destroy(&dd);
592 if (rc) k_free(k);
593 return (rc);
594 }
595
596 static int respond_v0(buf *bin, buf *bout, struct sockaddr_in *sin)
597 {
598 ge *R = 0, *U = 0, *V = 0, *W = 0, *Y = 0, *Z = 0;
599 mp *r = MP_NEW, *v = MP_NEW;
600 octet *kk, *t, *tt;
601 char *p;
602 size_t sz;
603 ghash *h = 0;
604 gmac *m = 0;
605 gcipher *c = 0;
606 struct kinfo k;
607 key *ky;
608 size_t ksz;
609 int rc = -1;
610
611 /* Clear out the key state. */
612 k_init(&k);
613
614 /* Extract the key tag name. */
615 if ((p = buf_getmemz(bin, &sz)) == 0) {
616 complain(LOG_WARNING, "invalid key tag from %s:%d",
617 inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
618 goto done;
619 }
620
621 /* Find the client's key and check that it's allowed. */
622 if (fetch_key(p, sin, &ky, &k)) goto done;
623
624 /* Read the caller's ephemeral key. */
625 R = G_CREATE(k.g); W = G_CREATE(k.g);
626 U = G_CREATE(k.g); V = G_CREATE(k.g);
627 Y = G_CREATE(k.g); Z = G_CREATE(k.g);
628 if (G_FROMBUF(k.g, bin, U)) {
629 complain(LOG_WARNING, "failed to read ephemeral vector from %s:%d",
630 inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
631 goto done;
632 }
633 D( debug_ge("U", k.g, U); )
634 if (BLEFT(bin)) {
635 complain(LOG_WARNING, "trailing junk in request from %s:%d",
636 inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
637 goto done;
638 }
639
640 /* Ephemeral Diffie--Hellman. Choose v in GF(q) at random; compute
641 * V = v P and -Y = (-v) U.
642 */
643 v = mprand_range(v, k.g->r, &rand_global, 0);
644 G_EXP(k.g, V, k.g->g, v);
645 D( debug_mp("v", v); debug_ge("V", k.g, V); )
646 v = mp_sub(v, k.g->r, v);
647 G_EXP(k.g, Y, U, v);
648 D( debug_ge("-Y", k.g, Y); )
649
650 /* DLIES. Choose r in GF(q) at random; compute R = r P and Z = r X. Mask
651 * the clue R as W = R - Y. (Doing the subtraction here makes life easier
652 * at the other end, since we can determine -Y by negating v whereas the
653 * recipient must subtract vectors which may be less efficient.)
654 */
655 r = mprand_range(r, k.g->r, &rand_global, 0);
656 G_EXP(k.g, R, k.g->g, r);
657 D( debug_mp("r", r); debug_ge("R", k.g, R); )
658 G_EXP(k.g, Z, k.X, r);
659 G_MUL(k.g, W, R, Y);
660 D( debug_ge("Z", k.g, Z); debug_ge("W", k.g, W); )
661
662 /* Derive encryption and integrity keys. */
663 derive(&k, R, Z, "cipher", k.cc->name, k.cc->keysz, &kk, &ksz);
664 c = GC_INIT(k.cc, kk, ksz);
665 derive(&k, R, Z, "mac", k.mc->name, k.mc->keysz, &kk, &ksz);
666 m = GM_KEY(k.mc, kk, ksz);
667
668 /* Build the ciphertext and compute a MAC tag over it. */
669 rc = 0;
670 if (G_TOBUF(k.g, bout, V) ||
671 G_TOBUF(k.g, bout, W))
672 goto done;
673 if ((t = buf_get(bout, k.tagsz)) == 0) goto done;
674 sz = ky->k->u.k.sz;
675 if (BENSURE(bout, sz)) goto done;
676 GC_ENCRYPT(c, ky->k->u.k.k, BCUR(bout), sz);
677 h = GM_INIT(m);
678 GH_HASH(h, BCUR(bout), sz);
679 tt = GH_DONE(h, 0); memcpy(t, tt, k.tagsz);
680 BSTEP(bout, sz);
681
682 done:
683 /* Clear everything up and go home. */
684 if (R) G_DESTROY(k.g, R);
685 if (U) G_DESTROY(k.g, U);
686 if (V) G_DESTROY(k.g, V);
687 if (W) G_DESTROY(k.g, W);
688 if (Y) G_DESTROY(k.g, Y);
689 if (Z) G_DESTROY(k.g, Z);
690 if (c) GC_DESTROY(c);
691 if (m) GM_DESTROY(m);
692 if (h) GH_DESTROY(h);
693 if (r) MP_DROP(r);
694 if (v) MP_DROP(v);
695 k_free(&k);
696 return (rc);
697 }
698
699 static int dolisten(int argc, char *argv[])
700 {
701 int sk;
702 char *p;
703 char *aspec;
704 ssize_t n;
705 fd_set fdin;
706 struct sockaddr_in sin;
707 socklen_t len;
708 buf bin, bout;
709 FILE *fp = 0;
710 unsigned bucket = 0, toks;
711 time_t last = 0;
712
713 /* Set up the socket address. */
714 sin.sin_family = AF_INET;
715 aspec = xstrdup(argv[0]);
716 if ((p = strchr(aspec, ':')) == 0) {
717 p = aspec;
718 sin.sin_addr.s_addr = INADDR_ANY;
719 } else {
720 *p++ = 0;
721 resolve(aspec, &sin.sin_addr);
722 }
723 sin.sin_port = htons(getport(p));
724
725 /* Create and set up the socket itself. */
726 if ((sk = socket(PF_INET, SOCK_DGRAM, 0)) < 0 ||
727 fdflags(sk, O_NONBLOCK, O_NONBLOCK, FD_CLOEXEC, FD_CLOEXEC) ||
728 bind(sk, (struct sockaddr *)&sin, sizeof(sin)))
729 die(1, "failed to create socket: %s", strerror(errno));
730
731 /* That's enough initialization. If we should fork, then do that. */
732 if (flags & f_daemon) {
733 if (pidfile && (fp = fopen(pidfile, "w")) == 0)
734 die(1, "failed to open pidfile `%s': %s", pidfile, strerror(errno));
735 openlog(QUIS, LOG_PID, LOG_DAEMON);
736 if (daemonize())
737 die(1, "failed to become background process: %s", strerror(errno));
738 if (pidfile) { fprintf(fp, "%ld\n", (long)getpid()); fclose(fp); }
739 flags |= f_syslog;
740 }
741
742 for (;;) {
743
744 /* Wait for something to happen. */
745 FD_ZERO(&fdin);
746 FD_SET(sk, &fdin);
747 if (select(sk + 1, &fdin, 0, 0, 0) < 0)
748 die(1, "select failed: %s", strerror(errno));
749 noise_timer(RAND_GLOBAL);
750
751 /* Fetch a packet. */
752 len = sizeof(sin);
753 n = recvfrom(sk, ibuf, sizeof(ibuf), 0, (struct sockaddr *)&sin, &len);
754 if (n < 0) {
755 if (errno != EAGAIN && errno != EINTR)
756 complain(LOG_ERR, "unexpected receive error: %s", strerror(errno));
757 continue;
758 }
759
760 /* Refill the bucket, and see whether we should reject this packet. */
761 now = time(0);
762 if (bucket && now != last) {
763 toks = (now - last)*RATE_REFILL;
764 bucket = bucket < toks ? 0 : bucket - toks;
765 }
766 last = now;
767 if (bucket > RATE_CREDIT &&
768 grand_range(&rand_global, bucket - RATE_CREDIT))
769 continue;
770 bucket++;
771
772 /* Set up the input buffer for parsing the request. */
773 buf_init(&bin, ibuf, n);
774 buf_init(&bout, obuf, sizeof(obuf));
775
776 /* Handle the client's message. */
777 if (respond_v0(&bin, &bout, &sin)) continue;
778
779 /* Send the reply packet back to the caller. */
780 if (!BOK(&bout)) goto bad;
781 if (sendto(sk, BBASE(&bout), BLEN(&bout), 0,
782 (struct sockaddr *)&sin, len) < 0) {
783 complain(LOG_ERR, "failed to send response to %s:%d: %s",
784 inet_ntoa(sin.sin_addr), ntohs(sin.sin_port),
785 strerror(errno));
786 continue;
787 }
788
789 continue;
790
791 bad:
792 /* Report a problem building the reply. */
793 complain(LOG_ERR, "failed to construct response to %s:%d",
794 inet_ntoa(sin.sin_addr), ntohs(sin.sin_port));
795 }
796
797 return (-1);
798 }
799
800 /*----- Sending requests and processing responses -------------------------*/
801
802 struct query {
803 struct query *next;
804 const char *tag;
805 octet *k;
806 size_t sz;
807 struct server *s;
808 };
809
810 struct server {
811 struct server *next;
812 struct sockaddr_in sin;
813 struct kinfo k;
814 const struct client_protocol *proto;
815 mp *u;
816 ge *U;
817 octet *h;
818 };
819
820 struct client_protocol {
821 const char *name;
822 int (*setup)(struct query *, struct server *);
823 int (*receive)(struct query *, struct server *, buf *, buf *);
824 int (*retransmit)(struct query *, struct server *, buf *);
825 };
826
827 /* Record a successful fetch of key material for a query Q. The data starts
828 * at K and is SZ bytes long. The data is copied: it's safe to overwrite it.
829 */
830 static int donequery(struct query *q, struct server *s,
831 const void *k, size_t sz)
832 {
833 octet *tt;
834 ghash *h = 0;
835 int diffp;
836
837 /* If we have a hash, check that the fragment matches it. */
838 if (s && s->h) {
839 h = GH_INIT(s->k.hc);
840 GH_HASH(h, k, sz);
841 tt = GH_DONE(h, 0);
842 diffp = memcmp(tt, s->h, h->ops->c->hashsz);
843 GH_DESTROY(h);
844 if (diffp) {
845 moan("response from %s:%d doesn't match hash",
846 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
847 return (-1);
848 }
849 }
850
851 /* Stash a copy of the key fragment for later. */
852 q->k = xmalloc(sz);
853 memcpy(q->k, k, sz);
854 q->sz = sz; nq--;
855
856 /* All good. */
857 return (0);
858 }
859
860 static int setup_v0(struct query *q, struct server *s)
861 {
862 /* Choose an ephemeral private key u. Let x be our private key. We
863 * compute U = u P and transmit this.
864 */
865 s->u = mprand_range(MP_NEW, s->k.g->r, &rand_global, 0);
866 s->U = G_CREATE(s->k.g);
867 G_EXP(s->k.g, s->U, s->k.g->g, s->u);
868 D( debug_mp("u", s->u); debug_ge("U", s->k.g, s->U); )
869
870 return (0);
871 }
872
873 static int retransmit_v0(struct query *q, struct server *s, buf *bout)
874 {
875 buf_putstrz(bout, q->tag);
876 G_TOBUF(s->k.g, bout, s->U);
877 return (0);
878 }
879
880 static int receive_v0(struct query *q, struct server *s, buf *bin, buf *bout)
881 {
882 ge *R, *V = 0, *W = 0, *Y = 0, *Z = 0;
883 octet *kk, *t, *tt;
884 gcipher *c = 0;
885 gmac *m = 0;
886 ghash *h = 0;
887 size_t n, ksz;
888 octet *p;
889 int rc = -1;
890
891 R = G_CREATE(s->k.g);
892 V = G_CREATE(s->k.g); W = G_CREATE(s->k.g);
893 Y = G_CREATE(s->k.g); Z = G_CREATE(s->k.g);
894 if (G_FROMBUF(s->k.g, bin, V)) {
895 moan("invalid Diffie--Hellman vector from %s:%d",
896 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
897 goto done;
898 }
899 if (G_FROMBUF(s->k.g, bin, W)) {
900 moan("invalid clue vector from %s:%d",
901 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
902 goto done;
903 }
904 D( debug_ge("V", s->k.g, V); debug_ge("W", s->k.g, W); )
905
906 /* We have V and W from the server; determine Y = u V, R = W + Y and
907 * Z = x R, and then derive the symmetric keys.
908 */
909 G_EXP(s->k.g, Y, V, s->u);
910 G_MUL(s->k.g, R, W, Y);
911 G_EXP(s->k.g, Z, R, s->k.x);
912 D( debug_ge("R", s->k.g, R);
913 debug_ge("Y", s->k.g, Y);
914 debug_ge("Z", s->k.g, Z); )
915 derive(&s->k, R, Z, "cipher", s->k.cc->name, s->k.cc->keysz, &kk, &ksz);
916 c = GC_INIT(s->k.cc, kk, ksz);
917 derive(&s->k, R, Z, "mac", s->k.cc->name, s->k.cc->keysz, &kk, &ksz);
918 m = GM_KEY(s->k.mc, kk, ksz);
919
920 /* Find where the MAC tag is. */
921 if ((t = buf_get(bin, s->k.tagsz)) == 0) {
922 moan("missing tag from %s:%d",
923 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
924 goto done;
925 }
926
927 /* Check the integrity of the ciphertext against the tag. */
928 p = BCUR(bin); n = BLEFT(bin);
929 h = GM_INIT(m);
930 GH_HASH(h, p, n);
931 tt = GH_DONE(h, 0);
932 if (!ct_memeq(t, tt, s->k.tagsz)) {
933 moan("incorrect tag from %s:%d",
934 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
935 goto done;
936 }
937
938 /* Decrypt the result and declare this server done. */
939 GC_DECRYPT(c, p, p, n);
940 rc = donequery(q, s, p, n);
941
942 done:
943 /* Clear up and go home. */
944 if (R) G_DESTROY(s->k.g, R);
945 if (V) G_DESTROY(s->k.g, V);
946 if (W) G_DESTROY(s->k.g, W);
947 if (Y) G_DESTROY(s->k.g, Y);
948 if (Z) G_DESTROY(s->k.g, Z);
949 if (c) GC_DESTROY(c);
950 if (m) GM_DESTROY(m);
951 if (h) GH_DESTROY(h);
952 return (rc);
953 }
954
955 static const struct client_protocol prototab[] = {
956 { "v0", setup_v0, receive_v0, retransmit_v0 },
957 { 0 }
958 };
959
960 /* Initialize a query to a remote server. */
961 static struct query *qinit_net(const char *tag, const char *spec)
962 {
963 struct query *q;
964 struct server *s, **stail;
965 dstr d = DSTR_INIT, dd = DSTR_INIT;
966 const struct client_protocol *proto;
967 hex_ctx hc;
968 char *p, *pp, ch;
969
970 /* Allocate the query block. */
971 q = CREATE(struct query);
972 q->tag = tag;
973 stail = &q->s;
974
975 /* Put the spec somewhere we can hack at it. */
976 dstr_puts(&d, spec);
977 p = d.buf;
978
979 /* Parse the query spec. Entries have the form ADDRESS:PORT[=TAG][#HASH]
980 * and are separated by `;'.
981 */
982 while (*p) {
983
984 /* Allocate a new server node. */
985 s = CREATE(struct server);
986 s->sin.sin_family = AF_INET;
987
988 /* Extract the server address. */
989 if ((pp = strchr(p, ':')) == 0)
990 die(1, "invalid syntax: missing `:PORT'");
991 *pp++ = 0;
992 resolve(p, &s->sin.sin_addr);
993
994 /* Extract the port number. */
995 p = pp;
996 while (isdigit((unsigned char)*pp)) pp++;
997 ch = *pp; *pp++ = 0;
998 s->sin.sin_port = htons(getport(p));
999
1000 /* See if there's a protocol name. */
1001 if (ch != '?')
1002 p = "v0";
1003 else {
1004 p = pp;
1005 pp += strcspn(pp, ";#=");
1006 ch = *pp; *pp++ = 0;
1007 }
1008 for (proto = prototab; proto->name; proto++)
1009 if (strcmp(proto->name, p) == 0) goto found_proto;
1010 die(1, "unknown protocol name `%s'", p);
1011 found_proto:
1012 s->proto = proto;
1013
1014 /* If there's a key tag then extract that; otherwise use a default. */
1015 if (ch != '=')
1016 p = "udpkey-kem";
1017 else {
1018 p = pp;
1019 pp += strcspn(pp, ";#");
1020 ch = *pp; *pp++ = 0;
1021 }
1022 if (loadkey(p, &s->k, 1)) exit(1);
1023 D( debug_mp("x", s->k.x); debug_ge("X", s->k.g, s->k.X); )
1024
1025 /* Link the server on. */
1026 *stail = s; stail = &s->next;
1027
1028 /* If there's a trailing hash then extract it. */
1029 if (ch != '#')
1030 s->h = 0;
1031 else {
1032 p = pp;
1033 while (*pp == '-' || isxdigit((unsigned char)*pp)) pp++;
1034 hex_init(&hc);
1035 DRESET(&dd);
1036 hex_decode(&hc, p, pp - p, &dd);
1037 if (dd.len != s->k.hc->hashsz) die(1, "incorrect hash length");
1038 s->h = xmalloc(dd.len);
1039 memcpy(s->h, dd.buf, dd.len);
1040 ch = *pp++;
1041 }
1042
1043 /* Initialize the protocol. */
1044 if (s->proto->setup(q, s)) die(1, "failed to initialize protocol");
1045
1046 /* If there are more servers, then continue parsing. */
1047 if (!ch) break;
1048 else if (ch != ';') die(1, "invalid syntax: expected `;'");
1049 p = pp;
1050 }
1051
1052 /* Terminate the server list and return. */
1053 *stail = 0;
1054 q->k = 0;
1055 dstr_destroy(&d);
1056 dstr_destroy(&dd);
1057 return (q);
1058 }
1059
1060 /* Handle a `query' to a local file. */
1061 static struct query *qinit_file(const char *tag, const char *file)
1062 {
1063 struct query *q;
1064 void *k;
1065 size_t sz;
1066
1067 /* Snarf the file. */
1068 q = CREATE(struct query);
1069 if (snarf(file, &k, &sz))
1070 die(1, "failed to read `%s': %s", file, strerror(errno));
1071 q->s = 0;
1072 donequery(q, 0, k, sz);
1073 return (q);
1074 }
1075
1076 /* Retransmission and timeout parameters. */
1077 #define TO_NEXT(t) (((t) + 2)*4/3) /* Timeout growth function */
1078 #define TO_MAX 30 /* When to give up */
1079
1080 static int doquery(int argc, char *argv[])
1081 {
1082 struct query *q = 0, *qq, **qtail = &qq;
1083 struct server *s = 0;
1084 const char *tag = argv[0];
1085 octet *p;
1086 int i;
1087 int sk;
1088 fd_set fdin;
1089 struct timeval now, when, tv;
1090 struct sockaddr_in sin;
1091 socklen_t len;
1092 unsigned next = 0;
1093 buf bin, bout;
1094 size_t n, j;
1095 ssize_t nn;
1096
1097 /* Create a socket. We just use the one socket for everything. We don't
1098 * care which port we get allocated.
1099 */
1100 if ((sk = socket(PF_INET, SOCK_DGRAM, 0)) < 0 ||
1101 fdflags(sk, O_NONBLOCK, O_NONBLOCK, FD_CLOEXEC, FD_CLOEXEC))
1102 die(1, "failed to create socket: %s", strerror(errno));
1103
1104 /* Parse the query target specifications. The adjustments of `nq' aren't
1105 * in the right order but that doesn't matter.
1106 */
1107 for (i = 1; i < argc; i++) {
1108 if (*argv[i] == '.' || *argv[i] == '/') q = qinit_file(tag, argv[i]);
1109 else if (strchr(argv[i], ':')) q = qinit_net(tag, argv[i]);
1110 else die(1, "unrecognized query target `%s'", argv[i]);
1111 *qtail = q; qtail = &q->next; nq++;
1112 }
1113 *qtail = 0;
1114
1115 /* Find the current time so we can compute retransmission times properly.
1116 */
1117 gettimeofday(&now, 0);
1118 when = now;
1119
1120 /* Continue retransmitting until we have all the answers. */
1121 while (nq) {
1122
1123 /* Work out when we next want to wake up. */
1124 if (TV_CMP(&now, >=, &when)) {
1125 do {
1126 if (next >= TO_MAX) die(1, "no responses: giving up");
1127 next = TO_NEXT(next);
1128 TV_ADDL(&when, &when, next, 0);
1129 } while (TV_CMP(&when, <=, &now));
1130 for (q = qq; q; q = q->next) {
1131 if (q->k) continue;
1132 for (s = q->s; s; s = s->next) {
1133 buf_init(&bout, obuf, sizeof(obuf));
1134 if (s->proto->retransmit(q, s, &bout)) continue;
1135 if (BBAD(&bout)) {
1136 moan("overflow while constructing request!");
1137 continue;
1138 }
1139 sendto(sk, BBASE(&bout), BLEN(&bout), 0,
1140 (struct sockaddr *)&s->sin, sizeof(s->sin));
1141 }
1142 }
1143 }
1144
1145 /* Wait until something interesting happens. */
1146 FD_ZERO(&fdin);
1147 FD_SET(sk, &fdin);
1148 TV_SUB(&tv, &when, &now);
1149 if (select(sk + 1, &fdin, 0, 0, &tv) < 0)
1150 die(1, "select failed: %s", strerror(errno));
1151 gettimeofday(&now, 0);
1152
1153 /* If we have an input event, process incoming packets. */
1154 if (FD_ISSET(sk, &fdin)) {
1155 for (;;) {
1156
1157 /* Read a packet and capture its address. */
1158 len = sizeof(sin);
1159 nn = recvfrom(sk, ibuf, sizeof(ibuf), 0,
1160 (struct sockaddr *)&sin, &len);
1161 if (nn < 0) {
1162 if (errno == EAGAIN) break;
1163 else if (errno == EINTR) continue;
1164 else {
1165 moan("error receiving reply: %s", strerror(errno));
1166 continue;
1167 }
1168 }
1169
1170 /* See whether this corresponds to any of our servers. Don't just
1171 * check the active servers, since this may be late a reply caused by
1172 * retransmissions or similar.
1173 */
1174 for (q = qq; q; q = q->next) {
1175 for (s = q->s; s; s = s->next) {
1176 if (s->sin.sin_addr.s_addr == sin.sin_addr.s_addr &&
1177 s->sin.sin_port == sin.sin_port)
1178 goto found;
1179 }
1180 }
1181 moan("received reply from unexpected source %s:%d",
1182 inet_ntoa(sin.sin_addr), ntohs(sin.sin_port));
1183 continue;
1184
1185 found:
1186 /* If the query we found has now been satisfied, ignore this packet.
1187 */
1188 if (q->k) continue;
1189
1190 /* Parse the reply, and either finish the job or get a message to
1191 * send back to the server.
1192 */
1193 buf_init(&bin, ibuf, nn);
1194 buf_init(&bout, obuf, sizeof(obuf));
1195 if (s->proto->receive(q, s, &bin, &bout)) continue;
1196 if (q->k) continue;
1197 if (!BLEN(&bout) && s->proto->retransmit(q, s, &bout)) continue;
1198 if (BBAD(&bout)) {
1199 moan("overflow while constructing request!");
1200 continue;
1201 }
1202 sendto(sk, BBASE(&bout), BLEN(&bout), 0,
1203 (struct sockaddr *)&s->sin, sizeof(s->sin));
1204 }
1205 }
1206 }
1207
1208 /* Check that all of the responses match up and XOR them together. */
1209 n = qq->sz;
1210 if (n > BUFSZ) die(1, "response too large");
1211 memset(obuf, 0, n);
1212 for (q = qq; q; q = q->next) {
1213 if (!q->k) die(1, "INTERNAL: query not complete");
1214 if (q->sz != n) die(1, "inconsistent response sizes");
1215 for (j = 0; j < n; j++) obuf[j] ^= q->k[j];
1216 }
1217
1218 /* Write out the completed answer. */
1219 p = obuf;
1220 while (n) {
1221 if ((nn = write(STDOUT_FILENO, p, n)) < 0)
1222 die(1, "error writing response: %s", strerror(errno));
1223 p += nn; n -= nn;
1224 }
1225 return (0);
1226 }
1227
1228 /*----- Main program ------------------------------------------------------*/
1229
1230 static void usage(FILE *fp)
1231 {
1232 pquis(fp, "Usage: \n\
1233 $ [-OPTS] LABEL {ADDR:PORT[=TAG][#HASH];... | FILE} ...\n\
1234 $ [-OPTS] -l [ADDR:]PORT\n\
1235 ");
1236 }
1237
1238 static void version(FILE *fp)
1239 { pquis(fp, "$, version " VERSION "\n"); }
1240
1241 static void help(FILE *fp)
1242 {
1243 version(fp);
1244 putc('\n', fp);
1245 usage(fp);
1246 fputs("\n\
1247 Options:\n\
1248 \n\
1249 -d, --daemon Run in the background while listening.\n\
1250 -k, --keyring=FILE Read keys from FILE. [default = `keyring']\n\
1251 -l, --listen Listen for incoming requests and serve keys.\n\
1252 -p, --pidfile=FILE Write process id to FILE if in daemon mode.\n\
1253 -r, --random=FILE Key random number generator with contents of FILE.\n\
1254 ", fp);
1255 }
1256
1257 int main(int argc, char *argv[])
1258 {
1259 int argmin, argmax;
1260 void *k;
1261 size_t sz;
1262
1263 ego(argv[0]);
1264 for (;;) {
1265 static const struct option opts[] = {
1266 { "help", 0, 0, 'h' },
1267 { "version", 0, 0, 'v' },
1268 { "usage", 0, 0, 'u' },
1269 { "daemon", 0, 0, 'd' },
1270 { "keyfile", OPTF_ARGREQ, 0, 'k' },
1271 { "listen", 0, 0, 'l' },
1272 { "pidfile", OPTF_ARGREQ, 0, 'p' },
1273 { "random", OPTF_ARGREQ, 0, 'r' },
1274 { 0 }
1275 };
1276
1277 int i = mdwopt(argc, argv, "hvu" "dk:lp:r:", opts, 0, 0, 0);
1278 if (i < 0) break;
1279
1280 switch (i) {
1281 case 'h': help(stdout); exit(0);
1282 case 'v': version(stdout); exit(0);
1283 case 'u': usage(stdout); exit(0);
1284
1285 case 'd': flags |= f_daemon; break;
1286 case 'k': kfname = optarg; break;
1287 case 'l': flags |= f_listen; break;
1288 case 'p': pidfile = optarg; break;
1289 case 'r':
1290 if (snarf(optarg, &k, &sz))
1291 die(1, "failed to read `%s': %s", optarg, strerror(errno));
1292 rand_key(RAND_GLOBAL, k, sz);
1293 break;
1294
1295 default: flags |= f_bogus; break;
1296 }
1297 }
1298
1299 argv += optind; argc -= optind;
1300 if (flags & f_listen) argmin = argmax = 1;
1301 else argmin = 2, argmax = -1;
1302 if ((flags & f_bogus) || argc < argmin || (argmax >= 0 && argc > argmax))
1303 { usage(stderr); exit(1); }
1304
1305 fwatch_init(&kfwatch, kfname);
1306 kf = CREATE(key_file);
1307 if (key_open(kf, kfname, KOPEN_READ, keymoan, 0))
1308 die(1, "failed to open keyring file `%s'", kfname);
1309
1310 rand_noisesrc(RAND_GLOBAL, &noise_source);
1311 rand_seed(RAND_GLOBAL, 512);
1312
1313 if (flags & f_listen) return dolisten(argc, argv);
1314 else return doquery(argc, argv);
1315 }
1316
1317 /*----- That's all, folks -------------------------------------------------*/