2715c65d2a1dc0f7f48e592a6080d8bbc2bd33e8
[udpkey] / udpkey.c
1 /* -*-c-*-
2 *
3 * Request a key over UDP, or respond to such a request
4 *
5 * (c) 2012 Mark Wooding
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of udpkey.
11 *
12 * The udpkey program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * The udpkey program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with udpkey; if not, write to the Free Software Foundation,
24 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 */
26
27 /*----- Header files ------------------------------------------------------*/
28
29 #include <ctype.h>
30 #include <errno.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <time.h>
35
36 #include <sys/types.h>
37 #include <sys/time.h>
38 #include <unistd.h>
39 #include <fcntl.h>
40
41 #include <syslog.h>
42
43 #include <sys/socket.h>
44 #include <arpa/inet.h>
45 #include <netinet/in.h>
46 #include <netdb.h>
47
48 #include <mLib/alloc.h>
49 #include <mLib/buf.h>
50 #include <mLib/daemonize.h>
51 #include <mLib/dstr.h>
52 #include <mLib/fdflags.h>
53 #include <mLib/fwatch.h>
54 #include <mLib/hex.h>
55 #include <mLib/mdwopt.h>
56 #include <mLib/quis.h>
57 #include <mLib/report.h>
58 #include <mLib/sub.h>
59 #include <mLib/tv.h>
60
61 #include <catacomb/buf.h>
62 #include <catacomb/ct.h>
63 #include <catacomb/dh.h>
64 #include <catacomb/ec.h>
65 #include <catacomb/ec-keys.h>
66 #include <catacomb/gcipher.h>
67 #include <catacomb/gmac.h>
68 #include <catacomb/group.h>
69 #include <catacomb/key.h>
70 #include <catacomb/mp.h>
71 #include <catacomb/mprand.h>
72 #include <catacomb/noise.h>
73 #include <catacomb/rand.h>
74
75 #include <catacomb/rijndael-counter.h>
76 #include <catacomb/sha256.h>
77
78 #ifdef DEBUG
79 # define D(x) x
80 #else
81 # define D(x)
82 #endif
83
84 /*---- Static variables ---------------------------------------------------*/
85
86 static unsigned flags = 0;
87 #define f_bogus 1u
88 #define f_listen 2u
89 #define f_daemon 4u
90 #define f_syslog 8u
91
92 #define BUFSZ 65536
93 static unsigned char ibuf[BUFSZ], obuf[BUFSZ];
94
95 static key_file *kf;
96 static const char *kfname = "keyring";
97 static const char *pidfile;
98 static fwatch kfwatch;
99 static unsigned nq;
100
101 /*----- Miscellaneous utilities -------------------------------------------*/
102
103 /* Resolve NAME, storing the address in *ADDR. Exit on error. */
104 static void resolve(const char *name, struct in_addr *addr)
105 {
106 struct hostent *h;
107
108 if ((h = gethostbyname(name)) == 0)
109 die(1, "failed to resolve `%s': %s", name, hstrerror(h_errno));
110 if (h->h_addrtype != AF_INET)
111 die(1, "unexpected address type %d", h->h_addrtype);
112 memcpy(addr, h->h_addr, sizeof(struct in_addr));
113 }
114
115 /* Convert PORT to a port number (in host byte order). Exit on error. */
116 static unsigned short getport(const char *port)
117 {
118 unsigned long i = 0;
119 char *q;
120 int e = errno;
121
122 errno = 0;
123 if (!isdigit(*port) ||
124 (i = strtoul(port, &q, 0)) == 0 ||
125 i >= 65536 || *q || errno)
126 die(1, "invalid port number `%s'", port);
127 errno = e;
128 return ((unsigned short)i);
129 }
130
131 /* Read the file named by NAME into a buffer -- or at least an initial
132 * portion of it; set *P to the start and *SZ to the length. Return -1 if it
133 * didn't work. The buffer doesn't need to be freed: the data is stashed in
134 * ibuf.
135 */
136 static int snarf(const char *name, void **p, size_t *sz)
137 {
138 ssize_t n;
139 int fd;
140
141 if ((fd = open(name, O_RDONLY)) < 0) return (-1);
142 n = read(fd, ibuf, sizeof(ibuf));
143 close(fd);
144 if (n < 0) return (-1);
145 *p = ibuf; *sz = n;
146 return (0);
147 }
148
149 /* Complain about something. If f_syslog is set then complain to that;
150 * otherwise write to stderr. Don't use `%m' because that won't work when
151 * writing to stderr.
152 */
153 static void PRINTF_LIKE(2, 3) complain(int sev, const char *msg, ...)
154 {
155 va_list ap;
156
157 va_start(ap, msg);
158 if (flags & f_syslog)
159 vsyslog(sev, msg, ap);
160 else {
161 fprintf(stderr, "%s: ", QUIS);
162 vfprintf(stderr, msg, ap);
163 fputc('\n', stderr);
164 }
165 }
166
167 /*----- Reading key data --------------------------------------------------*/
168
169 struct kinfo {
170 group *g;
171 ge *X;
172 mp *x;
173 const gccipher *cc;
174 const gcmac *mc; size_t tagsz;
175 const gchash *hc;
176 };
177
178 /* Clear a kinfo structure so it can be freed without trouble. */
179 static void k_init(struct kinfo *k) { k->g = 0; k->x = 0; k->X = 0; }
180
181 /* Free a kinfo structure. This is safe on any initialized kinfo
182 * structure.
183 */
184 static void k_free(struct kinfo *k)
185 {
186 if (k->X) { G_DESTROY(k->g, k->X); k->X = 0; }
187 if (k->x) { MP_DROP(k->x); k->x = 0; }
188 if (k->g) { G_DESTROYGROUP(k->g); k->g = 0; }
189 }
190
191 /* Empty macro arguments are forbidden. But arguments are expended during
192 * replacement, not while the call is being processed, so this hack is OK.
193 * Unfortunately, if a potentially empty argument is passed on to another
194 * macro then it needs to be guarded with a use of EMPTY too...
195 */
196 #define EMPTY
197
198 /* Table of key types. Entries have the form
199 *
200 * _(name, NAME, SETGROUP, SETPRIV, SETPUB)
201 *
202 * The name and NAME are lower- and uppercase names for the type used for
203 * constructing various type name constant names. The code fragment SETGROUP
204 * initializes k->g given the name_{pub,priv} structure in p; SETPRIV and
205 * SETPUB set up k->x and k->X respectively. (In this last case, k->X will
206 * have been created as a group element already.)
207 */
208 #define KEYTYPES(_) \
209 \
210 _(dh, DH, \
211 { k->g = group_prime(&p.dp); }, \
212 { k->x = MP_COPY(p.x); }, \
213 { if (G_FROMINT(k->g, k->X, p.y)) { \
214 complain(LOG_ERR, "bad public key in `%s'", t->buf); \
215 goto fail; \
216 } \
217 }) \
218 \
219 _(ec, EC, \
220 { ec_info ei; const char *e; \
221 if ((e = ec_getinfo(&ei, p.cstr)) != 0) { \
222 complain(LOG_ERR, "bad elliptic curve in `%s': %s", t->buf, e); \
223 goto fail; \
224 } \
225 k->g = group_ec(&ei); \
226 }, \
227 { k->x = MP_COPY(p.x); }, \
228 { if (G_FROMEC(k->g, k->X, &p.p)) { \
229 complain(LOG_ERR, "bad public point in `%s'", t->buf); \
230 goto fail; \
231 } \
232 })
233
234 /* Define load_tywhich, where which is `pub' or `priv', to load a public or
235 * private key. Other parameters are as for the KEYTYPES list above.
236 */
237 #define KLOAD(ty, TY, which, WHICH, setgroup, setpriv, setpub) \
238 static int load_##ty##which(key_data *kd, struct kinfo *k, dstr *t) \
239 { \
240 key_packstruct kps[TY##_##WHICH##FETCHSZ]; \
241 key_packdef *kp; \
242 ty##_##which p; \
243 int rc; \
244 \
245 /* Extract the key data from the keydata. */ \
246 kp = key_fetchinit(ty##_##which##fetch, kps, &p); \
247 if ((rc = key_unpack(kp, kd, t)) != 0) { \
248 complain(LOG_ERR, "failed to unpack key `%s': %s", \
249 t->buf, key_strerror(rc)); \
250 goto fail; \
251 } \
252 \
253 /* Extract the components as abstract group elements. */ \
254 setgroup; \
255 setpriv; \
256 k->X = G_CREATE(k->g); \
257 setpub; \
258 \
259 /* Dispose of stuff we don't need. */ \
260 key_fetchdone(kp); \
261 return (0); \
262 \
263 /* Tidy up after mishaps. */ \
264 fail: \
265 k_free(k); \
266 key_fetchdone(kp); \
267 return (-1); \
268 }
269
270 /* Map over the KEYTYPES to declare the load_tywhich functions using KLOAD
271 * above.
272 */
273 #define KEYTYPE_KLOAD(ty, TY, setgroup, setpriv, setpub) \
274 KLOAD(ty, TY, priv, PRIV, setgroup, setpriv, \
275 { G_EXP(k->g, k->X, k->g->g, k->x); }) \
276 KLOAD(ty, TY, pub, PUB, setgroup, { }, setpub)
277 KEYTYPES(KEYTYPE_KLOAD)
278
279 /* Define a table of group key-loading operations. */
280 struct kload_ops {
281 const char *name;
282 int (*loadpriv)(key_data *, struct kinfo *, dstr *);
283 int (*loadpub)(key_data *, struct kinfo *, dstr *);
284 };
285
286 static const struct kload_ops kload_ops[] = {
287 #define KEYTYPE_OPS(ty, TY, setgroup, setpriv, setpub) \
288 { #ty, load_##ty##priv, load_##ty##pub },
289 KEYTYPES(KEYTYPE_OPS)
290 { 0 }
291 };
292
293 /* Load a private or public (indicated by PRIVP) key named TAG into a kinfo
294 * structure K. Also fill in the cipher suite selections extracted from the
295 * key attributes.
296 */
297 static int loadkey(const char *tag, struct kinfo *k, int privp)
298 {
299 const struct kload_ops *ops;
300 dstr d = DSTR_INIT, dd = DSTR_INIT;
301 key *ky;
302 key_data **kd;
303 const char *ty, *p;
304 char *q;
305 int tsz;
306 int rc;
307
308 /* Find the key data. */
309 if (key_qtag(kf, tag, &d, &ky, &kd)) {
310 complain(LOG_ERR, "unknown key tag `%s'", tag);
311 goto fail;
312 }
313
314 /* Find the key's group type and locate the group operations. */
315 ty = key_getattr(kf, ky, "group");
316 if (!ty && strncmp(ky->type, "udpkey-", 7) == 0) ty = ky->type + 7;
317 if (!ty) {
318 complain(LOG_ERR, "no group type for key %s", d.buf);
319 goto fail;
320 }
321 for (ops = kload_ops; ops->name; ops++) {
322 if (strcmp(ty, ops->name) == 0)
323 goto found;
324 }
325 complain(LOG_ERR, "unknown group type `%s' in key %s", ty, d.buf);
326 goto fail;
327
328 found:
329 /* Extract the key data into an appropriately abstract form. */
330 k->g = 0; k->x = 0; k->X = 0;
331 if ((rc = (privp ? ops->loadpriv : ops->loadpub)(*kd, k, &d)) != 0)
332 goto fail;
333
334 /* Extract the chosen symmetric cipher. */
335 if ((p = key_getattr(kf, ky, "cipher")) == 0)
336 k->cc = &rijndael_counter;
337 else if ((k->cc = gcipher_byname(p)) == 0) {
338 complain(LOG_ERR, "unknown cipher `%s' in key %s", p, d.buf);
339 goto fail;
340 }
341
342 /* And the chosen hash function. */
343 if ((p = key_getattr(kf, ky, "hash")) == 0)
344 k->hc = &sha256;
345 else if ((k->hc = ghash_byname(p)) == 0) {
346 complain(LOG_ERR, "unknown hash `%s' in key %s", p, d.buf);
347 goto fail;
348 }
349
350 /* And finally a MAC. This is more fiddly because we must handle (a)
351 * truncation and (b) defaulting based on the hash.
352 */
353 if ((p = key_getattr(kf, ky, "mac")) == 0)
354 dstr_putf(&dd, "%s-hmac", k->hc->name);
355 else
356 dstr_puts(&dd, p);
357 if ((q = strchr(dd.buf, '/')) != 0) *q++ = 0;
358 else q = 0;
359 if ((k->mc = gmac_byname(dd.buf)) == 0) {
360 complain(LOG_ERR, "unknown mac `%s' in key %s", dd.buf, d.buf);
361 goto fail;
362 }
363 if (!q)
364 k->tagsz = k->mc->hashsz/2;
365 else {
366 tsz = atoi(q);
367 if (tsz <= 0 || tsz%8 || tsz/8 > k->mc->hashsz) {
368 complain(LOG_ERR, "bad tag size `%s' for mac `%s' in key %s",
369 q, k->mc->name, d.buf);
370 goto fail;
371 }
372 k->tagsz = tsz/8;
373 }
374
375 /* Done. */
376 rc = 0;
377 goto done;
378
379 fail:
380 rc = -1;
381 done:
382 dstr_destroy(&d);
383 dstr_destroy(&dd);
384 return (rc);
385 }
386
387 static void keymoan(const char *file, int line, const char *err, void *p)
388 { complain(LOG_ERR, "%s:%d: %s", file, line, err); }
389
390 /* Update the keyring `kf' if the file has been changed since we last looked.
391 */
392 static void kfupdate(void)
393 {
394 key_file *kfnew;
395
396 if (!fwatch_update(&kfwatch, kfname)) return;
397 kfnew = CREATE(key_file);
398 if (key_open(kfnew, kfname, KOPEN_READ, keymoan, 0)) {
399 DESTROY(kfnew);
400 return;
401 }
402 key_close(kf);
403 DESTROY(kf);
404 kf = kfnew;
405 }
406
407 /*----- Low-level crypto operations ---------------------------------------*/
408
409 /* Derive a key, writing its address to *KK and size to *N. The size is
410 * compatible with the keysz rules KSZ. It is generated for the purpose of
411 * keying a WHAT (used for key separation and in error messages), and NAME is
412 * the name of the specific instance (e.g., `twofish-counter') from the class
413 * name. The kinfo structure K tells us which algorithms to use for the
414 * derivation. The group elements U and Z are the cryptographic inputs
415 * for the derivation.
416 *
417 * Basically all we do is compute H(what || U || Z).
418 */
419 static int derive(struct kinfo *k, ge *U, ge *Z,
420 const char *what, const char *name, const octet *ksz,
421 octet **kk, size_t *n)
422 {
423 buf b;
424 ghash *h;
425 octet *p;
426
427 /* Find a suitable key size. */
428 if ((*n = keysz(k->hc->hashsz, ksz)) == 0) {
429 complain(LOG_ERR,
430 "failed to find suitable key size for %s `%s' and hash `%s'",
431 what, name, k->hc->name);
432 return (-1);
433 }
434
435 /* Build the hash preimage. */
436 buf_init(&b, obuf, sizeof(obuf));
437 buf_put(&b, "udpkey-", 7);
438 buf_putstrz(&b, what);
439 G_TORAW(k->g, &b, U);
440 G_TORAW(k->g, &b, Z);
441 if (BBAD(&b)) {
442 complain(LOG_ERR, "overflow while deriving key (prepare preimage)!");
443 return (-1);
444 }
445
446 /* Derive the output key. */
447 h = GH_INIT(k->hc);
448 GH_HASH(h, BBASE(&b), BLEN(&b));
449 buf_init(&b, obuf, sizeof(obuf));
450 if ((p = buf_get(&b, h->ops->c->hashsz)) == 0) {
451 complain(LOG_ERR, "overflow while deriving key (output hash)!");
452 GH_DESTROY(h);
453 return (-1);
454 }
455 GH_DONE(h, p);
456 GH_DESTROY(h);
457 *kk = p;
458 return (0);
459 }
460
461 #ifdef DEBUG
462 static void debug_mp(const char *what, mp *x)
463 { fprintf(stderr, "%s: *** ", QUIS); MP_EPRINT(what, x); }
464 static void debug_ge(const char *what, group *g, ge *X)
465 {
466 fprintf(stderr, "%s: *** %s = ", QUIS, what);
467 group_writefile(g, X, stderr);
468 fputc('\n', stderr);
469 }
470 #endif
471
472 /*----- Protocol summary --------------------------------------------------*
473 *
474 * * Request
475 * memz KEYTAG tag of wanted secret
476 * ge U public vector
477 *
478 * * Response
479 * ge V public vector: V = v P
480 * ge W encrypted clue: W = R - Y = r P - v U
481 * mem[TAGSZ] TAG MAC tag on ciphertext
482 * mem[KSZ] CT secret, encrypted with Z = r X
483 */
484
485 /*----- Listening for requests --------------------------------------------*/
486
487 /* Rate limiting parameters.
488 *
489 * There's a probabilistic rate-limiting mechanism. A counter starts at 0.
490 * Every time we process a request, we increment the counter. The counter
491 * drops by RATE_REFILL every second. If the counter is below RATE_CREDIT
492 * then the request is processed; otherwise it is processed with probability
493 * 1/(counter - RATE_CREDIT).
494 */
495 #define RATE_REFILL 10 /* Credits per second. */
496 #define RATE_CREDIT 1000 /* Initial credit. */
497
498 static time_t now;
499
500 /* Secrets table.
501 *
502 * The server doesn't want to maintain state for each client. Instead, we
503 * generate a global secret, and derive per-client secrets from it. A secret
504 * needs to have an expiry time (at which point we won't use it for new
505 * requests) and a deletion time (at which point we just forget that it ever
506 * existed). This lets us roll over to a new secret without leaving existing
507 * clients completely in the lurch.
508 *
509 * Secrets are kept in a linked list, ordered by expiry time. At any given
510 * time there is at most one unexpired secret (because we only make a new one
511 * when the old one expires).
512 */
513
514 struct secret {
515 struct secret *next;
516 uint32 seq;
517 time_t t_exp, t_del;
518 octet x[32];
519 };
520 static struct secret *secrets = 0, *live_secret = 0;
521 static uint32 next_secret_seq = 0;
522 #define T_SECEXP 30
523 #define T_SECDEL 45
524
525 static void kill_dead_secrets(void)
526 {
527 struct secret *s = secrets, *ss;
528
529 for (s = secrets; s && s->t_del <= now; s = ss) {
530 ss = s->next;
531 DESTROY(s);
532 }
533 secrets = 0;
534 if (!s) live_secret = 0;
535 }
536
537 static struct secret *find_secret(uint32 seq)
538 {
539 struct secret *s;
540
541 kill_dead_secrets();
542 for (s = secrets; s; s = s->next)
543 if (s->seq == seq) return (s);
544 return (0);
545 }
546
547 static struct secret *fresh_secret(void)
548 {
549 struct secret *s;
550
551 if (live_secret && live_secret->t_exp > now) return (live_secret);
552 kill_dead_secrets();
553
554 s = CREATE(struct secret);
555 s->seq = next_secret_seq++;
556 s->next = 0;
557 rand_get(RAND_GLOBAL, s->x, sizeof(s->x));
558 s->t_exp = now + T_SECEXP; s->t_del = now + T_SECDEL;
559 if (live_secret) live_secret->next = s;
560 else secrets = s;
561 live_secret = s;
562 return (s);
563 }
564
565 static int fetch_key(const char *tag, struct sockaddr_in *sin,
566 key **ky, struct kinfo *k)
567 {
568 dstr d = DSTR_INIT, dd = DSTR_INIT;
569 key_data **kkd;
570 char *p, *q;
571 const char *pp;
572 struct in_addr in;
573 int ch, mlen, rc = -1;
574
575 /* Find the key. */
576 kfupdate();
577 if (key_qtag(kf, tag, &d, ky, &kkd)) {
578 complain(LOG_WARNING, "unknown key tag `%s' from %s:%d",
579 tag, inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
580 goto done;
581 }
582
583 /* And make sure that it has the right shape. */
584 if (((*ky)->k->e & KF_ENCMASK) != KENC_BINARY) {
585 complain(LOG_ERR, "key %s is not plain binary data", d.buf);
586 goto done;
587 }
588
589 /* Find the list of clients, and look up the caller's address in the
590 * list. Entries have the form ADDRESS[/LEN][=TAG] and are separated by
591 * `;'.
592 */
593 if ((pp = key_getattr(kf, *ky, "clients")) == 0) {
594 complain(LOG_WARNING,
595 "key %s requested from %s:%d has no `clients' attribute",
596 d.buf, inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
597 goto done;
598 }
599 dstr_puts(&dd, pp);
600 p = dd.buf;
601 while (*p) {
602 q = p;
603 while (isdigit((unsigned char)*q) || *q == '.') q++;
604 ch = *q; *q++ = 0;
605 if (!inet_aton(p, &in)) goto skip;
606 if (ch != '/')
607 mlen = 32;
608 else {
609 p = q;
610 while (isdigit((unsigned char)*q)) q++;
611 ch = *q; *q++ = 0;
612 mlen = atoi(p);
613 }
614 if (((sin->sin_addr.s_addr ^ in.s_addr) &
615 htonl(0xffffffff << (32 - mlen))) == 0)
616 goto match;
617 skip:
618 if (!ch) break;
619 p = q;
620 while (*p && *p != ';') p++;
621 if (*p) p++;
622 }
623 complain(LOG_WARNING, "access to key %s denied to %s:%d",
624 d.buf, inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
625 goto done;
626
627 match:
628 /* Build a tag name for the caller's KEM key, either from the client
629 * match or the source address.
630 */
631 if (ch != '=') {
632 DRESET(&dd);
633 dstr_puts(&dd, "client-");
634 dstr_puts(&dd, inet_ntoa(sin->sin_addr));
635 p = dd.buf;
636 } else {
637 p = q;
638 while (*q && *q != ';') q++;
639 if (*q == ';') *q++ = 0;
640 }
641
642 /* Report the match. */
643 complain(LOG_NOTICE, "client %s:%d (`%s') requests key %s",
644 inet_ntoa(sin->sin_addr), ntohs(sin->sin_port), p, d.buf);
645
646 /* Load the KEM key. */
647 if (loadkey(p, k, 0)) goto done;
648 D( debug_ge("X", k.g, k.X); )
649
650 /* All complete. */
651 rc = 0;
652
653 done:
654 /* Clean everything up. */
655 dstr_destroy(&d);
656 dstr_destroy(&dd);
657 if (rc) k_free(k);
658 return (rc);
659 }
660
661 static int respond_v0(buf *bin, buf *bout, struct sockaddr_in *sin)
662 {
663 ge *R = 0, *U = 0, *V = 0, *W = 0, *Y = 0, *Z = 0;
664 mp *r = MP_NEW, *v = MP_NEW;
665 octet *kk, *t, *tt;
666 char *p;
667 size_t sz;
668 ghash *h = 0;
669 gmac *m = 0;
670 gcipher *c = 0;
671 struct kinfo k;
672 key *ky;
673 size_t ksz;
674 int rc = -1;
675
676 /* Clear out the key state. */
677 k_init(&k);
678
679 /* Extract the key tag name. */
680 if ((p = buf_getmemz(bin, &sz)) == 0) {
681 complain(LOG_WARNING, "invalid key tag from %s:%d",
682 inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
683 goto done;
684 }
685
686 /* Find the client's key and check that it's allowed. */
687 if (fetch_key(p, sin, &ky, &k)) goto done;
688
689 /* Read the caller's ephemeral key. */
690 R = G_CREATE(k.g); W = G_CREATE(k.g);
691 U = G_CREATE(k.g); V = G_CREATE(k.g);
692 Y = G_CREATE(k.g); Z = G_CREATE(k.g);
693 if (G_FROMBUF(k.g, bin, U)) {
694 complain(LOG_WARNING, "failed to read ephemeral vector from %s:%d",
695 inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
696 goto done;
697 }
698 D( debug_ge("U", k.g, U); )
699 if (BLEFT(bin)) {
700 complain(LOG_WARNING, "trailing junk in request from %s:%d",
701 inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
702 goto done;
703 }
704
705 /* Ephemeral Diffie--Hellman. Choose v in GF(q) at random; compute
706 * V = v P and -Y = (-v) U.
707 */
708 v = mprand_range(v, k.g->r, &rand_global, 0);
709 G_EXP(k.g, V, k.g->g, v);
710 D( debug_mp("v", v); debug_ge("V", k.g, V); )
711 v = mp_sub(v, k.g->r, v);
712 G_EXP(k.g, Y, U, v);
713 D( debug_ge("-Y", k.g, Y); )
714
715 /* DLIES. Choose r in GF(q) at random; compute R = r P and Z = r X. Mask
716 * the clue R as W = R - Y. (Doing the subtraction here makes life easier
717 * at the other end, since we can determine -Y by negating v whereas the
718 * recipient must subtract vectors which may be less efficient.)
719 */
720 r = mprand_range(r, k.g->r, &rand_global, 0);
721 G_EXP(k.g, R, k.g->g, r);
722 D( debug_mp("r", r); debug_ge("R", k.g, R); )
723 G_EXP(k.g, Z, k.X, r);
724 G_MUL(k.g, W, R, Y);
725 D( debug_ge("Z", k.g, Z); debug_ge("W", k.g, W); )
726
727 /* Derive encryption and integrity keys. */
728 derive(&k, R, Z, "cipher", k.cc->name, k.cc->keysz, &kk, &ksz);
729 c = GC_INIT(k.cc, kk, ksz);
730 derive(&k, R, Z, "mac", k.mc->name, k.mc->keysz, &kk, &ksz);
731 m = GM_KEY(k.mc, kk, ksz);
732
733 /* Build the ciphertext and compute a MAC tag over it. */
734 rc = 0;
735 if (G_TOBUF(k.g, bout, V) ||
736 G_TOBUF(k.g, bout, W))
737 goto done;
738 if ((t = buf_get(bout, k.tagsz)) == 0) goto done;
739 sz = ky->k->u.k.sz;
740 if (BENSURE(bout, sz)) goto done;
741 GC_ENCRYPT(c, ky->k->u.k.k, BCUR(bout), sz);
742 h = GM_INIT(m);
743 GH_HASH(h, BCUR(bout), sz);
744 tt = GH_DONE(h, 0); memcpy(t, tt, k.tagsz);
745 BSTEP(bout, sz);
746
747 done:
748 /* Clear everything up and go home. */
749 if (R) G_DESTROY(k.g, R);
750 if (U) G_DESTROY(k.g, U);
751 if (V) G_DESTROY(k.g, V);
752 if (W) G_DESTROY(k.g, W);
753 if (Y) G_DESTROY(k.g, Y);
754 if (Z) G_DESTROY(k.g, Z);
755 if (c) GC_DESTROY(c);
756 if (m) GM_DESTROY(m);
757 if (h) GH_DESTROY(h);
758 if (r) MP_DROP(r);
759 if (v) MP_DROP(v);
760 k_free(&k);
761 return (rc);
762 }
763
764 static int dolisten(int argc, char *argv[])
765 {
766 int sk;
767 char *p;
768 char *aspec;
769 ssize_t n;
770 fd_set fdin;
771 struct sockaddr_in sin;
772 socklen_t len;
773 buf bin, bout;
774 FILE *fp = 0;
775 unsigned bucket = 0, toks;
776 time_t last = 0;
777
778 /* Set up the socket address. */
779 sin.sin_family = AF_INET;
780 aspec = xstrdup(argv[0]);
781 if ((p = strchr(aspec, ':')) == 0) {
782 p = aspec;
783 sin.sin_addr.s_addr = INADDR_ANY;
784 } else {
785 *p++ = 0;
786 resolve(aspec, &sin.sin_addr);
787 }
788 sin.sin_port = htons(getport(p));
789
790 /* Create and set up the socket itself. */
791 if ((sk = socket(PF_INET, SOCK_DGRAM, 0)) < 0 ||
792 fdflags(sk, O_NONBLOCK, O_NONBLOCK, FD_CLOEXEC, FD_CLOEXEC) ||
793 bind(sk, (struct sockaddr *)&sin, sizeof(sin)))
794 die(1, "failed to create socket: %s", strerror(errno));
795
796 /* That's enough initialization. If we should fork, then do that. */
797 if (flags & f_daemon) {
798 if (pidfile && (fp = fopen(pidfile, "w")) == 0)
799 die(1, "failed to open pidfile `%s': %s", pidfile, strerror(errno));
800 openlog(QUIS, LOG_PID, LOG_DAEMON);
801 if (daemonize())
802 die(1, "failed to become background process: %s", strerror(errno));
803 if (pidfile) { fprintf(fp, "%ld\n", (long)getpid()); fclose(fp); }
804 flags |= f_syslog;
805 }
806
807 for (;;) {
808
809 /* Wait for something to happen. */
810 FD_ZERO(&fdin);
811 FD_SET(sk, &fdin);
812 if (select(sk + 1, &fdin, 0, 0, 0) < 0)
813 die(1, "select failed: %s", strerror(errno));
814 noise_timer(RAND_GLOBAL);
815
816 /* Fetch a packet. */
817 len = sizeof(sin);
818 n = recvfrom(sk, ibuf, sizeof(ibuf), 0, (struct sockaddr *)&sin, &len);
819 if (n < 0) {
820 if (errno != EAGAIN && errno != EINTR)
821 complain(LOG_ERR, "unexpected receive error: %s", strerror(errno));
822 continue;
823 }
824
825 /* Refill the bucket, and see whether we should reject this packet. */
826 now = time(0);
827 if (bucket && now != last) {
828 toks = (now - last)*RATE_REFILL;
829 bucket = bucket < toks ? 0 : bucket - toks;
830 }
831 last = now;
832 if (bucket > RATE_CREDIT &&
833 grand_range(&rand_global, bucket - RATE_CREDIT))
834 continue;
835 bucket++;
836
837 /* Set up the input buffer for parsing the request. */
838 buf_init(&bin, ibuf, n);
839 buf_init(&bout, obuf, sizeof(obuf));
840
841 /* Handle the client's message. */
842 if (respond_v0(&bin, &bout, &sin)) continue;
843
844 /* Send the reply packet back to the caller. */
845 if (!BOK(&bout)) goto bad;
846 if (sendto(sk, BBASE(&bout), BLEN(&bout), 0,
847 (struct sockaddr *)&sin, len) < 0) {
848 complain(LOG_ERR, "failed to send response to %s:%d: %s",
849 inet_ntoa(sin.sin_addr), ntohs(sin.sin_port),
850 strerror(errno));
851 continue;
852 }
853
854 continue;
855
856 bad:
857 /* Report a problem building the reply. */
858 complain(LOG_ERR, "failed to construct response to %s:%d",
859 inet_ntoa(sin.sin_addr), ntohs(sin.sin_port));
860 }
861
862 return (-1);
863 }
864
865 /*----- Sending requests and processing responses -------------------------*/
866
867 struct query {
868 struct query *next;
869 const char *tag;
870 octet *k;
871 size_t sz;
872 struct server *s;
873 };
874
875 struct server {
876 struct server *next;
877 struct sockaddr_in sin;
878 struct kinfo k;
879 const struct client_protocol *proto;
880 mp *u;
881 ge *U;
882 octet *h;
883 };
884
885 struct client_protocol {
886 const char *name;
887 int (*setup)(struct query *, struct server *);
888 int (*receive)(struct query *, struct server *, buf *, buf *);
889 int (*retransmit)(struct query *, struct server *, buf *);
890 };
891
892 /* Record a successful fetch of key material for a query Q. The data starts
893 * at K and is SZ bytes long. The data is copied: it's safe to overwrite it.
894 */
895 static int donequery(struct query *q, struct server *s,
896 const void *k, size_t sz)
897 {
898 octet *tt;
899 ghash *h = 0;
900 int diffp;
901
902 /* If we have a hash, check that the fragment matches it. */
903 if (s && s->h) {
904 h = GH_INIT(s->k.hc);
905 GH_HASH(h, k, sz);
906 tt = GH_DONE(h, 0);
907 diffp = memcmp(tt, s->h, h->ops->c->hashsz);
908 GH_DESTROY(h);
909 if (diffp) {
910 moan("response from %s:%d doesn't match hash",
911 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
912 return (-1);
913 }
914 }
915
916 /* Stash a copy of the key fragment for later. */
917 q->k = xmalloc(sz);
918 memcpy(q->k, k, sz);
919 q->sz = sz; nq--;
920
921 /* All good. */
922 return (0);
923 }
924
925 static int setup_v0(struct query *q, struct server *s)
926 {
927 /* Choose an ephemeral private key u. Let x be our private key. We
928 * compute U = u P and transmit this.
929 */
930 s->u = mprand_range(MP_NEW, s->k.g->r, &rand_global, 0);
931 s->U = G_CREATE(s->k.g);
932 G_EXP(s->k.g, s->U, s->k.g->g, s->u);
933 D( debug_mp("u", s->u); debug_ge("U", s->k.g, s->U); )
934
935 return (0);
936 }
937
938 static int retransmit_v0(struct query *q, struct server *s, buf *bout)
939 {
940 buf_putstrz(bout, q->tag);
941 G_TOBUF(s->k.g, bout, s->U);
942 return (0);
943 }
944
945 static int receive_v0(struct query *q, struct server *s, buf *bin, buf *bout)
946 {
947 ge *R, *V = 0, *W = 0, *Y = 0, *Z = 0;
948 octet *kk, *t, *tt;
949 gcipher *c = 0;
950 gmac *m = 0;
951 ghash *h = 0;
952 size_t n, ksz;
953 octet *p;
954 int rc = -1;
955
956 R = G_CREATE(s->k.g);
957 V = G_CREATE(s->k.g); W = G_CREATE(s->k.g);
958 Y = G_CREATE(s->k.g); Z = G_CREATE(s->k.g);
959 if (G_FROMBUF(s->k.g, bin, V)) {
960 moan("invalid Diffie--Hellman vector from %s:%d",
961 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
962 goto done;
963 }
964 if (G_FROMBUF(s->k.g, bin, W)) {
965 moan("invalid clue vector from %s:%d",
966 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
967 goto done;
968 }
969 D( debug_ge("V", s->k.g, V); debug_ge("W", s->k.g, W); )
970
971 /* We have V and W from the server; determine Y = u V, R = W + Y and
972 * Z = x R, and then derive the symmetric keys.
973 */
974 G_EXP(s->k.g, Y, V, s->u);
975 G_MUL(s->k.g, R, W, Y);
976 G_EXP(s->k.g, Z, R, s->k.x);
977 D( debug_ge("R", s->k.g, R);
978 debug_ge("Y", s->k.g, Y);
979 debug_ge("Z", s->k.g, Z); )
980 derive(&s->k, R, Z, "cipher", s->k.cc->name, s->k.cc->keysz, &kk, &ksz);
981 c = GC_INIT(s->k.cc, kk, ksz);
982 derive(&s->k, R, Z, "mac", s->k.cc->name, s->k.cc->keysz, &kk, &ksz);
983 m = GM_KEY(s->k.mc, kk, ksz);
984
985 /* Find where the MAC tag is. */
986 if ((t = buf_get(bin, s->k.tagsz)) == 0) {
987 moan("missing tag from %s:%d",
988 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
989 goto done;
990 }
991
992 /* Check the integrity of the ciphertext against the tag. */
993 p = BCUR(bin); n = BLEFT(bin);
994 h = GM_INIT(m);
995 GH_HASH(h, p, n);
996 tt = GH_DONE(h, 0);
997 if (!ct_memeq(t, tt, s->k.tagsz)) {
998 moan("incorrect tag from %s:%d",
999 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
1000 goto done;
1001 }
1002
1003 /* Decrypt the result and declare this server done. */
1004 GC_DECRYPT(c, p, p, n);
1005 rc = donequery(q, s, p, n);
1006
1007 done:
1008 /* Clear up and go home. */
1009 if (R) G_DESTROY(s->k.g, R);
1010 if (V) G_DESTROY(s->k.g, V);
1011 if (W) G_DESTROY(s->k.g, W);
1012 if (Y) G_DESTROY(s->k.g, Y);
1013 if (Z) G_DESTROY(s->k.g, Z);
1014 if (c) GC_DESTROY(c);
1015 if (m) GM_DESTROY(m);
1016 if (h) GH_DESTROY(h);
1017 return (rc);
1018 }
1019
1020 static const struct client_protocol prototab[] = {
1021 { "v0", setup_v0, receive_v0, retransmit_v0 },
1022 { 0 }
1023 };
1024
1025 /* Initialize a query to a remote server. */
1026 static struct query *qinit_net(const char *tag, const char *spec)
1027 {
1028 struct query *q;
1029 struct server *s, **stail;
1030 dstr d = DSTR_INIT, dd = DSTR_INIT;
1031 const struct client_protocol *proto;
1032 hex_ctx hc;
1033 char *p, *pp, ch;
1034
1035 /* Allocate the query block. */
1036 q = CREATE(struct query);
1037 q->tag = tag;
1038 stail = &q->s;
1039
1040 /* Put the spec somewhere we can hack at it. */
1041 dstr_puts(&d, spec);
1042 p = d.buf;
1043
1044 /* Parse the query spec. Entries have the form ADDRESS:PORT[=TAG][#HASH]
1045 * and are separated by `;'.
1046 */
1047 while (*p) {
1048
1049 /* Allocate a new server node. */
1050 s = CREATE(struct server);
1051 s->sin.sin_family = AF_INET;
1052
1053 /* Extract the server address. */
1054 if ((pp = strchr(p, ':')) == 0)
1055 die(1, "invalid syntax: missing `:PORT'");
1056 *pp++ = 0;
1057 resolve(p, &s->sin.sin_addr);
1058
1059 /* Extract the port number. */
1060 p = pp;
1061 while (isdigit((unsigned char)*pp)) pp++;
1062 ch = *pp; *pp++ = 0;
1063 s->sin.sin_port = htons(getport(p));
1064
1065 /* See if there's a protocol name. */
1066 if (ch != '?')
1067 p = "v0";
1068 else {
1069 p = pp;
1070 pp += strcspn(pp, ";#=");
1071 ch = *pp; *pp++ = 0;
1072 }
1073 for (proto = prototab; proto->name; proto++)
1074 if (strcmp(proto->name, p) == 0) goto found_proto;
1075 die(1, "unknown protocol name `%s'", p);
1076 found_proto:
1077 s->proto = proto;
1078
1079 /* If there's a key tag then extract that; otherwise use a default. */
1080 if (ch != '=')
1081 p = "udpkey-kem";
1082 else {
1083 p = pp;
1084 pp += strcspn(pp, ";#");
1085 ch = *pp; *pp++ = 0;
1086 }
1087 if (loadkey(p, &s->k, 1)) exit(1);
1088 D( debug_mp("x", s->k.x); debug_ge("X", s->k.g, s->k.X); )
1089
1090 /* Link the server on. */
1091 *stail = s; stail = &s->next;
1092
1093 /* If there's a trailing hash then extract it. */
1094 if (ch != '#')
1095 s->h = 0;
1096 else {
1097 p = pp;
1098 while (*pp == '-' || isxdigit((unsigned char)*pp)) pp++;
1099 hex_init(&hc);
1100 DRESET(&dd);
1101 hex_decode(&hc, p, pp - p, &dd);
1102 if (dd.len != s->k.hc->hashsz) die(1, "incorrect hash length");
1103 s->h = xmalloc(dd.len);
1104 memcpy(s->h, dd.buf, dd.len);
1105 ch = *pp++;
1106 }
1107
1108 /* Initialize the protocol. */
1109 if (s->proto->setup(q, s)) die(1, "failed to initialize protocol");
1110
1111 /* If there are more servers, then continue parsing. */
1112 if (!ch) break;
1113 else if (ch != ';') die(1, "invalid syntax: expected `;'");
1114 p = pp;
1115 }
1116
1117 /* Terminate the server list and return. */
1118 *stail = 0;
1119 q->k = 0;
1120 dstr_destroy(&d);
1121 dstr_destroy(&dd);
1122 return (q);
1123 }
1124
1125 /* Handle a `query' to a local file. */
1126 static struct query *qinit_file(const char *tag, const char *file)
1127 {
1128 struct query *q;
1129 void *k;
1130 size_t sz;
1131
1132 /* Snarf the file. */
1133 q = CREATE(struct query);
1134 if (snarf(file, &k, &sz))
1135 die(1, "failed to read `%s': %s", file, strerror(errno));
1136 q->s = 0;
1137 donequery(q, 0, k, sz);
1138 return (q);
1139 }
1140
1141 /* Retransmission and timeout parameters. */
1142 #define TO_NEXT(t) (((t) + 2)*4/3) /* Timeout growth function */
1143 #define TO_MAX 30 /* When to give up */
1144
1145 static int doquery(int argc, char *argv[])
1146 {
1147 struct query *q = 0, *qq, **qtail = &qq;
1148 struct server *s = 0;
1149 const char *tag = argv[0];
1150 octet *p;
1151 int i;
1152 int sk;
1153 fd_set fdin;
1154 struct timeval now, when, tv;
1155 struct sockaddr_in sin;
1156 socklen_t len;
1157 unsigned next = 0;
1158 buf bin, bout;
1159 size_t n, j;
1160 ssize_t nn;
1161
1162 /* Create a socket. We just use the one socket for everything. We don't
1163 * care which port we get allocated.
1164 */
1165 if ((sk = socket(PF_INET, SOCK_DGRAM, 0)) < 0 ||
1166 fdflags(sk, O_NONBLOCK, O_NONBLOCK, FD_CLOEXEC, FD_CLOEXEC))
1167 die(1, "failed to create socket: %s", strerror(errno));
1168
1169 /* Parse the query target specifications. The adjustments of `nq' aren't
1170 * in the right order but that doesn't matter.
1171 */
1172 for (i = 1; i < argc; i++) {
1173 if (*argv[i] == '.' || *argv[i] == '/') q = qinit_file(tag, argv[i]);
1174 else if (strchr(argv[i], ':')) q = qinit_net(tag, argv[i]);
1175 else die(1, "unrecognized query target `%s'", argv[i]);
1176 *qtail = q; qtail = &q->next; nq++;
1177 }
1178 *qtail = 0;
1179
1180 /* Find the current time so we can compute retransmission times properly.
1181 */
1182 gettimeofday(&now, 0);
1183 when = now;
1184
1185 /* Continue retransmitting until we have all the answers. */
1186 while (nq) {
1187
1188 /* Work out when we next want to wake up. */
1189 if (TV_CMP(&now, >=, &when)) {
1190 do {
1191 if (next >= TO_MAX) die(1, "no responses: giving up");
1192 next = TO_NEXT(next);
1193 TV_ADDL(&when, &when, next, 0);
1194 } while (TV_CMP(&when, <=, &now));
1195 for (q = qq; q; q = q->next) {
1196 if (q->k) continue;
1197 for (s = q->s; s; s = s->next) {
1198 buf_init(&bout, obuf, sizeof(obuf));
1199 if (s->proto->retransmit(q, s, &bout)) continue;
1200 if (BBAD(&bout)) {
1201 moan("overflow while constructing request!");
1202 continue;
1203 }
1204 sendto(sk, BBASE(&bout), BLEN(&bout), 0,
1205 (struct sockaddr *)&s->sin, sizeof(s->sin));
1206 }
1207 }
1208 }
1209
1210 /* Wait until something interesting happens. */
1211 FD_ZERO(&fdin);
1212 FD_SET(sk, &fdin);
1213 TV_SUB(&tv, &when, &now);
1214 if (select(sk + 1, &fdin, 0, 0, &tv) < 0)
1215 die(1, "select failed: %s", strerror(errno));
1216 gettimeofday(&now, 0);
1217
1218 /* If we have an input event, process incoming packets. */
1219 if (FD_ISSET(sk, &fdin)) {
1220 for (;;) {
1221
1222 /* Read a packet and capture its address. */
1223 len = sizeof(sin);
1224 nn = recvfrom(sk, ibuf, sizeof(ibuf), 0,
1225 (struct sockaddr *)&sin, &len);
1226 if (nn < 0) {
1227 if (errno == EAGAIN) break;
1228 else if (errno == EINTR) continue;
1229 else {
1230 moan("error receiving reply: %s", strerror(errno));
1231 continue;
1232 }
1233 }
1234
1235 /* See whether this corresponds to any of our servers. Don't just
1236 * check the active servers, since this may be late a reply caused by
1237 * retransmissions or similar.
1238 */
1239 for (q = qq; q; q = q->next) {
1240 for (s = q->s; s; s = s->next) {
1241 if (s->sin.sin_addr.s_addr == sin.sin_addr.s_addr &&
1242 s->sin.sin_port == sin.sin_port)
1243 goto found;
1244 }
1245 }
1246 moan("received reply from unexpected source %s:%d",
1247 inet_ntoa(sin.sin_addr), ntohs(sin.sin_port));
1248 continue;
1249
1250 found:
1251 /* If the query we found has now been satisfied, ignore this packet.
1252 */
1253 if (q->k) continue;
1254
1255 /* Parse the reply, and either finish the job or get a message to
1256 * send back to the server.
1257 */
1258 buf_init(&bin, ibuf, nn);
1259 buf_init(&bout, obuf, sizeof(obuf));
1260 if (s->proto->receive(q, s, &bin, &bout)) continue;
1261 if (q->k) continue;
1262 if (!BLEN(&bout) && s->proto->retransmit(q, s, &bout)) continue;
1263 if (BBAD(&bout)) {
1264 moan("overflow while constructing request!");
1265 continue;
1266 }
1267 sendto(sk, BBASE(&bout), BLEN(&bout), 0,
1268 (struct sockaddr *)&s->sin, sizeof(s->sin));
1269 }
1270 }
1271 }
1272
1273 /* Check that all of the responses match up and XOR them together. */
1274 n = qq->sz;
1275 if (n > BUFSZ) die(1, "response too large");
1276 memset(obuf, 0, n);
1277 for (q = qq; q; q = q->next) {
1278 if (!q->k) die(1, "INTERNAL: query not complete");
1279 if (q->sz != n) die(1, "inconsistent response sizes");
1280 for (j = 0; j < n; j++) obuf[j] ^= q->k[j];
1281 }
1282
1283 /* Write out the completed answer. */
1284 p = obuf;
1285 while (n) {
1286 if ((nn = write(STDOUT_FILENO, p, n)) < 0)
1287 die(1, "error writing response: %s", strerror(errno));
1288 p += nn; n -= nn;
1289 }
1290 return (0);
1291 }
1292
1293 /*----- Main program ------------------------------------------------------*/
1294
1295 static void usage(FILE *fp)
1296 {
1297 pquis(fp, "Usage: \n\
1298 $ [-OPTS] LABEL {ADDR:PORT[=TAG][#HASH];... | FILE} ...\n\
1299 $ [-OPTS] -l [ADDR:]PORT\n\
1300 ");
1301 }
1302
1303 static void version(FILE *fp)
1304 { pquis(fp, "$, version " VERSION "\n"); }
1305
1306 static void help(FILE *fp)
1307 {
1308 version(fp);
1309 putc('\n', fp);
1310 usage(fp);
1311 fputs("\n\
1312 Options:\n\
1313 \n\
1314 -d, --daemon Run in the background while listening.\n\
1315 -k, --keyring=FILE Read keys from FILE. [default = `keyring']\n\
1316 -l, --listen Listen for incoming requests and serve keys.\n\
1317 -p, --pidfile=FILE Write process id to FILE if in daemon mode.\n\
1318 -r, --random=FILE Key random number generator with contents of FILE.\n\
1319 ", fp);
1320 }
1321
1322 int main(int argc, char *argv[])
1323 {
1324 int argmin, argmax;
1325 void *k;
1326 size_t sz;
1327
1328 ego(argv[0]);
1329 for (;;) {
1330 static const struct option opts[] = {
1331 { "help", 0, 0, 'h' },
1332 { "version", 0, 0, 'v' },
1333 { "usage", 0, 0, 'u' },
1334 { "daemon", 0, 0, 'd' },
1335 { "keyfile", OPTF_ARGREQ, 0, 'k' },
1336 { "listen", 0, 0, 'l' },
1337 { "pidfile", OPTF_ARGREQ, 0, 'p' },
1338 { "random", OPTF_ARGREQ, 0, 'r' },
1339 { 0 }
1340 };
1341
1342 int i = mdwopt(argc, argv, "hvu" "dk:lp:r:", opts, 0, 0, 0);
1343 if (i < 0) break;
1344
1345 switch (i) {
1346 case 'h': help(stdout); exit(0);
1347 case 'v': version(stdout); exit(0);
1348 case 'u': usage(stdout); exit(0);
1349
1350 case 'd': flags |= f_daemon; break;
1351 case 'k': kfname = optarg; break;
1352 case 'l': flags |= f_listen; break;
1353 case 'p': pidfile = optarg; break;
1354 case 'r':
1355 if (snarf(optarg, &k, &sz))
1356 die(1, "failed to read `%s': %s", optarg, strerror(errno));
1357 rand_key(RAND_GLOBAL, k, sz);
1358 break;
1359
1360 default: flags |= f_bogus; break;
1361 }
1362 }
1363
1364 argv += optind; argc -= optind;
1365 if (flags & f_listen) argmin = argmax = 1;
1366 else argmin = 2, argmax = -1;
1367 if ((flags & f_bogus) || argc < argmin || (argmax >= 0 && argc > argmax))
1368 { usage(stderr); exit(1); }
1369
1370 fwatch_init(&kfwatch, kfname);
1371 kf = CREATE(key_file);
1372 if (key_open(kf, kfname, KOPEN_READ, keymoan, 0))
1373 die(1, "failed to open keyring file `%s'", kfname);
1374
1375 rand_noisesrc(RAND_GLOBAL, &noise_source);
1376 rand_seed(RAND_GLOBAL, 512);
1377
1378 if (flags & f_listen) return dolisten(argc, argv);
1379 else return doquery(argc, argv);
1380 }
1381
1382 /*----- That's all, folks -------------------------------------------------*/