udpkey.c: Fix some misformatting from the refactoring.
[udpkey] / udpkey.c
1 /* -*-c-*-
2 *
3 * Request a key over UDP, or respond to such a request
4 *
5 * (c) 2012 Mark Wooding
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of udpkey.
11 *
12 * The udpkey program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * The udpkey program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with udpkey; if not, write to the Free Software Foundation,
24 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 */
26
27 /*----- Header files ------------------------------------------------------*/
28
29 #include <ctype.h>
30 #include <errno.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <time.h>
35
36 #include <sys/types.h>
37 #include <sys/time.h>
38 #include <unistd.h>
39 #include <fcntl.h>
40
41 #include <syslog.h>
42
43 #include <sys/socket.h>
44 #include <arpa/inet.h>
45 #include <netinet/in.h>
46 #include <netdb.h>
47
48 #include <mLib/alloc.h>
49 #include <mLib/buf.h>
50 #include <mLib/daemonize.h>
51 #include <mLib/dstr.h>
52 #include <mLib/fdflags.h>
53 #include <mLib/fwatch.h>
54 #include <mLib/hex.h>
55 #include <mLib/mdwopt.h>
56 #include <mLib/quis.h>
57 #include <mLib/report.h>
58 #include <mLib/sub.h>
59 #include <mLib/tv.h>
60
61 #include <catacomb/buf.h>
62 #include <catacomb/ct.h>
63 #include <catacomb/dh.h>
64 #include <catacomb/ec.h>
65 #include <catacomb/ec-keys.h>
66 #include <catacomb/gcipher.h>
67 #include <catacomb/gmac.h>
68 #include <catacomb/group.h>
69 #include <catacomb/key.h>
70 #include <catacomb/mp.h>
71 #include <catacomb/mprand.h>
72 #include <catacomb/noise.h>
73 #include <catacomb/rand.h>
74
75 #include <catacomb/rijndael-counter.h>
76 #include <catacomb/sha256.h>
77
78 #ifdef DEBUG
79 # define D(x) x
80 #else
81 # define D(x)
82 #endif
83
84 /*---- Static variables ---------------------------------------------------*/
85
86 static unsigned flags = 0;
87 #define f_bogus 1u
88 #define f_listen 2u
89 #define f_daemon 4u
90 #define f_syslog 8u
91
92 #define BUFSZ 65536
93 static unsigned char ibuf[BUFSZ], obuf[BUFSZ];
94
95 static key_file *kf;
96 static const char *kfname = "keyring";
97 static const char *pidfile;
98 static fwatch kfwatch;
99 static unsigned nq;
100
101 /*----- Miscellaneous utilities -------------------------------------------*/
102
103 /* Resolve NAME, storing the address in *ADDR. Exit on error. */
104 static void resolve(const char *name, struct in_addr *addr)
105 {
106 struct hostent *h;
107
108 if ((h = gethostbyname(name)) == 0)
109 die(1, "failed to resolve `%s': %s", name, hstrerror(h_errno));
110 if (h->h_addrtype != AF_INET)
111 die(1, "unexpected address type %d", h->h_addrtype);
112 memcpy(addr, h->h_addr, sizeof(struct in_addr));
113 }
114
115 /* Convert PORT to a port number (in host byte order). Exit on error. */
116 static unsigned short getport(const char *port)
117 {
118 unsigned long i = 0;
119 char *q;
120 int e = errno;
121
122 errno = 0;
123 if (!isdigit(*port) ||
124 (i = strtoul(port, &q, 0)) == 0 ||
125 i >= 65536 || *q || errno)
126 die(1, "invalid port number `%s'", port);
127 errno = e;
128 return ((unsigned short)i);
129 }
130
131 /* Read the file named by NAME into a buffer -- or at least an initial
132 * portion of it; set *P to the start and *SZ to the length. Return -1 if it
133 * didn't work. The buffer doesn't need to be freed: the data is stashed in
134 * ibuf.
135 */
136 static int snarf(const char *name, void **p, size_t *sz)
137 {
138 ssize_t n;
139 int fd;
140
141 if ((fd = open(name, O_RDONLY)) < 0) return (-1);
142 n = read(fd, ibuf, sizeof(ibuf));
143 close(fd);
144 if (n < 0) return (-1);
145 *p = ibuf; *sz = n;
146 return (0);
147 }
148
149 /* Complain about something. If f_syslog is set then complain to that;
150 * otherwise write to stderr. Don't use `%m' because that won't work when
151 * writing to stderr.
152 */
153 static void PRINTF_LIKE(2, 3) complain(int sev, const char *msg, ...)
154 {
155 va_list ap;
156
157 va_start(ap, msg);
158 if (flags & f_syslog)
159 vsyslog(sev, msg, ap);
160 else {
161 fprintf(stderr, "%s: ", QUIS);
162 vfprintf(stderr, msg, ap);
163 fputc('\n', stderr);
164 }
165 }
166
167 /*----- Reading key data --------------------------------------------------*/
168
169 struct kinfo {
170 group *g;
171 ge *X;
172 mp *x;
173 const gccipher *cc;
174 const gcmac *mc; size_t tagsz;
175 const gchash *hc;
176 };
177
178 /* Clear a kinfo structure so it can be freed without trouble. */
179 static void k_init(struct kinfo *k) { k->g = 0; k->x = 0; k->X = 0; }
180
181 /* Free a kinfo structure. This is safe on any initialized kinfo
182 * structure.
183 */
184 static void k_free(struct kinfo *k)
185 {
186 if (k->X) { G_DESTROY(k->g, k->X); k->X = 0; }
187 if (k->x) { MP_DROP(k->x); k->x = 0; }
188 if (k->g) { G_DESTROYGROUP(k->g); k->g = 0; }
189 }
190
191 /* Empty macro arguments are forbidden. But arguments are expended during
192 * replacement, not while the call is being processed, so this hack is OK.
193 * Unfortunately, if a potentially empty argument is passed on to another
194 * macro then it needs to be guarded with a use of EMPTY too...
195 */
196 #define EMPTY
197
198 /* Table of key types. Entries have the form
199 *
200 * _(name, NAME, SETGROUP, SETPRIV, SETPUB)
201 *
202 * The name and NAME are lower- and uppercase names for the type used for
203 * constructing various type name constant names. The code fragment SETGROUP
204 * initializes k->g given the name_{pub,priv} structure in p; SETPRIV and
205 * SETPUB set up k->x and k->X respectively. (In this last case, k->X will
206 * have been created as a group element already.)
207 */
208 #define KEYTYPES(_) \
209 \
210 _(dh, DH, \
211 { k->g = group_prime(&p.dp); }, \
212 { k->x = MP_COPY(p.x); }, \
213 { if (G_FROMINT(k->g, k->X, p.y)) { \
214 complain(LOG_ERR, "bad public key in `%s'", t->buf); \
215 goto fail; \
216 } \
217 }) \
218 \
219 _(ec, EC, \
220 { ec_info ei; const char *e; \
221 if ((e = ec_getinfo(&ei, p.cstr)) != 0) { \
222 complain(LOG_ERR, "bad elliptic curve in `%s': %s", t->buf, e); \
223 goto fail; \
224 } \
225 k->g = group_ec(&ei); \
226 }, \
227 { k->x = MP_COPY(p.x); }, \
228 { if (G_FROMEC(k->g, k->X, &p.p)) { \
229 complain(LOG_ERR, "bad public point in `%s'", t->buf); \
230 goto fail; \
231 } \
232 })
233
234 /* Define load_tywhich, where which is `pub' or `priv', to load a public or
235 * private key. Other parameters are as for the KEYTYPES list above.
236 */
237 #define KLOAD(ty, TY, which, WHICH, setgroup, setpriv, setpub) \
238 static int load_##ty##which(key_data *kd, struct kinfo *k, dstr *t) \
239 { \
240 key_packstruct kps[TY##_##WHICH##FETCHSZ]; \
241 key_packdef *kp; \
242 ty##_##which p; \
243 int rc; \
244 \
245 /* Extract the key data from the keydata. */ \
246 kp = key_fetchinit(ty##_##which##fetch, kps, &p); \
247 if ((rc = key_unpack(kp, kd, t)) != 0) { \
248 complain(LOG_ERR, "failed to unpack key `%s': %s", \
249 t->buf, key_strerror(rc)); \
250 goto fail; \
251 } \
252 \
253 /* Extract the components as abstract group elements. */ \
254 setgroup; \
255 setpriv; \
256 k->X = G_CREATE(k->g); \
257 setpub; \
258 \
259 /* Dispose of stuff we don't need. */ \
260 key_fetchdone(kp); \
261 return (0); \
262 \
263 /* Tidy up after mishaps. */ \
264 fail: \
265 k_free(k); \
266 key_fetchdone(kp); \
267 return (-1); \
268 }
269
270 /* Map over the KEYTYPES to declare the load_tywhich functions using KLOAD
271 * above.
272 */
273 #define KEYTYPE_KLOAD(ty, TY, setgroup, setpriv, setpub) \
274 KLOAD(ty, TY, priv, PRIV, setgroup, setpriv, \
275 { G_EXP(k->g, k->X, k->g->g, k->x); }) \
276 KLOAD(ty, TY, pub, PUB, setgroup, { }, setpub)
277 KEYTYPES(KEYTYPE_KLOAD)
278
279 /* Define a table of group key-loading operations. */
280 struct kload_ops {
281 const char *name;
282 int (*loadpriv)(key_data *, struct kinfo *, dstr *);
283 int (*loadpub)(key_data *, struct kinfo *, dstr *);
284 };
285
286 static const struct kload_ops kload_ops[] = {
287 #define KEYTYPE_OPS(ty, TY, setgroup, setpriv, setpub) \
288 { #ty, load_##ty##priv, load_##ty##pub },
289 KEYTYPES(KEYTYPE_OPS)
290 { 0 }
291 };
292
293 /* Load a private or public (indicated by PRIVP) key named TAG into a kinfo
294 * structure K. Also fill in the cipher suite selections extracted from the
295 * key attributes.
296 */
297 static int loadkey(const char *tag, struct kinfo *k, int privp)
298 {
299 const struct kload_ops *ops;
300 dstr d = DSTR_INIT, dd = DSTR_INIT;
301 key *ky;
302 key_data **kd;
303 const char *ty, *p;
304 char *q;
305 int tsz;
306 int rc;
307
308 /* Find the key data. */
309 if (key_qtag(kf, tag, &d, &ky, &kd)) {
310 complain(LOG_ERR, "unknown key tag `%s'", tag);
311 goto fail;
312 }
313
314 /* Find the key's group type and locate the group operations. */
315 ty = key_getattr(kf, ky, "group");
316 if (!ty && strncmp(ky->type, "udpkey-", 7) == 0) ty = ky->type + 7;
317 if (!ty) {
318 complain(LOG_ERR, "no group type for key %s", d.buf);
319 goto fail;
320 }
321 for (ops = kload_ops; ops->name; ops++) {
322 if (strcmp(ty, ops->name) == 0)
323 goto found;
324 }
325 complain(LOG_ERR, "unknown group type `%s' in key %s", ty, d.buf);
326 goto fail;
327
328 found:
329 /* Extract the key data into an appropriately abstract form. */
330 k->g = 0; k->x = 0; k->X = 0;
331 if ((rc = (privp ? ops->loadpriv : ops->loadpub)(*kd, k, &d)) != 0)
332 goto fail;
333
334 /* Extract the chosen symmetric cipher. */
335 if ((p = key_getattr(kf, ky, "cipher")) == 0)
336 k->cc = &rijndael_counter;
337 else if ((k->cc = gcipher_byname(p)) == 0) {
338 complain(LOG_ERR, "unknown cipher `%s' in key %s", p, d.buf);
339 goto fail;
340 }
341
342 /* And the chosen hash function. */
343 if ((p = key_getattr(kf, ky, "hash")) == 0)
344 k->hc = &sha256;
345 else if ((k->hc = ghash_byname(p)) == 0) {
346 complain(LOG_ERR, "unknown hash `%s' in key %s", p, d.buf);
347 goto fail;
348 }
349
350 /* And finally a MAC. This is more fiddly because we must handle (a)
351 * truncation and (b) defaulting based on the hash.
352 */
353 if ((p = key_getattr(kf, ky, "mac")) == 0)
354 dstr_putf(&dd, "%s-hmac", k->hc->name);
355 else
356 dstr_puts(&dd, p);
357 if ((q = strchr(dd.buf, '/')) != 0) *q++ = 0;
358 else q = 0;
359 if ((k->mc = gmac_byname(dd.buf)) == 0) {
360 complain(LOG_ERR, "unknown mac `%s' in key %s", dd.buf, d.buf);
361 goto fail;
362 }
363 if (!q)
364 k->tagsz = k->mc->hashsz/2;
365 else {
366 tsz = atoi(q);
367 if (tsz <= 0 || tsz%8 || tsz/8 > k->mc->hashsz) {
368 complain(LOG_ERR, "bad tag size `%s' for mac `%s' in key %s",
369 q, k->mc->name, d.buf);
370 goto fail;
371 }
372 k->tagsz = tsz/8;
373 }
374
375 /* Done. */
376 rc = 0;
377 goto done;
378
379 fail:
380 rc = -1;
381 done:
382 dstr_destroy(&d);
383 dstr_destroy(&dd);
384 return (rc);
385 }
386
387 static void keymoan(const char *file, int line, const char *err, void *p)
388 { complain(LOG_ERR, "%s:%d: %s", file, line, err); }
389
390 /* Update the keyring `kf' if the file has been changed since we last looked.
391 */
392 static void kfupdate(void)
393 {
394 key_file *kfnew;
395
396 if (!fwatch_update(&kfwatch, kfname)) return;
397 kfnew = CREATE(key_file);
398 if (key_open(kfnew, kfname, KOPEN_READ, keymoan, 0)) {
399 DESTROY(kfnew);
400 return;
401 }
402 key_close(kf);
403 DESTROY(kf);
404 kf = kfnew;
405 }
406
407 /*----- Low-level crypto operations ---------------------------------------*/
408
409 /* Derive a key, writing its address to *KK and size to *N. The size is
410 * compatible with the keysz rules KSZ. It is generated for the purpose of
411 * keying a WHAT (used for key separation and in error messages), and NAME is
412 * the name of the specific instance (e.g., `twofish-counter') from the class
413 * name. The kinfo structure K tells us which algorithms to use for the
414 * derivation. The group elements U and Z are the cryptographic inputs
415 * for the derivation.
416 *
417 * Basically all we do is compute H(what || U || Z).
418 */
419 static int derive(struct kinfo *k, ge *U, ge *Z,
420 const char *what, const char *name, const octet *ksz,
421 octet **kk, size_t *n)
422 {
423 buf b;
424 ghash *h;
425 octet *p;
426
427 /* Find a suitable key size. */
428 if ((*n = keysz(k->hc->hashsz, ksz)) == 0) {
429 complain(LOG_ERR,
430 "failed to find suitable key size for %s `%s' and hash `%s'",
431 what, name, k->hc->name);
432 return (-1);
433 }
434
435 /* Build the hash preimage. */
436 buf_init(&b, obuf, sizeof(obuf));
437 buf_put(&b, "udpkey-", 7);
438 buf_putstrz(&b, what);
439 G_TORAW(k->g, &b, U);
440 G_TORAW(k->g, &b, Z);
441 if (BBAD(&b)) {
442 complain(LOG_ERR, "overflow while deriving key (prepare preimage)!");
443 return (-1);
444 }
445
446 /* Derive the output key. */
447 h = GH_INIT(k->hc);
448 GH_HASH(h, BBASE(&b), BLEN(&b));
449 buf_init(&b, obuf, sizeof(obuf));
450 if ((p = buf_get(&b, h->ops->c->hashsz)) == 0) {
451 complain(LOG_ERR, "overflow while deriving key (output hash)!");
452 GH_DESTROY(h);
453 return (-1);
454 }
455 GH_DONE(h, p);
456 GH_DESTROY(h);
457 *kk = p;
458 return (0);
459 }
460
461 #ifdef DEBUG
462 static void debug_mp(const char *what, mp *x)
463 { fprintf(stderr, "%s: *** ", QUIS); MP_EPRINT(what, x); }
464 static void debug_ge(const char *what, group *g, ge *X)
465 {
466 fprintf(stderr, "%s: *** %s = ", QUIS, what);
467 group_writefile(g, X, stderr);
468 fputc('\n', stderr);
469 }
470 #endif
471
472 /*----- Protocol summary --------------------------------------------------*
473 *
474 * There are two protocol versions. The original version works as follows.
475 *
476 * * Request
477 * memz KEYTAG tag of wanted secret
478 * ge U public vector
479 *
480 * * Response
481 * ge V public vector: V = v P
482 * ge W encrypted clue: W = R - Y = r P - v U
483 * mem[TAGSZ] TAG MAC tag on ciphertext
484 * mem[KSZ] CT secret, encrypted with Z = r X
485 *
486 * The new version provides forward secrecy, which involves additional flows.
487 *
488 * * Greeting
489 * u8 0 marker byte for new protocol
490 * u8 1 packet type
491 * mem8 KEYTAG wanted secret tag
492 *
493 * * Challenge
494 * u8 17 packet type
495 * u32 REF server's reference
496 * ge R public DLIES vector: R = r P
497 * ge W masked DH vector: W = V - Y = v P - r X
498 *
499 * * Response
500 * u8 0 marker byte for new protocol
501 * u8 2 packet type
502 * mem8 KEYTAG wanted secret tag
503 * u32 REF reference from challenge
504 * ge U public DH vector
505 * mem[HASHSZ] H0 hash; H0||H1 = H(U, V, Z), where Z = v U
506 *
507 * * Reply
508 * u8 18 packet type
509 * mem[TAGSZ] TAG MAC tag on ciphertext
510 * mem[KSZ] CT secret, encrypted with H1
511 */
512
513 #define FWS_GREET 0x01
514 #define FWS_CHALL 0x11
515 #define FWS_RESP 0x02
516 #define FWS_REPLY 0x12
517
518 /*----- Listening for requests --------------------------------------------*/
519
520 /* Rate limiting parameters.
521 *
522 * There's a probabilistic rate-limiting mechanism. A counter starts at 0.
523 * Every time we process a request, we increment the counter. The counter
524 * drops by RATE_REFILL every second. If the counter is below RATE_CREDIT
525 * then the request is processed; otherwise it is processed with probability
526 * 1/(counter - RATE_CREDIT).
527 */
528 #define RATE_REFILL 10 /* Credits per second. */
529 #define RATE_CREDIT 1000 /* Initial credit. */
530
531 static time_t now;
532
533 /* Secrets table.
534 *
535 * The server doesn't want to maintain state for each client. Instead, we
536 * generate a global secret, and derive per-client secrets from it. A secret
537 * needs to have an expiry time (at which point we won't use it for new
538 * requests) and a deletion time (at which point we just forget that it ever
539 * existed). This lets us roll over to a new secret without leaving existing
540 * clients completely in the lurch.
541 *
542 * Secrets are kept in a linked list, ordered by expiry time. At any given
543 * time there is at most one unexpired secret (because we only make a new one
544 * when the old one expires).
545 */
546
547 struct secret {
548 struct secret *next;
549 uint32 seq;
550 time_t t_exp, t_del;
551 octet x[32];
552 };
553 static struct secret *secrets = 0, *live_secret = 0;
554 static uint32 next_secret_seq = 0;
555 #define T_SECEXP 30
556 #define T_SECDEL 45
557
558 static void kill_dead_secrets(void)
559 {
560 struct secret *s = secrets, *ss;
561
562 for (s = secrets; s && s->t_del <= now; s = ss) {
563 ss = s->next;
564 DESTROY(s);
565 }
566 secrets = 0;
567 if (!s) live_secret = 0;
568 }
569
570 static struct secret *find_secret(uint32 seq)
571 {
572 struct secret *s;
573
574 kill_dead_secrets();
575 for (s = secrets; s; s = s->next)
576 if (s->seq == seq) return (s);
577 return (0);
578 }
579
580 static struct secret *fresh_secret(void)
581 {
582 struct secret *s;
583
584 if (live_secret && live_secret->t_exp > now) return (live_secret);
585 kill_dead_secrets();
586
587 s = CREATE(struct secret);
588 s->seq = next_secret_seq++;
589 s->next = 0;
590 rand_get(RAND_GLOBAL, s->x, sizeof(s->x));
591 s->t_exp = now + T_SECEXP; s->t_del = now + T_SECDEL;
592 if (live_secret) live_secret->next = s;
593 else secrets = s;
594 live_secret = s;
595 return (s);
596 }
597
598 static int fetch_key(const char *tag, struct sockaddr_in *sin,
599 key **ky, struct kinfo *k)
600 {
601 dstr d = DSTR_INIT, dd = DSTR_INIT;
602 key_data **kkd;
603 char *p, *q;
604 const char *pp;
605 struct in_addr in;
606 int ch, mlen, rc = -1;
607
608 /* Find the key. */
609 kfupdate();
610 if (key_qtag(kf, tag, &d, ky, &kkd)) {
611 complain(LOG_WARNING, "unknown key tag `%s' from %s:%d",
612 tag, inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
613 goto done;
614 }
615
616 /* And make sure that it has the right shape. */
617 if (((*ky)->k->e & KF_ENCMASK) != KENC_BINARY) {
618 complain(LOG_ERR, "key %s is not plain binary data", d.buf);
619 goto done;
620 }
621
622 /* Find the list of clients, and look up the caller's address in the
623 * list. Entries have the form ADDRESS[/LEN][=TAG] and are separated by
624 * `;'.
625 */
626 if ((pp = key_getattr(kf, *ky, "clients")) == 0) {
627 complain(LOG_WARNING,
628 "key %s requested from %s:%d has no `clients' attribute",
629 d.buf, inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
630 goto done;
631 }
632 dstr_puts(&dd, pp);
633 p = dd.buf;
634 while (*p) {
635 q = p;
636 while (isdigit((unsigned char)*q) || *q == '.') q++;
637 ch = *q; *q++ = 0;
638 if (!inet_aton(p, &in)) goto skip;
639 if (ch != '/')
640 mlen = 32;
641 else {
642 p = q;
643 while (isdigit((unsigned char)*q)) q++;
644 ch = *q; *q++ = 0;
645 mlen = atoi(p);
646 }
647 if (((sin->sin_addr.s_addr ^ in.s_addr) &
648 htonl(0xffffffff << (32 - mlen))) == 0)
649 goto match;
650 skip:
651 if (!ch) break;
652 p = q;
653 while (*p && *p != ';') p++;
654 if (*p) p++;
655 }
656 complain(LOG_WARNING, "access to key %s denied to %s:%d",
657 d.buf, inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
658 goto done;
659
660 match:
661 /* Build a tag name for the caller's KEM key, either from the client
662 * match or the source address.
663 */
664 if (ch != '=') {
665 DRESET(&dd);
666 dstr_puts(&dd, "client-");
667 dstr_puts(&dd, inet_ntoa(sin->sin_addr));
668 p = dd.buf;
669 } else {
670 p = q;
671 while (*q && *q != ';') q++;
672 if (*q == ';') *q++ = 0;
673 }
674
675 /* Report the match. */
676 complain(LOG_NOTICE, "client %s:%d (`%s') requests key %s",
677 inet_ntoa(sin->sin_addr), ntohs(sin->sin_port), p, d.buf);
678
679 /* Load the KEM key. */
680 if (loadkey(p, k, 0)) goto done;
681 D( debug_ge("X", k.g, k.X); )
682
683 /* All complete. */
684 rc = 0;
685
686 done:
687 /* Clean everything up. */
688 dstr_destroy(&d);
689 dstr_destroy(&dd);
690 if (rc) k_free(k);
691 return (rc);
692 }
693
694 static int respond_v0(buf *bin, buf *bout, struct sockaddr_in *sin)
695 {
696 ge *R = 0, *U = 0, *V = 0, *W = 0, *Y = 0, *Z = 0;
697 mp *r = MP_NEW, *v = MP_NEW;
698 octet *kk, *t, *tt;
699 char *p;
700 size_t sz;
701 ghash *h = 0;
702 gmac *m = 0;
703 gcipher *c = 0;
704 struct kinfo k;
705 key *ky;
706 size_t ksz;
707 int rc = -1;
708
709 /* Clear out the key state. */
710 k_init(&k);
711
712 /* Extract the key tag name. */
713 if ((p = buf_getmemz(bin, &sz)) == 0) {
714 complain(LOG_WARNING, "invalid key tag from %s:%d",
715 inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
716 goto done;
717 }
718
719 /* Find the client's key and check that it's allowed. */
720 if (fetch_key(p, sin, &ky, &k)) goto done;
721
722 /* Read the caller's ephemeral key. */
723 R = G_CREATE(k.g); W = G_CREATE(k.g);
724 U = G_CREATE(k.g); V = G_CREATE(k.g);
725 Y = G_CREATE(k.g); Z = G_CREATE(k.g);
726 if (G_FROMBUF(k.g, bin, U)) {
727 complain(LOG_WARNING, "failed to read ephemeral vector from %s:%d",
728 inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
729 goto done;
730 }
731 D( debug_ge("U", k.g, U); )
732 if (BLEFT(bin)) {
733 complain(LOG_WARNING, "trailing junk in request from %s:%d",
734 inet_ntoa(sin->sin_addr), ntohs(sin->sin_port));
735 goto done;
736 }
737
738 /* Ephemeral Diffie--Hellman. Choose v in GF(q) at random; compute
739 * V = v P and -Y = (-v) U.
740 */
741 v = mprand_range(v, k.g->r, &rand_global, 0);
742 G_EXP(k.g, V, k.g->g, v);
743 D( debug_mp("v", v); debug_ge("V", k.g, V); )
744 v = mp_sub(v, k.g->r, v);
745 G_EXP(k.g, Y, U, v);
746 D( debug_ge("-Y", k.g, Y); )
747
748 /* DLIES. Choose r in GF(q) at random; compute R = r P and Z = r X. Mask
749 * the clue R as W = R - Y. (Doing the subtraction here makes life easier
750 * at the other end, since we can determine -Y by negating v whereas the
751 * recipient must subtract vectors which may be less efficient.)
752 */
753 r = mprand_range(r, k.g->r, &rand_global, 0);
754 G_EXP(k.g, R, k.g->g, r);
755 D( debug_mp("r", r); debug_ge("R", k.g, R); )
756 G_EXP(k.g, Z, k.X, r);
757 G_MUL(k.g, W, R, Y);
758 D( debug_ge("Z", k.g, Z); debug_ge("W", k.g, W); )
759
760 /* Derive encryption and integrity keys. */
761 derive(&k, R, Z, "cipher", k.cc->name, k.cc->keysz, &kk, &ksz);
762 c = GC_INIT(k.cc, kk, ksz);
763 derive(&k, R, Z, "mac", k.mc->name, k.mc->keysz, &kk, &ksz);
764 m = GM_KEY(k.mc, kk, ksz);
765
766 /* Build the ciphertext and compute a MAC tag over it. */
767 rc = 0;
768 if (G_TOBUF(k.g, bout, V) ||
769 G_TOBUF(k.g, bout, W))
770 goto done;
771 if ((t = buf_get(bout, k.tagsz)) == 0) goto done;
772 sz = ky->k->u.k.sz;
773 if (BENSURE(bout, sz)) goto done;
774 GC_ENCRYPT(c, ky->k->u.k.k, BCUR(bout), sz);
775 h = GM_INIT(m);
776 GH_HASH(h, BCUR(bout), sz);
777 tt = GH_DONE(h, 0); memcpy(t, tt, k.tagsz);
778 BSTEP(bout, sz);
779
780 done:
781 /* Clear everything up and go home. */
782 if (R) G_DESTROY(k.g, R);
783 if (U) G_DESTROY(k.g, U);
784 if (V) G_DESTROY(k.g, V);
785 if (W) G_DESTROY(k.g, W);
786 if (Y) G_DESTROY(k.g, Y);
787 if (Z) G_DESTROY(k.g, Z);
788 if (c) GC_DESTROY(c);
789 if (m) GM_DESTROY(m);
790 if (h) GH_DESTROY(h);
791 if (r) MP_DROP(r);
792 if (v) MP_DROP(v);
793 k_free(&k);
794 return (rc);
795 }
796
797 static int dolisten(int argc, char *argv[])
798 {
799 int sk;
800 char *p;
801 char *aspec;
802 ssize_t n;
803 fd_set fdin;
804 struct sockaddr_in sin;
805 socklen_t len;
806 buf bin, bout;
807 FILE *fp = 0;
808 unsigned bucket = 0, toks;
809 time_t last = 0;
810
811 /* Set up the socket address. */
812 sin.sin_family = AF_INET;
813 aspec = xstrdup(argv[0]);
814 if ((p = strchr(aspec, ':')) == 0) {
815 p = aspec;
816 sin.sin_addr.s_addr = INADDR_ANY;
817 } else {
818 *p++ = 0;
819 resolve(aspec, &sin.sin_addr);
820 }
821 sin.sin_port = htons(getport(p));
822
823 /* Create and set up the socket itself. */
824 if ((sk = socket(PF_INET, SOCK_DGRAM, 0)) < 0 ||
825 fdflags(sk, O_NONBLOCK, O_NONBLOCK, FD_CLOEXEC, FD_CLOEXEC) ||
826 bind(sk, (struct sockaddr *)&sin, sizeof(sin)))
827 die(1, "failed to create socket: %s", strerror(errno));
828
829 /* That's enough initialization. If we should fork, then do that. */
830 if (flags & f_daemon) {
831 if (pidfile && (fp = fopen(pidfile, "w")) == 0)
832 die(1, "failed to open pidfile `%s': %s", pidfile, strerror(errno));
833 openlog(QUIS, LOG_PID, LOG_DAEMON);
834 if (daemonize())
835 die(1, "failed to become background process: %s", strerror(errno));
836 if (pidfile) { fprintf(fp, "%ld\n", (long)getpid()); fclose(fp); }
837 flags |= f_syslog;
838 }
839
840 for (;;) {
841
842 /* Wait for something to happen. */
843 FD_ZERO(&fdin);
844 FD_SET(sk, &fdin);
845 if (select(sk + 1, &fdin, 0, 0, 0) < 0)
846 die(1, "select failed: %s", strerror(errno));
847 noise_timer(RAND_GLOBAL);
848
849 /* Fetch a packet. */
850 len = sizeof(sin);
851 n = recvfrom(sk, ibuf, sizeof(ibuf), 0, (struct sockaddr *)&sin, &len);
852 if (n < 0) {
853 if (errno != EAGAIN && errno != EINTR)
854 complain(LOG_ERR, "unexpected receive error: %s", strerror(errno));
855 continue;
856 }
857
858 /* Refill the bucket, and see whether we should reject this packet. */
859 now = time(0);
860 if (bucket && now != last) {
861 toks = (now - last)*RATE_REFILL;
862 bucket = bucket < toks ? 0 : bucket - toks;
863 }
864 last = now;
865 if (bucket > RATE_CREDIT &&
866 grand_range(&rand_global, bucket - RATE_CREDIT))
867 continue;
868 bucket++;
869
870 /* Set up the input buffer for parsing the request. */
871 buf_init(&bin, ibuf, n);
872 buf_init(&bout, obuf, sizeof(obuf));
873
874 /* Handle the client's message. */
875 if (respond_v0(&bin, &bout, &sin)) continue;
876
877 /* Send the reply packet back to the caller. */
878 if (!BOK(&bout)) goto bad;
879 if (sendto(sk, BBASE(&bout), BLEN(&bout), 0,
880 (struct sockaddr *)&sin, len) < 0) {
881 complain(LOG_ERR, "failed to send response to %s:%d: %s",
882 inet_ntoa(sin.sin_addr), ntohs(sin.sin_port),
883 strerror(errno));
884 continue;
885 }
886
887 continue;
888
889 bad:
890 /* Report a problem building the reply. */
891 complain(LOG_ERR, "failed to construct response to %s:%d",
892 inet_ntoa(sin.sin_addr), ntohs(sin.sin_port));
893 }
894
895 return (-1);
896 }
897
898 /*----- Sending requests and processing responses -------------------------*/
899
900 struct query {
901 struct query *next;
902 const char *tag;
903 octet *k;
904 size_t sz;
905 struct server *s;
906 };
907
908 struct server {
909 struct server *next;
910 struct sockaddr_in sin;
911 struct kinfo k;
912 const struct client_protocol *proto;
913 mp *u;
914 ge *U;
915 octet *h;
916 };
917
918 struct client_protocol {
919 const char *name;
920 int (*setup)(struct query *, struct server *);
921 int (*receive)(struct query *, struct server *, buf *, buf *);
922 int (*retransmit)(struct query *, struct server *, buf *);
923 };
924
925 /* Record a successful fetch of key material for a query Q. The data starts
926 * at K and is SZ bytes long. The data is copied: it's safe to overwrite it.
927 */
928 static int donequery(struct query *q, struct server *s,
929 const void *k, size_t sz)
930 {
931 octet *tt;
932 ghash *h = 0;
933 int diffp;
934
935 /* If we have a hash, check that the fragment matches it. */
936 if (s && s->h) {
937 h = GH_INIT(s->k.hc);
938 GH_HASH(h, k, sz);
939 tt = GH_DONE(h, 0);
940 diffp = memcmp(tt, s->h, h->ops->c->hashsz);
941 GH_DESTROY(h);
942 if (diffp) {
943 moan("response from %s:%d doesn't match hash",
944 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
945 return (-1);
946 }
947 }
948
949 /* Stash a copy of the key fragment for later. */
950 q->k = xmalloc(sz);
951 memcpy(q->k, k, sz);
952 q->sz = sz; nq--;
953
954 /* All good. */
955 return (0);
956 }
957
958 static int setup_v0(struct query *q, struct server *s)
959 {
960 /* Choose an ephemeral private key u. Let x be our private key. We
961 * compute U = u P and transmit this.
962 */
963 s->u = mprand_range(MP_NEW, s->k.g->r, &rand_global, 0);
964 s->U = G_CREATE(s->k.g);
965 G_EXP(s->k.g, s->U, s->k.g->g, s->u);
966 D( debug_mp("u", s->u); debug_ge("U", s->k.g, s->U); )
967
968 return (0);
969 }
970
971 static int retransmit_v0(struct query *q, struct server *s, buf *bout)
972 {
973 buf_putstrz(bout, q->tag);
974 G_TOBUF(s->k.g, bout, s->U);
975 return (0);
976 }
977
978 static int receive_v0(struct query *q, struct server *s, buf *bin, buf *bout)
979 {
980 ge *R, *V = 0, *W = 0, *Y = 0, *Z = 0;
981 octet *kk, *t, *tt;
982 gcipher *c = 0;
983 gmac *m = 0;
984 ghash *h = 0;
985 size_t n, ksz;
986 octet *p;
987 int rc = -1;
988
989 R = G_CREATE(s->k.g);
990 V = G_CREATE(s->k.g); W = G_CREATE(s->k.g);
991 Y = G_CREATE(s->k.g); Z = G_CREATE(s->k.g);
992 if (G_FROMBUF(s->k.g, bin, V)) {
993 moan("invalid Diffie--Hellman vector from %s:%d",
994 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
995 goto done;
996 }
997 if (G_FROMBUF(s->k.g, bin, W)) {
998 moan("invalid clue vector from %s:%d",
999 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
1000 goto done;
1001 }
1002 D( debug_ge("V", s->k.g, V); debug_ge("W", s->k.g, W); )
1003
1004 /* We have V and W from the server; determine Y = u V, R = W + Y and
1005 * Z = x R, and then derive the symmetric keys.
1006 */
1007 G_EXP(s->k.g, Y, V, s->u);
1008 G_MUL(s->k.g, R, W, Y);
1009 G_EXP(s->k.g, Z, R, s->k.x);
1010 D( debug_ge("R", s->k.g, R);
1011 debug_ge("Y", s->k.g, Y);
1012 debug_ge("Z", s->k.g, Z); )
1013 derive(&s->k, R, Z, "cipher", s->k.cc->name, s->k.cc->keysz, &kk, &ksz);
1014 c = GC_INIT(s->k.cc, kk, ksz);
1015 derive(&s->k, R, Z, "mac", s->k.cc->name, s->k.cc->keysz, &kk, &ksz);
1016 m = GM_KEY(s->k.mc, kk, ksz);
1017
1018 /* Find where the MAC tag is. */
1019 if ((t = buf_get(bin, s->k.tagsz)) == 0) {
1020 moan("missing tag from %s:%d",
1021 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
1022 goto done;
1023 }
1024
1025 /* Check the integrity of the ciphertext against the tag. */
1026 p = BCUR(bin); n = BLEFT(bin);
1027 h = GM_INIT(m);
1028 GH_HASH(h, p, n);
1029 tt = GH_DONE(h, 0);
1030 if (!ct_memeq(t, tt, s->k.tagsz)) {
1031 moan("incorrect tag from %s:%d",
1032 inet_ntoa(s->sin.sin_addr), ntohs(s->sin.sin_port));
1033 goto done;
1034 }
1035
1036 /* Decrypt the result and declare this server done. */
1037 GC_DECRYPT(c, p, p, n);
1038 rc = donequery(q, s, p, n);
1039
1040 done:
1041 /* Clear up and go home. */
1042 if (R) G_DESTROY(s->k.g, R);
1043 if (V) G_DESTROY(s->k.g, V);
1044 if (W) G_DESTROY(s->k.g, W);
1045 if (Y) G_DESTROY(s->k.g, Y);
1046 if (Z) G_DESTROY(s->k.g, Z);
1047 if (c) GC_DESTROY(c);
1048 if (m) GM_DESTROY(m);
1049 if (h) GH_DESTROY(h);
1050 return (rc);
1051 }
1052
1053 static const struct client_protocol prototab[] = {
1054 { "v0", setup_v0, receive_v0, retransmit_v0 },
1055 { 0 }
1056 };
1057
1058 /* Initialize a query to a remote server. */
1059 static struct query *qinit_net(const char *tag, const char *spec)
1060 {
1061 struct query *q;
1062 struct server *s, **stail;
1063 dstr d = DSTR_INIT, dd = DSTR_INIT;
1064 const struct client_protocol *proto;
1065 hex_ctx hc;
1066 char *p, *pp, ch;
1067
1068 /* Allocate the query block. */
1069 q = CREATE(struct query);
1070 q->tag = tag;
1071 stail = &q->s;
1072
1073 /* Put the spec somewhere we can hack at it. */
1074 dstr_puts(&d, spec);
1075 p = d.buf;
1076
1077 /* Parse the query spec. Entries have the form ADDRESS:PORT[=TAG][#HASH]
1078 * and are separated by `;'.
1079 */
1080 while (*p) {
1081
1082 /* Allocate a new server node. */
1083 s = CREATE(struct server);
1084 s->sin.sin_family = AF_INET;
1085
1086 /* Extract the server address. */
1087 if ((pp = strchr(p, ':')) == 0)
1088 die(1, "invalid syntax: missing `:PORT'");
1089 *pp++ = 0;
1090 resolve(p, &s->sin.sin_addr);
1091
1092 /* Extract the port number. */
1093 p = pp;
1094 while (isdigit((unsigned char)*pp)) pp++;
1095 ch = *pp; *pp++ = 0;
1096 s->sin.sin_port = htons(getport(p));
1097
1098 /* See if there's a protocol name. */
1099 if (ch != '?')
1100 p = "v0";
1101 else {
1102 p = pp;
1103 pp += strcspn(pp, ";#=");
1104 ch = *pp; *pp++ = 0;
1105 }
1106 for (proto = prototab; proto->name; proto++)
1107 if (strcmp(proto->name, p) == 0) goto found_proto;
1108 die(1, "unknown protocol name `%s'", p);
1109 found_proto:
1110 s->proto = proto;
1111
1112 /* If there's a key tag then extract that; otherwise use a default. */
1113 if (ch != '=')
1114 p = "udpkey-kem";
1115 else {
1116 p = pp;
1117 pp += strcspn(pp, ";#");
1118 ch = *pp; *pp++ = 0;
1119 }
1120 if (loadkey(p, &s->k, 1)) exit(1);
1121 D( debug_mp("x", s->k.x); debug_ge("X", s->k.g, s->k.X); )
1122
1123 /* Link the server on. */
1124 *stail = s; stail = &s->next;
1125
1126 /* If there's a trailing hash then extract it. */
1127 if (ch != '#')
1128 s->h = 0;
1129 else {
1130 p = pp;
1131 while (*pp == '-' || isxdigit((unsigned char)*pp)) pp++;
1132 hex_init(&hc);
1133 DRESET(&dd);
1134 hex_decode(&hc, p, pp - p, &dd);
1135 if (dd.len != s->k.hc->hashsz) die(1, "incorrect hash length");
1136 s->h = xmalloc(dd.len);
1137 memcpy(s->h, dd.buf, dd.len);
1138 ch = *pp++;
1139 }
1140
1141 /* Initialize the protocol. */
1142 if (s->proto->setup(q, s)) die(1, "failed to initialize protocol");
1143
1144 /* If there are more servers, then continue parsing. */
1145 if (!ch) break;
1146 else if (ch != ';') die(1, "invalid syntax: expected `;'");
1147 p = pp;
1148 }
1149
1150 /* Terminate the server list and return. */
1151 *stail = 0;
1152 q->k = 0;
1153 dstr_destroy(&d);
1154 dstr_destroy(&dd);
1155 return (q);
1156 }
1157
1158 /* Handle a `query' to a local file. */
1159 static struct query *qinit_file(const char *tag, const char *file)
1160 {
1161 struct query *q;
1162 void *k;
1163 size_t sz;
1164
1165 /* Snarf the file. */
1166 q = CREATE(struct query);
1167 if (snarf(file, &k, &sz))
1168 die(1, "failed to read `%s': %s", file, strerror(errno));
1169 q->s = 0;
1170 donequery(q, 0, k, sz);
1171 return (q);
1172 }
1173
1174 /* Retransmission and timeout parameters. */
1175 #define TO_NEXT(t) (((t) + 2)*4/3) /* Timeout growth function */
1176 #define TO_MAX 30 /* When to give up */
1177
1178 static int doquery(int argc, char *argv[])
1179 {
1180 struct query *q = 0, *qq, **qtail = &qq;
1181 struct server *s = 0;
1182 const char *tag = argv[0];
1183 octet *p;
1184 int i;
1185 int sk;
1186 fd_set fdin;
1187 struct timeval now, when, tv;
1188 struct sockaddr_in sin;
1189 socklen_t len;
1190 unsigned next = 0;
1191 buf bin, bout;
1192 size_t n, j;
1193 ssize_t nn;
1194
1195 /* Create a socket. We just use the one socket for everything. We don't
1196 * care which port we get allocated.
1197 */
1198 if ((sk = socket(PF_INET, SOCK_DGRAM, 0)) < 0 ||
1199 fdflags(sk, O_NONBLOCK, O_NONBLOCK, FD_CLOEXEC, FD_CLOEXEC))
1200 die(1, "failed to create socket: %s", strerror(errno));
1201
1202 /* Parse the query target specifications. The adjustments of `nq' aren't
1203 * in the right order but that doesn't matter.
1204 */
1205 for (i = 1; i < argc; i++) {
1206 if (*argv[i] == '.' || *argv[i] == '/') q = qinit_file(tag, argv[i]);
1207 else if (strchr(argv[i], ':')) q = qinit_net(tag, argv[i]);
1208 else die(1, "unrecognized query target `%s'", argv[i]);
1209 *qtail = q; qtail = &q->next; nq++;
1210 }
1211 *qtail = 0;
1212
1213 /* Find the current time so we can compute retransmission times properly.
1214 */
1215 gettimeofday(&now, 0);
1216 when = now;
1217
1218 /* Continue retransmitting until we have all the answers. */
1219 while (nq) {
1220
1221 /* Work out when we next want to wake up. */
1222 if (TV_CMP(&now, >=, &when)) {
1223 do {
1224 if (next >= TO_MAX) die(1, "no responses: giving up");
1225 next = TO_NEXT(next);
1226 TV_ADDL(&when, &when, next, 0);
1227 } while (TV_CMP(&when, <=, &now));
1228 for (q = qq; q; q = q->next) {
1229 if (q->k) continue;
1230 for (s = q->s; s; s = s->next) {
1231 buf_init(&bout, obuf, sizeof(obuf));
1232 if (s->proto->retransmit(q, s, &bout)) continue;
1233 if (BBAD(&bout)) {
1234 moan("overflow while constructing request!");
1235 continue;
1236 }
1237 sendto(sk, BBASE(&bout), BLEN(&bout), 0,
1238 (struct sockaddr *)&s->sin, sizeof(s->sin));
1239 }
1240 }
1241 }
1242
1243 /* Wait until something interesting happens. */
1244 FD_ZERO(&fdin);
1245 FD_SET(sk, &fdin);
1246 TV_SUB(&tv, &when, &now);
1247 if (select(sk + 1, &fdin, 0, 0, &tv) < 0)
1248 die(1, "select failed: %s", strerror(errno));
1249 gettimeofday(&now, 0);
1250
1251 /* If we have an input event, process incoming packets. */
1252 if (FD_ISSET(sk, &fdin)) {
1253 for (;;) {
1254
1255 /* Read a packet and capture its address. */
1256 len = sizeof(sin);
1257 nn = recvfrom(sk, ibuf, sizeof(ibuf), 0,
1258 (struct sockaddr *)&sin, &len);
1259 if (nn < 0) {
1260 if (errno == EAGAIN) break;
1261 else if (errno == EINTR) continue;
1262 else {
1263 moan("error receiving reply: %s", strerror(errno));
1264 continue;
1265 }
1266 }
1267
1268 /* See whether this corresponds to any of our servers. Don't just
1269 * check the active servers, since this may be late a reply caused by
1270 * retransmissions or similar.
1271 */
1272 for (q = qq; q; q = q->next) {
1273 for (s = q->s; s; s = s->next) {
1274 if (s->sin.sin_addr.s_addr == sin.sin_addr.s_addr &&
1275 s->sin.sin_port == sin.sin_port)
1276 goto found;
1277 }
1278 }
1279 moan("received reply from unexpected source %s:%d",
1280 inet_ntoa(sin.sin_addr), ntohs(sin.sin_port));
1281 continue;
1282
1283 found:
1284 /* If the query we found has now been satisfied, ignore this packet.
1285 */
1286 if (q->k) continue;
1287
1288 /* Parse the reply, and either finish the job or get a message to
1289 * send back to the server.
1290 */
1291 buf_init(&bin, ibuf, nn);
1292 buf_init(&bout, obuf, sizeof(obuf));
1293 if (s->proto->receive(q, s, &bin, &bout)) continue;
1294 if (q->k) continue;
1295 if (!BLEN(&bout) && s->proto->retransmit(q, s, &bout)) continue;
1296 if (BBAD(&bout)) {
1297 moan("overflow while constructing request!");
1298 continue;
1299 }
1300 sendto(sk, BBASE(&bout), BLEN(&bout), 0,
1301 (struct sockaddr *)&s->sin, sizeof(s->sin));
1302 }
1303 }
1304 }
1305
1306 /* Check that all of the responses match up and XOR them together. */
1307 n = qq->sz;
1308 if (n > BUFSZ) die(1, "response too large");
1309 memset(obuf, 0, n);
1310 for (q = qq; q; q = q->next) {
1311 if (!q->k) die(1, "INTERNAL: query not complete");
1312 if (q->sz != n) die(1, "inconsistent response sizes");
1313 for (j = 0; j < n; j++) obuf[j] ^= q->k[j];
1314 }
1315
1316 /* Write out the completed answer. */
1317 p = obuf;
1318 while (n) {
1319 if ((nn = write(STDOUT_FILENO, p, n)) < 0)
1320 die(1, "error writing response: %s", strerror(errno));
1321 p += nn; n -= nn;
1322 }
1323 return (0);
1324 }
1325
1326 /*----- Main program ------------------------------------------------------*/
1327
1328 static void usage(FILE *fp)
1329 {
1330 pquis(fp, "Usage: \n\
1331 $ [-OPTS] LABEL {ADDR:PORT[=TAG][#HASH];... | FILE} ...\n\
1332 $ [-OPTS] -l [ADDR:]PORT\n\
1333 ");
1334 }
1335
1336 static void version(FILE *fp)
1337 { pquis(fp, "$, version " VERSION "\n"); }
1338
1339 static void help(FILE *fp)
1340 {
1341 version(fp);
1342 putc('\n', fp);
1343 usage(fp);
1344 fputs("\n\
1345 Options:\n\
1346 \n\
1347 -d, --daemon Run in the background while listening.\n\
1348 -k, --keyring=FILE Read keys from FILE. [default = `keyring']\n\
1349 -l, --listen Listen for incoming requests and serve keys.\n\
1350 -p, --pidfile=FILE Write process id to FILE if in daemon mode.\n\
1351 -r, --random=FILE Key random number generator with contents of FILE.\n\
1352 ", fp);
1353 }
1354
1355 int main(int argc, char *argv[])
1356 {
1357 int argmin, argmax;
1358 void *k;
1359 size_t sz;
1360
1361 ego(argv[0]);
1362 for (;;) {
1363 static const struct option opts[] = {
1364 { "help", 0, 0, 'h' },
1365 { "version", 0, 0, 'v' },
1366 { "usage", 0, 0, 'u' },
1367 { "daemon", 0, 0, 'd' },
1368 { "keyfile", OPTF_ARGREQ, 0, 'k' },
1369 { "listen", 0, 0, 'l' },
1370 { "pidfile", OPTF_ARGREQ, 0, 'p' },
1371 { "random", OPTF_ARGREQ, 0, 'r' },
1372 { 0 }
1373 };
1374
1375 int i = mdwopt(argc, argv, "hvu" "dk:lp:r:", opts, 0, 0, 0);
1376 if (i < 0) break;
1377
1378 switch (i) {
1379 case 'h': help(stdout); exit(0);
1380 case 'v': version(stdout); exit(0);
1381 case 'u': usage(stdout); exit(0);
1382
1383 case 'd': flags |= f_daemon; break;
1384 case 'k': kfname = optarg; break;
1385 case 'l': flags |= f_listen; break;
1386 case 'p': pidfile = optarg; break;
1387 case 'r':
1388 if (snarf(optarg, &k, &sz))
1389 die(1, "failed to read `%s': %s", optarg, strerror(errno));
1390 rand_key(RAND_GLOBAL, k, sz);
1391 break;
1392
1393 default: flags |= f_bogus; break;
1394 }
1395 }
1396
1397 argv += optind; argc -= optind;
1398 if (flags & f_listen) argmin = argmax = 1;
1399 else argmin = 2, argmax = -1;
1400 if ((flags & f_bogus) || argc < argmin || (argmax >= 0 && argc > argmax))
1401 { usage(stderr); exit(1); }
1402
1403 fwatch_init(&kfwatch, kfname);
1404 kf = CREATE(key_file);
1405 if (key_open(kf, kfname, KOPEN_READ, keymoan, 0))
1406 die(1, "failed to open keyring file `%s'", kfname);
1407
1408 rand_noisesrc(RAND_GLOBAL, &noise_source);
1409 rand_seed(RAND_GLOBAL, 512);
1410
1411 if (flags & f_listen) return dolisten(argc, argv);
1412 else return doquery(argc, argv);
1413 }
1414
1415 /*----- That's all, folks -------------------------------------------------*/