Correctly tokenize output to admin clients.
[tripe] / keyset.c
1 /* -*-c-*-
2 *
3 * $Id$
4 *
5 * Handling of symmetric keysets
6 *
7 * (c) 2001 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Trivial IP Encryption (TrIPE).
13 *
14 * TrIPE is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * TrIPE is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with TrIPE; if not, write to the Free Software Foundation,
26 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 */
28
29 /*----- Header files ------------------------------------------------------*/
30
31 #include "tripe.h"
32
33 /*----- Tunable parameters ------------------------------------------------*/
34
35 /* --- Note on size limits --- *
36 *
37 * For a 64-bit block cipher (e.g., Blowfish), the probability of a collision
38 * occurring after 32 MB is less than %$2^{-21}$%, and the probability of a
39 * collision occurring after 64 MB is less than %$2^{-19}$%. These could be
40 * adjusted dependent on the encryption scheme, but it's too much pain.
41 */
42
43 #define T_EXP MIN(60) /* Expiry time for a key */
44 #define T_REGEN MIN(45) /* Regeneration time for a key */
45 #define SZ_EXP MEG(64) /* Expiry data size for a key */
46 #define SZ_REGEN MEG(32) /* Data size threshold for regen */
47
48 /*----- Handy macros ------------------------------------------------------*/
49
50 #define KEYOK(ks, now) ((ks)->sz_exp > 0 && (ks)->t_exp > now)
51
52 #define SEQSZ 4 /* Size of sequence number packet */
53
54 /*----- Low-level packet encryption and decryption ------------------------*/
55
56 /* --- Encrypted data format --- *
57 *
58 * Let %$p_i$% be the %$i$%-th plaintext message, with type %$t$%. We first
59 * compute
60 *
61 * %$c_i = \mathcal{E}\textrm{-CBC}_{K_{\text{E}}}(p_i)$%
62 *
63 * as the CBC-ciphertext of %$p_i$%, and then
64 *
65 * %$\sigma_i = \mathcal{T}_{K_{\text{M}}}(t, i, c_i)$%
66 *
67 * as a MAC on the %%\emph{ciphertext}%%. The message sent is then the pair
68 * %$(\sigma_i, c_i)$%. This construction is provably secure in the NM-CCA
69 * sense (assuming that the cipher is IND-CPA, and the MAC is SUF-CMA)
70 * [Bellare and Namprempre].
71 *
72 * This also ensures that, assuming the key is good, we have a secure channel
73 * [Krawczyk]. Actually, [Krawczyk] shows that, if the cipher is either a
74 * simple stream cipher or a block cipher in CBC mode, we can use the MAC-
75 * then-encrypt scheme and still have a secure channel. However, I like the
76 * NM-CCA guarantee from [Bellare and Namprempre]. I'm less worried about
77 * the Horton Principle [Wagner and Schneier].
78 */
79
80 /* --- @doencrypt@ --- *
81 *
82 * Arguments: @keyset *ks@ = pointer to keyset to use
83 * @unsigned ty@ = type of message this is
84 * @buf *b@ = pointer to an input buffer
85 * @buf *bb@ = pointer to an output buffer
86 *
87 * Returns: Zero if OK, nonzero if a new key is required.
88 *
89 * Use: Encrypts a message with the given key. We assume that the
90 * keyset is OK to use.
91 */
92
93 static int doencrypt(keyset *ks, unsigned ty, buf *b, buf *bb)
94 {
95 ghash *h;
96 gcipher *c = ks->cout;
97 const octet *p = BCUR(b);
98 size_t sz = BLEFT(b);
99 octet *qmac, *qseq, *qiv, *qpk;
100 uint32 oseq;
101 size_t ivsz = GC_CLASS(c)->blksz;
102 size_t tagsz = ks->tagsz;
103 size_t osz, nsz;
104 octet t[4];
105 int rc = 0;
106
107 /* --- Allocate the required buffer space --- */
108
109 if (buf_ensure(bb, tagsz + SEQSZ + ivsz + sz))
110 return (0); /* Caution! */
111 qmac = BCUR(bb); qseq = qmac + tagsz; qiv = qseq + SEQSZ; qpk = qiv + ivsz;
112 BSTEP(bb, tagsz + SEQSZ + ivsz + sz);
113 STORE32(t, ty);
114
115 oseq = ks->oseq++; STORE32(qseq, oseq);
116 IF_TRACING(T_KEYSET, {
117 trace(T_KEYSET, "keyset: encrypting packet %lu using keyset %u",
118 (unsigned long)oseq, ks->seq);
119 trace_block(T_CRYPTO, "crypto: plaintext packet", p, sz);
120 })
121
122 /* --- Encrypt the packet --- */
123
124 if (ivsz) {
125 rand_get(RAND_GLOBAL, qiv, ivsz);
126 GC_SETIV(c, qiv);
127 IF_TRACING(T_KEYSET, {
128 trace_block(T_CRYPTO, "crypto: initialization vector", qiv, ivsz);
129 })
130 }
131 GC_ENCRYPT(c, p, qpk, sz);
132 IF_TRACING(T_KEYSET, {
133 trace_block(T_CRYPTO, "crypto: encrypted packet", qpk, sz);
134 })
135
136 /* --- Now compute the MAC --- */
137
138 if (tagsz) {
139 h = GM_INIT(ks->mout);
140 GH_HASH(h, t, sizeof(t));
141 GH_HASH(h, qseq, SEQSZ + ivsz + sz);
142 memcpy(qmac, GH_DONE(h, 0), tagsz);
143 GH_DESTROY(h);
144 IF_TRACING(T_KEYSET, {
145 trace_block(T_CRYPTO, "crypto: computed MAC", qmac, tagsz);
146 })
147 }
148
149 /* --- Deduct the packet size from the key's data life --- */
150
151 osz = ks->sz_exp;
152 if (osz > sz)
153 nsz = osz - sz;
154 else
155 nsz = 0;
156 if (osz >= SZ_REGEN && nsz < SZ_REGEN) {
157 T( trace(T_KEYSET, "keyset: keyset %u data regen limit exceeded -- "
158 "forcing exchange", ks->seq); )
159 rc = -1;
160 }
161 ks->sz_exp = nsz;
162 return (rc);
163 }
164
165 /* --- @dodecrypt@ --- *
166 *
167 * Arguments: @keyset *ks@ = pointer to keyset to use
168 * @unsigned ty@ = expected type code
169 * @buf *b@ = pointer to an input buffer
170 * @buf *bb@ = pointer to an output buffer
171 * @uint32 *seq@ = where to store the sequence number
172 *
173 * Returns: Zero if OK, nonzero if it failed.
174 *
175 * Use: Attempts to decrypt a message with the given key. No other
176 * checking (e.g., sequence number checks) is performed. We
177 * assume that the keyset is OK to use, and that there is
178 * sufficient output buffer space reserved. If the decryption
179 * is successful, the buffer pointer is moved past the decrypted
180 * packet, and the packet's sequence number is stored in @*seq@.
181 */
182
183 static int dodecrypt(keyset *ks, unsigned ty, buf *b, buf *bb, uint32 *seq)
184 {
185 const octet *pmac, *piv, *pseq, *ppk;
186 size_t psz = BLEFT(b);
187 size_t sz;
188 octet *q = BCUR(bb);
189 ghash *h;
190 gcipher *c = ks->cin;
191 size_t ivsz = GC_CLASS(c)->blksz;
192 size_t tagsz = ks->tagsz;
193 octet *mac;
194 int eq;
195 octet t[4];
196
197 /* --- Break up the packet into its components --- */
198
199 if (psz < ivsz + SEQSZ + tagsz) {
200 T( trace(T_KEYSET, "keyset: block too small for keyset %u", ks->seq); )
201 return (-1);
202 }
203 sz = psz - ivsz - SEQSZ - tagsz;
204 pmac = BCUR(b); pseq = pmac + tagsz; piv = pseq + SEQSZ; ppk = piv + ivsz;
205 STORE32(t, ty);
206
207 IF_TRACING(T_KEYSET, {
208 trace(T_KEYSET, "keyset: decrypting using keyset %u", ks->seq);
209 trace_block(T_CRYPTO, "crypto: ciphertext packet", ppk, sz);
210 })
211
212 /* --- Verify the MAC on the packet --- */
213
214 if (tagsz) {
215 h = GM_INIT(ks->min);
216 GH_HASH(h, t, sizeof(t));
217 GH_HASH(h, pseq, SEQSZ + ivsz + sz);
218 mac = GH_DONE(h, 0);
219 eq = !memcmp(mac, pmac, tagsz);
220 IF_TRACING(T_KEYSET, {
221 trace_block(T_CRYPTO, "crypto: computed MAC", mac, tagsz);
222 })
223 GH_DESTROY(h);
224 if (!eq) {
225 IF_TRACING(T_KEYSET, {
226 trace(T_KEYSET, "keyset: incorrect MAC: decryption failed");
227 trace_block(T_CRYPTO, "crypto: expected MAC", pmac, tagsz);
228 })
229 return (-1);
230 }
231 }
232
233 /* --- Decrypt the packet --- */
234
235 if (ivsz) {
236 GC_SETIV(c, piv);
237 IF_TRACING(T_KEYSET, {
238 trace_block(T_CRYPTO, "crypto: initialization vector", piv, ivsz);
239 })
240 }
241 GC_DECRYPT(c, ppk, q, sz);
242 if (seq)
243 *seq = LOAD32(pseq);
244 IF_TRACING(T_KEYSET, {
245 trace(T_KEYSET, "keyset: decrypted OK (sequence = %lu)",
246 (unsigned long)LOAD32(pseq));
247 trace_block(T_CRYPTO, "crypto: decrypted packet", q, sz);
248 })
249 BSTEP(bb, sz);
250 return (0);
251 }
252
253 /*----- Operations on a single keyset -------------------------------------*/
254
255 /* --- @ks_drop@ --- *
256 *
257 * Arguments: @keyset *ks@ = pointer to a keyset
258 *
259 * Returns: ---
260 *
261 * Use: Decrements a keyset's reference counter. If the counter hits
262 * zero, the keyset is freed.
263 */
264
265 void ks_drop(keyset *ks)
266 {
267 if (--ks->ref)
268 return;
269 GC_DESTROY(ks->cin);
270 GC_DESTROY(ks->cout);
271 GM_DESTROY(ks->min);
272 GM_DESTROY(ks->mout);
273 DESTROY(ks);
274 }
275
276 /* --- @ks_gen@ --- *
277 *
278 * Arguments: @const void *k@ = pointer to key material
279 * @size_t x, y, z@ = offsets into key material (see below)
280 * @peer *p@ = pointer to peer information
281 *
282 * Returns: A pointer to the new keyset.
283 *
284 * Use: Derives a new keyset from the given key material. The
285 * offsets @x@, @y@ and @z@ separate the key material into three
286 * parts. Between the @k@ and @k + x@ is `my' contribution to
287 * the key material; between @k + x@ and @k + y@ is `your'
288 * contribution; and between @k + y@ and @k + z@ is a shared
289 * value we made together. These are used to construct two
290 * pairs of symmetric keys. Each pair consists of an encryption
291 * key and a message authentication key. One pair is used for
292 * outgoing messages, the other for incoming messages.
293 *
294 * The new key is marked so that it won't be selected for output
295 * by @ksl_encrypt@. You can still encrypt data with it by
296 * calling @ks_encrypt@ directly.
297 */
298
299 keyset *ks_gen(const void *k, size_t x, size_t y, size_t z, peer *p)
300 {
301 ghash *h;
302 const octet *hh;
303 keyset *ks = CREATE(keyset);
304 time_t now = time(0);
305 const octet *pp = k;
306 T( static unsigned seq = 0; )
307
308 T( trace(T_KEYSET, "keyset: adding new keyset %u", seq); )
309
310 /* --- Construct the various keys --- *
311 *
312 * This is done with macros, because it's quite tedious.
313 */
314
315 #define MINE GH_HASH(h, pp, x)
316 #define YOURS GH_HASH(h, pp + x, y - x)
317 #define OURS GH_HASH(h, pp + y, z - y)
318
319 #define HASH_in MINE; YOURS; OURS
320 #define HASH_out YOURS; MINE; OURS
321 #define INIT_c(k) GC_INIT(algs.c, (k), algs.cksz)
322 #define INIT_m(k) GM_KEY(algs.m, (k), algs.mksz)
323 #define STR_c "encryption"
324 #define STR_m "integrity"
325 #define STR_in "incoming"
326 #define STR_out "outgoing"
327
328 #define SETKEY(a, dir) do { \
329 h = GH_INIT(algs.h); \
330 HASH_STRING(h, "tripe-" STR_##a); \
331 HASH_##dir; \
332 hh = GH_DONE(h, 0); \
333 IF_TRACING(T_KEYSET, { \
334 trace_block(T_CRYPTO, "crypto: " STR_##dir " key " STR_##a, \
335 hh, algs.a##ksz); \
336 }) \
337 ks->a##dir = INIT_##a(hh); \
338 GH_DESTROY(h); \
339 } while (0)
340
341 SETKEY(c, in); SETKEY(c, out);
342 SETKEY(m, in); SETKEY(m, out);
343
344 #undef MINE
345 #undef YOURS
346 #undef OURS
347 #undef STR_c
348 #undef STR_m
349 #undef STR_in
350 #undef STR_out
351 #undef INIT_c
352 #undef INIT_m
353 #undef HASH_in
354 #undef HASH_out
355 #undef SETKEY
356
357 T( ks->seq = seq++; )
358 ks->ref = 1;
359 ks->t_exp = now + T_EXP;
360 ks->sz_exp = SZ_EXP;
361 ks->oseq = 0;
362 seq_reset(&ks->iseq);
363 ks->next = 0;
364 ks->p = p;
365 ks->f = KSF_LISTEN;
366 ks->tagsz = algs.tagsz;
367 return (ks);
368 }
369
370 /* --- @ks_tregen@ --- *
371 *
372 * Arguments: @keyset *ks@ = pointer to a keyset
373 *
374 * Returns: The time at which moves ought to be made to replace this key.
375 */
376
377 time_t ks_tregen(keyset *ks) { return (ks->t_exp - T_EXP + T_REGEN); }
378
379 /* --- @ks_activate@ --- *
380 *
381 * Arguments: @keyset *ks@ = pointer to a keyset
382 *
383 * Returns: ---
384 *
385 * Use: Activates a keyset, so that it can be used for encrypting
386 * outgoing messages.
387 */
388
389 void ks_activate(keyset *ks)
390 {
391 if (ks->f & KSF_LISTEN) {
392 T( trace(T_KEYSET, "keyset: activating keyset %u", ks->seq); )
393 ks->f &= ~KSF_LISTEN;
394 }
395 }
396
397 /* --- @ks_encrypt@ --- *
398 *
399 * Arguments: @keyset *ks@ = pointer to a keyset
400 * @unsigned ty@ = message type
401 * @buf *b@ = pointer to input buffer
402 * @buf *bb@ = pointer to output buffer
403 *
404 * Returns: Zero if OK, nonzero if the key needs replacing. If the
405 * encryption failed, the output buffer is broken and zero is
406 * returned.
407 *
408 * Use: Encrypts a block of data using the key. Note that the `key
409 * ought to be replaced' notification is only ever given once
410 * for each key. Also note that this call forces a keyset to be
411 * used even if it's marked as not for data output.
412 */
413
414 int ks_encrypt(keyset *ks, unsigned ty, buf *b, buf *bb)
415 {
416 time_t now = time(0);
417
418 if (!KEYOK(ks, now)) {
419 buf_break(bb);
420 return (0);
421 }
422 return (doencrypt(ks, ty, b, bb));
423 }
424
425 /* --- @ks_decrypt@ --- *
426 *
427 * Arguments: @keyset *ks@ = pointer to a keyset
428 * @unsigned ty@ = expected type code
429 * @buf *b@ = pointer to an input buffer
430 * @buf *bb@ = pointer to an output buffer
431 *
432 * Returns: Zero on success, or nonzero if there was some problem.
433 *
434 * Use: Attempts to decrypt a message using a given key. Note that
435 * requesting decryption with a key directly won't clear a
436 * marking that it's not for encryption.
437 */
438
439 int ks_decrypt(keyset *ks, unsigned ty, buf *b, buf *bb)
440 {
441 time_t now = time(0);
442 uint32 seq;
443
444 if (!KEYOK(ks, now) ||
445 buf_ensure(bb, BLEN(b)) ||
446 dodecrypt(ks, ty, b, bb, &seq) ||
447 seq_check(&ks->iseq, seq, "SYMM"))
448 return (-1);
449 return (0);
450 }
451
452 /*----- Keyset list handling ----------------------------------------------*/
453
454 /* --- @ksl_free@ --- *
455 *
456 * Arguments: @keyset **ksroot@ = pointer to keyset list head
457 *
458 * Returns: ---
459 *
460 * Use: Frees (releases references to) all of the keys in a keyset.
461 */
462
463 void ksl_free(keyset **ksroot)
464 {
465 keyset *ks, *ksn;
466 for (ks = *ksroot; ks; ks = ksn) {
467 ksn = ks->next;
468 ks->f &= ~KSF_LINK;
469 ks_drop(ks);
470 }
471 }
472
473 /* --- @ksl_link@ --- *
474 *
475 * Arguments: @keyset **ksroot@ = pointer to keyset list head
476 * @keyset *ks@ = pointer to a keyset
477 *
478 * Returns: ---
479 *
480 * Use: Links a keyset into a list. A keyset can only be on one list
481 * at a time. Bad things happen otherwise.
482 */
483
484 void ksl_link(keyset **ksroot, keyset *ks)
485 {
486 assert(!(ks->f & KSF_LINK));
487 ks->next = *ksroot;
488 *ksroot = ks;
489 ks->f |= KSF_LINK;
490 ks->ref++;
491 }
492
493 /* --- @ksl_prune@ --- *
494 *
495 * Arguments: @keyset **ksroot@ = pointer to keyset list head
496 *
497 * Returns: ---
498 *
499 * Use: Prunes the keyset list by removing keys which mustn't be used
500 * any more.
501 */
502
503 void ksl_prune(keyset **ksroot)
504 {
505 time_t now = time(0);
506
507 while (*ksroot) {
508 keyset *ks = *ksroot;
509
510 if (ks->t_exp <= now) {
511 T( trace(T_KEYSET, "keyset: expiring keyset %u (time limit reached)",
512 ks->seq); )
513 goto kill;
514 } else if (ks->sz_exp == 0) {
515 T( trace(T_KEYSET, "keyset: expiring keyset %u (data limit reached)",
516 ks->seq); )
517 goto kill;
518 } else {
519 ksroot = &ks->next;
520 continue;
521 }
522
523 kill:
524 *ksroot = ks->next;
525 ks->f &= ~KSF_LINK;
526 ks_drop(ks);
527 }
528 }
529
530 /* --- @ksl_encrypt@ --- *
531 *
532 * Arguments: @keyset **ksroot@ = pointer to keyset list head
533 * @unsigned ty@ = message type
534 * @buf *b@ = pointer to input buffer
535 * @buf *bb@ = pointer to output buffer
536 *
537 * Returns: Nonzero if a new key is needed.
538 *
539 * Use: Encrypts a packet.
540 */
541
542 int ksl_encrypt(keyset **ksroot, unsigned ty, buf *b, buf *bb)
543 {
544 time_t now = time(0);
545 keyset *ks = *ksroot;
546
547 for (;;) {
548 if (!ks) {
549 T( trace(T_KEYSET, "keyset: no suitable keysets found"); )
550 buf_break(bb);
551 return (-1);
552 }
553 if (KEYOK(ks, now) && !(ks->f & KSF_LISTEN))
554 break;
555 ks = ks->next;
556 }
557
558 return (doencrypt(ks, ty, b, bb));
559 }
560
561 /* --- @ksl_decrypt@ --- *
562 *
563 * Arguments: @keyset **ksroot@ = pointer to keyset list head
564 * @unsigned ty@ = expected type code
565 * @buf *b@ = pointer to input buffer
566 * @buf *bb@ = pointer to output buffer
567 *
568 * Returns: Nonzero if the packet couldn't be decrypted.
569 *
570 * Use: Decrypts a packet.
571 */
572
573 int ksl_decrypt(keyset **ksroot, unsigned ty, buf *b, buf *bb)
574 {
575 time_t now = time(0);
576 keyset *ks;
577 uint32 seq;
578
579 if (buf_ensure(bb, BLEN(b)))
580 return (-1);
581
582 for (ks = *ksroot; ks; ks = ks->next) {
583 if (!KEYOK(ks, now))
584 continue;
585 if (!dodecrypt(ks, ty, b, bb, &seq)) {
586 if (ks->f & KSF_LISTEN) {
587 T( trace(T_KEYSET, "keyset: implicitly activating keyset %u",
588 ks->seq); )
589 ks->f &= ~KSF_LISTEN;
590 }
591 return (seq_check(&ks->iseq, seq, "SYMM"));
592 }
593 }
594 T( trace(T_KEYSET, "keyset: no matching keys, or incorrect MAC"); )
595 return (-1);
596 }
597
598 /*----- That's all, folks -------------------------------------------------*/