Support elliptic curve key exchange.
[tripe] / keyexch.c
1 /* -*-c-*-
2 *
3 * $Id: keyexch.c,v 1.11 2004/04/03 12:35:13 mdw Exp $
4 *
5 * Key exchange protocol
6 *
7 * (c) 2001 Straylight/Edgeware
8 */
9
10 /*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Trivial IP Encryption (TrIPE).
13 *
14 * TrIPE is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * TrIPE is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with TrIPE; if not, write to the Free Software Foundation,
26 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 */
28
29 /*----- Revision history --------------------------------------------------*
30 *
31 * $Log: keyexch.c,v $
32 * Revision 1.11 2004/04/03 12:35:13 mdw
33 * Support elliptic curve key exchange.
34 *
35 * Revision 1.10 2003/10/15 09:29:38 mdw
36 * Cosmetic fix to changelog comment.
37 *
38 * Revision 1.9 2003/07/13 11:53:14 mdw
39 * Add protocol commentary.
40 *
41 * Revision 1.8 2003/07/13 11:19:49 mdw
42 * Incompatible protocol fix! Include message type code under MAC tag to
43 * prevent cut-and-paste from key-exchange messages to general packet
44 * transport.
45 *
46 * Revision 1.7 2003/05/17 11:01:28 mdw
47 * Handle flags on challenge timers correctly to prevent confusing the event
48 * list.
49 *
50 * Revision 1.6 2003/04/06 10:26:35 mdw
51 * Report peer name on decrypt errors.
52 *
53 * Revision 1.5 2002/01/13 14:54:40 mdw
54 * Patch up zero-knowledge property by passing an encrypted log with a
55 * challenge, so that the prover can verify that the challenge is good.
56 *
57 * Revision 1.4 2001/06/22 19:40:36 mdw
58 * Support expiry of other peers' public keys.
59 *
60 * Revision 1.3 2001/06/19 22:07:09 mdw
61 * Cosmetic fixes.
62 *
63 * Revision 1.2 2001/02/16 21:24:27 mdw
64 * Rewrite for new key exchange protocol.
65 *
66 * Revision 1.1 2001/02/03 20:26:37 mdw
67 * Initial checkin.
68 *
69 */
70
71 /*----- Header files ------------------------------------------------------*/
72
73 #include "tripe.h"
74
75 /*----- Brief protocol overview -------------------------------------------*
76 *
77 * Let %$G$% be a cyclic group; let %$g$% be a generator of %$G$%, and let
78 * %$q$% be the order of %$G$%; for a key %$K$%, let %$E_K(\cdot)$% denote
79 * application of the symmetric packet protocol to a message; let
80 * %$H(\cdot)$% be the random oracle. Let $\alpha \inr \{0,\ldots,q - 1\}$%
81 * be Alice's private key; let %$a = g^\alpha$% be her public key; let %$b$%
82 * be Bob's public key.
83 *
84 * At the beginning of the session, Alice chooses
85 *
86 * %$\rho_A \inr \{0, \ldots q - 1\}$%
87 *
88 * We also have:
89 *
90 * %$r_A = g^{\rho_A}$% Alice's challenge
91 * %$c_A = H(\cookie{cookie}, r_A)$% Alice's cookie
92 * %$v_A = \rho_A \xor H(\cookie{expected-reply}, r_A, r_B, b^{\rho_A})$%
93 * Alice's challenge check value
94 * %$r_B^\alpha = a^{\rho_B}$% Alice's reply
95 * %$K = r_B^{\rho_A} = r_B^{\rho_A} = g^{\rho_A\rho_B}$%
96 * Alice and Bob's shared secret key
97 * %$w_A = H(\cookie{switch-request}, c_A, c_B)$%
98 * Alice's switch request value
99 * %$u_A = H(\cookie{switch-confirm}, c_A, c_B)$%
100 * Alice's switch confirm value
101 *
102 * The messages are then:
103 *
104 * %$\cookie{kx-pre-challenge}, r_A$%
105 * Initial greeting. In state @KXS_CHAL@.
106 *
107 * %$\cookie{kx-cookie}, r_A, c_B$%
108 * My table is full but I got your message.
109 *
110 * %$\cookie{kx-challenge}, r_A, c_B, v_A$%
111 * Here's a full challenge for you to answer.
112 *
113 * %$\cookie{kx-reply}, c_A, c_B, v_A, E_K(r_B^\alpha))$%
114 * Challenge accpeted: here's the answer. Commit to my challenge. Move
115 * to @KXS_COMMIT@.
116 *
117 * %$\cookie{kx-switch}, c_A, c_B, E_K(r_B^\alpha, w_A))$%
118 * Reply received: here's my reply. Committed; send data; move to
119 * @KXS_SWITCH@.
120 *
121 * %$\cookie{kx-switch-ok}, E_K(u_A))$%
122 * Switch received. Committed; send data; move to @KXS_SWITCH@.
123 */
124
125 /*----- Tunable parameters ------------------------------------------------*/
126
127 #define T_VALID MIN(2) /* Challenge validity period */
128 #define T_RETRY SEC(10) /* Challenge retransmit interval */
129
130 #define ISVALID(kx, now) ((now) < (kx)->t_valid)
131
132 /*----- Various utilities -------------------------------------------------*/
133
134 /* --- @hashge@ --- *
135 *
136 * Arguments: @HASH_CTX *r@ = pointer to hash context
137 * @ge *x@ = pointer to group element
138 *
139 * Returns: ---
140 *
141 * Use: Adds the hash of a group element to the context. Corrupts
142 * @buf_t@.
143 */
144
145 static void hashge(HASH_CTX *r, ge *x)
146 {
147 buf b;
148 buf_init(&b, buf_t, sizeof(buf_t));
149 G_TOBUF(gg, &b, x);
150 assert(BOK(&b));
151 HASH(r, BBASE(&b), BLEN(&b));
152 }
153
154 /* --- @mpcrypt@ --- *
155 *
156 * Arguments: @mp *d@ = the destination integer
157 * @mp *x@ = the plaintext/ciphertext integer
158 * @size_t sz@ = the expected size of the plaintext
159 * @const octet *k@ = pointer to key material
160 * @size_t ksz@ = size of the key
161 *
162 * Returns: The encrypted/decrypted integer.
163 *
164 * Use: Encrypts (or decrypts) a multiprecision integer. In fact,
165 * the title is a bit of a misnomer: we actually compute
166 * %$x \xor H(k)$%, so it's a random oracle thing rather than an
167 * encryption thing.
168 */
169
170 static mp *mpcrypt(mp *d, mp *x, size_t sz, const octet *k, size_t ksz)
171 {
172 MGF_CTX m;
173
174 MGF_INIT(&m, k, ksz, 0);
175 mp_storeb(x, buf_t, sz);
176 MGF_CRYPT(&m, buf_t, buf_t, sz);
177 return (mp_loadb(d, buf_t, sz));
178 }
179
180 /* --- @timer@ --- *
181 *
182 * Arguments: @struct timeval *tv@ = the current time
183 * @void *v@ = pointer to key exchange context
184 *
185 * Returns: ---
186 *
187 * Use: Acts when the key exchange timer goes off.
188 */
189
190 static void timer(struct timeval *tv, void *v)
191 {
192 keyexch *kx = v;
193 kx->f &= ~KXF_TIMER;
194 T( trace(T_KEYEXCH, "keyexch: timer has popped"); )
195 kx_start(kx);
196 }
197
198 /* --- @settimer@ --- *
199 *
200 * Arguments: @keyexch *kx@ = pointer to key exchange context
201 * @time_t t@ = when to set the timer for
202 *
203 * Returns: ---
204 *
205 * Use: Sets the timer for the next key exchange attempt.
206 */
207
208 static void settimer(keyexch *kx, time_t t)
209 {
210 struct timeval tv;
211 if (kx->f & KXF_TIMER)
212 sel_rmtimer(&kx->t);
213 tv.tv_sec = t;
214 tv.tv_usec = 0;
215 sel_addtimer(&sel, &kx->t, &tv, timer, kx);
216 kx->f |= KXF_TIMER;
217 }
218
219 /*----- Challenge management ----------------------------------------------*/
220
221 /* --- Notes on challenge management --- *
222 *
223 * We may get multiple different replies to our key exchange; some will be
224 * correct, some inserted by attackers. Up until @KX_THRESH@, all challenges
225 * received will be added to the table and given a full response. After
226 * @KX_THRESH@ distinct challenges are received, we return only a `cookie':
227 * our existing challenge, followed by a hash of the sender's challenge. We
228 * do %%\emph{not}%% give a bare challenge a reply slot at this stage. All
229 * properly-formed cookies are assigned a table slot: if none is spare, a
230 * used slot is randomly selected and destroyed. A cookie always receives a
231 * full reply.
232 */
233
234 /* --- @kxc_destroy@ --- *
235 *
236 * Arguments: @kxchal *kxc@ = pointer to the challenge block
237 *
238 * Returns: ---
239 *
240 * Use: Disposes of a challenge block.
241 */
242
243 static void kxc_destroy(kxchal *kxc)
244 {
245 if (kxc->f & KXF_TIMER)
246 sel_rmtimer(&kxc->t);
247 G_DESTROY(gg, kxc->c);
248 if (kxc->r) G_DESTROY(gg, kxc->r);
249 mp_drop(kxc->ck);
250 ks_drop(kxc->ks);
251 DESTROY(kxc);
252 }
253
254 /* --- @kxc_stoptimer@ --- *
255 *
256 * Arguments: @kxchal *kxc@ = pointer to the challenge block
257 *
258 * Returns: ---
259 *
260 * Use: Stops the challenge's retry timer from sending messages.
261 * Useful when the state machine is in the endgame of the
262 * exchange.
263 */
264
265 static void kxc_stoptimer(kxchal *kxc)
266 {
267 if (kxc->f & KXF_TIMER)
268 sel_rmtimer(&kxc->t);
269 kxc->f &= ~KXF_TIMER;
270 }
271
272 /* --- @kxc_new@ --- *
273 *
274 * Arguments: @keyexch *kx@ = pointer to key exchange block
275 *
276 * Returns: A pointer to the challenge block.
277 *
278 * Use: Returns a pointer to a new challenge block to fill in.
279 */
280
281 static kxchal *kxc_new(keyexch *kx)
282 {
283 kxchal *kxc;
284 unsigned i;
285
286 /* --- If we're over reply threshold, discard one at random --- */
287
288 if (kx->nr < KX_NCHAL)
289 i = kx->nr++;
290 else {
291 i = rand_global.ops->range(&rand_global, KX_NCHAL);
292 kxc_destroy(kx->r[i]);
293 }
294
295 /* --- Fill in the new structure --- */
296
297 kxc = CREATE(kxchal);
298 kxc->c = G_CREATE(gg);
299 kxc->r = 0;
300 kxc->ck = MP_NEW;
301 kxc->ks = 0;
302 kxc->kx = kx;
303 kxc->f = 0;
304 kx->r[i] = kxc;
305 return (kxc);
306 }
307
308 /* --- @kxc_bychal@ --- *
309 *
310 * Arguments: @keyexch *kx@ = pointer to key exchange block
311 * @ge *c@ = challenge from remote host
312 *
313 * Returns: Pointer to the challenge block, or null.
314 *
315 * Use: Finds a challenge block, given its challenge.
316 */
317
318 static kxchal *kxc_bychal(keyexch *kx, ge *c)
319 {
320 unsigned i;
321
322 for (i = 0; i < kx->nr; i++) {
323 if (G_EQ(gg, c, kx->r[i]->c))
324 return (kx->r[i]);
325 }
326 return (0);
327 }
328
329 /* --- @kxc_byhc@ --- *
330 *
331 * Arguments: @keyexch *kx@ = pointer to key exchange block
332 * @const octet *hc@ = challenge hash from remote host
333 *
334 * Returns: Pointer to the challenge block, or null.
335 *
336 * Use: Finds a challenge block, given a hash of its challenge.
337 */
338
339 static kxchal *kxc_byhc(keyexch *kx, const octet *hc)
340 {
341 unsigned i;
342
343 for (i = 0; i < kx->nr; i++) {
344 if (memcmp(hc, kx->r[i]->hc, HASHSZ) == 0)
345 return (kx->r[i]);
346 }
347 return (0);
348 }
349
350 /* --- @kxc_answer@ --- *
351 *
352 * Arguments: @keyexch *kx@ = pointer to key exchange block
353 * @kxchal *kxc@ = pointer to challenge block
354 *
355 * Returns: ---
356 *
357 * Use: Sends a reply to the remote host, according to the data in
358 * this challenge block.
359 */
360
361 static void kxc_answer(keyexch *kx, kxchal *kxc);
362
363 static void kxc_timer(struct timeval *tv, void *v)
364 {
365 kxchal *kxc = v;
366 kxc->f &= ~KXF_TIMER;
367 kxc_answer(kxc->kx, kxc);
368 }
369
370 static void kxc_answer(keyexch *kx, kxchal *kxc)
371 {
372 stats *st = p_stats(kx->p);
373 buf *b = p_txstart(kx->p, MSG_KEYEXCH | (kxc->r ? KX_REPLY : KX_CHAL));
374 struct timeval tv;
375 buf bb;
376
377 /* --- Build the reply packet --- */
378
379 if (!kxc->r)
380 G_TOBUF(gg, b, kx->c);
381 else
382 buf_put(b, kx->hc, HASHSZ);
383 buf_put(b, kxc->hc, HASHSZ);
384 buf_putmp(b, kxc->ck);
385
386 /* --- Maybe send an actual reply, if we have one --- */
387
388 if (!kxc->r) {
389 T( trace(T_KEYEXCH, "keyexch: resending challenge to `%s'",
390 p_name(kx->p)); )
391 } else {
392 T( trace(T_KEYEXCH, "keyexch: sending reply to `%s'", p_name(kx->p)); )
393 buf_init(&bb, buf_i, sizeof(buf_i));
394 G_TOBUF(gg, &bb, kxc->r);
395 buf_flip(&bb);
396 ks_encrypt(kxc->ks, MSG_KEYEXCH | KX_REPLY, &bb, b);
397 }
398
399 /* --- Update the statistics --- */
400
401 if (BOK(b)) {
402 st->n_kxout++;
403 st->sz_kxout += BLEN(b);
404 p_txend(kx->p);
405 }
406
407 /* --- Schedule another resend --- */
408
409 if (kxc->f & KXF_TIMER)
410 sel_rmtimer(&kxc->t);
411 gettimeofday(&tv, 0);
412 tv.tv_sec += T_RETRY;
413 sel_addtimer(&sel, &kxc->t, &tv, kxc_timer, kxc);
414 kxc->f |= KXF_TIMER;
415 }
416
417 /*----- Individual message handlers ---------------------------------------*/
418
419 /* --- @getreply@ --- *
420 *
421 * Arguments: @keyexch *kx@ = pointer to key exchange context
422 * @ge *c@ = a challenge
423 * @mp *ck@ = the supplied expected-reply check value
424 *
425 * Returns: A pointer to the reply, or null if the reply-hash was wrong.
426 *
427 * Use: Computes replies to challenges.
428 */
429
430 static ge *getreply(keyexch *kx, ge *c, mp *ck)
431 {
432 ge *r = G_CREATE(gg);
433 ge *y = G_CREATE(gg);
434 mp *a = MP_NEW;
435 HASH_CTX h;
436 octet buf[HASHSZ];
437 int ok;
438
439 G_EXP(gg, r, c, kpriv);
440 HASH_INIT(&h);
441 HASH_STRING(&h, "tripe-expected-reply");
442 hashge(&h, c);
443 hashge(&h, kx->c);
444 hashge(&h, r);
445 HASH_DONE(&h, buf);
446
447 a = mpcrypt(MP_NEW, ck, mp_octets(gg->r), buf, sizeof(buf));
448 IF_TRACING(T_KEYEXCH, IF_TRACING(T_CRYPTO, {
449 trace(T_CRYPTO, "crypto: computed reply = %s", gestr(gg, r));
450 trace_block(T_CRYPTO, "crypto: computed reply hash", buf, HASHSZ);
451 trace(T_CRYPTO, "crypto: recovered log = %s", mpstr(a));
452 }))
453 G_EXP(gg, y, gg->g, a);
454 ok = G_EQ(gg, y, c);
455 if (!ok) {
456 a_warn("invalid expected-reply check from `%s'", p_name(kx->p));
457 IF_TRACING(T_KEYEXCH, IF_TRACING(T_CRYPTO, {
458 trace(T_CRYPTO, "crypto: computed challenge = %s", gestr(gg, y));
459 }))
460 G_DESTROY(gg, r);
461 r = 0;
462 }
463 mp_drop(a);
464 G_DESTROY(gg, y);
465 return (r);
466 }
467
468 /* --- @dochallenge@ --- *
469 *
470 * Arguments: @keyexch *kx@ = pointer to key exchange block
471 * @unsigned msg@ = message code for the packet
472 * @buf *b@ = buffer containing the packet
473 *
474 * Returns: Zero if OK, nonzero if the packet was rejected.
475 *
476 * Use: Processes a packet containing a challenge.
477 */
478
479 static int dochallenge(keyexch *kx, unsigned msg, buf *b)
480 {
481 ge *c = G_CREATE(gg);
482 mp *ck = MP_NEW;
483 const octet *hc = 0;
484 kxchal *kxc;
485 HASH_CTX h;
486 octet buf[HASHSZ];
487
488 /* --- Ensure that we're in a sensible state --- */
489
490 if (kx->s != KXS_CHAL) {
491 a_warn("unexpected challenge from `%s'", p_name(kx->p));
492 goto bad;
493 }
494
495 /* --- Unpack the packet --- */
496
497 if (G_FROMBUF(gg, b, c) ||
498 (msg >= KX_COOKIE && (hc = buf_get(b, HASHSZ)) == 0) ||
499 (msg >= KX_CHAL && (ck = buf_getmp(b)) == 0) ||
500 BLEFT(b)) {
501 a_warn("malformed packet from `%s'", p_name(kx->p));
502 goto bad;
503 }
504
505 IF_TRACING(T_KEYEXCH, IF_TRACING(T_CRYPTO, {
506 trace(T_CRYPTO, "crypto: challenge = %s", gestr(gg, c));
507 if (hc) trace_block(T_CRYPTO, "crypto: cookie", hc, HASHSZ);
508 if (ck) trace(T_CRYPTO, "crypto: check value = %s", mpstr(ck));
509 }))
510
511 /* --- First, handle a bare challenge --- *
512 *
513 * If the table is heavily loaded, just emit a cookie and return.
514 */
515
516 if (!hc && kx->nr >= KX_THRESH) {
517 T( trace(T_KEYEXCH, "keyexch: too many challenges -- sending cookie"); )
518 b = p_txstart(kx->p, MSG_KEYEXCH | KX_COOKIE);
519 G_TOBUF(gg, b, kx->c);
520 HASH_INIT(&h);
521 HASH_STRING(&h, "tripe-cookie");
522 hashge(&h, c);
523 HASH_DONE(&h, buf_get(b, HASHSZ));
524 p_txend(kx->p);
525 goto tidy;
526 }
527
528 /* --- Discard a packet with an invalid cookie --- */
529
530 if (hc && memcmp(hc, kx->hc, HASHSZ) != 0) {
531 a_warn("incorrect cookie from `%s'", p_name(kx->p));
532 goto bad;
533 }
534
535 /* --- Find a challenge block for this packet --- *
536 *
537 * If there isn't one already, create a new one.
538 */
539
540 if ((kxc = kxc_bychal(kx, c)) == 0) {
541 size_t x, y, z;
542 ge *r;
543
544 /* --- Be careful here --- *
545 *
546 * If this is a full challenge, and it's the first time I've seen it, I
547 * want to be able to throw it away before committing a table entry to
548 * it.
549 */
550
551 if (!ck)
552 kxc = kxc_new(kx);
553 else {
554 if ((r = getreply(kx, c, ck)) == 0)
555 goto bad;
556 kxc = kxc_new(kx);
557 kxc->r = r;
558 }
559 kxc->c = G_CREATE(gg);
560 G_COPY(gg, kxc->c, c);
561
562 /* --- Work out the cookie for this challenge --- */
563
564 HASH_INIT(&h);
565 HASH_STRING(&h, "tripe-cookie");
566 hashge(&h, kxc->c);
567 HASH_DONE(&h, kxc->hc);
568
569 /* --- Compute the expected-reply hash --- */
570
571 HASH_INIT(&h);
572 HASH_STRING(&h, "tripe-expected-reply");
573 hashge(&h, kx->c);
574 hashge(&h, kxc->c);
575 hashge(&h, kx->rx);
576 HASH_DONE(&h, buf);
577 kxc->ck = mpcrypt(MP_NEW, kx->alpha, mp_octets(gg->r),
578 buf, sizeof(buf));
579
580 /* --- Work out the shared key --- */
581
582 r = G_CREATE(gg);
583 G_EXP(gg, r, c, kx->alpha);
584
585 /* --- Compute the switch messages --- */
586
587 HASH_INIT(&h); HASH_STRING(&h, "tripe-switch-request");
588 hashge(&h, kx->c); hashge(&h, kxc->c);
589 HASH_DONE(&h, kxc->hswrq_out);
590 HASH_INIT(&h); HASH_STRING(&h, "tripe-switch-confirm");
591 hashge(&h, kx->c); hashge(&h, kxc->c);
592 HASH_DONE(&h, kxc->hswok_out);
593
594 HASH_INIT(&h); HASH_STRING(&h, "tripe-switch-request");
595 hashge(&h, kxc->c); hashge(&h, kx->c);
596 HASH_DONE(&h, kxc->hswrq_in);
597 HASH_INIT(&h); HASH_STRING(&h, "tripe-switch-confirm");
598 hashge(&h, kxc->c); hashge(&h, kx->c);
599 HASH_DONE(&h, kxc->hswok_in);
600
601 IF_TRACING(T_KEYEXCH, IF_TRACING(T_CRYPTO, {
602 trace_block(T_CRYPTO, "crypto: computed cookie", kxc->hc, HASHSZ);
603 trace_block(T_CRYPTO, "crypto: expected-reply hash",
604 buf, HASHSZ);
605 trace(T_CRYPTO, "crypto: my reply check = %s", mpstr(kxc->ck));
606 trace(T_CRYPTO, "crypto: shared secret = %s", gestr(gg, r));
607 trace_block(T_CRYPTO, "crypto: outbound switch request",
608 kxc->hswrq_out, HASHSZ);
609 trace_block(T_CRYPTO, "crypto: outbound switch confirm",
610 kxc->hswok_out, HASHSZ);
611 trace_block(T_CRYPTO, "crypto: inbound switch request",
612 kxc->hswrq_in, HASHSZ);
613 trace_block(T_CRYPTO, "crypto: inbound switch confirm",
614 kxc->hswok_in, HASHSZ);
615 }))
616
617 /* --- Create a new symmetric keyset --- */
618
619 buf_init(b, buf_o, sizeof(buf_o));
620 G_TOBUF(gg, b, kx->c); x = BLEN(b);
621 G_TOBUF(gg, b, kxc->c); y = BLEN(b);
622 G_TOBUF(gg, b, r); z = BLEN(b);
623 assert(BOK(b));
624
625 kxc->ks = ks_gen(BBASE(b), x, y, z, kx->p);
626 G_DESTROY(gg, r);
627 }
628
629 /* --- Answer the challenge if we need to --- */
630
631 if (ck && !kxc->r) {
632 ge *r;
633 if ((r = getreply(kx, c, ck)) == 0)
634 goto bad;
635 kxc->r = r;
636 }
637
638 kxc_answer(kx, kxc);
639
640 /* --- Tidy up and go home --- */
641
642 tidy:
643 G_DESTROY(gg, c);
644 mp_drop(ck);
645 return (0);
646
647 bad:
648 G_DESTROY(gg, c);
649 mp_drop(ck);
650 return (-1);
651 }
652
653 /* --- @resend@ --- *
654 *
655 * Arguments: @keyexch *kx@ = pointer to key exchange context
656 *
657 * Returns: ---
658 *
659 * Use: Sends the next message for a key exchange.
660 */
661
662 static void resend(keyexch *kx)
663 {
664 kxchal *kxc;
665 buf bb;
666 stats *st = p_stats(kx->p);
667 buf *b;
668
669 switch (kx->s) {
670 case KXS_CHAL:
671 T( trace(T_KEYEXCH, "keyexch: sending prechallenge to `%s'",
672 p_name(kx->p)); )
673 b = p_txstart(kx->p, MSG_KEYEXCH | KX_PRECHAL);
674 G_TOBUF(gg, b, kx->c);
675 break;
676 case KXS_COMMIT:
677 T( trace(T_KEYEXCH, "keyexch: sending switch request to `%s'",
678 p_name(kx->p)); )
679 kxc = kx->r[0];
680 b = p_txstart(kx->p, MSG_KEYEXCH | KX_SWITCH);
681 buf_put(b, kx->hc, HASHSZ);
682 buf_put(b, kxc->hc, HASHSZ);
683 buf_init(&bb, buf_i, sizeof(buf_i));
684 G_TOBUF(gg, &bb, kxc->r);
685 buf_put(&bb, kxc->hswrq_out, HASHSZ);
686 buf_flip(&bb);
687 ks_encrypt(kxc->ks, MSG_KEYEXCH | KX_SWITCH, &bb, b);
688 break;
689 case KXS_SWITCH:
690 T( trace(T_KEYEXCH, "keyexch: sending switch confirmation to `%s'",
691 p_name(kx->p)); )
692 kxc = kx->r[0];
693 b = p_txstart(kx->p, MSG_KEYEXCH | KX_SWITCHOK);
694 buf_init(&bb, buf_i, sizeof(buf_i));
695 buf_put(&bb, kxc->hswok_out, HASHSZ);
696 buf_flip(&bb);
697 ks_encrypt(kxc->ks, MSG_KEYEXCH | KX_SWITCHOK, &bb, b);
698 break;
699 default:
700 abort();
701 }
702
703 if (BOK(b)) {
704 st->n_kxout++;
705 st->sz_kxout += BLEN(b);
706 p_txend(kx->p);
707 }
708
709 if (kx->s < KXS_SWITCH)
710 settimer(kx, time(0) + T_RETRY);
711 }
712
713 /* --- @matchreply@ --- *
714 *
715 * Arguments: @keyexch *kx@ = pointer to key exchange context
716 * @unsigned ty@ = type of incoming message
717 * @const octet *hc_in@ = a hash of his challenge
718 * @const octet *hc_out@ = a hash of my challenge (cookie)
719 * @mp *ck@ = his expected-reply hash (optional)
720 * @buf *b@ = encrypted remainder of the packet
721 *
722 * Returns: A pointer to the challenge block if OK, or null on failure.
723 *
724 * Use: Checks a reply or switch packet, ensuring that its contents
725 * are sensible and correct. If they are, @*b@ is set to point
726 * to the remainder of the encrypted data, and the correct
727 * challenge is returned.
728 */
729
730 static kxchal *matchreply(keyexch *kx, unsigned ty, const octet *hc_in,
731 const octet *hc_out, mp *ck, buf *b)
732 {
733 kxchal *kxc;
734 buf bb;
735 ge *r = 0;
736
737 /* --- Check the plaintext portions of the data --- */
738
739 IF_TRACING(T_KEYEXCH, IF_TRACING(T_CRYPTO, {
740 trace_block(T_CRYPTO, "crypto: challenge", hc_in, HASHSZ);
741 trace_block(T_CRYPTO, "crypto: cookie", hc_out, HASHSZ);
742 if (ck) trace(T_CRYPTO, "crypto: check value = %s", mpstr(ck));
743 }))
744 if (memcmp(hc_out, kx->hc, HASHSZ) != 0) {
745 a_warn("incorrect cookie from `%s'", p_name(kx->p));
746 goto bad;
747 }
748 if ((kxc = kxc_byhc(kx, hc_in)) == 0) {
749 a_warn("received reply for unknown challenge from `%s'", p_name(kx->p));
750 goto bad;
751 }
752
753 /* --- Maybe compute a reply for the challenge --- */
754
755 if (!kxc->r) {
756 if (!ck) {
757 a_warn("unexpected switch request from `%s'", p_name(kx->p));
758 goto bad;
759 }
760 if ((r = getreply(kx, kxc->c, ck)) == 0)
761 goto bad;
762 kxc->r = r;
763 r = 0;
764 }
765
766 /* --- Decrypt the rest of the packet --- */
767
768 buf_init(&bb, buf_o, sizeof(buf_o));
769 if (ks_decrypt(kxc->ks, ty, b, &bb)) {
770 a_warn("failed to decrypt reply from `%s'", p_name(kx->p));
771 goto bad;
772 }
773 buf_init(b, BBASE(&bb), BLEN(&bb));
774 r = G_CREATE(gg);
775 if (G_FROMBUF(gg, b, r)) {
776 a_warn("invalid reply packet from `%s'", p_name(kx->p));
777 goto bad;
778 }
779 IF_TRACING(T_KEYEXCH, IF_TRACING(T_CRYPTO, {
780 trace(T_CRYPTO, "crypto: reply = %s", gestr(gg, r));
781 }))
782 if (!G_EQ(gg, r, kx->rx)) {
783 a_warn("incorrect reply from `%s'", p_name(kx->p));
784 goto bad;
785 }
786
787 /* --- Done --- */
788
789 G_DESTROY(gg, r);
790 return (kxc);
791
792 bad:
793 if (r) G_DESTROY(gg, r);
794 return (0);
795 }
796
797 /* --- @commit@ --- *
798 *
799 * Arguments: @keyexch *kx@ = pointer to key exchange context
800 * @kxchal *kxc@ = pointer to challenge to commit to
801 *
802 * Returns: ---
803 *
804 * Use: Commits to a particular challenge as being the `right' one,
805 * since a reply has arrived for it.
806 */
807
808 static void commit(keyexch *kx, kxchal *kxc)
809 {
810 unsigned i;
811
812 for (i = 0; i < kx->nr; i++) {
813 if (kx->r[i] != kxc)
814 kxc_destroy(kx->r[i]);
815 }
816 kx->r[0] = kxc;
817 kx->nr = 1;
818 kxc_stoptimer(kxc);
819 ksl_link(kx->ks, kxc->ks);
820 }
821
822 /* --- @doreply@ --- *
823 *
824 * Arguments: @keyexch *kx@ = pointer to key exchange context
825 * @buf *b@ = buffer containing packet
826 *
827 * Returns: Zero if OK, nonzero if the packet was rejected.
828 *
829 * Use: Handles a reply packet. This doesn't handle the various
830 * switch packets: they're rather too different.
831 */
832
833 static int doreply(keyexch *kx, buf *b)
834 {
835 const octet *hc_in, *hc_out;
836 mp *ck = 0;
837 kxchal *kxc;
838
839 if (kx->s != KXS_CHAL && kx->s != KXS_COMMIT) {
840 a_warn("unexpected reply from `%s'", p_name(kx->p));
841 goto bad;
842 }
843 if ((hc_in = buf_get(b, HASHSZ)) == 0 ||
844 (hc_out = buf_get(b, HASHSZ)) == 0 ||
845 (ck = buf_getmp(b)) == 0) {
846 a_warn("invalid reply packet from `%s'", p_name(kx->p));
847 goto bad;
848 }
849 if ((kxc = matchreply(kx, MSG_KEYEXCH | KX_REPLY,
850 hc_in, hc_out, ck, b)) == 0)
851 goto bad;
852 if (BLEFT(b)) {
853 a_warn("invalid reply packet from `%s'", p_name(kx->p));
854 goto bad;
855 }
856 if (kx->s == KXS_CHAL) {
857 commit(kx, kxc);
858 kx->s = KXS_COMMIT;
859 }
860 resend(kx);
861 return (0);
862
863 bad:
864 mp_drop(ck);
865 return (-1);
866 }
867
868 /* --- @doswitch@ --- *
869 *
870 * Arguments: @keyexch *kx@ = pointer to key exchange block
871 * @buf *b@ = pointer to buffer containing packet
872 *
873 * Returns: Zero if OK, nonzero if the packet was rejected.
874 *
875 * Use: Handles a reply with a switch request bolted onto it.
876 */
877
878 static int doswitch(keyexch *kx, buf *b)
879 {
880 const octet *hc_in, *hc_out, *hswrq;
881 kxchal *kxc;
882
883 if ((hc_in = buf_get(b, HASHSZ)) == 0 ||
884 (hc_out = buf_get(b, HASHSZ)) == 0) {
885 a_warn("invalid switch request from `%s'", p_name(kx->p));
886 goto bad;
887 }
888 if ((kxc = matchreply(kx, MSG_KEYEXCH | KX_SWITCH,
889 hc_in, hc_out, 0, b)) == 0)
890 goto bad;
891 if ((hswrq = buf_get(b, HASHSZ)) == 0 || BLEFT(b)) {
892 a_warn("invalid switch request from `%s'", p_name(kx->p));
893 goto bad;
894 }
895 IF_TRACING(T_KEYEXCH, {
896 trace_block(T_CRYPTO, "crypto: switch request hash", hswrq, HASHSZ);
897 })
898 if (memcmp(hswrq, kxc->hswrq_in, HASHSZ) != 0) {
899 a_warn("incorrect switch request hash from `%s'", p_name(kx->p));
900 goto bad;
901 }
902 switch (kx->s) {
903 case KXS_CHAL:
904 commit(kx, kxc);
905 case KXS_COMMIT:
906 ks_activate(kxc->ks);
907 settimer(kx, ks_tregen(kxc->ks));
908 kx->s = KXS_SWITCH;
909 break;
910 }
911 resend(kx);
912 return (0);
913
914 bad:
915 return (-1);
916 }
917
918 /* --- @doswitchok@ --- *
919 *
920 * Arguments: @keyexch *kx@ = pointer to key exchange block
921 * @buf *b@ = pointer to buffer containing packet
922 *
923 * Returns: Zero if OK, nonzero if the packet was rejected.
924 *
925 * Use: Handles a reply with a switch request bolted onto it.
926 */
927
928 static int doswitchok(keyexch *kx, buf *b)
929 {
930 const octet *hswok;
931 kxchal *kxc;
932 buf bb;
933
934 if (kx->s < KXS_COMMIT) {
935 a_warn("unexpected switch confirmation from `%s'", p_name(kx->p));
936 goto bad;
937 }
938 kxc = kx->r[0];
939 buf_init(&bb, buf_o, sizeof(buf_o));
940 if (ks_decrypt(kxc->ks, MSG_KEYEXCH | KX_SWITCHOK, b, &bb)) {
941 a_warn("failed to decrypt switch confirmation from `%s'", p_name(kx->p));
942 goto bad;
943 }
944 buf_init(b, BBASE(&bb), BLEN(&bb));
945 if ((hswok = buf_get(b, HASHSZ)) == 0 || BLEFT(b)) {
946 a_warn("invalid switch confirmation from `%s'", p_name(kx->p));
947 goto bad;
948 }
949 IF_TRACING(T_KEYEXCH, {
950 trace_block(T_CRYPTO, "crypto: switch confirmation hash", hswok, HASHSZ);
951 })
952 if (memcmp(hswok, kxc->hswok_in, HASHSZ) != 0) {
953 a_warn("incorrect switch confirmation hash from `%s'", p_name(kx->p));
954 goto bad;
955 }
956 if (kx->s < KXS_SWITCH) {
957 ks_activate(kxc->ks);
958 settimer(kx, ks_tregen(kxc->ks));
959 kx->s = KXS_SWITCH;
960 }
961 return (0);
962
963 bad:
964 return (-1);
965 }
966
967 /*----- Main code ---------------------------------------------------------*/
968
969 /* --- @stop@ --- *
970 *
971 * Arguments: @keyexch *kx@ = pointer to key exchange context
972 *
973 * Returns: ---
974 *
975 * Use: Stops a key exchange dead in its tracks. Throws away all of
976 * the context information. The context is left in an
977 * inconsistent state. The only functions which understand this
978 * state are @kx_free@ and @kx_init@ (which cause it internally
979 * it), and @start@ (which expects it to be the prevailing
980 * state).
981 */
982
983 static void stop(keyexch *kx)
984 {
985 unsigned i;
986
987 if (kx->f & KXF_DEAD)
988 return;
989
990 if (kx->f & KXF_TIMER)
991 sel_rmtimer(&kx->t);
992 for (i = 0; i < kx->nr; i++)
993 kxc_destroy(kx->r[i]);
994 mp_drop(kx->alpha);
995 G_DESTROY(gg, kx->c);
996 G_DESTROY(gg, kx->rx);
997 kx->t_valid = 0;
998 kx->f |= KXF_DEAD;
999 kx->f &= ~KXF_TIMER;
1000 }
1001
1002 /* --- @start@ --- *
1003 *
1004 * Arguments: @keyexch *kx@ = pointer to key exchange context
1005 * @time_t now@ = the current time
1006 *
1007 * Returns: ---
1008 *
1009 * Use: Starts a new key exchange with the peer. The context must be
1010 * in the bizarre state left by @stop@ or @kx_init@.
1011 */
1012
1013 static void start(keyexch *kx, time_t now)
1014 {
1015 HASH_CTX h;
1016
1017 assert(kx->f & KXF_DEAD);
1018
1019 kx->f &= ~KXF_DEAD;
1020 kx->nr = 0;
1021 kx->alpha = mprand_range(MP_NEW, gg->r, &rand_global, 0);
1022 kx->c = G_CREATE(gg); G_EXP(gg, kx->c, gg->g, kx->alpha);
1023 kx->rx = G_CREATE(gg); G_EXP(gg, kx->rx, kx->kpub, kx->alpha);
1024 kx->s = KXS_CHAL;
1025 kx->t_valid = now + T_VALID;
1026
1027 HASH_INIT(&h);
1028 HASH_STRING(&h, "tripe-cookie");
1029 hashge(&h, kx->c);
1030 HASH_DONE(&h, kx->hc);
1031
1032 IF_TRACING(T_KEYEXCH, {
1033 trace(T_KEYEXCH, "keyexch: creating new challenge");
1034 IF_TRACING(T_CRYPTO, {
1035 trace(T_CRYPTO, "crypto: secret = %s", mpstr(kx->alpha));
1036 trace(T_CRYPTO, "crypto: challenge = %s", gestr(gg, kx->c));
1037 trace(T_CRYPTO, "crypto: expected response = %s", gestr(gg, kx->rx));
1038 trace_block(T_CRYPTO, "crypto: challenge cookie", kx->hc, HASHSZ);
1039 })
1040 })
1041 }
1042
1043 /* --- @checkpub@ --- *
1044 *
1045 * Arguments: @keyexch *kx@ = pointer to key exchange context
1046 *
1047 * Returns: Zero if OK, nonzero if the peer's public key has expired.
1048 *
1049 * Use: Deactivates the key-exchange until the peer acquires a new
1050 * public key.
1051 */
1052
1053 static int checkpub(keyexch *kx)
1054 {
1055 time_t now;
1056 if (kx->f & KXF_DEAD)
1057 return (-1);
1058 now = time(0);
1059 if (KEY_EXPIRED(now, kx->texp_kpub)) {
1060 stop(kx);
1061 a_warn("public key for `%s' has expired", p_name(kx->p));
1062 G_COPY(gg, kx->kpub, gg->i);
1063 kx->f &= ~KXF_PUBKEY;
1064 return (-1);
1065 }
1066 return (0);
1067 }
1068
1069 /* --- @kx_start@ --- *
1070 *
1071 * Arguments: @keyexch *kx@ = pointer to key exchange context
1072 *
1073 * Returns: ---
1074 *
1075 * Use: Stimulates a key exchange. If a key exchage is in progress,
1076 * a new challenge is sent (unless the quiet timer forbids
1077 * this); if no exchange is in progress, one is commenced.
1078 */
1079
1080 void kx_start(keyexch *kx)
1081 {
1082 time_t now = time(0);
1083
1084 if (checkpub(kx))
1085 return;
1086 if (!ISVALID(kx, now)) {
1087 stop(kx);
1088 start(kx, now);
1089 }
1090 resend(kx);
1091 }
1092
1093 /* --- @kx_message@ --- *
1094 *
1095 * Arguments: @keyexch *kx@ = pointer to key exchange context
1096 * @unsigned msg@ = the message code
1097 * @buf *b@ = pointer to buffer containing the packet
1098 *
1099 * Returns: ---
1100 *
1101 * Use: Reads a packet containing key exchange messages and handles
1102 * it.
1103 */
1104
1105 void kx_message(keyexch *kx, unsigned msg, buf *b)
1106 {
1107 time_t now = time(0);
1108 stats *st = p_stats(kx->p);
1109 size_t sz = BSZ(b);
1110 int rc;
1111
1112 #ifndef NTRACE
1113 static const char *const pkname[] = {
1114 "prechallenge", "cookie", "challenge",
1115 "reply", "switch request", "switch confirmation"
1116 };
1117 #endif
1118
1119 if (checkpub(kx))
1120 return;
1121
1122 if (!ISVALID(kx, now)) {
1123 stop(kx);
1124 start(kx, now);
1125 }
1126
1127 T( trace(T_KEYEXCH, "keyexch: processing %s packet from `%s'",
1128 msg < KX_NMSG ? pkname[msg] : "unknown", p_name(kx->p)); )
1129
1130 switch (msg) {
1131 case KX_PRECHAL:
1132 case KX_COOKIE:
1133 case KX_CHAL:
1134 rc = dochallenge(kx, msg, b);
1135 break;
1136 case KX_REPLY:
1137 rc = doreply(kx, b);
1138 break;
1139 case KX_SWITCH:
1140 rc = doswitch(kx, b);
1141 break;
1142 case KX_SWITCHOK:
1143 rc = doswitchok(kx, b);
1144 break;
1145 default:
1146 a_warn("unexpected key exchange message type %u from `%p'",
1147 p_name(kx->p));
1148 rc = -1;
1149 break;
1150 }
1151
1152 if (rc)
1153 st->n_reject++;
1154 else {
1155 st->n_kxin++;
1156 st->sz_kxin += sz;
1157 }
1158 }
1159
1160 /* --- @kx_free@ --- *
1161 *
1162 * Arguments: @keyexch *kx@ = pointer to key exchange context
1163 *
1164 * Returns: ---
1165 *
1166 * Use: Frees everything in a key exchange context.
1167 */
1168
1169 void kx_free(keyexch *kx)
1170 {
1171 stop(kx);
1172 G_DESTROY(gg, kx->kpub);
1173 }
1174
1175 /* --- @kx_newkeys@ --- *
1176 *
1177 * Arguments: @keyexch *kx@ = pointer to key exchange context
1178 *
1179 * Returns: ---
1180 *
1181 * Use: Informs the key exchange module that its keys may have
1182 * changed. If fetching the new keys fails, the peer will be
1183 * destroyed, we log messages and struggle along with the old
1184 * keys.
1185 */
1186
1187 void kx_newkeys(keyexch *kx)
1188 {
1189 if (km_getpubkey(p_name(kx->p), kx->kpub, &kx->texp_kpub))
1190 return;
1191 kx->f |= KXF_PUBKEY;
1192 if ((kx->f & KXF_DEAD) || kx->s != KXS_SWITCH) {
1193 T( trace(T_KEYEXCH, "keyexch: restarting key negotiation with `%s'",
1194 p_name(kx->p)); )
1195 stop(kx);
1196 start(kx, time(0));
1197 resend(kx);
1198 }
1199 }
1200
1201 /* --- @kx_init@ --- *
1202 *
1203 * Arguments: @keyexch *kx@ = pointer to key exchange context
1204 * @peer *p@ = pointer to peer context
1205 * @keyset **ks@ = pointer to keyset list
1206 *
1207 * Returns: Zero if OK, nonzero if it failed.
1208 *
1209 * Use: Initializes a key exchange module. The module currently
1210 * contains no keys, and will attempt to initiate a key
1211 * exchange.
1212 */
1213
1214 int kx_init(keyexch *kx, peer *p, keyset **ks)
1215 {
1216 kx->ks = ks;
1217 kx->p = p;
1218 kx->kpub = G_CREATE(gg);
1219 if (km_getpubkey(p_name(p), kx->kpub, &kx->texp_kpub)) {
1220 G_DESTROY(gg, kx->kpub);
1221 return (-1);
1222 }
1223 kx->f = KXF_DEAD | KXF_PUBKEY;
1224 start(kx, time(0));
1225 resend(kx);
1226 return (0);
1227 }
1228
1229 /*----- That's all, folks -------------------------------------------------*/