keys.scala, etc.: Make merging public keys have a progress bar.
[tripe-android] / dep.scala
1 /* -*-scala-*-
2 *
3 * Dependency-based computation
4 *
5 * (c) 2018 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of the Trivial IP Encryption (TrIPE) Android app.
11 *
12 * TrIPE is free software: you can redistribute it and/or modify it under
13 * the terms of the GNU General Public License as published by the Free
14 * Software Foundation; either version 3 of the License, or (at your
15 * option) any later version.
16 *
17 * TrIPE is distributed in the hope that it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with TrIPE. If not, see <https://www.gnu.org/licenses/>.
24 */
25
26 package uk.org.distorted.tripe; package object dep {
27
28 /*----- Imports -----------------------------------------------------------*/
29
30 import scala.collection.mutable.{ArrayBuffer, Queue};
31
32 import java.lang.ref.WeakReference;
33
34 import Implicits.{truish, bitwiseImplicits};
35
36 /*----- Main code ---------------------------------------------------------*/
37
38 object Generation {
39 private var nextseq: Int = 0;
40 }
41 class Generation(what: String) extends Brand(what) {
42 /* Formally, a generation marker has no interesting properties except for
43 * its identity, so we could just as well use a plain `Brand'. For
44 * diagnostic purposes though, we include a sequence number which we can
45 * include in the object printout.
46 */
47
48 import Generation._;
49 private val seq =
50 Generation synchronized { val v = nextseq; nextseq += 1; v };
51 override def toString(): String = s"${getClass.getName}($what, #$seq)";
52 }
53
54 class BadDep extends Throwable;
55 /* Thrown when you try to read a `bad' `Dep' object. */
56
57 class CircularDependency extends Exception;
58 /* Thrown if a `Dep' depends on itself, possibly indirectly. */
59
60 /* Some type aliases because otherwise we need to mess with existential
61 * types.
62 */
63 type AbstractDep = Dep[_];
64 type AbstractComputedDep = ComputedDep[_];
65
66 object Dep {
67
68 /* Event types for hook clients. */
69 sealed abstract class Event;
70 case object Changed extends Event;
71
72 /* Flags for `Dep' objects. */
73 private[dep] final val F_VALUE = 1; // has a value
74 private[dep] final val F_DEPS = 2; // dependencies are know
75 private[dep] final val F_CHANGED = 4; // changed in this update cycle
76 private[dep] final val F_RECOMPUTING = 8; // currently recomputing
77 private[dep] final val F_QUEUED = 16; // queued for recomputation
78
79 /* Overall system state. */
80 object DepState extends Enumeration
81 { val READY, FROZEN, RECOMPUTING = Value; }
82 import DepState.{READY, FROZEN, RECOMPUTING, Value => State};
83
84 private[dep] var generation: Generation = new Generation("dep-generation");
85 /* The current generation. Updated in `withDepsFrozen'. */
86
87 private[dep] val state = new SharedFluid(READY);
88 /* The current system state. Must be `let'-bound. */
89
90 private[dep] val evaluating = new SharedFluid[AbstractComputedDep](null);
91 /* The `ComputedDep' object which is being evaluated, or null. Must be
92 * `let'-bound.
93 */
94
95 private[dep] val delayed = new SharedFluid[Queue[() => Unit]](null);
96 /* Delayed thunks from `withDepsDelayed'. Must be `let'-bound to a fresh
97 * `Queue', and then mutated in place.
98 */
99
100 private[dep] val pending =
101 new SharedFluid[Queue[AbstractComputedDep]](null);
102 /* `ComputedDep' objects awaiting recomputation. Must be `let'-bound to
103 * a fresh `Queue', and then mutated in place.
104 */
105
106 private def recomputePending() {
107 /* Recalculate the deps on the `pending' queue.
108 *
109 * While this is running, we are in the `RECOMPUTING' state.
110 */
111
112 let(state -> RECOMPUTING) {
113 try {
114 while (pending.v) {
115 val d = pending.v.dequeue();
116 val f = d._flags;
117 d._flags = f&~F_QUEUED;
118 if (!(f&F_VALUE)) d.recompute();
119 else if (!(f&F_DEPS)) { d.recompute(); d.flags = f | F_DEPS; }
120 }
121 } finally {
122 while (pending.v) pending.v.dequeue()._val = None;
123 }
124 }
125 }
126
127 def withDepsFrozen[T](body: => T): T = state.v match {
128 /* Evaluate the BODY, allowing it to modify `Dep' objects. When the BODY
129 * completes, but not before, all dependent `Dep's are recalculated.
130 * This can be used to improve performance if a big batch of changes is
131 * planned.
132 *
133 * It's not permitted to modify a `Dep' while recomputation is in
134 * progress. See `withDepsDelayed'.
135 */
136
137 case FROZEN => body
138 case RECOMPUTING =>
139 throw new IllegalStateException("currently recomputing");
140 case READY =>
141 let(state -> FROZEN,
142 delayed -> new Queue[() => Unit],
143 pending -> new Queue[AbstractComputedDep]) {
144 generation = new Generation("dep-generation");
145 val r = body;
146 while ({ recomputePending(); delayed.v }) delayed.v.dequeue()();
147 r
148 }
149 }
150
151 def withDepsDelayed(body: => Unit) { state.v match {
152 /* Evaluate the BODY, allowing it to modify `Dep' objects. If
153 * recomputation is in progress, then save the BODY in a queue to be
154 * evaluated later.
155 */
156
157 case RECOMPUTING => delayed.v += { () => body };
158 case _ => withDepsFrozen { body };
159 } }
160
161 /* Various constructures for basic `Dep' objects. */
162 def apply[T: Equiv](name: String, init: T): Dep[T] =
163 new Dep(name, Some(init));
164 def apply[T: Equiv](name: String): Dep[T] = new Dep(name, None);
165 def apply[T: Equiv](init: T): Dep[T] = new Dep(null, Some(init));
166 def apply[T: Equiv](): Dep[T] = new Dep(null, None);
167 }
168
169 /* Import these things here so that they're included in the scope of `Dep''s
170 * additional constructor bodies.
171 */
172 import Dep._;
173
174 /* tryDep { BODY } ifBad { ALT }
175 *
176 * Evaluate BODY. If it tries to read a bad `Dep', then evaluate ALT
177 * instead.
178 */
179 class PendingAttempt[T] private[dep](body: => T)
180 { def ifBad(alt: => T): T = try { body } catch { case _: BadDep => alt } }
181 def tryDep[T](body: => T): PendingAttempt[T] = new PendingAttempt(body);
182
183 def bad: Nothing = throw new BadDep;
184 /* Call from a `Dep' expression to cause the `Dep' to be marked bad. */
185
186 class Dep[T: Equiv] protected(val name: String,
187 var _val: Option[T],
188 var _flags: Int)
189 extends Hook[Dep.Event]
190 {
191 /* A leaf `Dep'.
192 *
193 * A `Dep' has a value, of some type T, and maybe a name. The value is
194 * available in the `v' property. A `Dep' may be `bad', in which case an
195 * exception, `BadDep', is thrown when an attempt is made to read its
196 * value; this can be hedged against either by calling `goodp' in advance,
197 * or by using the `tryDep' function.
198 *
199 * The value of a leaf `Dep' changes only as a result of direct assignments
200 * to its `v' property.
201 */
202
203 /* Internal constructor, for the benefit of the companion module. */
204 private def this(name: String, init: Option[T])
205 { this(name, init, F_CHANGED | F_VALUE); }
206
207 /* Other useful definitions. */
208 import DepState.{READY, FROZEN, RECOMPUTING, Value => State};
209
210 protected var gen: Generation = generation;
211 /* The generation during which this `Dep' was most recently updated. */
212
213 protected val dependents =
214 new ArrayBuffer[WeakReference[AbstractComputedDep]];
215 /* A collection of other `Dep's which depend (directly) on this one. */
216
217 override def toString(): String = {
218 /* Convert this `Dep' to a string. The contents are useful only for
219 * diagnostic purposes.
220 */
221
222 val b = new StringBuilder;
223 val f = flags;
224
225 b ++= f"${getClass.getName}%s@${hashCode}%x(";
226
227 b ++= (_val match {
228 case _ if !(f&F_VALUE) => "<out-of-date>"
229 case None => "<bad>"
230 case Some(x) => x.toString
231 })
232
233 if (name != null) b ++= s" $name";
234
235 if (f&F_DEPS) b ++= " :recompute-deps";
236 if (f&F_QUEUED) b ++= " :queued";
237 if (f&F_CHANGED) b ++= " :changed";
238
239 b += ')'; b.result
240 }
241
242 /* A property for accessing the `Dep' flags.
243 *
244 * The flags stored are only relevant during recomputation and if they're
245 * fresh. Otherwise we must synthesize appropriate flags.
246 */
247 protected[dep] def flags: Int =
248 if (state.v == READY || gen != generation) F_VALUE | F_DEPS
249 else _flags;
250 protected[dep] def flags_=(f: Int) { _flags = f; }
251
252 def update(v: Option[T]): Boolean = (v, _val) match {
253 /* Set this `Dep''s value to V; return true if this is a substantive
254 * change.
255 */
256 case (Some(x), Some(y)) if implicitly[Equiv[T]].equiv(x, y) => false
257 case _ => _val = v; true
258 }
259
260 protected def propagate() {
261 /* Notify all of our dependents that this `Dep' has changed its value. */
262 for {
263 dweak <- dependents;
264 d = dweak.get;
265 if d != null;
266 f = d.flags;
267 if !(f&(F_QUEUED | F_DEPS))
268 } {
269 pending.v += d;
270 d.flags = (f&F_VALUE) | F_QUEUED;
271 }
272 dependents.clear();
273 callHook(Changed);
274 }
275
276 private[dep] def force(): Boolean = flags&F_CHANGED;
277 /* Force this `Dep' to update its value if it hasn't done so already in
278 * the current recomputation cycle. Return true if its value has changed
279 * in the current cycle.
280 *
281 * The implementation here is trivial, but subclasses will need to
282 * override it.
283 */
284
285 def v: T = {
286 /* Return the value of this `Dep', recalculating it if necessary.
287 *
288 * Throws `BadDep' if the `Dep is bad.
289 */
290
291 if (state.v == RECOMPUTING) {
292 if (evaluating.v != null) {
293 dependents += evaluating.v.weakref;
294 evaluating.v.dependencies += this;
295 }
296 force();
297 }
298 _val match {
299 case None => bad
300 case Some(v) => v
301 }
302 }
303
304 /* The obvious good/bad predicates. */
305 def goodp: Boolean = { if (state.v == RECOMPUTING) force(); _val != bad }
306 def badp: Boolean = { if (state.v == RECOMPUTING) force(); _val == bad }
307
308 private def set(v: Option[T]) {
309 /* Low-level operation to change the value of this `Dep', and trigger
310 * recomputation as necessary.
311 */
312
313 withDepsFrozen {
314 update(v);
315 gen = generation;
316 _flags = F_VALUE | F_CHANGED;
317 propagate();
318 }
319 }
320
321 /* Modify the `Dep' value. */
322 def v_=(x: T) { set(Some(x)); }
323 def makeBad() { set(None); }
324 }
325
326 object ComputedDep {
327
328 /* Cooked constructors. */
329 def apply[T: Equiv](expr: => T) = new ComputedDep(null, expr, None);
330 def apply[T: Equiv](name: String)(expr: => T) =
331 new ComputedDep(name, expr, None);
332 def apply[T: Equiv](init: T)(expr: => T) =
333 new ComputedDep(null, expr, Some(init));
334 def apply[T: Equiv](name: String, init: T)(expr: => T) =
335 new ComputedDep(name, expr, Some(init));
336 }
337
338 class ComputedDep[T: Equiv] protected(name: String,
339 expr: => T,
340 init: Option[T])
341 extends Dep[T](name, init,
342 F_CHANGED | F_QUEUED | F_DEPS | (init match {
343 case Some(_) => F_VALUE
344 case None => 0
345 }))
346 {
347 /* A `Dep' which calculates its value based on other `Dep' objects.
348 *
349 * During this calculation, we keep track of the dependency structure so
350 * that, in the future, we can determine whether this `Dep' needs to be
351 * recalculated as a result of other changes.
352 */
353
354 private[dep] val dependencies = new ArrayBuffer[AbstractDep];
355 /* A collection of other `Dep' objects; if any of them change, we must
356 * recalculate.
357 */
358
359 private[dep] val weakref: WeakReference[AbstractComputedDep] =
360 new WeakReference(this);
361 /* A weak reference to this `Dep'.
362 *
363 * A `Dep' maintains only weak references to those other `Dep's which
364 * depend on it: just because X's value is determined (partially) by Y
365 * doesn't mean that we should keep X alive just because Y is alive.
366 *
367 * The weak reference is captured once to reduce consing.
368 */
369
370 /* Arrange recalculation at the earliest opportunity. */
371 withDepsFrozen { pending.v += this; }
372
373 /* Other useful definitions. */
374 import DepState.{READY, FROZEN, RECOMPUTING, Value => State};
375
376 /* Synthesize different flags when we aren't fresh. */
377 override protected[dep] def flags: Int =
378 if (state.v == READY) F_VALUE | F_DEPS
379 else if (gen == generation) _flags
380 else 0;
381
382 def newValue(): Option[T] = {
383 /* Determine the new value of this `Dep', keeping track of other `Dep'
384 * objects which we look at.
385 */
386
387 try { let(evaluating -> this) { dependencies.clear(); Some(expr)} }
388 catch { case _: BadDep => None }
389 }
390
391 private[this] def _recompute(v: Option[T], nf: Int): Boolean =
392 if (update(v)) { flags = nf | Dep.F_CHANGED; propagate(); true }
393 else { flags = nf; false }
394
395 private[dep] def recompute(): Boolean = {
396 /* Recalculate the value of this `Dep'. Catch exceptions and mark the
397 * `Dep' as bad if it encounters any.
398 *
399 * Note that the special case of `BadDep' is trapped lower down in
400 * `newValue'.
401 */
402
403 val nf = (flags&F_QUEUED) | F_VALUE | F_DEPS;
404 try { _recompute(newValue(), nf) }
405 catch { case e: Exception => _recompute(None, nf); throw e; }
406 }
407
408 private[dep] override def force(): Boolean = {
409 /* Force this `Dep' to update its value if it hasn't done so already in
410 * the current recomputation cycle. Return true if its value has changed
411 * in the current cycle.
412 */
413
414 val f = flags;
415 if (f&F_RECOMPUTING) throw new CircularDependency;
416 else if (f&F_VALUE) f&F_CHANGED
417 else {
418 gen = generation;
419 flags = (f&F_QUEUED) | F_RECOMPUTING;
420 if (dependencies.exists { _.force() }) recompute();
421 else { flags = f; false }
422 }
423 }
424 }
425
426 /*----- That's all, folks -------------------------------------------------*/
427
428 }