Overhaul of differential cryptanalysis, including a new attack.
[storin] / storin.tex
1 %%% -*-latex-*-
2 %%%
3 %%% $Id: storin.tex,v 1.5 2000/07/02 15:22:34 mdw Exp $
4 %%%
5 %%% Definition of the cipher
6 %%%
7 %%% (c) 2000 Mark Wooding
8 %%%
9
10 %%%----- Revision history ---------------------------------------------------
11 %%%
12 %%% $Log: storin.tex,v $
13 %%% Revision 1.5 2000/07/02 15:22:34 mdw
14 %%% Overhaul of differential cryptanalysis, including a new attack.
15 %%%
16 %%% Revision 1.4 2000/05/28 00:39:32 mdw
17 %%% Fix some errors.
18 %%%
19 %%% Revision 1.3 2000/05/25 19:46:22 mdw
20 %%% Improve analysis section.
21 %%%
22 %%% Revision 1.2 2000/05/21 21:43:26 mdw
23 %%% Fix a couple of typos.
24 %%%
25 %%% Revision 1.1 2000/05/21 11:28:30 mdw
26 %%% Initial check-in.
27 %%%
28
29 %%%----- Preamble -----------------------------------------------------------
30
31 \documentclass[a4paper]{article}
32 \usepackage[palatino, helvetica, courier, maths=cmr]{mdwfonts}
33 \usepackage{mdwtab}
34 \usepackage{mathenv}
35 \usepackage{amsfonts}
36 \usepackage{mdwmath}
37 \usepackage[all, dvips]{xy}
38
39 \def\ror{\mathbin{>\!\!>\!\!>}}
40 \def\rol{\mathbin{<\!\!<\!\!<}}
41 \def\lsr{\mathbin{>\!\!>}}
42 \def\lsl{\mathbin{<\!\!<}}
43 \def\xor{\oplus}
44 \def\seq#1{{\langle #1 \rangle}}
45
46 \def\hex#1{\texttt{#1}_{16}}
47
48 \sloppy
49
50 \title{Storin: A block cipher for digital signal processors}
51 \author{Mark Wooding (\texttt{mdw@nsict.org})}
52
53 %% --- The cipher diagrams ---
54
55 \def\figkeymix#1#2#3#4{%
56 \ar "a"; p-(0, 0.5)*{\xor} ="a" \ar "a"+(1, 0) *+[r]{k_{#1}}; "a"%
57 \ar "b"; p-(0, 0.5)*{\xor} ="b" \ar "b"+(1, 0) *+[r]{k_{#2}}; "b"%
58 \ar "c"; p-(0, 0.5)*{\xor} ="c" \ar "c"+(1, 0) *+[r]{k_{#3}}; "c"%
59 \ar "d"; p-(0, 0.5)*{\xor} ="d" \ar "d"+(1, 0) *+[r]{k_{#4}}; "d"%
60 }
61
62 \def\figmatrix{%
63 \POS "a"+(3, -1) *++=(7, 0)[F]u\txt{Matrix multiply} ="m"%
64 \ar "a"; "m"+U-(3, 0) \ar "b"; "m"+U-(1, 0)%
65 \ar "c"; "m"+U+(1, 0) \ar "d"; "m"+U+(3, 0)%
66 }
67
68 \def\figlintrans{%
69 \ar "m"+D-(3, 0); "a"-(0, 2.25)*{\xor} ="a"%
70 \POS "a"+(1, 0) *+[F]{{} \lsr 12} ="x"%
71 \ar `r "a"+(0, 0.5); p+(1, 0) "x" \ar "x"; "a"%
72 \ar "m"+D-(1, 0); "b"-(0, 2.25)*{\xor} ="b"%
73 \POS "b"+(1, 0) *+[F]{{} \lsr 12} ="x"%
74 \ar `r "b"+(0, 0.5); p+(1, 0) "x" \ar "x"; "b"%
75 \ar "m"+D+(1, 0); "c"-(0, 2.25)*{\xor} ="c"%
76 \POS "c"+(1, 0) *+[F]{{} \lsr 12} ="x"%
77 \ar `r "c"+(0, 0.5); p+(1, 0) "x" \ar "x"; "c"%
78 \ar "m"+D+(3, 0); "d"-(0, 2.25)*{\xor} ="d"%
79 \POS "d"+(1, 0) *+[F]{{} \lsr 12} ="x"%
80 \ar `r "d"+(0, 0.5); p+(1, 0) "x" \ar "x"; "d"%
81 }
82
83 \def\figilintrans{%
84 \ar "a"; "a"-(0, 1)*{\xor} ="a"%
85 \POS "a"+(1, 0) *+[F]{{} \lsr 12} ="x"%
86 \ar `r "a"+(0, 0.5); p+(1, 0) "x" \ar "x"; "a"%
87 \ar "b"; "b"-(0, 1)*{\xor} ="b"%
88 \POS "b"+(1, 0) *+[F]{{} \lsr 12} ="x"%
89 \ar `r "b"+(0, 0.5); p+(1, 0) "x" \ar "x"; "b"%
90 \ar "c"; "c"-(0, 1)*{\xor} ="c"%
91 \POS "c"+(1, 0) *+[F]{{} \lsr 12} ="x"%
92 \ar `r "c"+(0, 0.5); p+(1, 0) "x" \ar "x"; "c"%
93 \ar "d"; "d"-(0, 1)*{\xor} ="d"%
94 \POS "d"+(1, 0) *+[F]{{} \lsr 12} ="x"%
95 \ar `r "d"+(0, 0.5); p+(1, 0) "x" \ar "x"; "d"%
96 }
97
98 \def\figstart#1{%
99 \POS 0;<1cm,0cm>:%
100 \turnradius{4pt}%
101 \ar @{-} (0, 0) *+{a#1}; p-(0, 0.5) ="a"
102 \ar @{-} (2, 0) *+{b#1}; p-(0, 0.5) ="b"
103 \ar @{-} (4, 0) *+{c#1}; p-(0, 0.5) ="c"
104 \ar @{-} (6, 0) *+{d#1}; p-(0, 0.5) ="d"
105 }
106
107 \def\figround#1#2#3#4#5{%
108 \ar @{.} "a"-(0.5, 0); p+(8, 0)%
109 \POS "a"+(8, -1.75) *[r]\txt{#5}%
110 \figkeymix{#1}{#2}{#3}{#4}%
111 \figmatrix%
112 \figlintrans%
113 \ar @{-} "a"; p-(0, .5) ="a"
114 \ar @{-} "b"; p-(0, .5) ="b"
115 \ar @{-} "c"; p-(0, .5) ="c"
116 \ar @{-} "d"; p-(0, .5) ="d"
117 }
118
119 \def\figiround#1#2#3#4#5{%
120 \ar @{.} "a"-(0.5, 0); p+(8, 0)%
121 \POS "a"+(8, -1.75) *[r]\txt{#5}%
122 \figkeymix{#1}{#2}{#3}{#4}%
123 \figilintrans%
124 \figmatrix%
125 \ar @{-} "m"+D-(3, 0); p-(0, .5) ="a"
126 \ar @{-} "m"+D-(1, 0); p-(0, .5) ="b"
127 \ar @{-} "m"+D+(1, 0); p-(0, .5) ="c"
128 \ar @{-} "m"+D+(3, 0); p-(0, .5) ="d"
129 }
130
131 \def\figgap{%
132 \ar @{.} "a"-(0.5, 0); p+(8, 0)
133 \POS "a"+(8, -1)*[r]\txt{Six more rounds}
134 \ar @{--} "a"; "a"-(0, 2) ="a"
135 \ar @{--} "b"; "b"-(0, 2) ="b"
136 \ar @{--} "c"; "c"-(0, 2) ="c"
137 \ar @{--} "d"; "d"-(0, 2) ="d"
138 }
139
140 \def\figwhite#1#2#3#4#5{%
141 \ar @{.} "a"-(0.5, 0); p+(8, 0)
142 \POS "a"+(8, -1)*[r]\txt{Postwhitening}
143 \figkeymix{#1}{#2}{#3}{#4}
144 \ar "a"; p-(0, 1) *+{a#5}
145 \ar "b"; p-(0, 1) *+{b#5}
146 \ar "c"; p-(0, 1) *+{c#5}
147 \ar "d"; p-(0, 1) *+{d#5}
148 }
149
150 \begin{document}
151 \maketitle
152
153 %%%----- The main text ------------------------------------------------------
154
155 \begin{abstract}
156 We present Storin: a new 96-bit block cipher designed to play to the
157 strengths of current digital signal processors (DSPs). In particular, DSPs
158 tend to provide single-cycle multiply-and-accumulate operations, making
159 matrix multiplications very cheap. Working in an environment where
160 multiplication is as fast as exclusive-or changes the usual perceptions
161 about which operations provide good cryptographic strength cheaply. The
162 scarcity of available memory, for code and for tables, and a penalty for
163 nonsequential access to data also make traditional block ciphers based
164 around substitution tables unsuitable.
165 \end{abstract}
166
167 \tableofcontents
168
169 \section{Definition of the cipher}
170
171 \subsection{Overview}
172
173 Storin is an eight-round SP network operating on 96-bit blocks. The block
174 cipher uses 36 24-bit subkey words, derived from a user key by the key
175 schedule.
176
177 The 96-bit input is split into four 24-bit words. Each round then processes
178 these four words, using the following three steps:
179 \begin{enumerate}
180 \item Mixing in of some key material. Four 24-bit subkey words are XORed
181 with the four data words.
182 \item A matrix multiplication mod $2^{24}$. The four words are treated as a
183 column vector and premultiplied by a $4 \times 4$ vector using addition and
184 multiplication mod $2^{24}$. This is the main nonlinear step in the
185 cipher, and it also provides most of the cipher's diffusion.
186 \item A simple linear transformation, which replaces each word $x$ by $x \xor
187 (x \lsr 12)$.
188 \end{enumerate}
189 The four data words output by the final round are XORed with the last four
190 subkey words in a final postwhitening stage and combined to form the 96-bit
191 ciphertext.
192
193 The cipher structure is shown diagrammatically in figure~\ref{fig:cipher}.
194
195 \begin{figure}
196 \centering
197 \leavevmode
198 \begin{xy}
199 \xycompile{
200 \figstart{}
201 \figround{0}{1}{2}{3}{Round 1}
202 \figround{4}{5}{6}{7}{Round 2}
203 \figgap
204 \figwhite{32}{33}{34}{35}{'}}
205 \end{xy}
206 \caption{The Storin encryption function}
207 \label{fig:cipher}
208 \end{figure}
209
210 Since the matrix used in step 2 is chosen to be invertible, the cipher can be
211 inverted readily, simply by performing the inverse steps in the reverse
212 order. Since the postwhitening stage is the same as a key mixing stage,
213 decryption can be viewed as eight rounds consisting of key mixing, linear
214 transformation and matrix multiplication, followed by a postwhitening stage.
215 Thus, the structure of the inverse cipher is very similar to the forwards
216 cipher, and uses the same components. The decryption function is shown
217 diagrammatically in figure~\ref{fig:decipher}.
218
219 \begin{figure}
220 \centering
221 \leavevmode
222 \begin{xy}
223 \xycompile{
224 \figstart{'}
225 \figiround{32}{33}{34}{35}{Round 1}
226 \figiround{28}{29}{30}{31}{Round 2}
227 \figgap
228 \figwhite{0}{1}{2}{3}{}}
229 \end{xy}
230 \caption{The Storin decryption function}
231 \label{fig:decipher}
232 \end{figure}
233
234 The key schedule is designed to be simple and to reuse the cipher components
235 already available. Given a user key, which is a sequence of one or more
236 24-bit words, it produces the 36 subkey words required by the cipher. The
237 key schedule is very similar to Blowfish \cite{blowfish}. The subkey array
238 is assigned an initial constant value derived from the matrix used in the
239 cipher. Words from the user key are XORed into the array, starting from the
240 beginning, and restarting from the beginning of the user key when all the
241 user key words are exhausted. A 96-bit block is initialized to zero, and
242 enciphered with Storin, using the subkeys currently in the array. The first
243 four subkey words are then replaced with the resulting ciphertext, which is
244 then encrypted again using the new subkeys. The next four subkey words are
245 replaced with the ciphertext, and the process continues, nine times in all,
246 until all of the subkey words have been replaced.
247
248 The Storin key schedule can in theory accept user keys up to 36 words (864
249 bits) long. However, there are known problems with keys longer than 28 words
250 (672 bits), and these large keys are forbidden. We expect that with long
251 keys, attacks will be found which are more efficient than an exhaustive
252 search of the keyspace; we therefore (conservatively) recommend 5 word
253 (120-bit) keys as a practical maximum.
254
255
256 \subsection{Encryption}
257
258 We define $\mathcal{W} = \mathbb{Z}_{2^{24}}$ to be set of 24-bit words, and
259 $\mathcal{P} = \mathcal{W}^4$ to be the set of four-entry column vectors over
260 $\mathcal{W}$. Storin plaintext blocks are members of $\mathcal{P}$.
261
262 The Storin encryption function uses 36 24-bit words of key material $k_0$,
263 $k_1$, \ldots, $k_{35}$, which are produced from the user key by the key
264 schedule, described below. The key-mixing operation $K_i: \mathcal{P}
265 \rightarrow \mathcal{P}$ is defined for $0 \le i < 9$ by:
266 \[
267 K_i \begin{pmatrix} a \\ b \\ c \\d \end{pmatrix}
268 =
269 \begin{pmatrix}
270 a \xor k_{4i} \\ b \xor k_{4i+1} \\ c \xor k_{4i+2} \\ d \xor k_{4i+3}
271 \end{pmatrix}
272 \]
273
274 The matrix multiplication operation $M: \mathcal{P} \to \mathcal{P}$
275 is described by $M(\mathbf{x}) = \mathbf{M} \mathbf{x}$, where $\mathbf{M}$
276 is a fixed invertible $4 \times 4$ matrix over $\mathcal{W}$. The value of
277 $\mathbf{M}$ is defined below.
278
279 The linear transformation $L: \mathcal{P} \to \mathcal{P}$ is defined by:
280 \[
281 L \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}
282 =
283 \begin{pmatrix}
284 a \xor (a \lsr 12) \\
285 b \xor (b \lsr 12) \\
286 c \xor (c \lsr 12) \\
287 d \xor (d \lsr 12)
288 \end{pmatrix}
289 \]
290
291 The round function $R_i: \mathcal{P} \to \mathcal{P}$ is defined for $0 \le i
292 < 8$ by
293 \[ R_i(\mathbf{x}) = L\bigl(\mathbf{M} K_i(\mathbf{x}) \bigr) \]
294
295 The cipher $C: \mathcal{P} \to \mathcal{P}$ is defined in terms of $R_i$ and
296 $K_i$. Let $\mathbf{x}_0 \in \mathcal{P}$ be a plaintext vector. Let
297 $\mathbf{x}_{i+1} = R_i(\mathbf{x}_i)$ for $0 \le i < 8$. Then we define
298 $C(\mathbf{x})$ by setting $C(\mathbf{x}_0) = K_8(\mathbf{x}_8)$.
299
300
301 \subsection{Key schedule}
302
303 The key schedule converts a user key, which is a sequence of 24-bit words,
304 into the 36 subkeys required by the cipher.
305
306 For $i \ge 0$, we define that
307 \[
308 \begin{pmatrix}
309 m_{16i + 0} & m_{16i + 1} & m_{16i + 2} & m_{16i + 3} \\
310 m_{16i + 4} & m_{16i + 5} & m_{16i + 6} & m_{16i + 7} \\
311 m_{16i + 8} & m_{16i + 9} & m_{16i + 10} & m_{16i + 11} \\
312 m_{16i + 12} & m_{16i + 13} & m_{16i + 14} & m_{16i + 15}
313 \end{pmatrix}
314 = \mathbf{M}^{i + 2}
315 \]
316
317 Let the user-supplied key be $u_0$, $u_1$, \ldots, $u_{n-1}$, for some $n >
318 0$. We define the sequence $z_0$, $z_1$, \ldots\ by
319 \[ z_i = m_i \xor u_{i \bmod n} \]
320 for $i \ge 0$.
321
322 Denote the result of encrypting vector $\mathbf{x}$ using subkeys from the
323 sequence $\seq{w} = w_0, w_1, \ldots, w_{35}$ as $C_{\seq{w}}(\mathbf{x})$.
324 We define the key schedule to be $k_0$, $k_1$, \ldots, $k_{35}$, where:
325 \begin{eqlines*}
326 \seq{p^{(i)}} = k_0, k_1, \ldots, k_{4i-1}, z_{4i}, z_{4i+1}, \ldots \\
327 \mathbf{x}_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \qquad
328 \begin{pmatrix} k_{4i} \\ k_{4i+1} \\ k_{4i+2} \\ k_{4i+3} \end{pmatrix}
329 = \mathbf{x}_{i+1} = C_{\seq{p^{(i)}}}(\mathbf{x}_i)
330 \end{eqlines*}
331
332
333 \subsection{Decryption}
334
335 The individual operations used during encryption are all invertible. Key
336 mixing is inverted by taking keys from the other end of the array:
337 \[ K^{-1}_i(\mathbf{x}) = K_{8-i}(\mathbf{x}) \]
338 The matrix multiplication may be inverted simply by using the inverse matrix
339 $\mathbf{M}^{-1}$:
340 \[ M^{-1}(\mathbf{x}) = \mathbf{M}^{-1} \mathbf{x} \]
341 Finally, the linear transformation is its own inverse:
342 \[ L^{-1}(\mathbf{x}) = L(\mathbf{x}) \]
343 The inverse round function can now be defined as:
344 \[ R^{-1}_i(\mathbf{x}) =
345 \mathbf{M}^{-1} L\bigl(K^{-1}_i(\mathbf{x})\bigr) \]
346
347 The decryption function $C^{-1}: \mathcal{P} \to \mathcal{P}$ is defined
348 in terms of $R^{-1}$ and $K^{-1}$ in a very similar way to encryption. Let
349 $\mathbf{x}_0$ be a ciphertext vector. Let $\mathbf{x}_{i+1} =
350 R^{-1}_i(\mathbf{x}_i)$ for $0 \le i < 8$. Then we define
351 $C^{-1}(\mathbf{x}_0) = K^{-1}_8(\mathbf{x}_8)$.
352
353
354 \subsection{Constants}
355
356 The matrix $\mathbf{M}$ and its inverse $\mathbf{M}^{-1}$ are:
357 \begin{eqnarray*}[rl]
358 \mathbf{M} = &
359 \begin{pmatrix}
360 \hex{f7a413} & \hex{54bd81} & \hex{447550} & \hex{ff4449} \\
361 \hex{f31e87} & \hex{d85388} & \hex{de32cb} & \hex{40e3d7} \\
362 \hex{d9db1d} & \hex{551b45} & \hex{e9d19f} & \hex{e443de} \\
363 \hex{4b949a} & \hex{4d435d} & \hex{ef0a17} & \hex{b784e1}
364 \end{pmatrix} \\
365 \mathbf{M}^{-1} = &
366 \begin{pmatrix}
367 \hex{17391b} & \hex{fafb4b} & \hex{a66823} & \hex{f2efb6} \\
368 \hex{13e0e5} & \hex{2ed5e4} & \hex{b2cfff} & \hex{d9cdb5} \\
369 \hex{2af462} & \hex{33826d} & \hex{de66a1} & \hex{eb6c85} \\
370 \hex{c2f423} & \hex{e904a3} & \hex{e772d8} & \hex{d791f1}
371 \end{pmatrix}
372 \end{eqnarray*}
373
374
375
376 \section{Rationale and analysis}
377
378 \subsection{Design decisions}
379
380 The initial objective was to produce a cipher which played to the particular
381 strengths of digital signal processors. DSPs tend to have good multipliers,
382 and are particularly good at matrix multiplication. The decision to use a
383 matrix multiplication over $\mathbb{Z}_{2^{24}}$ seemed natural, given that
384 24 bits is a commonly offered word size.
385
386 The choice of a 96-bit block is also fairly natural. A 2 word (48-bit) block
387 is clearly too small, and a 3 word (72-bit) block is a little on the small
388 side too.
389
390
391 \subsection{Matrix multiplication over $\mathbb{Z}_{2^{24}}$}
392
393 Integer multiplication on a DSP is a cheap source of nonlinearity. Note that
394 bit $i$ of the result depends on all of the bits in the operands of lesser or
395 equal significance.position $i$ downwards.
396
397 The decision to make the $4 \times 4$ matrix fixed was taken fairly early on.
398 Generating invertible matrices from key material seemed like too much work to
399 expect from the DSP.
400
401 The matrix is generated pseudorandomly from a seed string, using SHA-1. The
402 criteria we used to choose the matrix are:
403 \begin{enumerate}
404 \item The matrix must be invertible.
405 \item Exactly one entry in each row and column of the matrix must be even.
406 \end{enumerate}
407 Criterion 1 is obvious. Criterion 2 encourages diffusion between the entries
408 in the block vector. Note that if a matrix satisfies the second criterion,
409 its inverse also does.
410
411 Consider a vector $\mathbf{x}$ and its product with the matrix $\mathbf{M}
412 \mathbf{x}$. Whether the top bit of entry $i$ in $\mathbf{x}$ affects
413 entry $j$ in the product depends on whether the entry in row $j$, column $i$
414 of $\mathbf{M}$ is even. Criterion 2 ensures the following:
415 \begin{itemize}
416 \item A top-bit change in a single word affects three words in the output.
417 \item A top-bit change in two words affects two words in the output.
418 \end{itemize}
419
420 The seed string used is \texttt{matrix-seed-string}. The program which
421 generates the matrix is included with the Storin example source code.
422
423 \subsection{The linear transformation}
424
425 A bit change in one of the inputs to the matrix can only affect bits at that
426 position and higher in the output. The linear transformation at the end of
427 the round aims to provide diffusion from the high-order bits back to the
428 low-order bits.
429
430 A single high-order bit change in the input to a round will affect the
431 high-order bits of three words in the output of the matrix multiply. The
432 linear transformation causes it to affect bits in the low halves of each of
433 these words. The second round's multiplication causes these bits to affect
434 the whole top halves of all of the output words. The linear transformation
435 propagates this change to the bottom halves. Complete avalanche is therefore
436 achieved after three rounds of Storin.
437
438
439 \subsection{Key schedule notes}
440
441 The key schedule is intended to be adequate for bulk encryption; it doesn't
442 provide good key agility, and isn't intended to. The key schedule accepts up
443 to 28 words of user key, although expecting 672 bits of security from the
444 cipher is not realistic. The suggested maximum of 5 words (120 bits) seems
445 more sensible. This maximum can be raised easily when our understanding of
446 the cipher increases our confidence in it.
447
448 The key schedule is strongly reminiscent of Blowfish \cite{blowfish}. Use of
449 existing components of the cipher, such as the matrix multiplication and the
450 cipher itself, help reduce the amount of code required in the implementation.
451
452 The restriction of the key schedule to 28 words is due to an interesting
453 property, also shared by Blowfish \cite{blowfish} (see
454 figure~\ref{fig:bfkeysched}): the output of the first round of the second
455 encryption doesn't depend on the previous round. To see why this is so, it
456 is enough to note that the first round key has just been set equal to what is
457 now the plaintext; the result of the key mixing stage is zero, which is
458 unaffected by the matrix and linear transformation.
459
460 A limit of 28 words is chosen to ensure that the round-1 key affects the
461 round-2 key in a part of the cipher earlier than the postwhitening stage.
462
463 \begin{figure}
464 \centering
465 \leavevmode
466 \begin{xy}
467 \xycompile{
468 \POS 0; <0.7cm, 0cm>:
469 \POS (0, 0) ="o" +(3, 0) ="w"
470 \ar "o" *+{P[0]}; p-(0, 1) *{\xor} ="x"
471 \ar "x" -(1, 0) *+[l]{P[0]}; "x"
472 \ar@{-} "x"; p-(0, 2) ="as"
473 \ar "w" *+{P[1]}; p-(0, 2) *{\xor} ="x"
474 \ar "o"-(0, 2); "x" |-*+[F]{F}
475 \ar@{-} "x"; p-(0, 1) ="bs"
476 \ar@{-} "as"; "bs"-(0, 1) ="w"
477 \ar@{-} "bs"; "as"-(0, 1) ="o"
478 \ar "o"; p-(0, 1) *+{P[1] \xor F(0)} ="x"
479 \ar "x"; p-(0, 1) *{\xor} ="x"
480 \ar "x" -(1, 0) *+[l]{P[1]}; "x"
481 \ar "x"; p-(0, 2) *+{F(0)}
482 \ar "w"; p-(0, 1) *+{0} ="x"
483 \ar "x"; p-(0, 2) *{\xor} ="x"
484 \ar "o"-(0, 3); "x" |-*+[F]{F}
485 \ar "x"; p-(0, 1) *+{F^2(0)}}
486 \end{xy}
487 \caption{Blowfish key schedule: $P[2]$ and $P[3]$ don't depend on $P[0]$ and
488 $P[1]$.}
489 \label{fig:bfkeysched}
490 \end{figure}
491
492 \subsection{Attacking Storin}
493
494 \subsubsection{Differential cryptanalysis}
495
496 There is a two-round truncated differential \cite{storin-tdiff}, which can be
497 used to break Storin reduced to only 2 rounds. The differential
498 \[ \begin{pmatrix}
499 1 \lsl 23 \\ 1 \lsl 23 \\ 1 \lsl 23 \\ 0
500 \end{pmatrix} \to
501 \begin{pmatrix}
502 0 \\ 0 \\ 1 \lsl 23 \\ 0
503 \end{pmatrix}
504 \]
505 holds with probability 1 through the matrix multiplication.
506 Differentials in the linear transform are easy to find; for example:
507 \[ \begin{pmatrix}
508 0 \\ 0 \\ 1 \lsl 23 \\ 0
509 \end{pmatrix} \to
510 \begin{pmatrix}
511 0 \\ 0 \\ (1 \lsl 23) \xor (1 \lsl 11) \\ 0
512 \end{pmatrix}
513 \]
514 We can continue through the second round's matrix multiplication with a
515 truncated differential, again with probability 1:
516 \[ \begin{pmatrix}
517 0 \\ 0 \\ (1 \lsl 23) \xor (1 \lsl 11) \\ 0
518 \end{pmatrix} \to
519 \begin{pmatrix}
520 \delta_0 \lsl 12 \\
521 (\delta_1 \lsl 12) \xor (1 \lsl 11) \\
522 (\delta_2 \lsl 12) \xor (1 \lsl 11) \\
523 (\delta_3 \lsl 12) \xor (1 \lsl 11) \\
524 \end{pmatrix}
525 \]
526 where the $\delta_i$ are unknown 12-bit values. Applying the linear
527 transformation to this output difference gives us
528 \[ \begin{pmatrix}
529 \delta_0 \lsl 12 \\
530 (\delta_1 \lsl 12) \xor (1 \lsl 11) \\
531 (\delta_2 \lsl 12) \xor (1 \lsl 11) \\
532 (\delta_3 \lsl 12) \xor (1 \lsl 11) \\
533 \end{pmatrix} \to
534 \begin{pmatrix}
535 (\delta_0 \lsl 12) \xor \delta_0 \\
536 (\delta_1 \lsl 12) \xor \delta_1 \xor (1 \lsl 11) \\
537 (\delta_2 \lsl 12) \xor \delta_2 \xor (1 \lsl 11) \\
538 (\delta_3 \lsl 12) \xor \delta_3 \xor (1 \lsl 11) \\
539 \end{pmatrix}
540 \]
541 A subsequent key-mixing or postwhitening stage won't affect the difference.
542 We can therefore combine the differentials above to construct a probability-1
543 truncated differential for a 2-round variant of Storin:
544 \[ \begin{pmatrix}
545 1 \lsl 23 \\ 1 \lsl 23 \\ 1 \lsl 23 \\ 0
546 \end{pmatrix} \to
547 \begin{pmatrix}
548 (\delta_0 \lsl 12) \xor \delta_0 \\
549 (\delta_1 \lsl 12) \xor \delta_1 \xor (1 \lsl 11) \\
550 (\delta_2 \lsl 12) \xor \delta_2 \xor (1 \lsl 11) \\
551 (\delta_3 \lsl 12) \xor \delta_3 \xor (1 \lsl 11) \\
552 \end{pmatrix}
553 \]
554 This characteristic is non-iterative, and can't be extended to more rounds.
555
556 The differential can be converted into a key-recovery attack against $n$
557 rounds fairly easily, by obtaining the ciphertext for an appropriate
558 plaintext pair and guessing the $n - 2$ round keys, testing the guesses by
559 working backwards and finding out whether the expected output difference is
560 visible. The attack requires a pair of chosen plaintexts, and
561 $O(2^{96(n - 2)})$ work. It is only more efficient than exhaustive search
562 when the key is longer than $96(n - 2)$ bits.
563
564 This attack can be improved. Consider a 3-round variant of Storin, where the
565 objective is to discover the postwhitening keys. The postwhitening stage can
566 be commuted with the linear transform simply by applying the transform to the
567 postwhitening keys. We do this, and guess the least significant 12 bits of
568 each of the (transformed) postwhitening key words. Working through the
569 matrix multiplication mod $2^{12}$ rather than mod $2^{24}$ then gives us the
570 12 least significant bits of the state words on input to the matrix. Further
571 key bits can then be guessed and tested, four at a time, to recover the
572 remaining postwhitening key bits, by ensuring that the differences in the
573 more significant bits of the third round matrix input obey the characteristic
574 described above. This requires only about $2^{48}$ work, and may be extended
575 to further rounds by exhaustively searching for the extra round keys.
576
577 This attack can break Storin with $n$ rounds ($n \ge 3$) with minimal chosen
578 plaintext and $O(2^{48 + 96(n - 3)})$ work. This is the best attack known
579 against Storin.
580
581 \subsubsection{Other attacks}
582
583 In \cite{storin-collide}, Matthew Fisher speculates on breaking 2 rounds of
584 Storin by forcing collisions in the matrix multiplication outputs. This
585 attack doesn't extend to more than two rounds either.
586
587 One possible avenue of attack worth exploring is to attempt to cause zero
588 words to be input into the first-round matrix by choosing plaintext words
589 identical to subkey words for the first round. Causing $n$ matrix input
590 words to be zero clearly takes $O(2^{24n})$ time. If a method can be found
591 to detect when zero words have been input to the matrix, this can be used to
592 discover the subkey words rather more rapidly than exhaustive search. We
593 can't see a way to exploit this at the moment, but it could be a fruitful
594 place to look for cryptanalysis.
595
596
597 \section{Conclusion}
598
599 We have presented a new block cipher, Storin. Any cryptanalysis will be
600 received with interest.
601
602
603 \begin{thebibliography}{99}
604 \bibitem{storin-collide}
605 M. Fisher,
606 `Yet another block cipher: Storin',
607 sci.crypt article, message-id \texttt{<8gjctn\$9ct\$1@nnrp1.deja.com>}
608 \bibitem{idea}
609 X. Lai,
610 `On the Design and Security of Block Ciphers',
611 ETH Series in Informatics Processing, J. L. Massey (editor), vol. 1,
612 Hartung-Gorre Verlag Konstanz, Technische Hochschule (Zurich), 1992
613 \bibitem{blowfish}
614 B. Schneier,
615 `The Blowfish Encryption Algorithm',
616 \textit{Dr Dobb's Journal}, vol. 19 no. 4, April 1994, pp. 38--40
617 \bibitem{storin-tdiff}
618 M. D. Wooding,
619 `Yet another block cipher: Storin',
620 sci.crypt article, message-id
621 \texttt{<slrn8iqhaq.872.mdw@mull.ncipher.com>}
622 \end{thebibliography}
623
624 %%%----- That's all, folks --------------------------------------------------
625
626 \end{document}
627
628 %%% Local Variables:
629 %%% mode: latex
630 %%% TeX-master: t
631 %%% End: