Fix some errors.
[storin] / storin.tex
CommitLineData
e6e0e332
MW
1%%% -*-latex-*-
2%%%
23ec5116 3%%% $Id: storin.tex,v 1.4 2000/05/28 00:39:32 mdw Exp $
e6e0e332
MW
4%%%
5%%% Definition of the cipher
6%%%
7%%% (c) 2000 Mark Wooding
8%%%
9
10%%%----- Revision history ---------------------------------------------------
11%%%
12%%% $Log: storin.tex,v $
23ec5116
MW
13%%% Revision 1.4 2000/05/28 00:39:32 mdw
14%%% Fix some errors.
15%%%
4643f89a
MW
16%%% Revision 1.3 2000/05/25 19:46:22 mdw
17%%% Improve analysis section.
18%%%
31b692a0
MW
19%%% Revision 1.2 2000/05/21 21:43:26 mdw
20%%% Fix a couple of typos.
21%%%
e6e0e332
MW
22%%% Revision 1.1 2000/05/21 11:28:30 mdw
23%%% Initial check-in.
24%%%
25
26%%%----- Preamble -----------------------------------------------------------
27
28\documentclass[a4paper]{article}
29\usepackage[palatino, helvetica, courier, maths=cmr]{mdwfonts}
30\usepackage{mdwtab}
31\usepackage{mathenv}
32\usepackage{amsfonts}
33\usepackage{mdwmath}
34\usepackage[all, dvips]{xy}
35
36\def\ror{\mathbin{>\!\!>\!\!>}}
37\def\rol{\mathbin{<\!\!<\!\!<}}
38\def\lsr{\mathbin{>\!\!>}}
39\def\lsl{\mathbin{<\!\!<}}
40\def\xor{\oplus}
41\def\seq#1{{\langle #1 \rangle}}
42
4643f89a
MW
43\def\hex#1{\texttt{#1}_{16}}
44
e6e0e332
MW
45\sloppy
46
47\title{Storin: A block cipher for digital signal processors}
48\author{Mark Wooding (\texttt{mdw@nsict.org})}
49
50%% --- The cipher diagrams ---
51
52\def\figkeymix#1#2#3#4{%
53 \ar "a"; p-(0, 0.5)*{\xor} ="a" \ar "a"+(1, 0) *+[r]{k_{#1}}; "a"%
54 \ar "b"; p-(0, 0.5)*{\xor} ="b" \ar "b"+(1, 0) *+[r]{k_{#2}}; "b"%
55 \ar "c"; p-(0, 0.5)*{\xor} ="c" \ar "c"+(1, 0) *+[r]{k_{#3}}; "c"%
56 \ar "d"; p-(0, 0.5)*{\xor} ="d" \ar "d"+(1, 0) *+[r]{k_{#4}}; "d"%
57}
58
59\def\figmatrix{%
60 \POS "a"+(3, -1) *++=(7, 0)[F]u\txt{Matrix multiply} ="m"%
61 \ar "a"; "m"+U-(3, 0) \ar "b"; "m"+U-(1, 0)%
62 \ar "c"; "m"+U+(1, 0) \ar "d"; "m"+U+(3, 0)%
63}
64
65\def\figlintrans{%
66 \ar "m"+D-(3, 0); "a"-(0, 2.25)*{\xor} ="a"%
67 \POS "a"+(1, 0) *+[F]{{} \lsr 12} ="x"%
68 \ar `r "a"+(0, 0.5); p+(1, 0) "x" \ar "x"; "a"%
69 \ar "m"+D-(1, 0); "b"-(0, 2.25)*{\xor} ="b"%
70 \POS "b"+(1, 0) *+[F]{{} \lsr 12} ="x"%
71 \ar `r "b"+(0, 0.5); p+(1, 0) "x" \ar "x"; "b"%
72 \ar "m"+D+(1, 0); "c"-(0, 2.25)*{\xor} ="c"%
73 \POS "c"+(1, 0) *+[F]{{} \lsr 12} ="x"%
74 \ar `r "c"+(0, 0.5); p+(1, 0) "x" \ar "x"; "c"%
75 \ar "m"+D+(3, 0); "d"-(0, 2.25)*{\xor} ="d"%
76 \POS "d"+(1, 0) *+[F]{{} \lsr 12} ="x"%
77 \ar `r "d"+(0, 0.5); p+(1, 0) "x" \ar "x"; "d"%
78}
79
80\def\figilintrans{%
81 \ar "a"; "a"-(0, 1)*{\xor} ="a"%
82 \POS "a"+(1, 0) *+[F]{{} \lsr 12} ="x"%
83 \ar `r "a"+(0, 0.5); p+(1, 0) "x" \ar "x"; "a"%
84 \ar "b"; "b"-(0, 1)*{\xor} ="b"%
85 \POS "b"+(1, 0) *+[F]{{} \lsr 12} ="x"%
86 \ar `r "b"+(0, 0.5); p+(1, 0) "x" \ar "x"; "b"%
87 \ar "c"; "c"-(0, 1)*{\xor} ="c"%
88 \POS "c"+(1, 0) *+[F]{{} \lsr 12} ="x"%
89 \ar `r "c"+(0, 0.5); p+(1, 0) "x" \ar "x"; "c"%
90 \ar "d"; "d"-(0, 1)*{\xor} ="d"%
91 \POS "d"+(1, 0) *+[F]{{} \lsr 12} ="x"%
92 \ar `r "d"+(0, 0.5); p+(1, 0) "x" \ar "x"; "d"%
93}
94
31b692a0 95\def\figstart#1{%
e6e0e332
MW
96 \POS 0;<1cm,0cm>:%
97 \turnradius{4pt}%
31b692a0
MW
98 \ar @{-} (0, 0) *+{a#1}; p-(0, 0.5) ="a"
99 \ar @{-} (2, 0) *+{b#1}; p-(0, 0.5) ="b"
100 \ar @{-} (4, 0) *+{c#1}; p-(0, 0.5) ="c"
101 \ar @{-} (6, 0) *+{d#1}; p-(0, 0.5) ="d"
e6e0e332
MW
102}
103
104\def\figround#1#2#3#4#5{%
105 \ar @{.} "a"-(0.5, 0); p+(8, 0)%
106 \POS "a"+(8, -1.75) *[r]\txt{#5}%
107 \figkeymix{#1}{#2}{#3}{#4}%
108 \figmatrix%
109 \figlintrans%
110 \ar @{-} "a"; p-(0, .5) ="a"
111 \ar @{-} "b"; p-(0, .5) ="b"
112 \ar @{-} "c"; p-(0, .5) ="c"
113 \ar @{-} "d"; p-(0, .5) ="d"
114}
115
116\def\figiround#1#2#3#4#5{%
117 \ar @{.} "a"-(0.5, 0); p+(8, 0)%
118 \POS "a"+(8, -1.75) *[r]\txt{#5}%
119 \figkeymix{#1}{#2}{#3}{#4}%
120 \figilintrans%
121 \figmatrix%
122 \ar @{-} "m"+D-(3, 0); p-(0, .5) ="a"
123 \ar @{-} "m"+D-(1, 0); p-(0, .5) ="b"
124 \ar @{-} "m"+D+(1, 0); p-(0, .5) ="c"
125 \ar @{-} "m"+D+(3, 0); p-(0, .5) ="d"
126}
127
128\def\figgap{%
129 \ar @{.} "a"-(0.5, 0); p+(8, 0)
130 \POS "a"+(8, -1)*[r]\txt{Six more rounds}
131 \ar @{--} "a"; "a"-(0, 2) ="a"
132 \ar @{--} "b"; "b"-(0, 2) ="b"
133 \ar @{--} "c"; "c"-(0, 2) ="c"
134 \ar @{--} "d"; "d"-(0, 2) ="d"
135}
136
31b692a0 137\def\figwhite#1#2#3#4#5{%
e6e0e332
MW
138 \ar @{.} "a"-(0.5, 0); p+(8, 0)
139 \POS "a"+(8, -1)*[r]\txt{Postwhitening}
140 \figkeymix{#1}{#2}{#3}{#4}
31b692a0
MW
141 \ar "a"; p-(0, 1) *+{a#5}
142 \ar "b"; p-(0, 1) *+{b#5}
143 \ar "c"; p-(0, 1) *+{c#5}
144 \ar "d"; p-(0, 1) *+{d#5}
e6e0e332
MW
145}
146
147\begin{document}
148\maketitle
149
150%%%----- The main text ------------------------------------------------------
151
152\begin{abstract}
153 We present Storin: a new 96-bit block cipher designed to play to the
154 strengths of current digital signal processors (DSPs). In particular, DSPs
155 tend to provide single-cycle multiply-and-accumulate operations, making
156 matrix multiplications very cheap. Working in an environment where
157 multiplication is as fast as exclusive-or changes the usual perceptions
158 about which operations provide good cryptographic strength cheaply. The
159 scarcity of available memory, for code and for tables, and a penalty for
160 nonsequential access to data also make traditional block ciphers based
161 around substitution tables unsuitable.
162\end{abstract}
163
164\tableofcontents
165
166\section{Definition of the cipher}
167
168\subsection{Overview}
169
170Storin is an eight-round SP network operating on 96-bit blocks. The block
171cipher uses 36 24-bit subkey words, derived from a user key by the key
172schedule.
173
174The 96-bit input is split into four 24-bit words. Each round then processes
175these four words, using the following three steps:
176\begin{enumerate}
177\item Mixing in of some key material. Four 24-bit subkey words are XORed
178 with the four data words.
179\item A matrix multiplication mod $2^{24}$. The four words are treated as a
180 column vector and premultiplied by a $4 \times 4$ vector using addition and
181 multiplication mod $2^{24}$. This is the main nonlinear step in the
182 cipher, and it also provides most of the cipher's diffusion.
183\item A simple linear transformation, which replaces each word $x$ by $x \xor
184 (x \lsr 12)$.
185\end{enumerate}
186The four data words output by the final round are XORed with the last four
187subkey words in a final postwhitening stage and combined to form the 96-bit
188ciphertext.
189
190The cipher structure is shown diagrammatically in figure~\ref{fig:cipher}.
191
192\begin{figure}
193\centering
194\leavevmode
195\begin{xy}
196 \xycompile{
31b692a0 197 \figstart{}
e6e0e332
MW
198 \figround{0}{1}{2}{3}{Round 1}
199 \figround{4}{5}{6}{7}{Round 2}
200 \figgap
31b692a0 201 \figwhite{32}{33}{34}{35}{'}}
e6e0e332
MW
202\end{xy}
203\caption{The Storin encryption function}
204\label{fig:cipher}
205\end{figure}
206
207Since the matrix used in step 2 is chosen to be invertible, the cipher can be
208inverted readily, simply by performing the inverse steps in the reverse
209order. Since the postwhitening stage is the same as a key mixing stage,
210decryption can be viewed as eight rounds consisting of key mixing, linear
211transformation and matrix multiplication, followed by a postwhitening stage.
212Thus, the structure of the inverse cipher is very similar to the forwards
213cipher, and uses the same components. The decryption function is shown
214diagrammatically in figure~\ref{fig:decipher}.
215
216\begin{figure}
217\centering
218\leavevmode
219\begin{xy}
220 \xycompile{
31b692a0 221 \figstart{'}
e6e0e332
MW
222 \figiround{32}{33}{34}{35}{Round 1}
223 \figiround{28}{29}{30}{31}{Round 2}
224 \figgap
31b692a0 225 \figwhite{0}{1}{2}{3}{}}
e6e0e332
MW
226\end{xy}
227\caption{The Storin decryption function}
228\label{fig:decipher}
229\end{figure}
230
231The key schedule is designed to be simple and to reuse the cipher components
232already available. Given a user key, which is a sequence of one or more
23324-bit words, it produces the 36 subkey words required by the cipher. The
234key schedule is very similar to Blowfish \cite{blowfish}. The subkey array
235is assigned an initial constant value derived from the matrix used in the
236cipher. Words from the user key are XORed into the array, starting from the
237beginning, and restarting from the beginning of the user key when all the
238user key words are exhausted. A 96-bit block is initialized to zero, and
239enciphered with Storin, using the subkeys currently in the array. The first
240four subkey words are then replaced with the resulting ciphertext, which is
241then encrypted again using the new subkeys. The next four subkey words are
242replaced with the ciphertext, and the process continues, nine times in all,
243until all of the subkey words have been replaced.
244
4643f89a 245The Storin key schedule can in theory accept user keys up to 36 words (864
23ec5116
MW
246bits) long. However, there are known problems with keys longer than 28 words
247(672 bits), and these large keys are forbidden. We expect that with long
248keys, attacks will be found which are more efficient than an exhaustive
249search of the keyspace; we therefore (conservatively) recommend 5 word
250(120-bit) keys as a practical maximum.
e6e0e332
MW
251
252
253\subsection{Encryption}
254
255We define $\mathcal{W} = \mathbb{Z}_{2^{24}}$ to be set of 24-bit words, and
256$\mathcal{P} = \mathcal{W}^4$ to be the set of four-entry column vectors over
257$\mathcal{W}$. Storin plaintext blocks are members of $\mathcal{P}$.
258
259The Storin encryption function uses 36 24-bit words of key material $k_0$,
260$k_1$, \ldots, $k_{35}$, which are produced from the user key by the key
261schedule, described below. The key-mixing operation $K_i: \mathcal{P}
262\rightarrow \mathcal{P}$ is defined for $0 \le i < 9$ by:
263\[
264 K_i \begin{pmatrix} a \\ b \\ c \\d \end{pmatrix}
265 =
266 \begin{pmatrix}
267 a \xor k_{4i} \\ b \xor k_{4i+1} \\ c \xor k_{4i+2} \\ d \xor k_{4i+3}
268 \end{pmatrix}
269\]
270
271The matrix multiplication operation $M: \mathcal{P} \to \mathcal{P}$
272is described by $M(\mathbf{x}) = \mathbf{M} \mathbf{x}$, where $\mathbf{M}$
273is a fixed invertible $4 \times 4$ matrix over $\mathcal{W}$. The value of
274$\mathbf{M}$ is defined below.
275
276The linear transformation $L: \mathcal{P} \to \mathcal{P}$ is defined by:
277\[
278 L \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}
279 =
280 \begin{pmatrix}
281 a \xor (a \lsr 12) \\
282 b \xor (b \lsr 12) \\
283 c \xor (c \lsr 12) \\
284 d \xor (d \lsr 12)
285 \end{pmatrix}
286\]
287
288The round function $R_i: \mathcal{P} \to \mathcal{P}$ is defined for $0 \le i
289< 8$ by
290\[ R_i(\mathbf{x}) = L\bigl(\mathbf{M} K_i(\mathbf{x}) \bigr) \]
291
292The cipher $C: \mathcal{P} \to \mathcal{P}$ is defined in terms of $R_i$ and
293$K_i$. Let $\mathbf{x}_0 \in \mathcal{P}$ be a plaintext vector. Let
294$\mathbf{x}_{i+1} = R_i(\mathbf{x}_i)$ for $0 \le i < 8$. Then we define
295$C(\mathbf{x})$ by setting $C(\mathbf{x}_0) = K_8(\mathbf{x}_8)$.
296
297
298\subsection{Key schedule}
299
300The key schedule converts a user key, which is a sequence of 24-bit words,
301into the 36 subkeys required by the cipher.
302
303For $i \ge 0$, we define that
304\[
305\begin{pmatrix}
306 m_{16i + 0} & m_{16i + 1} & m_{16i + 2} & m_{16i + 3} \\
307 m_{16i + 4} & m_{16i + 5} & m_{16i + 6} & m_{16i + 7} \\
308 m_{16i + 8} & m_{16i + 9} & m_{16i + 10} & m_{16i + 11} \\
309 m_{16i + 12} & m_{16i + 13} & m_{16i + 14} & m_{16i + 15}
310\end{pmatrix}
311= \mathbf{M}^{i + 2}
312\]
313
314Let the user-supplied key be $u_0$, $u_1$, \ldots, $u_{n-1}$, for some $n >
3150$. We define the sequence $z_0$, $z_1$, \ldots\ by
316\[ z_i = m_i \xor u_{i \bmod n} \]
317for $i \ge 0$.
318
319Denote the result of encrypting vector $\mathbf{x}$ using subkeys from the
320sequence $\seq{w} = w_0, w_1, \ldots, w_{35}$ as $C_{\seq{w}}(\mathbf{x})$.
321We define the key schedule to be $k_0$, $k_1$, \ldots, $k_{35}$, where:
322\begin{eqlines*}
323 \seq{p^{(i)}} = k_0, k_1, \ldots, k_{4i-1}, z_{4i}, z_{4i+1}, \ldots \\
324 \mathbf{x}_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \qquad
325 \begin{pmatrix} k_{4i} \\ k_{4i+1} \\ k_{4i+2} \\ k_{4i+3} \end{pmatrix}
326 = \mathbf{x}_{i+1} = C_{\seq{p^{(i)}}}(\mathbf{x}_i)
327\end{eqlines*}
328
329
330\subsection{Decryption}
331
332The individual operations used during encryption are all invertible. Key
333mixing is inverted by taking keys from the other end of the array:
334\[ K^{-1}_i(\mathbf{x}) = K_{8-i}(\mathbf{x}) \]
335The matrix multiplication may be inverted simply by using the inverse matrix
336$\mathbf{M}^{-1}$:
337\[ M^{-1}(\mathbf{x}) = \mathbf{M}^{-1} \mathbf{x} \]
338Finally, the linear transformation is its own inverse:
339\[ L^{-1}(\mathbf{x}) = L(\mathbf{x}) \]
340The inverse round function can now be defined as:
341\[ R^{-1}_i(\mathbf{x}) =
342 \mathbf{M}^{-1} L\bigl(K^{-1}_i(\mathbf{x})\bigr) \]
343
344The decryption function $C^{-1}: \mathcal{P} \to \mathcal{P}$ is defined
345in terms of $R^{-1}$ and $K^{-1}$ in a very similar way to encryption. Let
346$\mathbf{x}_0$ be a ciphertext vector. Let $\mathbf{x}_{i+1} =
347R^{-1}_i(\mathbf{x}_i)$ for $0 \le i < 8$. Then we define
348$C^{-1}(\mathbf{x}_0) = K^{-1}_8(\mathbf{x}_8)$.
349
350
351\subsection{Constants}
352
353The matrix $\mathbf{M}$ and its inverse $\mathbf{M}^{-1}$ are:
354\begin{eqnarray*}[rl]
355 \mathbf{M} = &
4643f89a
MW
356 \begin{pmatrix}
357 \hex{f7a413} & \hex{54bd81} & \hex{447550} & \hex{ff4449} \\
358 \hex{f31e87} & \hex{d85388} & \hex{de32cb} & \hex{40e3d7} \\
359 \hex{d9db1d} & \hex{551b45} & \hex{e9d19f} & \hex{e443de} \\
360 \hex{4b949a} & \hex{4d435d} & \hex{ef0a17} & \hex{b784e1}
e6e0e332
MW
361 \end{pmatrix} \\
362 \mathbf{M}^{-1} = &
4643f89a
MW
363 \begin{pmatrix}
364 \hex{17391b} & \hex{fafb4b} & \hex{a66823} & \hex{f2efb6} \\
365 \hex{13e0e5} & \hex{2ed5e4} & \hex{b2cfff} & \hex{d9cdb5} \\
366 \hex{2af462} & \hex{33826d} & \hex{de66a1} & \hex{eb6c85} \\
367 \hex{c2f423} & \hex{e904a3} & \hex{e772d8} & \hex{d791f1}
e6e0e332
MW
368 \end{pmatrix}
369\end{eqnarray*}
370
371
372
373\section{Rationale and analysis}
374
375\subsection{Design decisions}
376
377The initial objective was to produce a cipher which played to the particular
378strengths of digital signal processors. DSPs tend to have good multipliers,
31b692a0 379and are particularly good at matrix multiplication. The decision to use a
e6e0e332
MW
380matrix multiplication over $\mathbb{Z}_{2^{24}}$ seemed natural, given that
38124 bits is a commonly offered word size.
382
383The choice of a 96-bit block is also fairly natural. A 2 word (48-bit) block
384is clearly too small, and a 3 word (72-bit) block is a little on the small
385side too.
386
387
388\subsection{Matrix multiplication over $\mathbb{Z}_{2^{24}}$}
389
390Integer multiplication on a DSP is a cheap source of nonlinearity. Note that
391bit $i$ of the result depends on all of the bits in the operands of lesser or
392equal significance.position $i$ downwards.
393
394The decision to make the $4 \times 4$ matrix fixed was taken fairly early on.
395Generating invertible matrices from key material seemed like too much work to
396expect from the DSP.
397
398The matrix is generated pseudorandomly from a seed string, using SHA-1. The
399criteria we used to choose the matrix are:
400\begin{enumerate}
401\item The matrix must be invertible.
402\item Exactly one entry in each row and column of the matrix must be even.
403\end{enumerate}
404Criterion 1 is obvious. Criterion 2 encourages diffusion between the entries
405in the block vector. Note that if a matrix satisfies the second criterion,
406its inverse also does.
407
408Consider a vector $\mathbf{x}$ and its product with the matrix $\mathbf{M}
409\mathbf{x}$. Whether the top bit of entry $i$ in $\mathbf{x}$ affects
410entry $j$ in the product depends on whether the entry in row $j$, column $i$
411of $\mathbf{M}$ is even. Criterion 2 ensures the following:
412\begin{itemize}
4643f89a 413\item A top-bit change in a single word affects three words in the output.
e6e0e332
MW
414\item A top-bit change in two words affects two words in the output.
415\end{itemize}
416
417The seed string used is \texttt{matrix-seed-string}. The program which
418generates the matrix is included with the Storin example source code.
419
420\subsection{The linear transformation}
421
422A bit change in one of the inputs to the matrix can only affect bits at that
423position and higher in the output. The linear transformation at the end of
424the round aims to provide diffusion from the high-order bits back to the
425low-order bits.
426
427A single high-order bit change in the input to a round will affect the
428high-order bits of three words in the output of the matrix multiply. The
429linear transformation causes it to affect bits in the low halves of each of
430these words. The second round's multiplication causes these bits to affect
431the whole top halves of all of the output words. The linear transformation
432propagates this change to the bottom halves. Complete avalanche is therefore
433achieved after three rounds of Storin.
434
435
436\subsection{Key schedule notes}
437
438The key schedule is intended to be adequate for bulk encryption; it doesn't
4643f89a
MW
439provide good key agility, and isn't intended to. The key schedule accepts up
440to 28 words of user key, although expecting 672 bits of security from the
441cipher is not realistic. The suggested maximum of 5 words (120 bits) seems
442more sensible. This maximum can be raised easily when our understanding of
443the cipher increases our confidence in it.
e6e0e332
MW
444
445The key schedule is strongly reminiscent of Blowfish \cite{blowfish}. Use of
446existing components of the cipher, such as the matrix multiplication and the
447cipher itself, help reduce the amount of code required in the implementation.
448
4643f89a 449The restriction of the key schedule to 28 words is due to an interesting
23ec5116
MW
450property, also shared by Blowfish \cite{blowfish} (see
451figure~\ref{fig:bfkeysched}): the output of the first round of the second
452encryption doesn't depend on the previous round. To see why this is so, it
453is enough to note that the first round key has just been set equal to what is
454now the plaintext; the result of the key mixing stage is zero, which is
455unaffected by the matrix and linear transformation.
e6e0e332 456
4643f89a
MW
457A limit of 28 words is chosen to ensure that the round-1 key affects the
458round-2 key in a part of the cipher earlier than the postwhitening stage.
459
460\begin{figure}
461\centering
462\leavevmode
463\begin{xy}
464 \xycompile{
465 \POS 0; <0.7cm, 0cm>:
466 \POS (0, 0) ="o" +(3, 0) ="w"
467 \ar "o" *+{P[0]}; p-(0, 1) *{\xor} ="x"
468 \ar "x" -(1, 0) *+[l]{P[0]}; "x"
469 \ar@{-} "x"; p-(0, 2) ="as"
470 \ar "w" *+{P[1]}; p-(0, 2) *{\xor} ="x"
471 \ar "o"-(0, 2); "x" |-*+[F]{F}
472 \ar@{-} "x"; p-(0, 1) ="bs"
473 \ar@{-} "as"; "bs"-(0, 1) ="w"
474 \ar@{-} "bs"; "as"-(0, 1) ="o"
475 \ar "o"; p-(0, 1) *+{P[1] \xor F(0)} ="x"
476 \ar "x"; p-(0, 1) *{\xor} ="x"
477 \ar "x" -(1, 0) *+[l]{P[1]}; "x"
478 \ar "x"; p-(0, 2) *+{F(0)}
479 \ar "w"; p-(0, 1) *+{0} ="x"
480 \ar "x"; p-(0, 2) *{\xor} ="x"
481 \ar "o"-(0, 3); "x" |-*+[F]{F}
482 \ar "x"; p-(0, 1) *+{F^2(0)}}
483\end{xy}
484\caption{Blowfish key schedule: $P[2]$ and $P[3]$ don't depend on $P[0]$ and
485 $P[1]$.}
486\label{fig:bfkeysched}
487\end{figure}
e6e0e332
MW
488
489\subsection{Attacking Storin}
490
4643f89a
MW
491There is a two-round truncated differential \cite{storin-tdiff}, which can be
492used to break Storin reduced to only 2 rounds. The differential
493\[ (\hex{800000}, \hex{800000}, \hex{800000}, 0) \to
494 (0, 0, \hex{800000}, 0) \]
495holds with probability 1 through the matrix multiplication.
496Differentials in the linear transform are easy to find; for example:
497\[ (0, 0, \hex{800000}, 0) \to (0, 0, \hex{800800}, 0) \]
498We can continue through the second round's matrix multiplication with a
499truncated differential, again with probability 1:
500\[ (0, 0, \hex{800800}, 0) \to
501 (\hex{???000}, \hex{???800}, \hex{???800}, \hex{???800}) \]
502The following linear transform can be commuted with the postwhitening by
503applying a trivial reversible transformation to the postwhitening keys, and
504we can apply it to the ciphertext. If we do this, we can combine the
505differentials above to construct a probability-1 characteristic for a 2-round
506variant of Storin:
507\[ (\hex{800000}, \hex{800000}, \hex{800000}, 0) \to
508 (\hex{???000}, \hex{???800}, \hex{???800}, \hex{???800}) \]
509This characteristic is non-iterative, and can't be extended to more rounds.
510
511In \cite{storin-collide}, Matthew Fisher speculates on breaking 2 rounds of
512Storin by forcing collisions in the matrix multiplication outputs. This
513attack doesn't extend to more than two rounds either.
514
e6e0e332
MW
515One possible avenue of attack worth exploring is to attempt to cause zero
516words to be input into the first-round matrix by choosing plaintext words
517identical to subkey words for the first round. Causing $n$ matrix input
518words to be zero clearly takes $O(2^{24n})$ time. If a method can be found
519to detect when zero words have been input to the matrix, this can be used to
520discover the subkey words rather more rapidly than exhaustive search. We
521can't see a way to exploit this at the moment, but it could be a fruitful
522place to look for cryptanalysis.
523
524
525\section{Conclusion}
526
527We have presented a new block cipher, Storin. Any cryptanalysis will be
528received with interest.
529
530
531\begin{thebibliography}{99}
4643f89a
MW
532\bibitem{storin-collide} M. Fisher, `Yet another block cipher: Storin',
533 sci.crypt article, message-id \texttt{<8gjctn\$9ct\$1@nnrp1.deja.com>}
534\bibitem{idea} X. Lai, `On the Design and Security of Block Ciphers', ETH
535 Series in Informatics Processing, J. L. Massey (editor), vol. 1,
536 Hartung-Gorre Verlag Konstanz, Technische Hochschule (Zurich), 1992
537\bibitem{blowfish} B. Schneier, `The Blowfish Encryption Algorithm',
538 \textit{Dr Dobb's Journal}, vol. 19 no. 4, April 1994, pp. 38--40
539\bibitem{storin-tdiff} M. D. Wooding, `Yet another block cipher: Storin',
540 sci.crypt article, message-id
541 \texttt{<slrn8iqhaq.872.mdw@mull.ncipher.com>}
e6e0e332
MW
542\end{thebibliography}
543
544%%%----- That's all, folks --------------------------------------------------
545
546\end{document}
547
548%%% Local Variables:
549%%% mode: latex
550%%% TeX-master: t
551%%% End: