Fix a couple of typos.
[storin] / storin.tex
CommitLineData
e6e0e332
MW
1%%% -*-latex-*-
2%%%
31b692a0 3%%% $Id: storin.tex,v 1.2 2000/05/21 21:43:26 mdw Exp $
e6e0e332
MW
4%%%
5%%% Definition of the cipher
6%%%
7%%% (c) 2000 Mark Wooding
8%%%
9
10%%%----- Revision history ---------------------------------------------------
11%%%
12%%% $Log: storin.tex,v $
31b692a0
MW
13%%% Revision 1.2 2000/05/21 21:43:26 mdw
14%%% Fix a couple of typos.
15%%%
e6e0e332
MW
16%%% Revision 1.1 2000/05/21 11:28:30 mdw
17%%% Initial check-in.
18%%%
19
20%%%----- Preamble -----------------------------------------------------------
21
22\documentclass[a4paper]{article}
23\usepackage[palatino, helvetica, courier, maths=cmr]{mdwfonts}
24\usepackage{mdwtab}
25\usepackage{mathenv}
26\usepackage{amsfonts}
27\usepackage{mdwmath}
28\usepackage[all, dvips]{xy}
29
30\def\ror{\mathbin{>\!\!>\!\!>}}
31\def\rol{\mathbin{<\!\!<\!\!<}}
32\def\lsr{\mathbin{>\!\!>}}
33\def\lsl{\mathbin{<\!\!<}}
34\def\xor{\oplus}
35\def\seq#1{{\langle #1 \rangle}}
36
37\sloppy
38
39\title{Storin: A block cipher for digital signal processors}
40\author{Mark Wooding (\texttt{mdw@nsict.org})}
41
42%% --- The cipher diagrams ---
43
44\def\figkeymix#1#2#3#4{%
45 \ar "a"; p-(0, 0.5)*{\xor} ="a" \ar "a"+(1, 0) *+[r]{k_{#1}}; "a"%
46 \ar "b"; p-(0, 0.5)*{\xor} ="b" \ar "b"+(1, 0) *+[r]{k_{#2}}; "b"%
47 \ar "c"; p-(0, 0.5)*{\xor} ="c" \ar "c"+(1, 0) *+[r]{k_{#3}}; "c"%
48 \ar "d"; p-(0, 0.5)*{\xor} ="d" \ar "d"+(1, 0) *+[r]{k_{#4}}; "d"%
49}
50
51\def\figmatrix{%
52 \POS "a"+(3, -1) *++=(7, 0)[F]u\txt{Matrix multiply} ="m"%
53 \ar "a"; "m"+U-(3, 0) \ar "b"; "m"+U-(1, 0)%
54 \ar "c"; "m"+U+(1, 0) \ar "d"; "m"+U+(3, 0)%
55}
56
57\def\figlintrans{%
58 \ar "m"+D-(3, 0); "a"-(0, 2.25)*{\xor} ="a"%
59 \POS "a"+(1, 0) *+[F]{{} \lsr 12} ="x"%
60 \ar `r "a"+(0, 0.5); p+(1, 0) "x" \ar "x"; "a"%
61 \ar "m"+D-(1, 0); "b"-(0, 2.25)*{\xor} ="b"%
62 \POS "b"+(1, 0) *+[F]{{} \lsr 12} ="x"%
63 \ar `r "b"+(0, 0.5); p+(1, 0) "x" \ar "x"; "b"%
64 \ar "m"+D+(1, 0); "c"-(0, 2.25)*{\xor} ="c"%
65 \POS "c"+(1, 0) *+[F]{{} \lsr 12} ="x"%
66 \ar `r "c"+(0, 0.5); p+(1, 0) "x" \ar "x"; "c"%
67 \ar "m"+D+(3, 0); "d"-(0, 2.25)*{\xor} ="d"%
68 \POS "d"+(1, 0) *+[F]{{} \lsr 12} ="x"%
69 \ar `r "d"+(0, 0.5); p+(1, 0) "x" \ar "x"; "d"%
70}
71
72\def\figilintrans{%
73 \ar "a"; "a"-(0, 1)*{\xor} ="a"%
74 \POS "a"+(1, 0) *+[F]{{} \lsr 12} ="x"%
75 \ar `r "a"+(0, 0.5); p+(1, 0) "x" \ar "x"; "a"%
76 \ar "b"; "b"-(0, 1)*{\xor} ="b"%
77 \POS "b"+(1, 0) *+[F]{{} \lsr 12} ="x"%
78 \ar `r "b"+(0, 0.5); p+(1, 0) "x" \ar "x"; "b"%
79 \ar "c"; "c"-(0, 1)*{\xor} ="c"%
80 \POS "c"+(1, 0) *+[F]{{} \lsr 12} ="x"%
81 \ar `r "c"+(0, 0.5); p+(1, 0) "x" \ar "x"; "c"%
82 \ar "d"; "d"-(0, 1)*{\xor} ="d"%
83 \POS "d"+(1, 0) *+[F]{{} \lsr 12} ="x"%
84 \ar `r "d"+(0, 0.5); p+(1, 0) "x" \ar "x"; "d"%
85}
86
31b692a0 87\def\figstart#1{%
e6e0e332
MW
88 \POS 0;<1cm,0cm>:%
89 \turnradius{4pt}%
31b692a0
MW
90 \ar @{-} (0, 0) *+{a#1}; p-(0, 0.5) ="a"
91 \ar @{-} (2, 0) *+{b#1}; p-(0, 0.5) ="b"
92 \ar @{-} (4, 0) *+{c#1}; p-(0, 0.5) ="c"
93 \ar @{-} (6, 0) *+{d#1}; p-(0, 0.5) ="d"
e6e0e332
MW
94}
95
96\def\figround#1#2#3#4#5{%
97 \ar @{.} "a"-(0.5, 0); p+(8, 0)%
98 \POS "a"+(8, -1.75) *[r]\txt{#5}%
99 \figkeymix{#1}{#2}{#3}{#4}%
100 \figmatrix%
101 \figlintrans%
102 \ar @{-} "a"; p-(0, .5) ="a"
103 \ar @{-} "b"; p-(0, .5) ="b"
104 \ar @{-} "c"; p-(0, .5) ="c"
105 \ar @{-} "d"; p-(0, .5) ="d"
106}
107
108\def\figiround#1#2#3#4#5{%
109 \ar @{.} "a"-(0.5, 0); p+(8, 0)%
110 \POS "a"+(8, -1.75) *[r]\txt{#5}%
111 \figkeymix{#1}{#2}{#3}{#4}%
112 \figilintrans%
113 \figmatrix%
114 \ar @{-} "m"+D-(3, 0); p-(0, .5) ="a"
115 \ar @{-} "m"+D-(1, 0); p-(0, .5) ="b"
116 \ar @{-} "m"+D+(1, 0); p-(0, .5) ="c"
117 \ar @{-} "m"+D+(3, 0); p-(0, .5) ="d"
118}
119
120\def\figgap{%
121 \ar @{.} "a"-(0.5, 0); p+(8, 0)
122 \POS "a"+(8, -1)*[r]\txt{Six more rounds}
123 \ar @{--} "a"; "a"-(0, 2) ="a"
124 \ar @{--} "b"; "b"-(0, 2) ="b"
125 \ar @{--} "c"; "c"-(0, 2) ="c"
126 \ar @{--} "d"; "d"-(0, 2) ="d"
127}
128
31b692a0 129\def\figwhite#1#2#3#4#5{%
e6e0e332
MW
130 \ar @{.} "a"-(0.5, 0); p+(8, 0)
131 \POS "a"+(8, -1)*[r]\txt{Postwhitening}
132 \figkeymix{#1}{#2}{#3}{#4}
31b692a0
MW
133 \ar "a"; p-(0, 1) *+{a#5}
134 \ar "b"; p-(0, 1) *+{b#5}
135 \ar "c"; p-(0, 1) *+{c#5}
136 \ar "d"; p-(0, 1) *+{d#5}
e6e0e332
MW
137}
138
139\begin{document}
140\maketitle
141
142%%%----- The main text ------------------------------------------------------
143
144\begin{abstract}
145 We present Storin: a new 96-bit block cipher designed to play to the
146 strengths of current digital signal processors (DSPs). In particular, DSPs
147 tend to provide single-cycle multiply-and-accumulate operations, making
148 matrix multiplications very cheap. Working in an environment where
149 multiplication is as fast as exclusive-or changes the usual perceptions
150 about which operations provide good cryptographic strength cheaply. The
151 scarcity of available memory, for code and for tables, and a penalty for
152 nonsequential access to data also make traditional block ciphers based
153 around substitution tables unsuitable.
154\end{abstract}
155
156\tableofcontents
157
158\section{Definition of the cipher}
159
160\subsection{Overview}
161
162Storin is an eight-round SP network operating on 96-bit blocks. The block
163cipher uses 36 24-bit subkey words, derived from a user key by the key
164schedule.
165
166The 96-bit input is split into four 24-bit words. Each round then processes
167these four words, using the following three steps:
168\begin{enumerate}
169\item Mixing in of some key material. Four 24-bit subkey words are XORed
170 with the four data words.
171\item A matrix multiplication mod $2^{24}$. The four words are treated as a
172 column vector and premultiplied by a $4 \times 4$ vector using addition and
173 multiplication mod $2^{24}$. This is the main nonlinear step in the
174 cipher, and it also provides most of the cipher's diffusion.
175\item A simple linear transformation, which replaces each word $x$ by $x \xor
176 (x \lsr 12)$.
177\end{enumerate}
178The four data words output by the final round are XORed with the last four
179subkey words in a final postwhitening stage and combined to form the 96-bit
180ciphertext.
181
182The cipher structure is shown diagrammatically in figure~\ref{fig:cipher}.
183
184\begin{figure}
185\centering
186\leavevmode
187\begin{xy}
188 \xycompile{
31b692a0 189 \figstart{}
e6e0e332
MW
190 \figround{0}{1}{2}{3}{Round 1}
191 \figround{4}{5}{6}{7}{Round 2}
192 \figgap
31b692a0 193 \figwhite{32}{33}{34}{35}{'}}
e6e0e332
MW
194\end{xy}
195\caption{The Storin encryption function}
196\label{fig:cipher}
197\end{figure}
198
199Since the matrix used in step 2 is chosen to be invertible, the cipher can be
200inverted readily, simply by performing the inverse steps in the reverse
201order. Since the postwhitening stage is the same as a key mixing stage,
202decryption can be viewed as eight rounds consisting of key mixing, linear
203transformation and matrix multiplication, followed by a postwhitening stage.
204Thus, the structure of the inverse cipher is very similar to the forwards
205cipher, and uses the same components. The decryption function is shown
206diagrammatically in figure~\ref{fig:decipher}.
207
208\begin{figure}
209\centering
210\leavevmode
211\begin{xy}
212 \xycompile{
31b692a0 213 \figstart{'}
e6e0e332
MW
214 \figiround{32}{33}{34}{35}{Round 1}
215 \figiround{28}{29}{30}{31}{Round 2}
216 \figgap
31b692a0 217 \figwhite{0}{1}{2}{3}{}}
e6e0e332
MW
218\end{xy}
219\caption{The Storin decryption function}
220\label{fig:decipher}
221\end{figure}
222
223The key schedule is designed to be simple and to reuse the cipher components
224already available. Given a user key, which is a sequence of one or more
22524-bit words, it produces the 36 subkey words required by the cipher. The
226key schedule is very similar to Blowfish \cite{blowfish}. The subkey array
227is assigned an initial constant value derived from the matrix used in the
228cipher. Words from the user key are XORed into the array, starting from the
229beginning, and restarting from the beginning of the user key when all the
230user key words are exhausted. A 96-bit block is initialized to zero, and
231enciphered with Storin, using the subkeys currently in the array. The first
232four subkey words are then replaced with the resulting ciphertext, which is
233then encrypted again using the new subkeys. The next four subkey words are
234replaced with the ciphertext, and the process continues, nine times in all,
235until all of the subkey words have been replaced.
236
237The Storin key schedule can accept user keys up to 36 words (864 bits) long.
238It is unrealistic, however, to expect this much strength from the cipher. We
239recommend against using keys longer than 5 words (120 bits).
240
241
242\subsection{Encryption}
243
244We define $\mathcal{W} = \mathbb{Z}_{2^{24}}$ to be set of 24-bit words, and
245$\mathcal{P} = \mathcal{W}^4$ to be the set of four-entry column vectors over
246$\mathcal{W}$. Storin plaintext blocks are members of $\mathcal{P}$.
247
248The Storin encryption function uses 36 24-bit words of key material $k_0$,
249$k_1$, \ldots, $k_{35}$, which are produced from the user key by the key
250schedule, described below. The key-mixing operation $K_i: \mathcal{P}
251\rightarrow \mathcal{P}$ is defined for $0 \le i < 9$ by:
252\[
253 K_i \begin{pmatrix} a \\ b \\ c \\d \end{pmatrix}
254 =
255 \begin{pmatrix}
256 a \xor k_{4i} \\ b \xor k_{4i+1} \\ c \xor k_{4i+2} \\ d \xor k_{4i+3}
257 \end{pmatrix}
258\]
259
260The matrix multiplication operation $M: \mathcal{P} \to \mathcal{P}$
261is described by $M(\mathbf{x}) = \mathbf{M} \mathbf{x}$, where $\mathbf{M}$
262is a fixed invertible $4 \times 4$ matrix over $\mathcal{W}$. The value of
263$\mathbf{M}$ is defined below.
264
265The linear transformation $L: \mathcal{P} \to \mathcal{P}$ is defined by:
266\[
267 L \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}
268 =
269 \begin{pmatrix}
270 a \xor (a \lsr 12) \\
271 b \xor (b \lsr 12) \\
272 c \xor (c \lsr 12) \\
273 d \xor (d \lsr 12)
274 \end{pmatrix}
275\]
276
277The round function $R_i: \mathcal{P} \to \mathcal{P}$ is defined for $0 \le i
278< 8$ by
279\[ R_i(\mathbf{x}) = L\bigl(\mathbf{M} K_i(\mathbf{x}) \bigr) \]
280
281The cipher $C: \mathcal{P} \to \mathcal{P}$ is defined in terms of $R_i$ and
282$K_i$. Let $\mathbf{x}_0 \in \mathcal{P}$ be a plaintext vector. Let
283$\mathbf{x}_{i+1} = R_i(\mathbf{x}_i)$ for $0 \le i < 8$. Then we define
284$C(\mathbf{x})$ by setting $C(\mathbf{x}_0) = K_8(\mathbf{x}_8)$.
285
286
287\subsection{Key schedule}
288
289The key schedule converts a user key, which is a sequence of 24-bit words,
290into the 36 subkeys required by the cipher.
291
292For $i \ge 0$, we define that
293\[
294\begin{pmatrix}
295 m_{16i + 0} & m_{16i + 1} & m_{16i + 2} & m_{16i + 3} \\
296 m_{16i + 4} & m_{16i + 5} & m_{16i + 6} & m_{16i + 7} \\
297 m_{16i + 8} & m_{16i + 9} & m_{16i + 10} & m_{16i + 11} \\
298 m_{16i + 12} & m_{16i + 13} & m_{16i + 14} & m_{16i + 15}
299\end{pmatrix}
300= \mathbf{M}^{i + 2}
301\]
302
303Let the user-supplied key be $u_0$, $u_1$, \ldots, $u_{n-1}$, for some $n >
3040$. We define the sequence $z_0$, $z_1$, \ldots\ by
305\[ z_i = m_i \xor u_{i \bmod n} \]
306for $i \ge 0$.
307
308Denote the result of encrypting vector $\mathbf{x}$ using subkeys from the
309sequence $\seq{w} = w_0, w_1, \ldots, w_{35}$ as $C_{\seq{w}}(\mathbf{x})$.
310We define the key schedule to be $k_0$, $k_1$, \ldots, $k_{35}$, where:
311\begin{eqlines*}
312 \seq{p^{(i)}} = k_0, k_1, \ldots, k_{4i-1}, z_{4i}, z_{4i+1}, \ldots \\
313 \mathbf{x}_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \qquad
314 \begin{pmatrix} k_{4i} \\ k_{4i+1} \\ k_{4i+2} \\ k_{4i+3} \end{pmatrix}
315 = \mathbf{x}_{i+1} = C_{\seq{p^{(i)}}}(\mathbf{x}_i)
316\end{eqlines*}
317
318
319\subsection{Decryption}
320
321The individual operations used during encryption are all invertible. Key
322mixing is inverted by taking keys from the other end of the array:
323\[ K^{-1}_i(\mathbf{x}) = K_{8-i}(\mathbf{x}) \]
324The matrix multiplication may be inverted simply by using the inverse matrix
325$\mathbf{M}^{-1}$:
326\[ M^{-1}(\mathbf{x}) = \mathbf{M}^{-1} \mathbf{x} \]
327Finally, the linear transformation is its own inverse:
328\[ L^{-1}(\mathbf{x}) = L(\mathbf{x}) \]
329The inverse round function can now be defined as:
330\[ R^{-1}_i(\mathbf{x}) =
331 \mathbf{M}^{-1} L\bigl(K^{-1}_i(\mathbf{x})\bigr) \]
332
333The decryption function $C^{-1}: \mathcal{P} \to \mathcal{P}$ is defined
334in terms of $R^{-1}$ and $K^{-1}$ in a very similar way to encryption. Let
335$\mathbf{x}_0$ be a ciphertext vector. Let $\mathbf{x}_{i+1} =
336R^{-1}_i(\mathbf{x}_i)$ for $0 \le i < 8$. Then we define
337$C^{-1}(\mathbf{x}_0) = K^{-1}_8(\mathbf{x}_8)$.
338
339
340\subsection{Constants}
341
342The matrix $\mathbf{M}$ and its inverse $\mathbf{M}^{-1}$ are:
343\begin{eqnarray*}[rl]
344 \mathbf{M} = &
345 \begin{pmatrix}[[>{\hbox\bgroup\ttfamily}c<{\egroup}]
346 f7a413 & 54bd81 & 447550 & ff4449 \\
347 f31e87 & d85388 & de32cb & 40e3d7 \\
348 d9db1d & 551b45 & e9d19f & e443de \\
349 4b949a & 4d435d & ef0a17 & b784e1
350 \end{pmatrix} \\
351 \mathbf{M}^{-1} = &
352 \begin{pmatrix}[[>{\hbox\bgroup\ttfamily}c<{\egroup}]
353 17391b & fafb4b & a66823 & f2efb6 \\
354 13e0e5 & 2ed5e4 & b2cfff & d9cdb5 \\
355 2af462 & 33826d & de66a1 & eb6c85 \\
356 c2f423 & e904a3 & e772d8 & d791f1
357 \end{pmatrix}
358\end{eqnarray*}
359
360
361
362\section{Rationale and analysis}
363
364\subsection{Design decisions}
365
366The initial objective was to produce a cipher which played to the particular
367strengths of digital signal processors. DSPs tend to have good multipliers,
31b692a0 368and are particularly good at matrix multiplication. The decision to use a
e6e0e332
MW
369matrix multiplication over $\mathbb{Z}_{2^{24}}$ seemed natural, given that
37024 bits is a commonly offered word size.
371
372The choice of a 96-bit block is also fairly natural. A 2 word (48-bit) block
373is clearly too small, and a 3 word (72-bit) block is a little on the small
374side too.
375
376
377\subsection{Matrix multiplication over $\mathbb{Z}_{2^{24}}$}
378
379Integer multiplication on a DSP is a cheap source of nonlinearity. Note that
380bit $i$ of the result depends on all of the bits in the operands of lesser or
381equal significance.position $i$ downwards.
382
383The decision to make the $4 \times 4$ matrix fixed was taken fairly early on.
384Generating invertible matrices from key material seemed like too much work to
385expect from the DSP.
386
387The matrix is generated pseudorandomly from a seed string, using SHA-1. The
388criteria we used to choose the matrix are:
389\begin{enumerate}
390\item The matrix must be invertible.
391\item Exactly one entry in each row and column of the matrix must be even.
392\end{enumerate}
393Criterion 1 is obvious. Criterion 2 encourages diffusion between the entries
394in the block vector. Note that if a matrix satisfies the second criterion,
395its inverse also does.
396
397Consider a vector $\mathbf{x}$ and its product with the matrix $\mathbf{M}
398\mathbf{x}$. Whether the top bit of entry $i$ in $\mathbf{x}$ affects
399entry $j$ in the product depends on whether the entry in row $j$, column $i$
400of $\mathbf{M}$ is even. Criterion 2 ensures the following:
401\begin{itemize}
402\item A top-bit change in a single word or three words affects three words in
403 the output.
404\item A top-bit change in two words affects two words in the output.
405\end{itemize}
406
407The seed string used is \texttt{matrix-seed-string}. The program which
408generates the matrix is included with the Storin example source code.
409
410\subsection{The linear transformation}
411
412A bit change in one of the inputs to the matrix can only affect bits at that
413position and higher in the output. The linear transformation at the end of
414the round aims to provide diffusion from the high-order bits back to the
415low-order bits.
416
417A single high-order bit change in the input to a round will affect the
418high-order bits of three words in the output of the matrix multiply. The
419linear transformation causes it to affect bits in the low halves of each of
420these words. The second round's multiplication causes these bits to affect
421the whole top halves of all of the output words. The linear transformation
422propagates this change to the bottom halves. Complete avalanche is therefore
423achieved after three rounds of Storin.
424
425
426\subsection{Key schedule notes}
427
428The key schedule is intended to be adequate for bulk encryption; it doesn't
429provide good key agility, and isn't intended to. The key schedule accepts an
430arbitrary number of 24-bit words, although expecting 864 bits of security
431from the cipher is not realistic. The suggested maximum of 5 words (120
432bits) seems more sensible. This maximum can be raised easily when our
433understanding of the cipher increases our confidence in it.
434
435The key schedule is strongly reminiscent of Blowfish \cite{blowfish}. Use of
436existing components of the cipher, such as the matrix multiplication and the
437cipher itself, help reduce the amount of code required in the implementation.
438
439There is an interesting feature of the key schedule: the output of the first
440round of the second encryption is zero. To see why this is so, it is enough
441to note that the first round key has just been set equal to what is now the
442plaintext; the result of the key mixing stage is zero, which is unaffected by
443the matrix and linear transformation.
444
445
446\subsection{Attacking Storin}
447
448A brief\footnote{About three days' worth on a 300MHz Pentium II.}
449computerized analysis of the matrix multiplication failed to turn up any
450high-probability differential characteristics. While an exhaustive search
451was clearly not possible, the program tested all differentials of Hamming
452weight 5 or less, and then random differentials, applying each to a suite of
453$2^{13}$ different 96-bit inputs chosen at random. No output difference was
454noted more than once.
455
456One possible avenue of attack worth exploring is to attempt to cause zero
457words to be input into the first-round matrix by choosing plaintext words
458identical to subkey words for the first round. Causing $n$ matrix input
459words to be zero clearly takes $O(2^{24n})$ time. If a method can be found
460to detect when zero words have been input to the matrix, this can be used to
461discover the subkey words rather more rapidly than exhaustive search. We
462can't see a way to exploit this at the moment, but it could be a fruitful
463place to look for cryptanalysis.
464
465
466\section{Conclusion}
467
468We have presented a new block cipher, Storin. Any cryptanalysis will be
469received with interest.
470
471
472\begin{thebibliography}{99}
473\bibitem{idea}{X. Lai, `On the Design and Security of Block Ciphers', ETH
474 Series in Informatics Processing, J. L. Massey (editor), vol. 1,
475 Hartung-Gorre Verlag Konstanz, Technische Hochschule (Zurich), 1992}
476\bibitem{blowfish}{B. Schneier, `The Blowfish Encryption Algorithm',
477 \textit{Dr Dobb's Journal}, vol. 19 no. 4, April 1994, pp. 38--40}
478\end{thebibliography}
479
480%%%----- That's all, folks --------------------------------------------------
481
482\end{document}
483
484%%% Local Variables:
485%%% mode: latex
486%%% TeX-master: t
487%%% End: