src/c-types-proto.lisp, src/c-types-impl.lisp: Qualifier name protocol.
[sod] / doc / clang.tex
1 %%% -*-latex-*-
2 %%%
3 %%% C language utilities
4 %%%
5 %%% (c) 2015 Straylight/Edgeware
6 %%%
7
8 %%%----- Licensing notice ---------------------------------------------------
9 %%%
10 %%% This file is part of the Sensible Object Design, an object system for C.
11 %%%
12 %%% SOD is free software; you can redistribute it and/or modify
13 %%% it under the terms of the GNU General Public License as published by
14 %%% the Free Software Foundation; either version 2 of the License, or
15 %%% (at your option) any later version.
16 %%%
17 %%% SOD is distributed in the hope that it will be useful,
18 %%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19 %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 %%% GNU General Public License for more details.
21 %%%
22 %%% You should have received a copy of the GNU General Public License
23 %%% along with SOD; if not, write to the Free Software Foundation,
24 %%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 \chapter{C language utilities} \label{ch:clang}
27
28 %%%--------------------------------------------------------------------------
29 \section{C type representation} \label{sec:clang.c-types}
30
31 \subsection{Overview} \label{sec:clang.c-types.over}
32
33 The Sod translator represents C types in a fairly simple and direct way.
34 However, because it spends a fair amount of its time dealing with C types, it
35 provides a number of useful operations and macros.
36
37 The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
38
39 \begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
41 @|c-type| \\ \ind
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
44 @|c-class-type| \- \\
45 @|tagged-c-type| \\ \ind
46 @|c-struct-type| \\
47 @|c-union-type| \\
48 @|c-enum-type| \- \\
49 @|c-pointer-type| \- \\
50 @|c-array-type| \\
51 @|c-function-type|
52 \end{tabbing}}
53 \caption{Classes representing C types}
54 \label{fig:codegen.c-types.classes}
55 \end{figure}
56
57 C type objects are immutable unless otherwise specified.
58
59 \subsubsection{Constructing C type objects}
60 There is a constructor function for each non-abstract class of C type object.
61 Note, however, that constructor functions need not generate a fresh type
62 object if a previously existing type object is suitable. In this case, we
63 say that the objects are \emph{interned}. Some constructor functions are
64 specified to return interned objects: programs may rely on receiving the same
65 (@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
66 not specified, clients may still not rely on receiving fresh objects.
67
68 A convenient S-expression notation is provided by the
69 \descref{c-type}[macro]{mac}. Use of this macro is merely an abbreviation
70 for corresponding use of the various constructor functions, and therefore
71 interns type objects in the same manner. The syntax accepted by the macro
72 can be extended in order to support new classes: see \descref{defctype}{mac},
73 \descref{c-type-alias}{mac} and \descref{define-c-type-syntax}{mac}.
74
75 The descriptions of each of the various classes include descriptions of the
76 initargs which may be passed to @|make-instance| when constructing a new
77 instance of the class. However, the constructor functions and S-expression
78 syntax are strongly recommended over direct use of @|make-instance|.
79
80 \subsubsection{Printing}
81 There are two protocols for printing C types. Unfortunately they have
82 similar names.
83 \begin{itemize}
84 \item The \descref{print-c-type}[function]{gf} prints a C type value using
85 the S-expression notation. It is mainly useful for diagnostic purposes.
86 \item The \descref{pprint-c-type}[function]{gf} prints a C type as a
87 C-syntax declaration.
88 \end{itemize}
89 Neither generic function defines a default primary method; subclasses of
90 @|c-type| must define their own methods in order to print correctly.
91
92
93 \subsection{The C type root class} \label{sec:clang.c-types.root}
94
95 \begin{describe}{cls}{c-type ()}
96 The class @|c-type| marks the root of the built-in C type hierarchy.
97
98 Users may define subclasses of @|c-type|. All non-abstract subclasses must
99 have a primary method defined on @|pprint-c-type|; unless instances of the
100 subclass are interned, a method on @|c-type-equal-p| is also required.
101
102 The class @|c-type| is abstract.
103 \end{describe}
104
105
106 \subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
107
108 The S-expression representation of a type is described syntactically as a
109 type specifier. Type specifiers fit into two syntactic categories.
110 \begin{itemize}
111 \item A \emph{symbolic type specifier} consists of a symbol. It has a
112 single, fixed meaning: if @<name> is a symbolic type specifier, then each
113 use of @<name> in a type specifier evaluates to the same (@|eq|) type
114 object, until the @<name> is redefined.
115 \item A \emph{type operator} is a symbol; the corresponding specifier is a
116 list whose @|car| is the operator. The remaining items in the list are
117 arguments to the type operator.
118 \end{itemize}
119
120 \begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
121 Evaluates to a C type object, as described by the type specifier
122 @<type-spec>.
123 \end{describe}
124
125 \begin{describe}{mac}
126 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+ \\
127 @[[ @|:export| @<export-flag> @]]^* \-
128 \nlret @<names>}
129 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
130 given, then all are defined in the same way. The type constructed by using
131 any of the @<name>s is as described by the type specifier @<type-spec>.
132
133 The resulting type object is constructed once, at the time that the macro
134 expansion is evaluated; the same (@|eq|) value is used each time any
135 @<name> is used in a type specifier.
136
137 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
138 and initialized to contain the C type object so constructed. Altering or
139 binding this name is discouraged.
140
141 If @<export-flag> is true, then the variable name, and all of the @<name>s,
142 are exported from the current package.
143 \end{describe}
144
145 \begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
146 Defines each @<alias> as being a type operator identical in behaviour to
147 @<original>. If @<original> is later redefined then the behaviour of the
148 @<alias>es changes too.
149 \end{describe}
150
151 \begin{describe}{mac}
152 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
153 @[[ @<declaration>^* @! @<doc-string> @]] \\
154 @<form>^* \-
155 \nlret @<name>}
156 Defines the symbol @<name> as a new type operator. When a list of the form
157 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
158 are bound to fresh variables according to @<lambda-list> (a destructuring
159 lambda-list) and the @<form>s evaluated in order in the resulting lexical
160 environment as an implicit @|progn|. The value should be a Lisp form which
161 will evaluate to the type specified by the arguments.
162
163 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
164 type specifiers among its arguments.
165 \end{describe}
166
167 \begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
168 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
169
170 If @<type-spec> is a list, then \descref{expand-c-type-form}{fun} is
171 invoked.
172 \end{describe}
173
174 \begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
175 Returns the Lisp form that @|(c-type (@<head> . @<tail>)| would expand
176 into.
177 \end{describe}
178
179 \begin{describe}{gf}
180 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
181 Print the C type object @<type> to @<stream> in S-expression form. The
182 @<colon> and @<atsign> arguments may be interpreted in any way which seems
183 appropriate: they are provided so that @|print-c-type| may be called via
184 @|format|'s @|\char`\~/\dots/| command; they are not set when
185 @|print-c-type| is called by Sod functions.
186
187 There should be a method defined for every C type class; there is no
188 default method.
189 \end{describe}
190
191
192 \subsection{Comparing C types} \label{sec:clang.c-types.cmp}
193
194 It is necessary to compare C types for equality, for example when checking
195 argument lists for methods. This is done by @|c-type-equal-p|.
196
197 \begin{describe}{gf}
198 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
199 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
200 @<c-type>_2 for equality; it returns true if the two types are equal and
201 false if they are not.
202
203 Two types are equal if they are structurally similar, where this property
204 is defined by methods for each individual class; see the descriptions of
205 the classes for the details.
206
207 The generic function @|c-type-equal-p| uses the @|and| method combination.
208
209 \begin{describe}{meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
210 A default primary method for @|c-type-equal-p| is defined. It simply
211 returns @|nil|. This way, methods can specialize on both arguments
212 without fear that a call will fail because no methods are applicable.
213 \end{describe}
214 \begin{describe}{ar-meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
215 A default around-method for @|c-type-equal-p| is defined. It returns
216 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
217 the primary methods. Since several common kinds of C types are interned,
218 this is a common case worth optimizing.
219 \end{describe}
220 \end{describe}
221
222
223 \subsection{Outputting C types} \label{sec:clang.c-types.output}
224
225 \begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
226 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
227 declaration of an object or function of type @<c-type>. The result is
228 written to @<stream>.
229
230 A C declaration has two parts: a sequence of \emph{declaration specifiers}
231 and a \emph{declarator}. The declarator syntax involves parentheses and
232 operators, in order to reflect the operators applicable to the declared
233 variable. For example, the name of a pointer variable is preceded by @`*';
234 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
235
236 The @<kernel> argument must be a function designator (though see the
237 standard around-method); it is invoked as
238 \begin{quote} \codeface
239 (funcall @<kernel> @<stream> @<priority> @<spacep>)
240 \end{quote}
241 It should write to @<stream> -- which may not be the same stream originally
242 passed into the generic function -- the `kernel' of the declarator, i.e.,
243 the part to which prefix and/or postfix operators are attached to form the
244 full declarator.
245
246 The methods on @|pprint-c-type| specialized for compound types work by
247 recursively calling @|pprint-c-type| on the subtype, passing down a closure
248 which prints the necessary additional declarator operators before calling
249 the original @<kernel> function. The additional arguments @<priority> and
250 @<spacep> support this implementation technique.
251
252 The @<priority> argument describes the surrounding operator context. It is
253 zero if no type operators are directly attached to the kernel (i.e., there
254 are no operators at all, or the kernel is enclosed in parentheses), one if
255 a prefix operator is directly attached, or two if a postfix operator is
256 directly attached. If the @<kernel> function intends to provide its own
257 additional declarator operators, it should check the @<priority> in order
258 to determine whether parentheses are necessary. See also the
259 \descref{maybe-in-parens}[macro]{mac}.
260
261 The @<spacep> argument indicates whether a space needs to be printed in
262 order to separate the declarator from the declaration specifiers. A kernel
263 which contains an identifier should insert a space before the identifier
264 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
265 declarator (one that specifies no name), looks more pleasing without a
266 trailing space. See also the \descref{c-type-space}[function]{fun}.
267
268 Every concrete subclass of @|c-type| is expected to provide a primary
269 method on this function. There is no default primary method.
270
271 \begin{describe}{ar-meth}{pprint-c-type @<c-type> @<stream> @<kernel>}
272 A default around method is defined on @|pprint-c-type| which `canonifies'
273 non-function @<kernel> arguments. In particular:
274 \begin{itemize}
275 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
276 with a @<kernel> function that does nothing; and
277 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
278 called recursively with a @<kernel> function that prints the object as
279 if by @|princ|, preceded if necessary by space using @|c-type-space|.
280 \end{itemize}
281 \end{describe}
282 \end{describe}
283
284 \begin{describe}{fun}{c-type-space @<stream>}
285 Writes a space and other pretty-printing instructions to @<stream> in order
286 visually to separate a declarator from the preceding declaration
287 specifiers. The precise details are subject to change.
288 \end{describe}
289
290 \begin{describe}{mac}
291 {maybe-in-parens (@<stream-var> @<guard-form>)
292 @<declaration>^*
293 @<form>^*}
294 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
295 sequence within a pretty-printer logical block writing to the stream named
296 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
297 the logical block has empty prefix and suffix strings; if it evaluates to a
298 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
299 respectively.
300
301 Note that this may cause @<stream> to be bound to a different stream object
302 within the @<form>s.
303 \end{describe}
304
305
306 \subsection{Type qualifiers and qualifiable types}
307 \label{sec:clang.ctypes.qual}
308
309 \begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
310 The class @|qualifiable-c-type| describes C types which can bear
311 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
312 @|restrict| and @|volatile|.
313
314 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
315 @|:volatile|. There is no built-in limitation to these particular
316 qualifiers; others keywords may be used, though this isn't recommended.
317
318 Two qualifiable types are equal only if they have \emph{matching
319 qualifiers}: i.e., every qualifier attached to one is also attached to the
320 other: order is not significant, and neither is multiplicity.
321
322 The class @|qualifiable-c-type| is abstract.
323 \end{describe}
324
325 \begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
326 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
327 an immutable list.
328 \end{describe}
329
330 \begin{describe}{fun}{qualify-type @<c-type> @<qualifiers> @> @<c-type>}
331 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
332 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
333 keywords. The result is a C type object like @<c-type> except that it
334 bears the given @<qualifiers>.
335
336 The @<c-type> is not modified. If @<c-type> is interned, then the returned
337 type will be interned.
338 \end{describe}
339
340 \begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
341 Returns a string containing the qualifiers listed in @<qualifiers> in C
342 syntax, with a space after each. In particular, if @<qualifiers> is
343 non-null then the final character of the returned string will be a space.
344 \end{describe}
345
346 \begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
347 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
348
349 There is a standard method, which deals with many qualifiers. Additional
350 methods exist for qualifier keywords which need special handling, such as
351 @|:atomic|; they are not listed here explicitly.
352
353 \begin{describe}{meth}{c-qualifier-keyword @<keyword> @> @<string>}
354 Returns the @<keyword>'s print-name, in lower case. This is sufficient
355 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
356 \end{describe}
357 \end{describe}
358
359 \begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
360 Return the @<c-type>'s qualifiers, as a list of C keyword names.
361 \end{describe}
362
363
364 \subsection{Leaf types} \label{sec:clang.c-types.leaf}
365
366 A \emph{leaf type} is a type which is not defined in terms of another type.
367 In Sod, the leaf types are
368 \begin{itemize}
369 \item \emph{simple types}, including builtin types like @|int| and @|char|,
370 as well as type names introduced by @|typename|, because Sod isn't
371 interested in what the type name means, merely that it names a type; and
372 \item \emph{tagged types}, i.e., enum, struct and union types which are named
373 by a keyword identifying the kind of type, and a \emph{tag}.
374 \end{itemize}
375
376 \begin{describe}{cls}{simple-c-type (qualifiable-c-type)
377 \&key :qualifiers :name}
378 The class of `simple types'; an instance denotes the type @<qualifiers>
379 @<name>.
380
381 A simple type object maintains a \emph{name}, which is a string whose
382 contents are the C name for the type. The initarg @|:name| may be used to
383 provide this name when calling @|make-instance|.
384
385 Two simple type objects are equal if and only if they have @|string=| names
386 and matching qualifiers.
387
388 A number of symbolic type specifiers for builtin types are predefined as
389 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
390 @|define-simple-c-type|, so can be used to construct qualified types.
391 \end{describe}
392
393 \begin{table}
394 \begin{tabular}[C]{ll} \hlx*{hv}
395 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
396 @|void| & @|void| \\ \hlx{v}
397 @|_Bool| & @|bool| \\ \hlx{v}
398 @|char| & @|char| \\ \hlx{}
399 @|wchar_t| & @|wchar-t| \\ \hlx{v}
400 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
401 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
402 @|short| & @|short|, @|signed-short|, @|short-int|,
403 @|signed-short-int| @|sshort| \\ \hlx{}
404 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
405 @|ushort| \\ \hlx{v}
406 @|int| & @|int|, @|signed|, @|signed-int|,
407 @|sint| \\ \hlx{}
408 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
409 @|long| & @|long|, @|signed-long|, @|long-int|,
410 @|signed-long-int|, @|slong| \\ \hlx{}
411 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
412 @|ulong| \\ \hlx{v}
413 @|long long| & @|long-long|, @|signed-long-long|,
414 @|long-long-int|, \\ \hlx{}
415 & \qquad @|signed-long-long-int|,
416 @|llong|, @|sllong| \\ \hlx{v}
417 @|unsigned long long|
418 & @|unsigned-long-long|, @|unsigned-long-long-int|,
419 @|ullong| \\ \hlx{v}
420 @|size_t| & @|size-t| \\ \hlx{}
421 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
422 @|float| & @|float| \\ \hlx{}
423 @|double| & @|double| \\ \hlx{}
424 @|long double| & @|long-double| \\ \hlx{v}
425 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
426 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
427 @|long double _Imaginary|
428 & @|long-double-imaginary| \\ \hlx{v}
429 @|float _Complex| & @|float-complex| \\ \hlx{}
430 @|double _Complex| & @|double-complex| \\ \hlx{}
431 @|long double _Complex|
432 & @|long-double-complex| \\ \hlx{v}
433 @|va_list| & @|va-list| \\ \hlx*{vh}
434 \end{tabular}
435 \caption{Builtin symbolic type specifiers for simple C types}
436 \label{tab:codegen.c-types.simple}
437 \end{table}
438
439 \begin{describe}{fun}
440 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
441 Return the (unique interned) simple C type object for the C type whose name
442 is @<name> (a string) and which has the given @<qualifiers> (a list of
443 keywords).
444 \end{describe}
445
446 \begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
447 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
448 string.
449 \end{describe}
450
451 \begin{describe}{mac}
452 {define-simple-c-type \=@{ @<name> @! (@<name>^+) @} @<string> \+ \\
453 @[[ @|:export| @<export-flag> @]] \-
454 \nlret @<name>}
455 Define type specifiers for a new simple C type. Each symbol @<name> is
456 defined as a symbolic type specifier for the (unique interned) simple C
457 type whose name is the value of @<string>. Further, each @<name> is
458 defined to be a type operator: the type specifier @|(@<name>
459 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
460 name is @<string> and which has the @<qualifiers> (which are evaluated).
461
462 Furthermore, a variable @|c-type-@<name>| is defined, for the first @<name>
463 only, and initialized with the newly constructed C type object.
464
465 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
466 all of the @<name>s, are exported from the current package.
467 \end{describe}
468
469 \begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
470 \&key :qualifiers :tag}
471 Provides common behaviour for C tagged types. A @<tag> is a string
472 containing a C identifier.
473
474 Two tagged types are equal if and only if they have the same class, their
475 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
476 subclasses may have additional methods on @|c-type-equal-p| which impose
477 further restrictions.)
478 \end{describe}
479 \begin{boxy}[Bug]
480 Sod maintains distinct namespaces for the three kinds of tagged types. In
481 C, there is only one namespace for tags which is shared between enums,
482 structs and unions.
483 \end{boxy}
484
485 \begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
486 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
487 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
488 should return their own classification symbols. It is intended that
489 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
490 syntax.\footnote{%
491 Alas, C doesn't provide a syntactic category for these keywords;
492 \Cplusplus\ calls them a @<class-key>.} %
493 There is a method defined for each of the built-in tagged type classes
494 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
495 \end{describe}
496
497 \begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
498 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
499 naming a kind of tagged type, return the name of the corresponding C
500 type class as a symbol.
501 \end{describe}
502
503 \begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
504 Represents a C enumerated type. An instance denotes the C type @|enum|
505 @<tag>. See the direct superclass @|tagged-c-type| for details.
506
507 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
508 interned) enumerated type with the given @<tag> and @<qualifier>s (all
509 evaluated).
510 \end{describe}
511 \begin{describe}{fun}
512 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
513 Return the (unique interned) C type object for the enumerated C type whose
514 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
515 keywords).
516 \end{describe}
517
518 \begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
519 Represents a C structured type. An instance denotes the C type @|struct|
520 @<tag>. See the direct superclass @|tagged-c-type| for details.
521
522 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
523 interned) structured type with the given @<tag> and @<qualifier>s (all
524 evaluated).
525 \end{describe}
526 \begin{describe}{fun}
527 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
528 Return the (unique interned) C type object for the structured C type whose
529 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
530 keywords).
531 \end{describe}
532
533 \begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
534 Represents a C union type. An instance denotes the C type @|union|
535 @<tag>. See the direct superclass @|tagged-c-type|
536 for details.
537
538 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
539 interned) union type with the given @<tag> and @<qualifier>s (all
540 evaluated).
541 \end{describe}
542 \begin{describe}{fun}
543 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
544 Return the (unique interned) C type object for the union C type whose tag
545 is @<tag> (a string) and which has the given @<qualifiers> (a list of
546 keywords).
547 \end{describe}
548
549
550 \subsection{Compound C types} \label{sec:code.c-types.compound}
551
552 Some C types are \emph{compound types}: they're defined in terms of existing
553 types. The classes which represent compound types implement a common
554 protocol.
555
556 \begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
557 Returns the underlying type of a compound type @<c-type>. Precisely what
558 this means depends on the class of @<c-type>.
559 \end{describe}
560
561
562 \subsection{Pointer types} \label{sec:clang.c-types.pointer}
563
564 Pointers are compound types. The subtype of a pointer type is the type it
565 points to.
566
567 \begin{describe}{cls}
568 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
569 Represents a C pointer type. An instance denotes the C type @<subtype>
570 @|*|@<qualifiers>.
571
572 The @<subtype> may be any C type. Two pointer types are equal if and only
573 if their subtypes are equal and they have matching qualifiers.
574
575 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
576 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
577 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
578 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
579 star @`*'.
580
581 The symbol @|string| is a type specifier for the type pointer to
582 characters; the symbol @|const-string| is a type specifier for the type
583 pointer to constant characters.
584 \end{describe}
585
586 \begin{describe}{fun}
587 {make-pointer-type @<c-type> \&optional @<qualifiers>
588 @> @<c-pointer-type>}
589 Return an object describing the type qualified pointer to @<subtype>.
590 If @<subtype> is interned, then the returned pointer type object is
591 interned also.
592 \end{describe}
593
594
595 \subsection{Array types} \label{sec:clang.c-types.array}
596
597 Arrays implement the compound-type protocol. The subtype of an array type is
598 the array element type.
599
600 \begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
601 Represents a multidimensional C array type. The @<dimensions> are a list
602 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
603 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
604 individual dimension specifier is either a string containing a C integral
605 constant expression, or nil which is equivalent to an empty string. Only
606 the first (outermost) dimension $d_0$ should be empty.
607
608 C doesn't actually have multidimensional arrays as a primitive notion;
609 rather, it permits an array (with known extent) to be the element type of
610 an array, which achieves an equivalent effect. C arrays are stored in
611 row-major order: i.e., if we write down the indices of the elements of an
612 array in order of ascending address, the rightmost index varies fastest;
613 hence, the type constructed is more accurately an array of $d_0$ arrays of
614 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
615 continue to abuse terminology and refer to multidimensional arrays.
616
617 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
618 multidimensional array with the given @<dimension>s whose elements have the
619 type specified by @<type-spec>. If no dimensions are given then a
620 single-dimensional array with unspecified extent. The synonyms @|array|
621 and @|vector| may be used in place of the brackets @`[]'.
622 \end{describe}
623
624 \begin{describe}{fun}
625 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
626 Return an object describing the type of arrays with given @<dimensions> and
627 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
628 argument is a list whose elements are strings or nil; see the description
629 of the class @|c-array-type| above for details.
630 \end{describe}
631
632 \begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
633 Returns the dimensions of @<c-type>, an array type, as an immutable list.
634 \end{describe}
635
636
637 \subsection{Function types} \label{sec:clang.c-types.fun}
638
639 Function types implement the compound-type protocol. The subtype of a
640 function type is the type of the function's return value.
641
642 \begin{describe}{cls}{argument}
643 Represents an ordinary function argument.
644 \end{describe}
645
646 \begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
647 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
648 not return nil.
649 \end{describe}
650
651 \begin{describe}{fun}{make-argument @<name> @<c-type> @> @<argument>}
652 Construct and a return a new @<argument> object. The argument has type
653 @<c-type>, which must be a @|c-type| object, and is named @<name>.
654
655 The @<name> may be nil to indicate that the argument has no name: in this
656 case the argument will be formatted as an abstract declarator, which is not
657 suitable for function definitions. If @<name> is not nil, then the
658 @<name>'s print representation, with @|*print-escape*| nil, is used as the
659 argument name.
660 \end{describe}
661
662 \begin{describe*}
663 {\dhead{fun}{argument-name @<argument> @> @<name>}
664 \dhead{fun}{argument-type @<argument> @> @<c-type>}}
665 Accessor functions for @|argument| objects. They return the name (for
666 @|argument-name|) or type (for @|argument-type|) from the object, as passed
667 to @|make-argument|.
668 \end{describe*}
669
670 \begin{describe}{gf}
671 {commentify-argument-name @<name> @> @<commentified-name>}
672 Convert the argument name @<name> so that it's suitable to declare the
673 function in a header file.
674
675 Robust header files shouldn't include literal argument names in
676 declarations of functions or function types, since this restricts the
677 including file from defining such names as macros. This generic function
678 is used to convert names into a safe form.
679
680 \begin{describe}{meth}{commentify-argument-name (@<name> null) @> nil}
681 Returns nil: if the argument name is already omitted, it's safe for use
682 in a header file.
683 \end{describe}
684 \begin{describe}{meth}{commentify-argument-name (@<name> t) @> @<string>}
685 Returns the print form of @<name> wrapped in a C comment, as
686 @`/*@<name>*/'.
687 \end{describe}
688 \end{describe}
689
690 \begin{describe}{fun}
691 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
692 Convert the @<arguments> list so that it's suitable for use in a header
693 file.
694
695 The @<arguments> list should be a list whose items are @|argument| objects
696 or the keyword @|:ellipsis|. The return value is a list constructed as
697 follows. For each @|argument| object in the input list, there is a
698 corresponding @|argument| object in the returned list, with the same type,
699 and whose name is the result of @|commentify-argument-name| applied to the
700 input argument name; an @|:ellipsis| in the input list is passed through
701 unchanged.
702 \end{describe}
703
704 \begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
705 Represents C function types. An instance denotes the type of a C
706 function which accepts the @<arguments> and returns @<subtype>.
707
708 The @<arguments> are a possibly empty list. All but the last element of
709 the list must be @|argument| objects; the final element may instead be the
710 keyword @|:ellipsis|, which denotes a variable argument list.
711
712 An @<arguments> list consisting of a single argument with type @|void| is
713 converted into an empty list. On output as C code, an empty argument list
714 is written as @|void|. It is not possible to represent a pre-ANSI C
715 function without prototypes.
716
717 Two function types are considered to be the same if their return types are
718 the same, and their argument lists consist of arguments with the same type,
719 in the same order, and either both or neither argument list ends with
720 @|:ellipsis|; argument names are not compared.
721
722 The type specifier
723 \begin{prog}
724 (fun @<return-type>
725 @{ (@<arg-name> @<arg-type>) @}^*
726 @[:ellipsis @! . @<form>@])
727 \end{prog}
728 constructs a function type. The function has the subtype @<return-type>.
729 The remaining items in the type-specifier list are used to construct the
730 argument list. The argument items are a possibly improper list, beginning
731 with zero or more \emph{explicit arguments}: two-item
732 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
733 is constructed with the given name (evaluated) and type. Following the
734 explicit arguments, there may be
735 \begin{itemize}
736 \item nothing, in which case the function's argument list consists only of
737 the explicit arguments;
738 \item the keyword @|:ellipsis|, as the final item in the type-specifier
739 list, indicating a variable argument list may follow the explicit
740 arguments; or
741 \item a possibly-improper list tail, beginning with an atom either as a
742 list item or as the final list cdr, indicating that the entire list tail
743 is Lisp expression which is to be evaluated to compute the remaining
744 arguments.
745 \end{itemize}
746 A tail expression may return a list of @|argument| objects, optionally
747 followed by an @|:ellipsis|.
748
749 For example,
750 \begin{prog}
751 (c-type (fun \=(lisp (c-type-subtype other-func)) \+ \\
752 ("first" int) . (c-function-arguments other-func))
753 \end{prog}
754 evaluates to a function type like @|other-func|, only with an additional
755 argument of type @|int| added to the front of its argument list. This
756 could also have been written
757 \begin{prog}
758 (let (\=(args (c-function-arguments other-func)) \+ \\
759 (ret (c-type-subtype other-func))) \- \\ \ind
760 (c-type (fun \=(lisp ret) ("first" int) . args)
761 \end{prog}
762 \end{describe}
763
764 \begin{describe}{fun}
765 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
766 Construct and return a new function type, returning @<subtype> and
767 accepting the @<arguments>.
768 \end{describe}
769
770 \begin{describe}{gf}
771 {c-function-arguments @<c-function-type> @> @<arguments>}
772 Return the arguments list of the @<c-function-type>.
773 \end{describe}
774
775 \begin{describe}{fun}
776 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
777 Return a commentified version of the @<c-function-type>.
778
779 The returned type has the same subtype as the given type, and the argument
780 list of the returned type is the result of applying
781 @|commentify-argument-names| to the argument list of the given type.
782 \end{describe}
783
784
785 \subsection{Parsing C types} \label{sec:clang.c-types.parsing}
786
787 \begin{describe}{fun}
788 {parse-c-type @<scanner>
789 @> @<result> @<success-flag> @<consumed-flag>}
790 \end{describe}
791
792 \begin{describe}{fun}
793 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
794 \nlret @<result> @<success-flag> @<consumed-flag>}
795 \end{describe}
796
797
798 \subsection{Class types} \label{sec:clang.c-types.class}
799
800 \begin{describe}{cls}
801 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
802 \end{describe}
803
804 \begin{describe*}
805 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
806 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
807 \end{describe*}
808
809 \begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
810 \end{describe}
811
812 \begin{describe}{fun}
813 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
814 \end{describe}
815
816 \begin{describe}{fun}
817 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
818 \end{describe}
819
820 \begin{describe}{fun}{find-sod-class @<name> @> @<class>}
821 \end{describe}
822
823 \begin{describe}{fun}{record-sod-class @<class>}
824 \end{describe}
825
826 %%%--------------------------------------------------------------------------
827 \section{Generating C code} \label{sec:clang.codegen}
828
829 This section deals with Sod's facilities for constructing and manipulating C
830 expressions, declarations, instructions and definitions.
831
832
833 \subsection{Temporary names} \label{sec:clang.codegen.temporaries}
834
835 Many C-level objects, especially ones with external linkage or inclusion in a
836 header file, are assigned names which are simple strings, perhaps fixed ones,
837 perhaps constructed. Other objects don't need meaningful names, and
838 suitably unique constructed names would be tedious and most likely rather
839 opaque. Therefore Sod has an ability to construct \emph{temporary names}.
840
841 These aren't temporary in the sense that they name C objects which have
842 limited lifetimes at runtime. Rather, the idea is that the names be
843 significant only to small pieces of Lisp code, which will soon forget about
844 them.
845
846 \subsubsection{The temporary name protocol}
847 Temporary names are represented by objects which implement a simple protocol.
848
849 \begin{describe}{gf}{format-temporary-name @<var> @<stream>}
850 \end{describe}
851
852 \begin{describe*}
853 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
854 \dhead[setf var-in-use-p]
855 {gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
856 \end{describe*}
857
858 \subsubsection{Temporary name objects}
859
860 \begin{describe}{cls}{temporary-name () \&key :tag}
861 A temporary name object. This is the root of a small collection of
862 subclasses, but is also usable on its own.
863 \end{describe}
864
865 \begin{describe}{meth}
866 {commentify-argument-name (@<name> temporary-name) @> nil}
867 \end{describe}
868
869 \begin{table}
870 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
871 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
872 temporary-name & @<tag> \\
873 temporary-argument & sod__a@<tag> \\
874 temporary-function & sod__f@<tag> \\
875 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
876 \end{tabular}
877 \caption{Temporary name formats}
878 \label{tab:codegen.codegen.temps-format}
879 \end{table}
880
881 \begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
882 \end{describe}
883
884 \begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
885 \end{describe}
886
887 \begin{describe}{fun}{temporary-function @> @<name>}
888 \end{describe}
889
890 \begin{describe}{cls}
891 {temporary-variable (temporary-name) \&key :tag :in-use-p}
892 \end{describe}
893
894 \subsubsection{Well-known `temporary' names}
895
896 \begin{table}
897 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
898 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
899 {}*sod-ap* & sod__ap \\
900 {}*sod-master-ap* & sod__master_ap \\
901 {}*null-pointer* & NULL \\ \hlx*{vh}
902 \end{tabular}
903 \caption{Well-known temporary names}
904 \label{tab:codegen.codegen.well-known-temps}
905 \end{table}
906
907
908 \subsection{Instructions} \label{sec:clang.codegen.insts}
909
910 \begin{describe}{cls}{inst () \&key}
911 \end{describe}
912
913 \begin{describe}{gf}{inst-metric @<inst>}
914 \end{describe}
915
916 \begin{describe}{mac}
917 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
918 @[[ @<declaration>^* @! @<doc-string> @]] \\
919 @<form>^* \-
920 \nlret @<code>}
921 \end{describe}
922
923 \begin{describe}{mac}
924 {format-compound-statement
925 (@<stream> @<child> \&optional @<morep>) \\ \ind
926 @<declaration>^* \\
927 @<form>^*}
928 \end{describe}
929
930 \begin{table}
931 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
932 \thd{Class name} &
933 \thd{Arguments} &
934 \thd{Output format} \\ \hlx{vhv}
935 @|var| & @<name> @<type> @|\&optional| @<init>
936 & @<type> @<name> @[= @<init>@];
937 \\ \hlx{v}
938 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
939 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
940 \\ \hlx{v}
941 @|return| & @<expr> & return @[@<expr>@];
942 \\ \hlx{v}
943 @|break| & --- & break; \\ \hlx{v}
944 @|continue| & --- & continue; \\ \hlx{v}
945 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
946 @|call| & @<func> @|\&rest| @<args>
947 & @<func>(@<arg>_1,
948 $\ldots$,
949 @<arg>_n) \\ \hlx{vhv}
950 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
951 \\ \hlx{v}
952 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
953 & if (@<cond>) @<conseq>
954 @[else @<alt>@] \\ \hlx{v}
955 @|while| & @<cond> @<body> & while (@<cond>) @<body>
956 \\ \hlx{v}
957 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
958 \\ \hlx{v}
959 @|function| & @<name> @<type> @<body> &
960 \vtop{\hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
961 @<type>_n @<arg>_n @[, \dots@])}
962 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
963 \end{tabular}
964 \caption{Instruction classes}
965 \label{tab:codegen.codegen.insts}
966 \end{table}
967
968
969 \subsection{Code generation} \label{sec:clang.codegen.codegen}
970
971 \begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
972 \end{describe}
973
974 \begin{describe}{gf}
975 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
976 \end{describe}
977
978 \begin{describe}{gf}{emit-inst @<codegen> @<inst>}
979 \end{describe}
980
981 \begin{describe}{gf}{emit-insts @<codegen> @<insts>}
982 \end{describe}
983
984 \begin{describe}{gf}{emit-decl @<codegen> @<decl>}
985 \end{describe}
986
987 \begin{describe}{gf}{emit-decls @<codegen> @<decls>}
988 \end{describe}
989
990 \begin{describe}{gf}{codegen-push @<codegen>}
991 \end{describe}
992
993 \begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
994 \end{describe}
995
996 \begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
997 \end{describe}
998
999 \begin{describe}{gf}
1000 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1001 \end{describe}
1002
1003 \begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1004 \end{describe}
1005
1006 \begin{describe}{fun}
1007 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1008 @> @<name>}
1009 \end{describe}
1010
1011 \begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1012 \end{describe}
1013
1014 \begin{describe}{mac}
1015 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1016 @<declaration>^* \\
1017 @<form>^* \-
1018 \nlret @<value>^*}
1019 \end{describe}
1020
1021 \begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1022 \end{describe}
1023
1024 \begin{describe}{fun}
1025 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1026 \end{describe}
1027
1028 \begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1029 \end{describe}
1030
1031 \begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1032 \end{describe}
1033
1034 %%%--------------------------------------------------------------------------
1035 \section{Literal C code fragments} \label{sec:clang.fragment}
1036
1037 \begin{describe}{cls}{c-fragment () \&key :location :text}
1038 \end{describe}
1039
1040 \begin{describe}{gf}{c-fragment-text @<fragment> @> @<string>}
1041 \end{describe}
1042
1043 \begin{describe}{fun}
1044 {scan-c-fragment @<scanner> @<end-chars>
1045 @> @<result> @<success-flag> @<consumed-flag>}
1046 \end{describe}
1047
1048 \begin{describe}{fun}
1049 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1050 \nlret @<result> @<success-flag> @<consumed-flag>}
1051 \end{describe}
1052
1053 %%%----- That's all, folks --------------------------------------------------
1054
1055 %%% Local variables:
1056 %%% mode: LaTeX
1057 %%% TeX-master: "sod.tex"
1058 %%% TeX-PDF-mode: t
1059 %%% End: