src/c-types-impl.lisp, src/c-types-parse.lisp: Support C11 `_Alignas'.
[sod] / src / c-types-parse.lisp
1 ;;; -*-lisp-*-
2 ;;;
3 ;;; Parser for C types
4 ;;;
5 ;;; (c) 2009 Straylight/Edgeware
6 ;;;
7
8 ;;;----- Licensing notice ---------------------------------------------------
9 ;;;
10 ;;; This file is part of the Sensible Object Design, an object system for C.
11 ;;;
12 ;;; SOD is free software; you can redistribute it and/or modify
13 ;;; it under the terms of the GNU General Public License as published by
14 ;;; the Free Software Foundation; either version 2 of the License, or
15 ;;; (at your option) any later version.
16 ;;;
17 ;;; SOD is distributed in the hope that it will be useful,
18 ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;;; GNU General Public License for more details.
21 ;;;
22 ;;; You should have received a copy of the GNU General Public License
23 ;;; along with SOD; if not, write to the Free Software Foundation,
24 ;;; Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 (cl:in-package #:sod)
27
28 ;;;--------------------------------------------------------------------------
29 ;;; Declaration specifiers.
30 ;;;
31 ;;; This stuff is distressingly complicated.
32 ;;;
33 ;;; Parsing a (single) declaration specifier is quite easy, and a declaration
34 ;;; is just a sequence of these things. Except that there are a stack of
35 ;;; rules about which ones are allowed to go together, and the language
36 ;;; doesn't require them to appear in any particular order.
37 ;;;
38 ;;; A collection of declaration specifiers is carried about in a purpose-made
39 ;;; object with a number of handy operations defined on it, and then I build
40 ;;; some parsers in terms of them. The basic strategy is to parse
41 ;;; declaration specifiers while they're valid, and keep track of what we've
42 ;;; read. When I've reached the end, we'll convert what we've got into a
43 ;;; `canonical form', and then convert that into a C type object of the
44 ;;; appropriate kind. The whole business is rather more complicated than it
45 ;;; really ought to be.
46
47 ;; Firstly, a table of interesting things about the various declaration
48 ;; specifiers that I might encounter. I categorize declaration specifiers
49 ;; into four kinds.
50 ;;
51 ;; * `Type specifiers' describe the actual type, whether that's integer,
52 ;; character, floating point, or some tagged or user-named type.
53 ;;
54 ;; * `Size specifiers' distinguish different sizes of the same basic type.
55 ;; This is how we tell the difference between `int' and `long'.
56 ;;
57 ;; * `Sign specifiers' distinguish different signednesses. This is how we
58 ;; tell the difference between `int' and `unsigned'.
59 ;;
60 ;; * `Qualifiers' are our old friends `const', `restrict' and `volatile'.
61 ;;
62 ;; These groupings are for my benefit here, in determining whether a
63 ;; particular declaration specifier is valid in the current context. I don't
64 ;; accept `function specifiers' (of which the only current example is
65 ;; `inline') since it's meaningless to me.
66
67 (defclass declspec ()
68 ;; Despite the fact that it looks pretty trivial, this can't be done with
69 ;; `defstruct' for the simple reason that we add more methods to the
70 ;; accessor functions later.
71 ((label :type keyword :initarg :label :reader ds-label)
72 (name :type string :initarg :name :reader ds-name)
73 (kind :type (member type complexity sign size qualifier specs)
74 :initarg :kind :reader ds-kind)
75 (taggedp :type boolean :initarg :taggedp
76 :initform nil :reader ds-taggedp))
77 (:documentation
78 "Represents the important components of a declaration specifier.
79
80 The only interesting instances of this class are in the table
81 `*declspec-map*'."))
82
83 (defmethod shared-initialize :after ((ds declspec) slot-names &key)
84 "If no name is provided then derive one from the label.
85
86 Most declaration specifiers have simple names for which this works well."
87 (default-slot (ds 'name slot-names)
88 (string-downcase (ds-label ds))))
89
90 (defparameter *declspec-map*
91 (let ((map (make-hash-table :test #'equal)))
92 (dolist (item '((type :void :char :int :float :double
93 (:bool :compat "_Bool"))
94 (complexity (:complex :compat "_Complex")
95 (:imaginary :compat "_Imaginary"))
96 ((type :taggedp t) :enum :struct :union)
97 (size :short :long (:long-long :name "long long"))
98 (sign :signed :unsigned)
99 (qualifier :const :restrict :volatile
100 (:atomic :compat "_Atomic"))))
101 (destructuring-bind (kind &key (taggedp nil))
102 (let ((spec (car item)))
103 (if (consp spec) spec (list spec)))
104 (dolist (spec (cdr item))
105 (destructuring-bind (label
106 &key
107 (name (string-downcase label))
108 compat
109 (taggedp taggedp))
110 (if (consp spec) spec (list spec))
111 (let ((ds (make-instance 'declspec
112 :label label
113 :name (or compat name)
114 :kind kind
115 :taggedp taggedp)))
116 (setf (gethash name map) ds
117 (gethash label map) ds)
118 (when compat
119 (setf (gethash compat map) ds)))))))
120 map)
121 "Maps symbolic labels and textual names to `declspec' instances.")
122
123 (defclass storespec ()
124 ((spec :initarg :spec :reader ds-spec))
125 (:documentation "Carrier for a storage specifier."))
126
127 (defmethod ds-label ((spec storespec)) spec)
128 (defmethod ds-kind ((spec storespec)) 'specs)
129
130 (defmethod ds-label ((ty c-type)) :c-type)
131 (defmethod ds-name ((ty c-type)) (princ-to-string ty))
132 (defmethod ds-kind ((ty c-type)) 'type)
133
134 ;; A collection of declaration specifiers, and how to merge them together.
135
136 (defclass declspecs ()
137 ;; This could have been done with `defstruct' just as well, but a
138 ;; `defclass' can be tweaked interactively, which is a win at the moment.
139 ((type :initform nil :initarg :type :reader ds-type)
140 (complexity :initform nil :initarg :complexity :reader ds-complexity)
141 (sign :initform nil :initarg :sign :reader ds-sign)
142 (size :initform nil :initarg :size :reader ds-size)
143 (specs :initform nil :initarg :specs :reader ds-specs)
144 (qualifier :initform nil :initarg :qualifiers :reader ds-qualifiers))
145 (:documentation "Represents a collection of declaration specifiers.
146
147 This is used during type parsing to represent the type under construction.
148 Instances are immutable: we build new ones rather than modifying existing
149 ones. This leads to a certain amount of churn, but we'll just have to
150 live with that.
151
152 (Why are instances immutable? Because it's much easier to merge a new
153 specifier into an existing collection and then check that the resulting
154 thing is valid, rather than having to deal with all of the possible
155 special cases of what the new thing might be. And if the merged
156 collection isn't good, I must roll back to the previous version. So I
157 don't get to take advantage of a mutable structure.)"))
158
159 (defparameter *good-declspecs*
160 '(((:int) (:signed :unsigned) (:short :long :long-long) ())
161 ((:char) (:signed :unsigned) () ())
162 ((:double) () (:long) (:complex :imaginary))
163 (t () () ()))
164 "List of good collections of declaration specifiers.
165
166 Each item is a list of the form (TYPES SIGNS SIZES COMPLEXITIES). Each of
167 TYPES, SIGNS, SIZES, and COMPLEXITIES, is either a list of acceptable
168 specifiers of the appropriate kind, or T, which matches any specifier.")
169
170 (defun good-declspecs-p (specs)
171 "Are SPECS a good collection of declaration specifiers?"
172 (let ((speclist (list (ds-type specs)
173 (ds-sign specs)
174 (ds-size specs)
175 (ds-complexity specs))))
176 (some (lambda (it)
177 (every (lambda (spec pat)
178 (or (eq pat t) (null spec)
179 (member (ds-label spec) pat)))
180 speclist it))
181 *good-declspecs*)))
182
183 (defun combine-declspec (specs ds)
184 "Combine the declspec DS with the existing SPECS.
185
186 Returns new DECLSPECS if they're OK, or `nil' if not. The old SPECS are
187 not modified."
188
189 (let* ((kind (ds-kind ds))
190 (old (slot-value specs kind)))
191 (multiple-value-bind (ok new)
192 (case kind
193 (qualifier (values t (adjoin ds old)))
194 (size (cond ((not old) (values t ds))
195 ((and (eq (ds-label old) :long) (eq ds old))
196 (values t (gethash :long-long *declspec-map*)))
197 (t (values nil nil))))
198 (specs (values t (adjoin (ds-spec ds) old)))
199 (t (values (not old) ds)))
200 (if ok
201 (let ((copy (copy-instance specs)))
202 (setf (slot-value copy kind) new)
203 (and (good-declspecs-p copy) copy))
204 nil))))
205
206 (defun declspecs-type (specs)
207 "Convert `declspecs' SPECS into a standalone C type object."
208 (let* ((base-type (ds-type specs))
209 (size (ds-size specs))
210 (sign (ds-sign specs))
211 (cplx (ds-complexity specs))
212 (quals (mapcar #'ds-label (ds-qualifiers specs)))
213 (specs (ds-specs specs))
214 (type (cond ((typep base-type 'c-type)
215 (qualify-c-type base-type quals))
216 ((or base-type size sign cplx)
217 (when (and sign (eq (ds-label sign) :signed)
218 (eq (ds-label base-type) :int))
219 (setf sign nil))
220 (cond ((and (or (null base-type)
221 (eq (ds-label base-type) :int))
222 (or size sign))
223 (setf base-type nil))
224 ((null base-type)
225 (setf base-type (gethash :int *declspec-map*))))
226 (let* ((things (list sign cplx size base-type))
227 (stripped (remove nil things))
228 (names (mapcar #'ds-name stripped)))
229 (make-simple-type (format nil "~{~A~^ ~}" names)
230 quals)))
231 (t
232 nil))))
233 (cond ((null type) nil)
234 ((null specs) type)
235 (t (make-storage-specifiers-type type specs)))))
236
237 ;; Parsing declaration specifiers.
238
239 (define-indicator :declspec "<declaration-specifier>")
240
241 (defun scan-simple-declspec
242 (scanner &key (predicate (constantly t)) (indicator :declspec))
243 "Scan a simple `declspec' from SCANNER.
244
245 Simple declspecs are the ones defined in the `*declspec-map*' or
246 `*module-type-map*'. This covers the remaining possibilities if the
247 `complex-declspec' pluggable parser didn't find anything to match.
248
249 If PREDICATE is provided then only succeed if (funcall PREDICATE DECLSPEC)
250 is true, where DECLSPEC is the raw declaration specifier or C-type object,
251 so we won't have fetched the tag for a tagged type yet. If the PREDICATE
252 returns false then the scan fails without consuming input.
253
254 If we couldn't find an acceptable declaration specifier then issue
255 INDICATOR as the failure indicator. Value on success is either a
256 `declspec' object or a `c-type' object."
257
258 ;; Turns out to be easier to do this by hand.
259 (let ((ds (and (eq (token-type scanner) :id)
260 (let ((kw (token-value scanner)))
261 (or (and (boundp '*module-type-map*)
262 (gethash kw *module-type-map*))
263 (gethash kw *declspec-map*))))))
264 (cond ((or (not ds) (and predicate (not (funcall predicate ds))))
265 (values (list indicator) nil nil))
266 ((and (typep ds 'declspec) (ds-taggedp ds))
267 (scanner-step scanner)
268 (if (eq (token-type scanner) :id)
269 (let ((ty (make-c-tagged-type (ds-label ds)
270 (token-value scanner))))
271 (scanner-step scanner)
272 (values ty t t))
273 (values :tag nil t)))
274 (t
275 (scanner-step scanner)
276 (values ds t t)))))
277
278 (define-pluggable-parser complex-declspec atomic-typepsec (scanner)
279 ;; `atomic' `(' type-name `)'
280 ;; `_Atomic' `(' type-name `)'
281 (with-parser-context (token-scanner-context :scanner scanner)
282 (parse (peek (seq ((nil (or "atomic" "_Atomic"))
283 #\(
284 (decls (parse-c-type scanner))
285 (subtype (parse-declarator scanner decls
286 :kernel (parse-empty)
287 :abstractp t))
288 #\))
289 (make-atomic-type (car subtype)))))))
290
291 (define-pluggable-parser complex-declspec alignas (scanner)
292 ;; `alignas' `(' fragment `)'
293 ;; `_Alignas' `(' fragment `)'
294 (with-parser-context (token-scanner-context :scanner scanner)
295 (parse (peek (seq ((nil (or "alignas" "_Alignas"))
296 (nil (lisp (values #\(
297 (eq (token-type scanner) #\()
298 nil)))
299 (nil (commit))
300 (frag (parse-delimited-fragment scanner #\( #\))))
301 (make-instance 'storespec
302 :spec (make-instance
303 'alignas-storage-specifier
304 :alignment frag)))))))
305
306 (defun scan-and-merge-declspec (scanner specs)
307 "Scan a declaration specifier and merge it with SPECS.
308
309 This is a parser function. If it succeeds, it returns the merged
310 `declspecs' object. It can fail either if no valid declaration specifier
311 is found or it cannot merge the declaration specifier with the existing
312 SPECS."
313
314 (with-parser-context (token-scanner-context :scanner scanner)
315 (if-parse (:consumedp consumedp)
316 (or (plug complex-declspec scanner)
317 (scan-simple-declspec scanner))
318 (aif (combine-declspec specs it)
319 (values it t consumedp)
320 (values (list :declspec) nil consumedp)))))
321
322 (export 'parse-c-type)
323 (defun parse-c-type (scanner)
324 "Parse a C type from declaration specifiers.
325
326 This is a parser function. If it succeeds then the result is a `c-type'
327 object representing the type it found. Note that this function won't try
328 to parse a C declarator."
329
330 (with-parser-context (token-scanner-context :scanner scanner)
331 (if-parse (:result specs :consumedp cp)
332 (many (specs (make-instance 'declspecs) it :min 1)
333 (peek (scan-and-merge-declspec scanner specs)))
334 (let ((type (declspecs-type specs)))
335 (if type (values type t cp)
336 (values (list :declspec) nil cp))))))
337
338 ;;;--------------------------------------------------------------------------
339 ;;; Parsing declarators.
340 ;;;
341 ;;; The syntax of declaration specifiers was horrific. Declarators are a
342 ;;; very simple expression syntax, but this time the semantics are awful. In
343 ;;; particular, they're inside-out. If <> denotes mumble of foo, then op <>
344 ;;; is something like mumble of op of foo. Unfortunately, the expression
345 ;;; parser engine wants to apply op of mumble of foo, so I'll have to do some
346 ;;; work to fix the impedance mismatch.
347 ;;;
348 ;;; The currency we'll use is a pair (FUNC . NAME), with the semantics that
349 ;;; (funcall FUNC TYPE) returns the derived type. The result of
350 ;;; `parse-declarator' will be of this form.
351
352 (export 'parse-declarator)
353 (defun parse-declarator (scanner base-type &key kernel abstractp)
354 "Parse a C declarator, returning a pair (C-TYPE . NAME).
355
356 The SCANNER is a token scanner to read from. The BASE-TYPE is the type
357 extracted from the preceding declaration specifiers, as parsed by
358 `parse-c-type'.
359
360 The result contains both the resulting constructed C-TYPE (with any
361 qualifiers etc. as necessary), and the name from the middle of the
362 declarator. The name is parsed using the KERNEL parser provided, and
363 defaults to matching a simple identifier `:id'. This might, e.g., be
364 (? :id) to parse an `abstract declarator' which has optional names.
365
366 There's an annoying ambiguity in the syntax, if an empty KERNEL is
367 permitted. In this case, you must ensure that ABSTRACTP is true so that
368 the appropriate heuristic can be applied. As a convenience, if ABSTRACTP
369 is true then `(? :id)' is used as the default KERNEL."
370 (with-parser-context (token-scanner-context :scanner scanner)
371 (let ((kernel-parser (cond (kernel kernel)
372 (abstractp (parser () (? :id)))
373 (t (parser () :id)))))
374
375 (labels ((qualifiers ()
376 ;; qualifier*
377
378 (parse
379 (seq ((quals (list ()
380 (scan-simple-declspec
381 scanner
382 :indicator :qualifier
383 :predicate (lambda (ds)
384 (and (typep ds 'declspec)
385 (eq (ds-kind ds)
386 'qualifier)))))))
387 (mapcar #'ds-label quals))))
388
389 (star ()
390 ;; Prefix: `*' qualifiers
391
392 (parse (seq (#\* (quals (qualifiers)))
393 (preop "*" (state 9)
394 (cons (lambda (type)
395 (funcall (car state)
396 (make-pointer-type type quals)))
397 (cdr state))))))
398
399 (predict-argument-list-p ()
400 ;; See `prefix-lparen'. Predict an argument list rather
401 ;; than a nested declarator if (a) abstract declarators are
402 ;; permitted and (b) the next token is a declaration
403 ;; specifier or ellipsis.
404 (let ((type (token-type scanner))
405 (value (token-value scanner)))
406 (and abstractp
407 (or (eq type :ellipsis)
408 (and (eq type :id)
409 (or (gethash value *module-type-map*)
410 (gethash value *declspec-map*)))))))
411
412 (prefix-lparen ()
413 ;; Prefix: `('
414 ;;
415 ;; Opening parentheses are treated as prefix operators by
416 ;; the expression parsing engine. There's an annoying
417 ;; ambiguity in the syntax if abstract declarators are
418 ;; permitted: a `(' might be either the start of a nested
419 ;; subdeclarator or the start of a postfix function argument
420 ;; list. The two are disambiguated by stating that if the
421 ;; token following the `(' is a `)' or a declaration
422 ;; specifier, then we have a postfix argument list.
423 (parse
424 (peek (seq (#\(
425 (nil (if (predict-argument-list-p)
426 (values nil nil nil)
427 (values t t nil))))
428 (lparen #\))))))
429
430 (kernel ()
431 (parse (seq ((name (funcall kernel-parser)))
432 (cons #'identity name))))
433
434 (argument-list ()
435 ;; [argument [`,' argument]* [`,' `...']] | `...'
436 ;;
437 ;; The possibility of a trailing `,' `...' means that we
438 ;; can't use the standard `list' parser. Note that, unlike
439 ;; `real' C, we allow an ellipsis even if there are no
440 ;; explicit arguments.
441
442 (let ((args nil))
443 (loop
444 (when (eq (token-type scanner) :ellipsis)
445 (push :ellipsis args)
446 (scanner-step scanner)
447 (return))
448 (multiple-value-bind (arg winp consumedp)
449 (parse (seq ((base-type (parse-c-type scanner))
450 (dtor (parse-declarator scanner
451 base-type
452 :abstractp t)))
453 (make-argument (cdr dtor) (car dtor))))
454 (unless winp
455 (if (or consumedp args)
456 (return-from argument-list (values arg nil t))
457 (return)))
458 (push arg args))
459 (unless (eq (token-type scanner) #\,)
460 (return))
461 (scanner-step scanner))
462 (values (nreverse args) t args)))
463
464 (postfix-lparen ()
465 ;; Postfix: `(' argument-list `)'
466
467 (parse (seq (#\( (args (argument-list)) #\))
468 (postop "()" (state 10)
469 (cons (lambda (type)
470 (funcall (car state)
471 (make-function-type type args)))
472 (cdr state))))))
473
474 (dimension ()
475 ;; `[' c-fragment ']'
476
477 (parse (seq ((frag (parse-delimited-fragment
478 scanner #\[ #\])))
479 (c-fragment-text frag))))
480
481 (lbracket ()
482 ;; Postfix: dimension+
483
484 (parse (seq ((dims (list (:min 1) (dimension))))
485 (postop "[]" (state 10)
486 (cons (lambda (type)
487 (funcall (car state)
488 (make-array-type type dims)))
489 (cdr state)))))))
490
491 ;; And now we actually do the declarator parsing.
492 (parse (seq ((value (expr (:nestedp nestedp)
493
494 ;; An actual operand.
495 (kernel)
496
497 ;; Binary operators. There aren't any.
498 nil
499
500 ;; Prefix operators.
501 (or (star)
502 (prefix-lparen))
503
504 ;; Postfix operators.
505 (or (postfix-lparen)
506 (lbracket)
507 (when nestedp (seq (#\)) (rparen #\))))))))
508 (cons (wrap-c-type (lambda (type)
509 (funcall (car value) type))
510 base-type)
511 (cdr value))))))))
512
513 ;;;----- That's all, folks --------------------------------------------------