src/c-types-{proto,impl,parse}.lisp: Add `storage specifiers' to the model.
[sod] / doc / clang.tex
1 %%% -*-latex-*-
2 %%%
3 %%% C language utilities
4 %%%
5 %%% (c) 2015 Straylight/Edgeware
6 %%%
7
8 %%%----- Licensing notice ---------------------------------------------------
9 %%%
10 %%% This file is part of the Sensible Object Design, an object system for C.
11 %%%
12 %%% SOD is free software; you can redistribute it and/or modify
13 %%% it under the terms of the GNU General Public License as published by
14 %%% the Free Software Foundation; either version 2 of the License, or
15 %%% (at your option) any later version.
16 %%%
17 %%% SOD is distributed in the hope that it will be useful,
18 %%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19 %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 %%% GNU General Public License for more details.
21 %%%
22 %%% You should have received a copy of the GNU General Public License
23 %%% along with SOD; if not, write to the Free Software Foundation,
24 %%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 \chapter{C language utilities} \label{ch:clang}
27
28 %%%--------------------------------------------------------------------------
29 \section{C type representation} \label{sec:clang.c-types}
30
31 \subsection{Overview} \label{sec:clang.c-types.over}
32
33 The Sod translator represents C types in a fairly simple and direct way.
34 However, because it spends a fair amount of its time dealing with C types, it
35 provides a number of useful operations and macros.
36
37 The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
38
39 \begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
41 @|c-type| \\ \ind
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
44 @|c-class-type| \- \\
45 @|tagged-c-type| \\ \ind
46 @|c-struct-type| \\
47 @|c-union-type| \\
48 @|c-enum-type| \- \\
49 @|c-atomic-type| \\
50 @|c-pointer-type| \- \\
51 @|c-array-type| \\
52 @|c-function-type|
53 \end{tabbing}}
54 \caption{Classes representing C types}
55 \label{fig:codegen.c-types.classes}
56 \end{figure}
57
58 C type objects are immutable unless otherwise specified.
59
60 \subsubsection{Constructing C type objects}
61 There is a constructor function for each non-abstract class of C type object.
62 Note, however, that constructor functions need not generate a fresh type
63 object if a previously existing type object is suitable. In this case, we
64 say that the objects are \emph{interned}. Some constructor functions are
65 specified to return interned objects: programs may rely on receiving the same
66 (@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
67 not specified, clients may still not rely on receiving fresh objects.
68
69 A convenient S-expression notation is provided by the
70 \descref{c-type}[macro]{mac}. Use of this macro is merely an abbreviation
71 for corresponding use of the various constructor functions, and therefore
72 interns type objects in the same manner. The syntax accepted by the macro
73 can be extended in order to support new classes: see \descref{defctype}{mac},
74 \descref{c-type-alias}{mac} and \descref{define-c-type-syntax}{mac}.
75
76 The descriptions of each of the various classes include descriptions of the
77 initargs which may be passed to @|make-instance| when constructing a new
78 instance of the class. However, the constructor functions and S-expression
79 syntax are strongly recommended over direct use of @|make-instance|.
80
81 \subsubsection{Printing}
82 There are two protocols for printing C types. Unfortunately they have
83 similar names.
84 \begin{itemize}
85 \item The \descref{print-c-type}[function]{gf} prints a C type value using
86 the S-expression notation. It is mainly useful for diagnostic purposes.
87 \item The \descref{pprint-c-type}[function]{gf} prints a C type as a
88 C-syntax declaration.
89 \end{itemize}
90 Neither generic function defines a default primary method; subclasses of
91 @|c-type| must define their own methods in order to print correctly.
92
93
94 \subsection{The C type root class} \label{sec:clang.c-types.root}
95
96 \begin{describe}{cls}{c-type ()}
97 The class @|c-type| marks the root of the built-in C type hierarchy.
98
99 Users may define subclasses of @|c-type|. All non-abstract subclasses must
100 have a primary method defined on @|pprint-c-type|; unless instances of the
101 subclass are interned, a method on @|c-type-equal-p| is also required.
102
103 The class @|c-type| is abstract.
104 \end{describe}
105
106
107 \subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
108
109 The S-expression representation of a type is described syntactically as a
110 type specifier. Type specifiers fit into two syntactic categories.
111 \begin{itemize}
112 \item A \emph{symbolic type specifier} consists of a symbol. It has a
113 single, fixed meaning: if @<name> is a symbolic type specifier, then each
114 use of @<name> in a type specifier evaluates to the same (@|eq|) type
115 object, until the @<name> is redefined.
116 \item A \emph{type operator} is a symbol; the corresponding specifier is a
117 list whose @|car| is the operator. The remaining items in the list are
118 arguments to the type operator.
119 \end{itemize}
120
121 \begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
122 Evaluates to a C type object, as described by the type specifier
123 @<type-spec>.
124 \end{describe}
125
126 \begin{describe}{mac}
127 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+ \\
128 @[[ @|:export| @<export-flag> @]]^* \-
129 \nlret @<names>}
130 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
131 given, then all are defined in the same way. The type constructed by using
132 any of the @<name>s is as described by the type specifier @<type-spec>.
133
134 The resulting type object is constructed once, at the time that the macro
135 expansion is evaluated; the same (@|eq|) value is used each time any
136 @<name> is used in a type specifier.
137
138 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
139 and initialized to contain the C type object so constructed. Altering or
140 binding this name is discouraged.
141
142 If @<export-flag> is true, then the variable name, and all of the @<name>s,
143 are exported from the current package.
144 \end{describe}
145
146 \begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
147 Defines each @<alias> as being a type operator identical in behaviour to
148 @<original>. If @<original> is later redefined then the behaviour of the
149 @<alias>es changes too.
150 \end{describe}
151
152 \begin{describe}{mac}
153 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
154 @[[ @<declaration>^* @! @<doc-string> @]] \\
155 @<form>^* \-
156 \nlret @<name>}
157 Defines the symbol @<name> as a new type operator. When a list of the form
158 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
159 are bound to fresh variables according to @<lambda-list> (a destructuring
160 lambda-list) and the @<form>s evaluated in order in the resulting lexical
161 environment as an implicit @|progn|. The value should be a Lisp form which
162 will evaluate to the type specified by the arguments.
163
164 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
165 type specifiers among its arguments.
166 \end{describe}
167
168 \begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
169 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
170
171 If @<type-spec> is a list, then \descref{expand-c-type-form}{fun} is
172 invoked.
173 \end{describe}
174
175 \begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
176 Returns the Lisp form that @|(c-type (@<head> . @<tail>)| would expand
177 into.
178 \end{describe}
179
180 \begin{describe}{gf}
181 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
182 Print the C type object @<type> to @<stream> in S-expression form. The
183 @<colon> and @<atsign> arguments may be interpreted in any way which seems
184 appropriate: they are provided so that @|print-c-type| may be called via
185 @|format|'s @|\char`\~/\dots/| command; they are not set when
186 @|print-c-type| is called by Sod functions.
187
188 There should be a method defined for every C type class; there is no
189 default method.
190 \end{describe}
191
192
193 \subsection{Comparing C types} \label{sec:clang.c-types.cmp}
194
195 It is necessary to compare C types for equality, for example when checking
196 argument lists for methods. This is done by @|c-type-equal-p|.
197
198 \begin{describe}{gf}
199 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
200 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
201 @<c-type>_2 for equality; it returns true if the two types are equal and
202 false if they are not.
203
204 Two types are equal if they are structurally similar, where this property
205 is defined by methods for each individual class; see the descriptions of
206 the classes for the details.
207
208 The generic function @|c-type-equal-p| uses the @|and| method combination.
209
210 \begin{describe}{meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
211 A default primary method for @|c-type-equal-p| is defined. It simply
212 returns @|nil|. This way, methods can specialize on both arguments
213 without fear that a call will fail because no methods are applicable.
214 \end{describe}
215 \begin{describe}{ar-meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
216 A default around-method for @|c-type-equal-p| is defined. It returns
217 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
218 the primary methods. Since several common kinds of C types are interned,
219 this is a common case worth optimizing.
220 \end{describe}
221 \end{describe}
222
223
224 \subsection{Outputting C types} \label{sec:clang.c-types.output}
225
226 \begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
227 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
228 declaration of an object or function of type @<c-type>. The result is
229 written to @<stream>.
230
231 A C declaration has two parts: a sequence of \emph{declaration specifiers}
232 and a \emph{declarator}. The declarator syntax involves parentheses and
233 operators, in order to reflect the operators applicable to the declared
234 variable. For example, the name of a pointer variable is preceded by @`*';
235 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
236
237 The @<kernel> argument must be a function designator (though see the
238 standard around-method); it is invoked as
239 \begin{quote} \codeface
240 (funcall @<kernel> @<stream> @<priority> @<spacep>)
241 \end{quote}
242 It should write to @<stream> -- which may not be the same stream originally
243 passed into the generic function -- the `kernel' of the declarator, i.e.,
244 the part to which prefix and/or postfix operators are attached to form the
245 full declarator.
246
247 The methods on @|pprint-c-type| specialized for compound types work by
248 recursively calling @|pprint-c-type| on the subtype, passing down a closure
249 which prints the necessary additional declarator operators before calling
250 the original @<kernel> function. The additional arguments @<priority> and
251 @<spacep> support this implementation technique.
252
253 The @<priority> argument describes the surrounding operator context. It is
254 zero if no type operators are directly attached to the kernel (i.e., there
255 are no operators at all, or the kernel is enclosed in parentheses), one if
256 a prefix operator is directly attached, or two if a postfix operator is
257 directly attached. If the @<kernel> function intends to provide its own
258 additional declarator operators, it should check the @<priority> in order
259 to determine whether parentheses are necessary. See also the
260 \descref{maybe-in-parens}[macro]{mac}.
261
262 The @<spacep> argument indicates whether a space needs to be printed in
263 order to separate the declarator from the declaration specifiers. A kernel
264 which contains an identifier should insert a space before the identifier
265 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
266 declarator (one that specifies no name), looks more pleasing without a
267 trailing space. See also the \descref{c-type-space}[function]{fun}.
268
269 Every concrete subclass of @|c-type| is expected to provide a primary
270 method on this function. There is no default primary method.
271
272 \begin{describe}{ar-meth}{pprint-c-type @<c-type> @<stream> @<kernel>}
273 A default around method is defined on @|pprint-c-type| which `canonifies'
274 non-function @<kernel> arguments. In particular:
275 \begin{itemize}
276 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
277 with a @<kernel> function that does nothing; and
278 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
279 called recursively with a @<kernel> function that prints the object as
280 if by @|princ|, preceded if necessary by space using @|c-type-space|.
281 \end{itemize}
282 \end{describe}
283 \end{describe}
284
285 \begin{describe}{fun}{c-type-space @<stream>}
286 Writes a space and other pretty-printing instructions to @<stream> in order
287 visually to separate a declarator from the preceding declaration
288 specifiers. The precise details are subject to change.
289 \end{describe}
290
291 \begin{describe}{mac}
292 {maybe-in-parens (@<stream-var> @<guard-form>)
293 @<declaration>^*
294 @<form>^*}
295 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
296 sequence within a pretty-printer logical block writing to the stream named
297 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
298 the logical block has empty prefix and suffix strings; if it evaluates to a
299 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
300 respectively.
301
302 Note that this may cause @<stream> to be bound to a different stream object
303 within the @<form>s.
304 \end{describe}
305
306
307 \subsection{Type qualifiers and qualifiable types}
308 \label{sec:clang.ctypes.qual}
309
310 Qualifiers -- @|const|, @|volatile|, and so on -- are represented as lists of
311 keywords attached to types. Not all C types can carry qualifiers: notably,
312 function and array types cannot be qualified.
313
314 For the most part, the C qualifier keywords correspond to like-named Lisp
315 keywords, only the Lisp keyword names are in uppercase. The correspondence
316 is shown in \xref{tab:clang.ctypes.qual}.
317
318 \begin{table}
319 \begin{tabular}[C]{*2{>{\codeface}l}l} \hlx*{hv}
320 \thd{\textbf{C name}} & \thd{\textbf{Lisp name}} \\ \hlx{vhv}
321 _Atomic & :atomic \\
322 const & :const \\
323 restrict & :restrict \\
324 volatile & :volatile \\ \hlx*{vh}
325 \end{tabular}
326 \caption{C and Lisp qualifier names} \label{tab:clang.ctypes.qual}
327 \end{table}
328
329 The default behaviour, on output, is to convert keywords to lowercase and
330 hope for the best: special cases can be dealt with by adding appropriate
331 methods to \descref{c-qualifier-keyword}{gf}.
332
333 \begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
334 The class @|qualifiable-c-type| describes C types which can bear
335 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
336 @|restrict| and @|volatile|.
337
338 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
339 @|:volatile|. There is no built-in limitation to these particular
340 qualifiers; others keywords may be used, though this isn't recommended.
341
342 Two qualifiable types are equal only if they have \emph{matching
343 qualifiers}: i.e., every qualifier attached to one is also attached to the
344 other: order is not significant, and neither is multiplicity.
345
346 The class @|qualifiable-c-type| is abstract.
347 \end{describe}
348
349 \begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
350 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
351 an immutable list.
352 \end{describe}
353
354 \begin{describe}{fun}{qualify-type @<c-type> @<qualifiers> @> @<c-type>}
355 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
356 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
357 keywords. The result is a C type object like @<c-type> except that it
358 bears the given @<qualifiers>.
359
360 The @<c-type> is not modified. If @<c-type> is interned, then the returned
361 type will be interned.
362 \end{describe}
363
364 \begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
365 Returns a string containing the qualifiers listed in @<qualifiers> in C
366 syntax, with a space after each. In particular, if @<qualifiers> is
367 non-null then the final character of the returned string will be a space.
368 \end{describe}
369
370 \begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
371 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
372
373 There is a standard method, which deals with many qualifiers. Additional
374 methods exist for qualifier keywords which need special handling, such as
375 @|:atomic|; they are not listed here explicitly.
376
377 \begin{describe}{meth}{c-qualifier-keyword @<keyword> @> @<string>}
378 Returns the @<keyword>'s print-name, in lower case. This is sufficient
379 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
380 \end{describe}
381 \end{describe}
382
383 \begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
384 Return the @<c-type>'s qualifiers, as a list of C keyword names.
385 \end{describe}
386
387
388 \subsection{Storage specifiers} \label{sec:clang.ctypes.specs}
389
390 Some declaration specifiers, mostly to do with how to store the specific
391 object in question, are determinedly `top level', and, unlike qualifiers,
392 don't stay attached to the base type when acted on by declarator operators.
393 Sod calls these `storage specifiers', though no such category exists in the C
394 standard. They have their own protocol, which is similar in many ways to
395 that of C types.
396
397 Every Lisp keyword is potentially a storage specifier, which simply maps to
398 its lower-case print name in C; but other storage specifiers may be more
399 complicated objects.
400
401 \begin{describe}{cls}
402 {c-storage-specifiers-type (c-type) \&key :subtype :specifiers}
403 A type which carries storage specifiers. The @<subtype> is the actual
404 type, and may be any C type; the @<specifiers> are a list of
405 storage-specifier objects.
406
407 The type specifier @|(specs @<subtype> @<specifier>^*)| wraps the
408 @<subtype> in a @|c-storage-specifiers-type|, carrying the @<specifier>s,
409 which are a list of storage specifiers in S-expression notation.
410 \end{describe}
411
412 \begin{describe}{fun}{c-type-specifiers @<type> @> @<list>}
413 Returns the list of type specifiers attached to the @<type> object, which
414 must be a @|c-storage-specifiers-type|.
415 \end{describe}
416
417 \begin{describe}{mac}
418 {define-c-storage-specifier-syntax @<name> @<lambda-list> \\ \ind
419 @[[ @<declaration>^* @! @<doc-string> @]] \\
420 @<form>^* \-
421 \nlret @<name>}
422
423 Defines the symbol @<name> as a new storage-specifier operator. When a
424 list of the form @|(@<name> @<argument>^*)| is used as a storage specifier,
425 the @<argument>s are bound to fresh variables according to the
426 @<lambda-list> (a destructuring lambda-list) and the @<form>s evaluated in
427 order in the resulting lexical environment as an implicit @<progn>. The
428 value should be a Lisp form which will evaluate to the storage-specifier
429 object described by the arguments.
430
431 The @<form>s may call @|expand-c-storage-specifier| in order to recursively
432 expand storage specifiers among its arguments.
433 \end{describe}
434
435 \begin{describe}{gf}{expand-c-storage-specifier @<spec> @> @<form>}
436 Returns the Lisp form that @<spec> expands to within @|(c-type (specs
437 @<subtype> @<spec>))|.
438
439 If @<spec> is a list, then \descref{expand-c-storage-specifier-form} is
440 invoked.
441 \end{describe}
442
443 \begin{describe}{gf}{expand-c-storage-specifier-form @<spec> @> @<form>}
444 Returns the Lisp form that @|(@<head> . @<tail>)| expands to within
445 @|(c-type (specs @<subtype> (@<head> . @<tail>)))|.
446 \end{describe}
447
448 \begin{describe}{gf}{pprint-c-storage-specifier @<spec> @<stream>}
449 \end{describe}
450
451 \begin{describe}{gf}
452 {print-c-storage-specifier @<stream> @<spec>
453 \&optional @<colon> @<atsign>}
454 \end{describe}
455
456 \begin{describe}{fun}{wrap-c-type @<func> @<base-type> @> @<c-type>}
457 Apply @<func> to the underlying C type of @<base-type> to create a new
458 `wrapped' type, and attach the storage specifiers of @<base-type> to the
459 wrapped type.
460
461 If @<base-type> is \emph{not} a @|c-storage-specifiers-type|, then return
462 @|(funcall @<func> @<base-type>)|. Otherwise, return a new
463 @|c-storage-specifiers-type|, with the same specifiers, but whose subtype
464 is the result of applying @<func> to the subtype of the original
465 @<base-type>.
466 \end{describe}
467
468
469 \subsection{Leaf types} \label{sec:clang.c-types.leaf}
470
471 A \emph{leaf type} is a type which is not defined in terms of another type.
472 In Sod, the leaf types are
473 \begin{itemize}
474 \item \emph{simple types}, including builtin types like @|int| and @|char|,
475 as well as type names introduced by @|typename|, because Sod isn't
476 interested in what the type name means, merely that it names a type; and
477 \item \emph{tagged types}, i.e., enum, struct and union types which are named
478 by a keyword identifying the kind of type, and a \emph{tag}.
479 \end{itemize}
480
481 \begin{describe}{cls}{simple-c-type (qualifiable-c-type)
482 \&key :qualifiers :name}
483 The class of `simple types'; an instance denotes the type @<qualifiers>
484 @<name>.
485
486 A simple type object maintains a \emph{name}, which is a string whose
487 contents are the C name for the type. The initarg @|:name| may be used to
488 provide this name when calling @|make-instance|.
489
490 Two simple type objects are equal if and only if they have @|string=| names
491 and matching qualifiers.
492
493 A number of symbolic type specifiers for builtin types are predefined as
494 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
495 @|define-simple-c-type|, so can be used to construct qualified types.
496 \end{describe}
497
498 \begin{table}
499 \begin{tabular}[C]{ll} \hlx*{hv}
500 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
501 @|void| & @|void| \\ \hlx{v}
502 @|_Bool| & @|bool| \\ \hlx{v}
503 @|char| & @|char| \\ \hlx{}
504 @|wchar_t| & @|wchar-t| \\ \hlx{v}
505 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
506 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
507 @|short| & @|short|, @|signed-short|, @|short-int|,
508 @|signed-short-int| @|sshort| \\ \hlx{}
509 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
510 @|ushort| \\ \hlx{v}
511 @|int| & @|int|, @|signed|, @|signed-int|,
512 @|sint| \\ \hlx{}
513 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
514 @|long| & @|long|, @|signed-long|, @|long-int|,
515 @|signed-long-int|, @|slong| \\ \hlx{}
516 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
517 @|ulong| \\ \hlx{v}
518 @|long long| & @|long-long|, @|signed-long-long|,
519 @|long-long-int|, \\ \hlx{}
520 & \qquad @|signed-long-long-int|,
521 @|llong|, @|sllong| \\ \hlx{v}
522 @|unsigned long long|
523 & @|unsigned-long-long|, @|unsigned-long-long-int|,
524 @|ullong| \\ \hlx{v}
525 @|size_t| & @|size-t| \\ \hlx{}
526 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
527 @|float| & @|float| \\ \hlx{}
528 @|double| & @|double| \\ \hlx{}
529 @|long double| & @|long-double| \\ \hlx{v}
530 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
531 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
532 @|long double _Imaginary|
533 & @|long-double-imaginary| \\ \hlx{v}
534 @|float _Complex| & @|float-complex| \\ \hlx{}
535 @|double _Complex| & @|double-complex| \\ \hlx{}
536 @|long double _Complex|
537 & @|long-double-complex| \\ \hlx{v}
538 @|va_list| & @|va-list| \\ \hlx*{vh}
539 \end{tabular}
540 \caption{Builtin symbolic type specifiers for simple C types}
541 \label{tab:codegen.c-types.simple}
542 \end{table}
543
544 \begin{describe}{fun}
545 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
546 Return the (unique interned) simple C type object for the C type whose name
547 is @<name> (a string) and which has the given @<qualifiers> (a list of
548 keywords).
549 \end{describe}
550
551 \begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
552 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
553 string.
554 \end{describe}
555
556 \begin{describe}{mac}
557 {define-simple-c-type \=@{ @<name> @! (@<name>^+) @} @<string> \+ \\
558 @[[ @|:export| @<export-flag> @]] \-
559 \nlret @<name>}
560 Define type specifiers for a new simple C type. Each symbol @<name> is
561 defined as a symbolic type specifier for the (unique interned) simple C
562 type whose name is the value of @<string>. Further, each @<name> is
563 defined to be a type operator: the type specifier @|(@<name>
564 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
565 name is @<string> and which has the @<qualifiers> (which are evaluated).
566
567 Furthermore, a variable @|c-type-@<name>| is defined, for the first @<name>
568 only, and initialized with the newly constructed C type object.
569
570 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
571 all of the @<name>s, are exported from the current package.
572 \end{describe}
573
574 \begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
575 \&key :qualifiers :tag}
576 Provides common behaviour for C tagged types. A @<tag> is a string
577 containing a C identifier.
578
579 Two tagged types are equal if and only if they have the same class, their
580 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
581 subclasses may have additional methods on @|c-type-equal-p| which impose
582 further restrictions.)
583 \end{describe}
584 \begin{boxy}[Bug]
585 Sod maintains distinct namespaces for the three kinds of tagged types. In
586 C, there is only one namespace for tags which is shared between enums,
587 structs and unions.
588 \end{boxy}
589
590 \begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
591 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
592 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
593 should return their own classification symbols. It is intended that
594 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
595 syntax.\footnote{%
596 Alas, C doesn't provide a syntactic category for these keywords;
597 \Cplusplus\ calls them a @<class-key>.} %
598 There is a method defined for each of the built-in tagged type classes
599 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
600 \end{describe}
601
602 \begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
603 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
604 naming a kind of tagged type, return the name of the corresponding C
605 type class as a symbol.
606 \end{describe}
607
608 \begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
609 Represents a C enumerated type. An instance denotes the C type @|enum|
610 @<tag>. See the direct superclass @|tagged-c-type| for details.
611
612 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
613 interned) enumerated type with the given @<tag> and @<qualifier>s (all
614 evaluated).
615 \end{describe}
616 \begin{describe}{fun}
617 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
618 Return the (unique interned) C type object for the enumerated C type whose
619 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
620 keywords).
621 \end{describe}
622
623 \begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
624 Represents a C structured type. An instance denotes the C type @|struct|
625 @<tag>. See the direct superclass @|tagged-c-type| for details.
626
627 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
628 interned) structured type with the given @<tag> and @<qualifier>s (all
629 evaluated).
630 \end{describe}
631 \begin{describe}{fun}
632 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
633 Return the (unique interned) C type object for the structured C type whose
634 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
635 keywords).
636 \end{describe}
637
638 \begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
639 Represents a C union type. An instance denotes the C type @|union|
640 @<tag>. See the direct superclass @|tagged-c-type|
641 for details.
642
643 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
644 interned) union type with the given @<tag> and @<qualifier>s (all
645 evaluated).
646 \end{describe}
647 \begin{describe}{fun}
648 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
649 Return the (unique interned) C type object for the union C type whose tag
650 is @<tag> (a string) and which has the given @<qualifiers> (a list of
651 keywords).
652 \end{describe}
653
654
655 \subsection{Compound C types} \label{sec:code.c-types.compound}
656
657 Some C types are \emph{compound types}: they're defined in terms of existing
658 types. The classes which represent compound types implement a common
659 protocol.
660
661 \begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
662 Returns the underlying type of a compound type @<c-type>. Precisely what
663 this means depends on the class of @<c-type>.
664 \end{describe}
665
666
667 \subsection{Atomic types} \label{sec:clang.c-types.atomic}
668
669 Atomic types are compound types. The subtype of an atomic type is simply the
670 underlying type of the object. Note that, as far as Sod is concerned, atomic
671 types are not the same as atomic-qualified types: you must be consistent
672 about which you use.
673
674 \begin{describe}{cls}
675 {c-atomic-type (qualifiable-c-type) \&key :qualifiers :subtype}
676 Represents an atomic type. An instance denotes the C type
677 @|_Atomic(@<subtype>)|.
678
679 The @<subtype> may be any C type.\footnote{%
680 C does not permit atomic function or array types.} %
681 Two atomic types are equal if and only if their subtypes are equal and they
682 have matching qualifiers. It is possible, though probably not useful, to
683 have an atomic-qualified atomic type.
684
685 The type specifier @|(atomic @<type-spec> @<qualifier>^*)| returns a type
686 qualified atomic @<subtype>, where @<subtype> is the type specified by
687 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
688 evaluated).
689 \end{describe}
690
691 \begin{describe}{fun}
692 {make-atomic-type @<c-type> \&optional @<qualifiers> @> @<c-atomic-type>}
693 Return an object describing the type qualified atomic @<subtype>. If
694 @<subtype> is interned, then the returned atomic type object is interned
695 also.
696 \end{describe}
697
698
699 \subsection{Pointer types} \label{sec:clang.c-types.pointer}
700
701 Pointers are compound types. The subtype of a pointer type is the type it
702 points to.
703
704 \begin{describe}{cls}
705 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
706 Represents a C pointer type. An instance denotes the C type @<subtype>
707 @|*|@<qualifiers>.
708
709 The @<subtype> may be any C type. Two pointer types are equal if and only
710 if their subtypes are equal and they have matching qualifiers.
711
712 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
713 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
714 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
715 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
716 star @`*'.
717
718 The symbol @|string| is a type specifier for the type pointer to
719 characters; the symbol @|const-string| is a type specifier for the type
720 pointer to constant characters.
721 \end{describe}
722
723 \begin{describe}{fun}
724 {make-pointer-type @<c-type> \&optional @<qualifiers>
725 @> @<c-pointer-type>}
726 Return an object describing the type qualified pointer to @<subtype>.
727 If @<subtype> is interned, then the returned pointer type object is
728 interned also.
729 \end{describe}
730
731
732 \subsection{Array types} \label{sec:clang.c-types.array}
733
734 Arrays implement the compound-type protocol. The subtype of an array type is
735 the array element type.
736
737 \begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
738 Represents a multidimensional C array type. The @<dimensions> are a list
739 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
740 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
741 individual dimension specifier is either a string containing a C integral
742 constant expression, or nil which is equivalent to an empty string. Only
743 the first (outermost) dimension $d_0$ should be empty.
744
745 C doesn't actually have multidimensional arrays as a primitive notion;
746 rather, it permits an array (with known extent) to be the element type of
747 an array, which achieves an equivalent effect. C arrays are stored in
748 row-major order: i.e., if we write down the indices of the elements of an
749 array in order of ascending address, the rightmost index varies fastest;
750 hence, the type constructed is more accurately an array of $d_0$ arrays of
751 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
752 continue to abuse terminology and refer to multidimensional arrays.
753
754 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
755 multidimensional array with the given @<dimension>s whose elements have the
756 type specified by @<type-spec>. If no dimensions are given then a
757 single-dimensional array with unspecified extent. The synonyms @|array|
758 and @|vector| may be used in place of the brackets @`[]'.
759 \end{describe}
760
761 \begin{describe}{fun}
762 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
763 Return an object describing the type of arrays with given @<dimensions> and
764 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
765 argument is a list whose elements are strings or nil; see the description
766 of the class @|c-array-type| above for details.
767 \end{describe}
768
769 \begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
770 Returns the dimensions of @<c-type>, an array type, as an immutable list.
771 \end{describe}
772
773
774 \subsection{Function types} \label{sec:clang.c-types.fun}
775
776 Function types implement the compound-type protocol. The subtype of a
777 function type is the type of the function's return value.
778
779 \begin{describe}{cls}{argument}
780 Represents an ordinary function argument.
781 \end{describe}
782
783 \begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
784 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
785 not return nil.
786 \end{describe}
787
788 \begin{describe}{fun}{make-argument @<name> @<c-type> @> @<argument>}
789 Construct and a return a new @<argument> object. The argument has type
790 @<c-type>, which must be a @|c-type| object, and is named @<name>.
791
792 The @<name> may be nil to indicate that the argument has no name: in this
793 case the argument will be formatted as an abstract declarator, which is not
794 suitable for function definitions. If @<name> is not nil, then the
795 @<name>'s print representation, with @|*print-escape*| nil, is used as the
796 argument name.
797 \end{describe}
798
799 \begin{describe*}
800 {\dhead{fun}{argument-name @<argument> @> @<name>}
801 \dhead{fun}{argument-type @<argument> @> @<c-type>}}
802 Accessor functions for @|argument| objects. They return the name (for
803 @|argument-name|) or type (for @|argument-type|) from the object, as passed
804 to @|make-argument|.
805 \end{describe*}
806
807 \begin{describe}{gf}
808 {commentify-argument-name @<name> @> @<commentified-name>}
809 Convert the argument name @<name> so that it's suitable to declare the
810 function in a header file.
811
812 Robust header files shouldn't include literal argument names in
813 declarations of functions or function types, since this restricts the
814 including file from defining such names as macros. This generic function
815 is used to convert names into a safe form.
816
817 \begin{describe}{meth}{commentify-argument-name (@<name> null) @> nil}
818 Returns nil: if the argument name is already omitted, it's safe for use
819 in a header file.
820 \end{describe}
821 \begin{describe}{meth}{commentify-argument-name (@<name> t) @> @<string>}
822 Returns the print form of @<name> wrapped in a C comment, as
823 @`/*@<name>*/'.
824 \end{describe}
825 \end{describe}
826
827 \begin{describe}{fun}
828 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
829 Convert the @<arguments> list so that it's suitable for use in a header
830 file.
831
832 The @<arguments> list should be a list whose items are @|argument| objects
833 or the keyword @|:ellipsis|. The return value is a list constructed as
834 follows. For each @|argument| object in the input list, there is a
835 corresponding @|argument| object in the returned list, with the same type,
836 and whose name is the result of @|commentify-argument-name| applied to the
837 input argument name; an @|:ellipsis| in the input list is passed through
838 unchanged.
839 \end{describe}
840
841 \begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
842 Represents C function types. An instance denotes the type of a C
843 function which accepts the @<arguments> and returns @<subtype>.
844
845 The @<arguments> are a possibly empty list. All but the last element of
846 the list must be @|argument| objects; the final element may instead be the
847 keyword @|:ellipsis|, which denotes a variable argument list.
848
849 An @<arguments> list consisting of a single argument with type @|void| is
850 converted into an empty list. On output as C code, an empty argument list
851 is written as @|void|. It is not possible to represent a pre-ANSI C
852 function without prototypes.
853
854 Two function types are considered to be the same if their return types are
855 the same, and their argument lists consist of arguments with the same type,
856 in the same order, and either both or neither argument list ends with
857 @|:ellipsis|; argument names are not compared.
858
859 The type specifier
860 \begin{prog}
861 (fun @<return-type>
862 @{ (@<arg-name> @<arg-type>) @}^*
863 @[:ellipsis @! . @<form>@])
864 \end{prog}
865 constructs a function type. The function has the subtype @<return-type>.
866 The remaining items in the type-specifier list are used to construct the
867 argument list. The argument items are a possibly improper list, beginning
868 with zero or more \emph{explicit arguments}: two-item
869 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
870 is constructed with the given name (evaluated) and type. Following the
871 explicit arguments, there may be
872 \begin{itemize}
873 \item nothing, in which case the function's argument list consists only of
874 the explicit arguments;
875 \item the keyword @|:ellipsis|, as the final item in the type-specifier
876 list, indicating a variable argument list may follow the explicit
877 arguments; or
878 \item a possibly-improper list tail, beginning with an atom either as a
879 list item or as the final list cdr, indicating that the entire list tail
880 is Lisp expression which is to be evaluated to compute the remaining
881 arguments.
882 \end{itemize}
883 A tail expression may return a list of @|argument| objects, optionally
884 followed by an @|:ellipsis|.
885
886 For example,
887 \begin{prog}
888 (c-type (fun \=(lisp (c-type-subtype other-func)) \+ \\
889 ("first" int) . (c-function-arguments other-func))
890 \end{prog}
891 evaluates to a function type like @|other-func|, only with an additional
892 argument of type @|int| added to the front of its argument list. This
893 could also have been written
894 \begin{prog}
895 (let (\=(args (c-function-arguments other-func)) \+ \\
896 (ret (c-type-subtype other-func))) \- \\ \ind
897 (c-type (fun \=(lisp ret) ("first" int) . args)
898 \end{prog}
899 \end{describe}
900
901 \begin{describe}{fun}
902 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
903 Construct and return a new function type, returning @<subtype> and
904 accepting the @<arguments>.
905 \end{describe}
906
907 \begin{describe}{gf}
908 {c-function-arguments @<c-function-type> @> @<arguments>}
909 Return the arguments list of the @<c-function-type>.
910 \end{describe}
911
912 \begin{describe}{fun}
913 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
914 Return a commentified version of the @<c-function-type>.
915
916 The returned type has the same subtype as the given type, and the argument
917 list of the returned type is the result of applying
918 @|commentify-argument-names| to the argument list of the given type.
919 \end{describe}
920
921
922 \subsection{Parsing C types} \label{sec:clang.c-types.parsing}
923
924 \begin{describe}{fun}
925 {parse-c-type @<scanner>
926 @> @<result> @<success-flag> @<consumed-flag>}
927 \end{describe}
928
929 \begin{describe}{fun}
930 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
931 \nlret @<result> @<success-flag> @<consumed-flag>}
932 \end{describe}
933
934
935 \subsection{Class types} \label{sec:clang.c-types.class}
936
937 \begin{describe}{cls}
938 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
939 \end{describe}
940
941 \begin{describe*}
942 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
943 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
944 \end{describe*}
945
946 \begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
947 \end{describe}
948
949 \begin{describe}{fun}
950 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
951 \end{describe}
952
953 \begin{describe}{fun}
954 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
955 \end{describe}
956
957 \begin{describe}{fun}{find-sod-class @<name> @> @<class>}
958 \end{describe}
959
960 \begin{describe}{fun}{record-sod-class @<class>}
961 \end{describe}
962
963 %%%--------------------------------------------------------------------------
964 \section{Generating C code} \label{sec:clang.codegen}
965
966 This section deals with Sod's facilities for constructing and manipulating C
967 expressions, declarations, instructions and definitions.
968
969
970 \subsection{Temporary names} \label{sec:clang.codegen.temporaries}
971
972 Many C-level objects, especially ones with external linkage or inclusion in a
973 header file, are assigned names which are simple strings, perhaps fixed ones,
974 perhaps constructed. Other objects don't need meaningful names, and
975 suitably unique constructed names would be tedious and most likely rather
976 opaque. Therefore Sod has an ability to construct \emph{temporary names}.
977
978 These aren't temporary in the sense that they name C objects which have
979 limited lifetimes at runtime. Rather, the idea is that the names be
980 significant only to small pieces of Lisp code, which will soon forget about
981 them.
982
983 \subsubsection{The temporary name protocol}
984 Temporary names are represented by objects which implement a simple protocol.
985
986 \begin{describe}{gf}{format-temporary-name @<var> @<stream>}
987 \end{describe}
988
989 \begin{describe*}
990 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
991 \dhead[setf var-in-use-p]
992 {gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
993 \end{describe*}
994
995 \subsubsection{Temporary name objects}
996
997 \begin{describe}{cls}{temporary-name () \&key :tag}
998 A temporary name object. This is the root of a small collection of
999 subclasses, but is also usable on its own.
1000 \end{describe}
1001
1002 \begin{describe}{meth}
1003 {commentify-argument-name (@<name> temporary-name) @> nil}
1004 \end{describe}
1005
1006 \begin{table}
1007 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1008 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1009 temporary-name & @<tag> \\
1010 temporary-argument & sod__a@<tag> \\
1011 temporary-function & sod__f@<tag> \\
1012 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
1013 \end{tabular}
1014 \caption{Temporary name formats}
1015 \label{tab:codegen.codegen.temps-format}
1016 \end{table}
1017
1018 \begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
1019 \end{describe}
1020
1021 \begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
1022 \end{describe}
1023
1024 \begin{describe}{fun}{temporary-function @> @<name>}
1025 \end{describe}
1026
1027 \begin{describe}{cls}
1028 {temporary-variable (temporary-name) \&key :tag :in-use-p}
1029 \end{describe}
1030
1031 \subsubsection{Well-known `temporary' names}
1032
1033 \begin{table}
1034 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1035 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1036 {}*sod-ap* & sod__ap \\
1037 {}*sod-master-ap* & sod__master_ap \\
1038 {}*null-pointer* & NULL \\ \hlx*{vh}
1039 \end{tabular}
1040 \caption{Well-known temporary names}
1041 \label{tab:codegen.codegen.well-known-temps}
1042 \end{table}
1043
1044
1045 \subsection{Instructions} \label{sec:clang.codegen.insts}
1046
1047 \begin{describe}{cls}{inst () \&key}
1048 \end{describe}
1049
1050 \begin{describe}{gf}{inst-metric @<inst>}
1051 \end{describe}
1052
1053 \begin{describe}{mac}
1054 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
1055 @[[ @<declaration>^* @! @<doc-string> @]] \\
1056 @<form>^* \-
1057 \nlret @<code>}
1058 \end{describe}
1059
1060 \begin{describe}{mac}
1061 {format-compound-statement
1062 (@<stream> @<child> \&optional @<morep>) \\ \ind
1063 @<declaration>^* \\
1064 @<form>^*}
1065 \end{describe}
1066
1067 \begin{table}
1068 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
1069 \thd{Class name} &
1070 \thd{Arguments} &
1071 \thd{Output format} \\ \hlx{vhv}
1072 @|var| & @<name> @<type> @|\&optional| @<init>
1073 & @<type> @<name> @[= @<init>@];
1074 \\ \hlx{v}
1075 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
1076 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
1077 \\ \hlx{v}
1078 @|return| & @<expr> & return @[@<expr>@];
1079 \\ \hlx{v}
1080 @|break| & --- & break; \\ \hlx{v}
1081 @|continue| & --- & continue; \\ \hlx{v}
1082 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
1083 @|call| & @<func> @|\&rest| @<args>
1084 & @<func>(@<arg>_1,
1085 $\ldots$,
1086 @<arg>_n) \\ \hlx{vhv}
1087 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
1088 \\ \hlx{v}
1089 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
1090 & if (@<cond>) @<conseq>
1091 @[else @<alt>@] \\ \hlx{v}
1092 @|while| & @<cond> @<body> & while (@<cond>) @<body>
1093 \\ \hlx{v}
1094 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
1095 \\ \hlx{v}
1096 @|function| & @<name> @<type> @<body> &
1097 \vtop{\hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
1098 @<type>_n @<arg>_n @[, \dots@])}
1099 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
1100 \end{tabular}
1101 \caption{Instruction classes}
1102 \label{tab:codegen.codegen.insts}
1103 \end{table}
1104
1105
1106 \subsection{Code generation} \label{sec:clang.codegen.codegen}
1107
1108 \begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
1109 \end{describe}
1110
1111 \begin{describe}{gf}
1112 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
1113 \end{describe}
1114
1115 \begin{describe}{gf}{emit-inst @<codegen> @<inst>}
1116 \end{describe}
1117
1118 \begin{describe}{gf}{emit-insts @<codegen> @<insts>}
1119 \end{describe}
1120
1121 \begin{describe}{gf}{emit-decl @<codegen> @<decl>}
1122 \end{describe}
1123
1124 \begin{describe}{gf}{emit-decls @<codegen> @<decls>}
1125 \end{describe}
1126
1127 \begin{describe}{gf}{codegen-push @<codegen>}
1128 \end{describe}
1129
1130 \begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
1131 \end{describe}
1132
1133 \begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
1134 \end{describe}
1135
1136 \begin{describe}{gf}
1137 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1138 \end{describe}
1139
1140 \begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1141 \end{describe}
1142
1143 \begin{describe}{fun}
1144 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1145 @> @<name>}
1146 \end{describe}
1147
1148 \begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1149 \end{describe}
1150
1151 \begin{describe}{mac}
1152 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1153 @<declaration>^* \\
1154 @<form>^* \-
1155 \nlret @<value>^*}
1156 \end{describe}
1157
1158 \begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1159 \end{describe}
1160
1161 \begin{describe}{fun}
1162 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1163 \end{describe}
1164
1165 \begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1166 \end{describe}
1167
1168 \begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1169 \end{describe}
1170
1171 %%%--------------------------------------------------------------------------
1172 \section{Literal C code fragments} \label{sec:clang.fragment}
1173
1174 \begin{describe}{cls}{c-fragment () \&key :location :text}
1175 \end{describe}
1176
1177 \begin{describe}{gf}{c-fragment-text @<fragment> @> @<string>}
1178 \end{describe}
1179
1180 \begin{describe}{fun}
1181 {scan-c-fragment @<scanner> @<end-chars>
1182 @> @<result> @<success-flag> @<consumed-flag>}
1183 \end{describe}
1184
1185 \begin{describe}{fun}
1186 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1187 \nlret @<result> @<success-flag> @<consumed-flag>}
1188 \end{describe}
1189
1190 %%%----- That's all, folks --------------------------------------------------
1191
1192 %%% Local variables:
1193 %%% mode: LaTeX
1194 %%% TeX-master: "sod.tex"
1195 %%% TeX-PDF-mode: t
1196 %%% End: