src/c-types-{impl,parse}.lisp: Support C11 `_Atomic'.
[sod] / doc / clang.tex
1 %%% -*-latex-*-
2 %%%
3 %%% C language utilities
4 %%%
5 %%% (c) 2015 Straylight/Edgeware
6 %%%
7
8 %%%----- Licensing notice ---------------------------------------------------
9 %%%
10 %%% This file is part of the Sensible Object Design, an object system for C.
11 %%%
12 %%% SOD is free software; you can redistribute it and/or modify
13 %%% it under the terms of the GNU General Public License as published by
14 %%% the Free Software Foundation; either version 2 of the License, or
15 %%% (at your option) any later version.
16 %%%
17 %%% SOD is distributed in the hope that it will be useful,
18 %%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19 %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 %%% GNU General Public License for more details.
21 %%%
22 %%% You should have received a copy of the GNU General Public License
23 %%% along with SOD; if not, write to the Free Software Foundation,
24 %%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 \chapter{C language utilities} \label{ch:clang}
27
28 %%%--------------------------------------------------------------------------
29 \section{C type representation} \label{sec:clang.c-types}
30
31 \subsection{Overview} \label{sec:clang.c-types.over}
32
33 The Sod translator represents C types in a fairly simple and direct way.
34 However, because it spends a fair amount of its time dealing with C types, it
35 provides a number of useful operations and macros.
36
37 The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
38
39 \begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
41 @|c-type| \\ \ind
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
44 @|c-class-type| \- \\
45 @|tagged-c-type| \\ \ind
46 @|c-struct-type| \\
47 @|c-union-type| \\
48 @|c-enum-type| \- \\
49 @|c-atomic-type| \\
50 @|c-pointer-type| \- \\
51 @|c-array-type| \\
52 @|c-function-type|
53 \end{tabbing}}
54 \caption{Classes representing C types}
55 \label{fig:codegen.c-types.classes}
56 \end{figure}
57
58 C type objects are immutable unless otherwise specified.
59
60 \subsubsection{Constructing C type objects}
61 There is a constructor function for each non-abstract class of C type object.
62 Note, however, that constructor functions need not generate a fresh type
63 object if a previously existing type object is suitable. In this case, we
64 say that the objects are \emph{interned}. Some constructor functions are
65 specified to return interned objects: programs may rely on receiving the same
66 (@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
67 not specified, clients may still not rely on receiving fresh objects.
68
69 A convenient S-expression notation is provided by the
70 \descref{c-type}[macro]{mac}. Use of this macro is merely an abbreviation
71 for corresponding use of the various constructor functions, and therefore
72 interns type objects in the same manner. The syntax accepted by the macro
73 can be extended in order to support new classes: see \descref{defctype}{mac},
74 \descref{c-type-alias}{mac} and \descref{define-c-type-syntax}{mac}.
75
76 The descriptions of each of the various classes include descriptions of the
77 initargs which may be passed to @|make-instance| when constructing a new
78 instance of the class. However, the constructor functions and S-expression
79 syntax are strongly recommended over direct use of @|make-instance|.
80
81 \subsubsection{Printing}
82 There are two protocols for printing C types. Unfortunately they have
83 similar names.
84 \begin{itemize}
85 \item The \descref{print-c-type}[function]{gf} prints a C type value using
86 the S-expression notation. It is mainly useful for diagnostic purposes.
87 \item The \descref{pprint-c-type}[function]{gf} prints a C type as a
88 C-syntax declaration.
89 \end{itemize}
90 Neither generic function defines a default primary method; subclasses of
91 @|c-type| must define their own methods in order to print correctly.
92
93
94 \subsection{The C type root class} \label{sec:clang.c-types.root}
95
96 \begin{describe}{cls}{c-type ()}
97 The class @|c-type| marks the root of the built-in C type hierarchy.
98
99 Users may define subclasses of @|c-type|. All non-abstract subclasses must
100 have a primary method defined on @|pprint-c-type|; unless instances of the
101 subclass are interned, a method on @|c-type-equal-p| is also required.
102
103 The class @|c-type| is abstract.
104 \end{describe}
105
106
107 \subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
108
109 The S-expression representation of a type is described syntactically as a
110 type specifier. Type specifiers fit into two syntactic categories.
111 \begin{itemize}
112 \item A \emph{symbolic type specifier} consists of a symbol. It has a
113 single, fixed meaning: if @<name> is a symbolic type specifier, then each
114 use of @<name> in a type specifier evaluates to the same (@|eq|) type
115 object, until the @<name> is redefined.
116 \item A \emph{type operator} is a symbol; the corresponding specifier is a
117 list whose @|car| is the operator. The remaining items in the list are
118 arguments to the type operator.
119 \end{itemize}
120
121 \begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
122 Evaluates to a C type object, as described by the type specifier
123 @<type-spec>.
124 \end{describe}
125
126 \begin{describe}{mac}
127 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+ \\
128 @[[ @|:export| @<export-flag> @]]^* \-
129 \nlret @<names>}
130 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
131 given, then all are defined in the same way. The type constructed by using
132 any of the @<name>s is as described by the type specifier @<type-spec>.
133
134 The resulting type object is constructed once, at the time that the macro
135 expansion is evaluated; the same (@|eq|) value is used each time any
136 @<name> is used in a type specifier.
137
138 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
139 and initialized to contain the C type object so constructed. Altering or
140 binding this name is discouraged.
141
142 If @<export-flag> is true, then the variable name, and all of the @<name>s,
143 are exported from the current package.
144 \end{describe}
145
146 \begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
147 Defines each @<alias> as being a type operator identical in behaviour to
148 @<original>. If @<original> is later redefined then the behaviour of the
149 @<alias>es changes too.
150 \end{describe}
151
152 \begin{describe}{mac}
153 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
154 @[[ @<declaration>^* @! @<doc-string> @]] \\
155 @<form>^* \-
156 \nlret @<name>}
157 Defines the symbol @<name> as a new type operator. When a list of the form
158 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
159 are bound to fresh variables according to @<lambda-list> (a destructuring
160 lambda-list) and the @<form>s evaluated in order in the resulting lexical
161 environment as an implicit @|progn|. The value should be a Lisp form which
162 will evaluate to the type specified by the arguments.
163
164 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
165 type specifiers among its arguments.
166 \end{describe}
167
168 \begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
169 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
170
171 If @<type-spec> is a list, then \descref{expand-c-type-form}{fun} is
172 invoked.
173 \end{describe}
174
175 \begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
176 Returns the Lisp form that @|(c-type (@<head> . @<tail>)| would expand
177 into.
178 \end{describe}
179
180 \begin{describe}{gf}
181 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
182 Print the C type object @<type> to @<stream> in S-expression form. The
183 @<colon> and @<atsign> arguments may be interpreted in any way which seems
184 appropriate: they are provided so that @|print-c-type| may be called via
185 @|format|'s @|\char`\~/\dots/| command; they are not set when
186 @|print-c-type| is called by Sod functions.
187
188 There should be a method defined for every C type class; there is no
189 default method.
190 \end{describe}
191
192
193 \subsection{Comparing C types} \label{sec:clang.c-types.cmp}
194
195 It is necessary to compare C types for equality, for example when checking
196 argument lists for methods. This is done by @|c-type-equal-p|.
197
198 \begin{describe}{gf}
199 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
200 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
201 @<c-type>_2 for equality; it returns true if the two types are equal and
202 false if they are not.
203
204 Two types are equal if they are structurally similar, where this property
205 is defined by methods for each individual class; see the descriptions of
206 the classes for the details.
207
208 The generic function @|c-type-equal-p| uses the @|and| method combination.
209
210 \begin{describe}{meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
211 A default primary method for @|c-type-equal-p| is defined. It simply
212 returns @|nil|. This way, methods can specialize on both arguments
213 without fear that a call will fail because no methods are applicable.
214 \end{describe}
215 \begin{describe}{ar-meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
216 A default around-method for @|c-type-equal-p| is defined. It returns
217 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
218 the primary methods. Since several common kinds of C types are interned,
219 this is a common case worth optimizing.
220 \end{describe}
221 \end{describe}
222
223
224 \subsection{Outputting C types} \label{sec:clang.c-types.output}
225
226 \begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
227 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
228 declaration of an object or function of type @<c-type>. The result is
229 written to @<stream>.
230
231 A C declaration has two parts: a sequence of \emph{declaration specifiers}
232 and a \emph{declarator}. The declarator syntax involves parentheses and
233 operators, in order to reflect the operators applicable to the declared
234 variable. For example, the name of a pointer variable is preceded by @`*';
235 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
236
237 The @<kernel> argument must be a function designator (though see the
238 standard around-method); it is invoked as
239 \begin{quote} \codeface
240 (funcall @<kernel> @<stream> @<priority> @<spacep>)
241 \end{quote}
242 It should write to @<stream> -- which may not be the same stream originally
243 passed into the generic function -- the `kernel' of the declarator, i.e.,
244 the part to which prefix and/or postfix operators are attached to form the
245 full declarator.
246
247 The methods on @|pprint-c-type| specialized for compound types work by
248 recursively calling @|pprint-c-type| on the subtype, passing down a closure
249 which prints the necessary additional declarator operators before calling
250 the original @<kernel> function. The additional arguments @<priority> and
251 @<spacep> support this implementation technique.
252
253 The @<priority> argument describes the surrounding operator context. It is
254 zero if no type operators are directly attached to the kernel (i.e., there
255 are no operators at all, or the kernel is enclosed in parentheses), one if
256 a prefix operator is directly attached, or two if a postfix operator is
257 directly attached. If the @<kernel> function intends to provide its own
258 additional declarator operators, it should check the @<priority> in order
259 to determine whether parentheses are necessary. See also the
260 \descref{maybe-in-parens}[macro]{mac}.
261
262 The @<spacep> argument indicates whether a space needs to be printed in
263 order to separate the declarator from the declaration specifiers. A kernel
264 which contains an identifier should insert a space before the identifier
265 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
266 declarator (one that specifies no name), looks more pleasing without a
267 trailing space. See also the \descref{c-type-space}[function]{fun}.
268
269 Every concrete subclass of @|c-type| is expected to provide a primary
270 method on this function. There is no default primary method.
271
272 \begin{describe}{ar-meth}{pprint-c-type @<c-type> @<stream> @<kernel>}
273 A default around method is defined on @|pprint-c-type| which `canonifies'
274 non-function @<kernel> arguments. In particular:
275 \begin{itemize}
276 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
277 with a @<kernel> function that does nothing; and
278 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
279 called recursively with a @<kernel> function that prints the object as
280 if by @|princ|, preceded if necessary by space using @|c-type-space|.
281 \end{itemize}
282 \end{describe}
283 \end{describe}
284
285 \begin{describe}{fun}{c-type-space @<stream>}
286 Writes a space and other pretty-printing instructions to @<stream> in order
287 visually to separate a declarator from the preceding declaration
288 specifiers. The precise details are subject to change.
289 \end{describe}
290
291 \begin{describe}{mac}
292 {maybe-in-parens (@<stream-var> @<guard-form>)
293 @<declaration>^*
294 @<form>^*}
295 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
296 sequence within a pretty-printer logical block writing to the stream named
297 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
298 the logical block has empty prefix and suffix strings; if it evaluates to a
299 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
300 respectively.
301
302 Note that this may cause @<stream> to be bound to a different stream object
303 within the @<form>s.
304 \end{describe}
305
306
307 \subsection{Type qualifiers and qualifiable types}
308 \label{sec:clang.ctypes.qual}
309
310 Qualifiers -- @|const|, @|volatile|, and so on -- are represented as lists of
311 keywords attached to types. Not all C types can carry qualifiers: notably,
312 function and array types cannot be qualified.
313
314 For the most part, the C qualifier keywords correspond to like-named Lisp
315 keywords, only the Lisp keyword names are in uppercase. The correspondence
316 is shown in \xref{tab:clang.ctypes.qual}.
317
318 \begin{table}
319 \begin{tabular}[C]{*2{>{\codeface}l}l} \hlx*{hv}
320 \thd{\textbf{C name}} & \thd{\textbf{Lisp name}} \\ \hlx{vhv}
321 _Atomic & :atomic \\
322 const & :const \\
323 restrict & :restrict \\
324 volatile & :volatile \\ \hlx*{vh}
325 \end{tabular}
326 \caption{C and Lisp qualifier names} \label{tab:clang.ctypes.qual}
327 \end{table}
328
329 The default behaviour, on output, is to convert keywords to lowercase and
330 hope for the best: special cases can be dealt with by adding appropriate
331 methods to \descref{c-qualifier-keyword}{gf}.
332
333 \begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
334 The class @|qualifiable-c-type| describes C types which can bear
335 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
336 @|restrict| and @|volatile|.
337
338 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
339 @|:volatile|. There is no built-in limitation to these particular
340 qualifiers; others keywords may be used, though this isn't recommended.
341
342 Two qualifiable types are equal only if they have \emph{matching
343 qualifiers}: i.e., every qualifier attached to one is also attached to the
344 other: order is not significant, and neither is multiplicity.
345
346 The class @|qualifiable-c-type| is abstract.
347 \end{describe}
348
349 \begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
350 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
351 an immutable list.
352 \end{describe}
353
354 \begin{describe}{fun}{qualify-type @<c-type> @<qualifiers> @> @<c-type>}
355 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
356 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
357 keywords. The result is a C type object like @<c-type> except that it
358 bears the given @<qualifiers>.
359
360 The @<c-type> is not modified. If @<c-type> is interned, then the returned
361 type will be interned.
362 \end{describe}
363
364 \begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
365 Returns a string containing the qualifiers listed in @<qualifiers> in C
366 syntax, with a space after each. In particular, if @<qualifiers> is
367 non-null then the final character of the returned string will be a space.
368 \end{describe}
369
370 \begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
371 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
372
373 There is a standard method, which deals with many qualifiers. Additional
374 methods exist for qualifier keywords which need special handling, such as
375 @|:atomic|; they are not listed here explicitly.
376
377 \begin{describe}{meth}{c-qualifier-keyword @<keyword> @> @<string>}
378 Returns the @<keyword>'s print-name, in lower case. This is sufficient
379 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
380 \end{describe}
381 \end{describe}
382
383 \begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
384 Return the @<c-type>'s qualifiers, as a list of C keyword names.
385 \end{describe}
386
387
388 \subsection{Leaf types} \label{sec:clang.c-types.leaf}
389
390 A \emph{leaf type} is a type which is not defined in terms of another type.
391 In Sod, the leaf types are
392 \begin{itemize}
393 \item \emph{simple types}, including builtin types like @|int| and @|char|,
394 as well as type names introduced by @|typename|, because Sod isn't
395 interested in what the type name means, merely that it names a type; and
396 \item \emph{tagged types}, i.e., enum, struct and union types which are named
397 by a keyword identifying the kind of type, and a \emph{tag}.
398 \end{itemize}
399
400 \begin{describe}{cls}{simple-c-type (qualifiable-c-type)
401 \&key :qualifiers :name}
402 The class of `simple types'; an instance denotes the type @<qualifiers>
403 @<name>.
404
405 A simple type object maintains a \emph{name}, which is a string whose
406 contents are the C name for the type. The initarg @|:name| may be used to
407 provide this name when calling @|make-instance|.
408
409 Two simple type objects are equal if and only if they have @|string=| names
410 and matching qualifiers.
411
412 A number of symbolic type specifiers for builtin types are predefined as
413 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
414 @|define-simple-c-type|, so can be used to construct qualified types.
415 \end{describe}
416
417 \begin{table}
418 \begin{tabular}[C]{ll} \hlx*{hv}
419 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
420 @|void| & @|void| \\ \hlx{v}
421 @|_Bool| & @|bool| \\ \hlx{v}
422 @|char| & @|char| \\ \hlx{}
423 @|wchar_t| & @|wchar-t| \\ \hlx{v}
424 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
425 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
426 @|short| & @|short|, @|signed-short|, @|short-int|,
427 @|signed-short-int| @|sshort| \\ \hlx{}
428 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
429 @|ushort| \\ \hlx{v}
430 @|int| & @|int|, @|signed|, @|signed-int|,
431 @|sint| \\ \hlx{}
432 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
433 @|long| & @|long|, @|signed-long|, @|long-int|,
434 @|signed-long-int|, @|slong| \\ \hlx{}
435 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
436 @|ulong| \\ \hlx{v}
437 @|long long| & @|long-long|, @|signed-long-long|,
438 @|long-long-int|, \\ \hlx{}
439 & \qquad @|signed-long-long-int|,
440 @|llong|, @|sllong| \\ \hlx{v}
441 @|unsigned long long|
442 & @|unsigned-long-long|, @|unsigned-long-long-int|,
443 @|ullong| \\ \hlx{v}
444 @|size_t| & @|size-t| \\ \hlx{}
445 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
446 @|float| & @|float| \\ \hlx{}
447 @|double| & @|double| \\ \hlx{}
448 @|long double| & @|long-double| \\ \hlx{v}
449 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
450 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
451 @|long double _Imaginary|
452 & @|long-double-imaginary| \\ \hlx{v}
453 @|float _Complex| & @|float-complex| \\ \hlx{}
454 @|double _Complex| & @|double-complex| \\ \hlx{}
455 @|long double _Complex|
456 & @|long-double-complex| \\ \hlx{v}
457 @|va_list| & @|va-list| \\ \hlx*{vh}
458 \end{tabular}
459 \caption{Builtin symbolic type specifiers for simple C types}
460 \label{tab:codegen.c-types.simple}
461 \end{table}
462
463 \begin{describe}{fun}
464 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
465 Return the (unique interned) simple C type object for the C type whose name
466 is @<name> (a string) and which has the given @<qualifiers> (a list of
467 keywords).
468 \end{describe}
469
470 \begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
471 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
472 string.
473 \end{describe}
474
475 \begin{describe}{mac}
476 {define-simple-c-type \=@{ @<name> @! (@<name>^+) @} @<string> \+ \\
477 @[[ @|:export| @<export-flag> @]] \-
478 \nlret @<name>}
479 Define type specifiers for a new simple C type. Each symbol @<name> is
480 defined as a symbolic type specifier for the (unique interned) simple C
481 type whose name is the value of @<string>. Further, each @<name> is
482 defined to be a type operator: the type specifier @|(@<name>
483 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
484 name is @<string> and which has the @<qualifiers> (which are evaluated).
485
486 Furthermore, a variable @|c-type-@<name>| is defined, for the first @<name>
487 only, and initialized with the newly constructed C type object.
488
489 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
490 all of the @<name>s, are exported from the current package.
491 \end{describe}
492
493 \begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
494 \&key :qualifiers :tag}
495 Provides common behaviour for C tagged types. A @<tag> is a string
496 containing a C identifier.
497
498 Two tagged types are equal if and only if they have the same class, their
499 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
500 subclasses may have additional methods on @|c-type-equal-p| which impose
501 further restrictions.)
502 \end{describe}
503 \begin{boxy}[Bug]
504 Sod maintains distinct namespaces for the three kinds of tagged types. In
505 C, there is only one namespace for tags which is shared between enums,
506 structs and unions.
507 \end{boxy}
508
509 \begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
510 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
511 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
512 should return their own classification symbols. It is intended that
513 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
514 syntax.\footnote{%
515 Alas, C doesn't provide a syntactic category for these keywords;
516 \Cplusplus\ calls them a @<class-key>.} %
517 There is a method defined for each of the built-in tagged type classes
518 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
519 \end{describe}
520
521 \begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
522 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
523 naming a kind of tagged type, return the name of the corresponding C
524 type class as a symbol.
525 \end{describe}
526
527 \begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
528 Represents a C enumerated type. An instance denotes the C type @|enum|
529 @<tag>. See the direct superclass @|tagged-c-type| for details.
530
531 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
532 interned) enumerated type with the given @<tag> and @<qualifier>s (all
533 evaluated).
534 \end{describe}
535 \begin{describe}{fun}
536 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
537 Return the (unique interned) C type object for the enumerated C type whose
538 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
539 keywords).
540 \end{describe}
541
542 \begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
543 Represents a C structured type. An instance denotes the C type @|struct|
544 @<tag>. See the direct superclass @|tagged-c-type| for details.
545
546 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
547 interned) structured type with the given @<tag> and @<qualifier>s (all
548 evaluated).
549 \end{describe}
550 \begin{describe}{fun}
551 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
552 Return the (unique interned) C type object for the structured C type whose
553 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
554 keywords).
555 \end{describe}
556
557 \begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
558 Represents a C union type. An instance denotes the C type @|union|
559 @<tag>. See the direct superclass @|tagged-c-type|
560 for details.
561
562 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
563 interned) union type with the given @<tag> and @<qualifier>s (all
564 evaluated).
565 \end{describe}
566 \begin{describe}{fun}
567 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
568 Return the (unique interned) C type object for the union C type whose tag
569 is @<tag> (a string) and which has the given @<qualifiers> (a list of
570 keywords).
571 \end{describe}
572
573
574 \subsection{Compound C types} \label{sec:code.c-types.compound}
575
576 Some C types are \emph{compound types}: they're defined in terms of existing
577 types. The classes which represent compound types implement a common
578 protocol.
579
580 \begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
581 Returns the underlying type of a compound type @<c-type>. Precisely what
582 this means depends on the class of @<c-type>.
583 \end{describe}
584
585
586 \subsection{Atomic types} \label{sec:clang.c-types.atomic}
587
588 Atomic types are compound types. The subtype of an atomic type is simply the
589 underlying type of the object. Note that, as far as Sod is concerned, atomic
590 types are not the same as atomic-qualified types: you must be consistent
591 about which you use.
592
593 \begin{describe}{cls}
594 {c-atomic-type (qualifiable-c-type) \&key :qualifiers :subtype}
595 Represents an atomic type. An instance denotes the C type
596 @|_Atomic(@<subtype>)|.
597
598 The @<subtype> may be any C type.\footnote{%
599 C does not permit atomic function or array types.} %
600 Two atomic types are equal if and only if their subtypes are equal and they
601 have matching qualifiers. It is possible, though probably not useful, to
602 have an atomic-qualified atomic type.
603
604 The type specifier @|(atomic @<type-spec> @<qualifier>^*)| returns a type
605 qualified atomic @<subtype>, where @<subtype> is the type specified by
606 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
607 evaluated).
608 \end{describe}
609
610 \begin{describe}{fun}
611 {make-atomic-type @<c-type> \&optional @<qualifiers> @> @<c-atomic-type>}
612 Return an object describing the type qualified atomic @<subtype>. If
613 @<subtype> is interned, then the returned atomic type object is interned
614 also.
615 \end{describe}
616
617
618 \subsection{Pointer types} \label{sec:clang.c-types.pointer}
619
620 Pointers are compound types. The subtype of a pointer type is the type it
621 points to.
622
623 \begin{describe}{cls}
624 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
625 Represents a C pointer type. An instance denotes the C type @<subtype>
626 @|*|@<qualifiers>.
627
628 The @<subtype> may be any C type. Two pointer types are equal if and only
629 if their subtypes are equal and they have matching qualifiers.
630
631 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
632 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
633 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
634 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
635 star @`*'.
636
637 The symbol @|string| is a type specifier for the type pointer to
638 characters; the symbol @|const-string| is a type specifier for the type
639 pointer to constant characters.
640 \end{describe}
641
642 \begin{describe}{fun}
643 {make-pointer-type @<c-type> \&optional @<qualifiers>
644 @> @<c-pointer-type>}
645 Return an object describing the type qualified pointer to @<subtype>.
646 If @<subtype> is interned, then the returned pointer type object is
647 interned also.
648 \end{describe}
649
650
651 \subsection{Array types} \label{sec:clang.c-types.array}
652
653 Arrays implement the compound-type protocol. The subtype of an array type is
654 the array element type.
655
656 \begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
657 Represents a multidimensional C array type. The @<dimensions> are a list
658 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
659 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
660 individual dimension specifier is either a string containing a C integral
661 constant expression, or nil which is equivalent to an empty string. Only
662 the first (outermost) dimension $d_0$ should be empty.
663
664 C doesn't actually have multidimensional arrays as a primitive notion;
665 rather, it permits an array (with known extent) to be the element type of
666 an array, which achieves an equivalent effect. C arrays are stored in
667 row-major order: i.e., if we write down the indices of the elements of an
668 array in order of ascending address, the rightmost index varies fastest;
669 hence, the type constructed is more accurately an array of $d_0$ arrays of
670 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
671 continue to abuse terminology and refer to multidimensional arrays.
672
673 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
674 multidimensional array with the given @<dimension>s whose elements have the
675 type specified by @<type-spec>. If no dimensions are given then a
676 single-dimensional array with unspecified extent. The synonyms @|array|
677 and @|vector| may be used in place of the brackets @`[]'.
678 \end{describe}
679
680 \begin{describe}{fun}
681 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
682 Return an object describing the type of arrays with given @<dimensions> and
683 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
684 argument is a list whose elements are strings or nil; see the description
685 of the class @|c-array-type| above for details.
686 \end{describe}
687
688 \begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
689 Returns the dimensions of @<c-type>, an array type, as an immutable list.
690 \end{describe}
691
692
693 \subsection{Function types} \label{sec:clang.c-types.fun}
694
695 Function types implement the compound-type protocol. The subtype of a
696 function type is the type of the function's return value.
697
698 \begin{describe}{cls}{argument}
699 Represents an ordinary function argument.
700 \end{describe}
701
702 \begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
703 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
704 not return nil.
705 \end{describe}
706
707 \begin{describe}{fun}{make-argument @<name> @<c-type> @> @<argument>}
708 Construct and a return a new @<argument> object. The argument has type
709 @<c-type>, which must be a @|c-type| object, and is named @<name>.
710
711 The @<name> may be nil to indicate that the argument has no name: in this
712 case the argument will be formatted as an abstract declarator, which is not
713 suitable for function definitions. If @<name> is not nil, then the
714 @<name>'s print representation, with @|*print-escape*| nil, is used as the
715 argument name.
716 \end{describe}
717
718 \begin{describe*}
719 {\dhead{fun}{argument-name @<argument> @> @<name>}
720 \dhead{fun}{argument-type @<argument> @> @<c-type>}}
721 Accessor functions for @|argument| objects. They return the name (for
722 @|argument-name|) or type (for @|argument-type|) from the object, as passed
723 to @|make-argument|.
724 \end{describe*}
725
726 \begin{describe}{gf}
727 {commentify-argument-name @<name> @> @<commentified-name>}
728 Convert the argument name @<name> so that it's suitable to declare the
729 function in a header file.
730
731 Robust header files shouldn't include literal argument names in
732 declarations of functions or function types, since this restricts the
733 including file from defining such names as macros. This generic function
734 is used to convert names into a safe form.
735
736 \begin{describe}{meth}{commentify-argument-name (@<name> null) @> nil}
737 Returns nil: if the argument name is already omitted, it's safe for use
738 in a header file.
739 \end{describe}
740 \begin{describe}{meth}{commentify-argument-name (@<name> t) @> @<string>}
741 Returns the print form of @<name> wrapped in a C comment, as
742 @`/*@<name>*/'.
743 \end{describe}
744 \end{describe}
745
746 \begin{describe}{fun}
747 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
748 Convert the @<arguments> list so that it's suitable for use in a header
749 file.
750
751 The @<arguments> list should be a list whose items are @|argument| objects
752 or the keyword @|:ellipsis|. The return value is a list constructed as
753 follows. For each @|argument| object in the input list, there is a
754 corresponding @|argument| object in the returned list, with the same type,
755 and whose name is the result of @|commentify-argument-name| applied to the
756 input argument name; an @|:ellipsis| in the input list is passed through
757 unchanged.
758 \end{describe}
759
760 \begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
761 Represents C function types. An instance denotes the type of a C
762 function which accepts the @<arguments> and returns @<subtype>.
763
764 The @<arguments> are a possibly empty list. All but the last element of
765 the list must be @|argument| objects; the final element may instead be the
766 keyword @|:ellipsis|, which denotes a variable argument list.
767
768 An @<arguments> list consisting of a single argument with type @|void| is
769 converted into an empty list. On output as C code, an empty argument list
770 is written as @|void|. It is not possible to represent a pre-ANSI C
771 function without prototypes.
772
773 Two function types are considered to be the same if their return types are
774 the same, and their argument lists consist of arguments with the same type,
775 in the same order, and either both or neither argument list ends with
776 @|:ellipsis|; argument names are not compared.
777
778 The type specifier
779 \begin{prog}
780 (fun @<return-type>
781 @{ (@<arg-name> @<arg-type>) @}^*
782 @[:ellipsis @! . @<form>@])
783 \end{prog}
784 constructs a function type. The function has the subtype @<return-type>.
785 The remaining items in the type-specifier list are used to construct the
786 argument list. The argument items are a possibly improper list, beginning
787 with zero or more \emph{explicit arguments}: two-item
788 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
789 is constructed with the given name (evaluated) and type. Following the
790 explicit arguments, there may be
791 \begin{itemize}
792 \item nothing, in which case the function's argument list consists only of
793 the explicit arguments;
794 \item the keyword @|:ellipsis|, as the final item in the type-specifier
795 list, indicating a variable argument list may follow the explicit
796 arguments; or
797 \item a possibly-improper list tail, beginning with an atom either as a
798 list item or as the final list cdr, indicating that the entire list tail
799 is Lisp expression which is to be evaluated to compute the remaining
800 arguments.
801 \end{itemize}
802 A tail expression may return a list of @|argument| objects, optionally
803 followed by an @|:ellipsis|.
804
805 For example,
806 \begin{prog}
807 (c-type (fun \=(lisp (c-type-subtype other-func)) \+ \\
808 ("first" int) . (c-function-arguments other-func))
809 \end{prog}
810 evaluates to a function type like @|other-func|, only with an additional
811 argument of type @|int| added to the front of its argument list. This
812 could also have been written
813 \begin{prog}
814 (let (\=(args (c-function-arguments other-func)) \+ \\
815 (ret (c-type-subtype other-func))) \- \\ \ind
816 (c-type (fun \=(lisp ret) ("first" int) . args)
817 \end{prog}
818 \end{describe}
819
820 \begin{describe}{fun}
821 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
822 Construct and return a new function type, returning @<subtype> and
823 accepting the @<arguments>.
824 \end{describe}
825
826 \begin{describe}{gf}
827 {c-function-arguments @<c-function-type> @> @<arguments>}
828 Return the arguments list of the @<c-function-type>.
829 \end{describe}
830
831 \begin{describe}{fun}
832 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
833 Return a commentified version of the @<c-function-type>.
834
835 The returned type has the same subtype as the given type, and the argument
836 list of the returned type is the result of applying
837 @|commentify-argument-names| to the argument list of the given type.
838 \end{describe}
839
840
841 \subsection{Parsing C types} \label{sec:clang.c-types.parsing}
842
843 \begin{describe}{fun}
844 {parse-c-type @<scanner>
845 @> @<result> @<success-flag> @<consumed-flag>}
846 \end{describe}
847
848 \begin{describe}{fun}
849 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
850 \nlret @<result> @<success-flag> @<consumed-flag>}
851 \end{describe}
852
853
854 \subsection{Class types} \label{sec:clang.c-types.class}
855
856 \begin{describe}{cls}
857 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
858 \end{describe}
859
860 \begin{describe*}
861 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
862 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
863 \end{describe*}
864
865 \begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
866 \end{describe}
867
868 \begin{describe}{fun}
869 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
870 \end{describe}
871
872 \begin{describe}{fun}
873 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
874 \end{describe}
875
876 \begin{describe}{fun}{find-sod-class @<name> @> @<class>}
877 \end{describe}
878
879 \begin{describe}{fun}{record-sod-class @<class>}
880 \end{describe}
881
882 %%%--------------------------------------------------------------------------
883 \section{Generating C code} \label{sec:clang.codegen}
884
885 This section deals with Sod's facilities for constructing and manipulating C
886 expressions, declarations, instructions and definitions.
887
888
889 \subsection{Temporary names} \label{sec:clang.codegen.temporaries}
890
891 Many C-level objects, especially ones with external linkage or inclusion in a
892 header file, are assigned names which are simple strings, perhaps fixed ones,
893 perhaps constructed. Other objects don't need meaningful names, and
894 suitably unique constructed names would be tedious and most likely rather
895 opaque. Therefore Sod has an ability to construct \emph{temporary names}.
896
897 These aren't temporary in the sense that they name C objects which have
898 limited lifetimes at runtime. Rather, the idea is that the names be
899 significant only to small pieces of Lisp code, which will soon forget about
900 them.
901
902 \subsubsection{The temporary name protocol}
903 Temporary names are represented by objects which implement a simple protocol.
904
905 \begin{describe}{gf}{format-temporary-name @<var> @<stream>}
906 \end{describe}
907
908 \begin{describe*}
909 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
910 \dhead[setf var-in-use-p]
911 {gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
912 \end{describe*}
913
914 \subsubsection{Temporary name objects}
915
916 \begin{describe}{cls}{temporary-name () \&key :tag}
917 A temporary name object. This is the root of a small collection of
918 subclasses, but is also usable on its own.
919 \end{describe}
920
921 \begin{describe}{meth}
922 {commentify-argument-name (@<name> temporary-name) @> nil}
923 \end{describe}
924
925 \begin{table}
926 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
927 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
928 temporary-name & @<tag> \\
929 temporary-argument & sod__a@<tag> \\
930 temporary-function & sod__f@<tag> \\
931 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
932 \end{tabular}
933 \caption{Temporary name formats}
934 \label{tab:codegen.codegen.temps-format}
935 \end{table}
936
937 \begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
938 \end{describe}
939
940 \begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
941 \end{describe}
942
943 \begin{describe}{fun}{temporary-function @> @<name>}
944 \end{describe}
945
946 \begin{describe}{cls}
947 {temporary-variable (temporary-name) \&key :tag :in-use-p}
948 \end{describe}
949
950 \subsubsection{Well-known `temporary' names}
951
952 \begin{table}
953 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
954 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
955 {}*sod-ap* & sod__ap \\
956 {}*sod-master-ap* & sod__master_ap \\
957 {}*null-pointer* & NULL \\ \hlx*{vh}
958 \end{tabular}
959 \caption{Well-known temporary names}
960 \label{tab:codegen.codegen.well-known-temps}
961 \end{table}
962
963
964 \subsection{Instructions} \label{sec:clang.codegen.insts}
965
966 \begin{describe}{cls}{inst () \&key}
967 \end{describe}
968
969 \begin{describe}{gf}{inst-metric @<inst>}
970 \end{describe}
971
972 \begin{describe}{mac}
973 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
974 @[[ @<declaration>^* @! @<doc-string> @]] \\
975 @<form>^* \-
976 \nlret @<code>}
977 \end{describe}
978
979 \begin{describe}{mac}
980 {format-compound-statement
981 (@<stream> @<child> \&optional @<morep>) \\ \ind
982 @<declaration>^* \\
983 @<form>^*}
984 \end{describe}
985
986 \begin{table}
987 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
988 \thd{Class name} &
989 \thd{Arguments} &
990 \thd{Output format} \\ \hlx{vhv}
991 @|var| & @<name> @<type> @|\&optional| @<init>
992 & @<type> @<name> @[= @<init>@];
993 \\ \hlx{v}
994 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
995 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
996 \\ \hlx{v}
997 @|return| & @<expr> & return @[@<expr>@];
998 \\ \hlx{v}
999 @|break| & --- & break; \\ \hlx{v}
1000 @|continue| & --- & continue; \\ \hlx{v}
1001 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
1002 @|call| & @<func> @|\&rest| @<args>
1003 & @<func>(@<arg>_1,
1004 $\ldots$,
1005 @<arg>_n) \\ \hlx{vhv}
1006 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
1007 \\ \hlx{v}
1008 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
1009 & if (@<cond>) @<conseq>
1010 @[else @<alt>@] \\ \hlx{v}
1011 @|while| & @<cond> @<body> & while (@<cond>) @<body>
1012 \\ \hlx{v}
1013 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
1014 \\ \hlx{v}
1015 @|function| & @<name> @<type> @<body> &
1016 \vtop{\hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
1017 @<type>_n @<arg>_n @[, \dots@])}
1018 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
1019 \end{tabular}
1020 \caption{Instruction classes}
1021 \label{tab:codegen.codegen.insts}
1022 \end{table}
1023
1024
1025 \subsection{Code generation} \label{sec:clang.codegen.codegen}
1026
1027 \begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
1028 \end{describe}
1029
1030 \begin{describe}{gf}
1031 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
1032 \end{describe}
1033
1034 \begin{describe}{gf}{emit-inst @<codegen> @<inst>}
1035 \end{describe}
1036
1037 \begin{describe}{gf}{emit-insts @<codegen> @<insts>}
1038 \end{describe}
1039
1040 \begin{describe}{gf}{emit-decl @<codegen> @<decl>}
1041 \end{describe}
1042
1043 \begin{describe}{gf}{emit-decls @<codegen> @<decls>}
1044 \end{describe}
1045
1046 \begin{describe}{gf}{codegen-push @<codegen>}
1047 \end{describe}
1048
1049 \begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
1050 \end{describe}
1051
1052 \begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
1053 \end{describe}
1054
1055 \begin{describe}{gf}
1056 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1057 \end{describe}
1058
1059 \begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1060 \end{describe}
1061
1062 \begin{describe}{fun}
1063 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1064 @> @<name>}
1065 \end{describe}
1066
1067 \begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1068 \end{describe}
1069
1070 \begin{describe}{mac}
1071 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1072 @<declaration>^* \\
1073 @<form>^* \-
1074 \nlret @<value>^*}
1075 \end{describe}
1076
1077 \begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1078 \end{describe}
1079
1080 \begin{describe}{fun}
1081 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1082 \end{describe}
1083
1084 \begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1085 \end{describe}
1086
1087 \begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1088 \end{describe}
1089
1090 %%%--------------------------------------------------------------------------
1091 \section{Literal C code fragments} \label{sec:clang.fragment}
1092
1093 \begin{describe}{cls}{c-fragment () \&key :location :text}
1094 \end{describe}
1095
1096 \begin{describe}{gf}{c-fragment-text @<fragment> @> @<string>}
1097 \end{describe}
1098
1099 \begin{describe}{fun}
1100 {scan-c-fragment @<scanner> @<end-chars>
1101 @> @<result> @<success-flag> @<consumed-flag>}
1102 \end{describe}
1103
1104 \begin{describe}{fun}
1105 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1106 \nlret @<result> @<success-flag> @<consumed-flag>}
1107 \end{describe}
1108
1109 %%%----- That's all, folks --------------------------------------------------
1110
1111 %%% Local variables:
1112 %%% mode: LaTeX
1113 %%% TeX-master: "sod.tex"
1114 %%% TeX-PDF-mode: t
1115 %%% End: