doc/clang.tex: Squish the `\desclabel' mess for simple C types.
[sod] / doc / clang.tex
1 %%% -*-latex-*-
2 %%%
3 %%% C language utilities
4 %%%
5 %%% (c) 2015 Straylight/Edgeware
6 %%%
7
8 %%%----- Licensing notice ---------------------------------------------------
9 %%%
10 %%% This file is part of the Sensible Object Design, an object system for C.
11 %%%
12 %%% SOD is free software; you can redistribute it and/or modify
13 %%% it under the terms of the GNU General Public License as published by
14 %%% the Free Software Foundation; either version 2 of the License, or
15 %%% (at your option) any later version.
16 %%%
17 %%% SOD is distributed in the hope that it will be useful,
18 %%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19 %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 %%% GNU General Public License for more details.
21 %%%
22 %%% You should have received a copy of the GNU General Public License
23 %%% along with SOD; if not, write to the Free Software Foundation,
24 %%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 \chapter{C language utilities} \label{ch:clang}
27
28 %%%--------------------------------------------------------------------------
29 \section{C type representation} \label{sec:clang.c-types}
30
31 \subsection{Overview} \label{sec:clang.c-types.over}
32
33 The Sod translator represents C types in a fairly simple and direct way.
34 However, because it spends a fair amount of its time dealing with C types, it
35 provides a number of useful operations and macros.
36
37 The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
38
39 \begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
41 @|c-type| \\ \ind
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
44 @|c-class-type| \-\\
45 @|tagged-c-type| \\ \ind
46 @|c-struct-type| \\
47 @|c-union-type| \\
48 @|c-enum-type| \-\\
49 @|c-atomic-type| \\
50 @|c-pointer-type| \-\\
51 @|c-array-type| \\
52 @|c-function-type| \\ \ind
53 @|c-keyword-function-type| \-
54 \end{tabbing}}
55 \caption{Classes representing C types}
56 \label{fig:codegen.c-types.classes}
57 \end{figure}
58
59 C type objects are immutable unless otherwise specified.
60
61 \subsubsection{Constructing C type objects}
62 There is a constructor function for each non-abstract class of C type object.
63 Note, however, that constructor functions need not generate a fresh type
64 object if a previously existing type object is suitable. In this case, we
65 say that the objects are \emph{interned}. Some constructor functions are
66 specified to return interned objects: programs may rely on receiving the same
67 (@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
68 not specified, clients may still not rely on receiving fresh objects.
69
70 A convenient S-expression notation is provided by the
71 \descref{mac}{c-type}[macro]. Use of this macro is merely an abbreviation
72 for corresponding use of the various constructor functions, and therefore
73 interns type objects in the same manner. The syntax accepted by the macro
74 can be extended in order to support new classes: see \descref{mac}{defctype},
75 \descref{mac}{c-type-alias} and \descref{mac}{define-c-type-syntax}.
76
77 The descriptions of each of the various classes include descriptions of the
78 initargs which may be passed to @|make-instance| when constructing a new
79 instance of the class. However, the constructor functions and S-expression
80 syntax are strongly recommended over direct use of @|make-instance|.
81
82 \subsubsection{Printing}
83 There are two protocols for printing C types. Unfortunately they have
84 similar names.
85 \begin{itemize}
86 \item The \descref{gf}{print-c-type}[function] prints a C type value using
87 the S-expression notation. It is mainly useful for diagnostic purposes.
88 \item The \descref{gf}{pprint-c-type}[function] prints a C type as a
89 C-syntax declaration.
90 \end{itemize}
91 Neither generic function defines a default primary method; subclasses of
92 @|c-type| must define their own methods in order to print correctly.
93
94 \begin{describe}{fun}{c-name-case @<name> @> @<string>}
95 \end{describe}
96
97
98 \subsection{The C type root class} \label{sec:clang.c-types.root}
99
100 \begin{describe}{cls}{c-type ()}
101 The class @|c-type| marks the root of the built-in C type hierarchy.
102
103 Users may define subclasses of @|c-type|. All non-abstract subclasses must
104 have a primary method defined on @|pprint-c-type|; unless instances of the
105 subclass are interned, a method on @|c-type-equal-p| is also required.
106
107 The class @|c-type| is abstract.
108 \end{describe}
109
110
111 \subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
112
113 The S-expression representation of a type is described syntactically as a
114 type specifier. Type specifiers fit into two syntactic categories.
115 \begin{itemize}
116 \item A \emph{symbolic type specifier} consists of a symbol. It has a
117 single, fixed meaning: if @<name> is a symbolic type specifier, then each
118 use of @<name> in a type specifier evaluates to the same (@|eq|) type
119 object, until the @<name> is redefined.
120 \item A \emph{type operator} is a symbol; the corresponding specifier is a
121 list whose @|car| is the operator. The remaining items in the list are
122 arguments to the type operator.
123 \end{itemize}
124
125 \begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
126 Evaluates to a C type object, as described by the type specifier
127 @<type-spec>.
128 \end{describe}
129
130 \begin{describe}{mac}
131 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+\\
132 @[[ @|:export| @<export-flag> @]]^*
133 \-\nlret @<names>}
134 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
135 given, then all are defined in the same way. The type constructed by using
136 any of the @<name>s is as described by the type specifier @<type-spec>.
137
138 The resulting type object is constructed once, at the time that the macro
139 expansion is evaluated; the same (@|eq|) value is used each time any
140 @<name> is used in a type specifier.
141
142 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
143 and initialized to contain the C type object so constructed. Altering or
144 binding this name is discouraged.
145
146 If @<export-flag> is true, then the variable name, and all of the @<name>s,
147 are exported from the current package.
148 \end{describe}
149
150 \begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
151 Defines each @<alias> as being a type operator identical in behaviour to
152 @<original>. If @<original> is later redefined then the behaviour of the
153 @<alias>es changes too.
154 \end{describe}
155
156 \begin{describe}{mac}
157 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
158 @[[ @<declaration>^* @! @<doc-string> @]] \\
159 @<form>^*
160 \-\nlret @<name>}
161 Defines the symbol @<name> as a new type operator. When a list of the form
162 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
163 are bound to fresh variables according to @<lambda-list> (a destructuring
164 lambda-list) and the @<form>s evaluated in order in the resulting lexical
165 environment as an implicit @|progn|. The value should be a Lisp form which
166 will evaluate to the type specified by the arguments.
167
168 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
169 type specifiers among its arguments.
170 \end{describe}
171
172 \begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
173 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
174
175 If @<type-spec> is a list, then \descref{gf}{expand-c-type-form} is
176 invoked.
177 \end{describe}
178
179 \begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
180 Returns the Lisp form that @|(c-type (@<head> . @<tail>))| would expand
181 into.
182 \end{describe}
183
184 \begin{describe}{gf}
185 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
186 Print the C type object @<type> to @<stream> in S-expression form. The
187 @<colon> and @<atsign> arguments may be interpreted in any way which seems
188 appropriate: they are provided so that @|print-c-type| may be called via
189 @|format|'s @|\char`\~/\dots/| command; they are not set when
190 @|print-c-type| is called by Sod functions.
191
192 There should be a method defined for every C type class; there is no
193 default method.
194 \end{describe}
195
196
197 \subsection{Comparing C types} \label{sec:clang.c-types.cmp}
198
199 It is necessary to compare C types for equality, for example when checking
200 argument lists for methods. This is done by @|c-type-equal-p|.
201
202 \begin{describe}{gf}
203 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
204 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
205 @<c-type>_2 for equality; it returns true if the two types are equal and
206 false if they are not.
207
208 Two types are equal if they are structurally similar, where this property
209 is defined by methods for each individual class; see the descriptions of
210 the classes for the details.
211
212 The generic function @|c-type-equal-p| uses the @|and| method combination.
213
214 \begin{describe}{meth}{t,t}{c-type-equal-p @<c-type>_1 @<c-type>_2}
215 A default primary method for @|c-type-equal-p| is defined. It simply
216 returns @|nil|. This way, methods can specialize on both arguments
217 without fear that a call will fail because no methods are applicable.
218 \end{describe}
219 \begin{describe}{ar-meth}{}{c-type-equal-p @<c-type>_1 @<c-type>_2}
220 A default around-method for @|c-type-equal-p| is defined. It returns
221 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
222 the primary methods. Since several common kinds of C types are interned,
223 this is a common case worth optimizing.
224 \end{describe}
225 \end{describe}
226
227
228 \subsection{Outputting C types} \label{sec:clang.c-types.output}
229
230 \begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
231 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
232 declaration of an object or function of type @<c-type>. The result is
233 written to @<stream>.
234
235 A C declaration has two parts: a sequence of \emph{declaration specifiers}
236 and a \emph{declarator}. The declarator syntax involves parentheses and
237 operators, in order to reflect the operators applicable to the declared
238 variable. For example, the name of a pointer variable is preceded by @`*';
239 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
240
241 The @<kernel> argument must be a function designator (though see the
242 standard around-method); it is invoked as
243 \begin{quote} \codeface
244 (funcall @<kernel> @<stream> @<priority> @<spacep>)
245 \end{quote}
246 It should write to @<stream> -- which may not be the same stream originally
247 passed into the generic function -- the `kernel' of the declarator, i.e.,
248 the part to which prefix and/or postfix operators are attached to form the
249 full declarator.
250
251 The methods on @|pprint-c-type| specialized for compound types work by
252 recursively calling @|pprint-c-type| on the subtype, passing down a closure
253 which prints the necessary additional declarator operators before calling
254 the original @<kernel> function. The additional arguments @<priority> and
255 @<spacep> support this implementation technique.
256
257 The @<priority> argument describes the surrounding operator context. It is
258 zero if no type operators are directly attached to the kernel (i.e., there
259 are no operators at all, or the kernel is enclosed in parentheses), one if
260 a prefix operator is directly attached, or two if a postfix operator is
261 directly attached. If the @<kernel> function intends to provide its own
262 additional declarator operators, it should check the @<priority> in order
263 to determine whether parentheses are necessary. See also the
264 \descref{mac}{maybe-in-parens}[macro].
265
266 The @<spacep> argument indicates whether a space needs to be printed in
267 order to separate the declarator from the declaration specifiers. A kernel
268 which contains an identifier should insert a space before the identifier
269 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
270 declarator (one that specifies no name), looks more pleasing without a
271 trailing space. See also the \descref{fun}{c-type-space}[function].
272
273 Every concrete subclass of @|c-type| is expected to provide a primary
274 method on this function. There is no default primary method.
275
276 \begin{describe}{ar-meth}{}{pprint-c-type @<c-type> @<stream> @<kernel>}
277 A default around method is defined on @|pprint-c-type| which `canonifies'
278 non-function @<kernel> arguments. In particular:
279 \begin{itemize}
280 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
281 with a @<kernel> function that does nothing; and
282 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
283 called recursively with a @<kernel> function that prints the object as
284 if by @|princ|, preceded if necessary by space using @|c-type-space|.
285 \end{itemize}
286 \end{describe}
287 \end{describe}
288
289 \begin{describe}{fun}{c-type-space @<stream>}
290 Writes a space and other pretty-printing instructions to @<stream> in order
291 visually to separate a declarator from the preceding declaration
292 specifiers. The precise details are subject to change.
293 \end{describe}
294
295 \begin{describe}{mac}
296 {maybe-in-parens (@<stream-var> @<guard-form>)
297 @<declaration>^*
298 @<form>^*}
299 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
300 sequence within a pretty-printer logical block writing to the stream named
301 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
302 the logical block has empty prefix and suffix strings; if it evaluates to a
303 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
304 respectively.
305
306 Note that this may cause @<stream> to be bound to a different stream object
307 within the @<form>s.
308 \end{describe}
309
310
311 \subsection{Type qualifiers and qualifiable types}
312 \label{sec:clang.ctypes.qual}
313
314 Qualifiers -- @|const|, @|volatile|, and so on -- are represented as lists of
315 keywords attached to types. Not all C types can carry qualifiers: notably,
316 function and array types cannot be qualified.
317
318 For the most part, the C qualifier keywords correspond to like-named Lisp
319 keywords, only the Lisp keyword names are in uppercase. The correspondence
320 is shown in \xref{tab:clang.ctypes.qual}.
321
322 \begin{table}
323 \begin{tabular}[C]{*2{>{\codeface}l}l} \hlx*{hv}
324 \thd{\textbf{C name}} & \thd{\textbf{Lisp name}} \\ \hlx{vhv}
325 _Atomic & :atomic \\
326 const & :const \\
327 restrict & :restrict \\
328 volatile & :volatile \\ \hlx*{vh}
329 \end{tabular}
330 \caption{C and Lisp qualifier names} \label{tab:clang.ctypes.qual}
331 \end{table}
332
333 The default behaviour, on output, is to convert keywords to lowercase and
334 hope for the best: special cases can be dealt with by adding appropriate
335 methods to \descref{gf}{c-qualifier-keyword}.
336
337 \begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
338 The class @|qualifiable-c-type| describes C types which can bear
339 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
340 @|restrict| and @|volatile|.
341
342 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
343 @|:volatile|. There is no built-in limitation to these particular
344 qualifiers; others keywords may be used, though this isn't recommended.
345
346 Two qualifiable types are equal only if they have \emph{matching
347 qualifiers}: i.e., every qualifier attached to one is also attached to the
348 other: order is not significant, and neither is multiplicity.
349
350 The class @|qualifiable-c-type| is abstract.
351 \end{describe}
352
353 \begin{describe}{fun}
354 {canonify-qualifiers @<qualifiers> @> @<canonfied-qualifiers>}
355 \end{describe}
356
357 \begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
358 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
359 an immutable list.
360 \end{describe}
361
362 \begin{describe}{fun}{qualify-c-type @<c-type> @<qualifiers> @> @<c-type>}
363 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
364 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
365 keywords. The result is a C type object like @<c-type> except that it
366 bears the given @<qualifiers>.
367
368 The @<c-type> is not modified. If @<c-type> is interned, then the returned
369 type will be interned.
370 \end{describe}
371
372 \begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
373 Returns a string containing the qualifiers listed in @<qualifiers> in C
374 syntax, with a space after each. In particular, if @<qualifiers> is
375 non-null then the final character of the returned string will be a space.
376 \end{describe}
377
378 \begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
379 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
380
381 There is a standard method, which deals with many qualifiers. Additional
382 methods exist for qualifier keywords which need special handling, such as
383 @|:atomic|; they are not listed here explicitly.
384
385 \begin{describe}{meth}{keyword}
386 {c-qualifier-keyword @<keyword> @> @<string>}
387 Returns the @<keyword>'s print-name, in lower case. This is sufficient
388 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
389 \end{describe}
390 \end{describe}
391
392 \begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
393 Return the @<c-type>'s qualifiers, as a list of C keyword names.
394 \end{describe}
395
396
397 \subsection{Storage specifiers} \label{sec:clang.ctypes.specs}
398
399 Some declaration specifiers, mostly to do with how to store the specific
400 object in question, are determinedly `top level', and, unlike qualifiers,
401 don't stay attached to the base type when acted on by declarator operators.
402 Sod calls these `storage specifiers', though no such category exists in the C
403 standard. They have their own protocol, which is similar in many ways to
404 that of C types.
405
406 Every Lisp keyword is potentially a storage specifier, which simply maps to
407 its lower-case print name in C; but other storage specifiers may be more
408 complicated objects.
409
410 \begin{describe}{cls}
411 {c-storage-specifiers-type (c-type) \&key :subtype :specifiers}
412 A type which carries storage specifiers. The @<subtype> is the actual
413 type, and may be any C type; the @<specifiers> are a list of
414 storage-specifier objects.
415
416 The type specifier @|(specs @<subtype> @<specifier>^*)| wraps the
417 @<subtype> in a @|c-storage-specifiers-type|, carrying the @<specifier>s,
418 which are a list of storage specifiers in S-expression notation.
419 \end{describe}
420
421 \begin{describe}{fun}{c-type-specifiers @<type> @> @<list>}
422 Returns the list of type specifiers attached to the @<type> object, which
423 must be a @|c-storage-specifiers-type|.
424 \end{describe}
425
426 \begin{describe}{mac}
427 {define-c-storage-specifier-syntax @<name> @<lambda-list> \\ \ind
428 @[[ @<declaration>^* @! @<doc-string> @]] \\
429 @<form>^* \-
430 \nlret @<name>}
431
432 Defines the symbol @<name> as a new storage-specifier operator. When a
433 list of the form @|(@<name> @<argument>^*)| is used as a storage specifier,
434 the @<argument>s are bound to fresh variables according to the
435 @<lambda-list> (a destructuring lambda-list) and the @<form>s evaluated in
436 order in the resulting lexical environment as an implicit @<progn>. The
437 value should be a Lisp form which will evaluate to the storage-specifier
438 object described by the arguments.
439
440 The @<form>s may call @|expand-c-storage-specifier| in order to recursively
441 expand storage specifiers among its arguments.
442 \end{describe}
443
444 \begin{describe}{gf}{expand-c-storage-specifier @<spec> @> @<form>}
445 Returns the Lisp form that @<spec> expands to within @|(c-type (specs
446 @<subtype> @<spec>))|.
447
448 If @<spec> is a list, then \descref{gf}{expand-c-storage-specifier-form} is
449 invoked.
450 \end{describe}
451
452 \begin{describe}{gf}{expand-c-storage-specifier-form @<spec> @> @<form>}
453 Returns the Lisp form that @|(@<head> . @<tail>)| expands to within
454 @|(c-type (specs @<subtype> (@<head> . @<tail>)))|.
455 \end{describe}
456
457 \begin{describe}{gf}{pprint-c-storage-specifier @<spec> @<stream>}
458 \end{describe}
459
460 \begin{describe}{gf}
461 {print-c-storage-specifier @<stream> @<spec>
462 \&optional @<colon> @<atsign>}
463 \end{describe}
464
465 \begin{describe}{fun}{wrap-c-type @<func> @<base-type> @> @<c-type>}
466 Apply @<func> to the underlying C type of @<base-type> to create a new
467 `wrapped' type, and attach the storage specifiers of @<base-type> to the
468 wrapped type.
469
470 If @<base-type> is \emph{not} a @|c-storage-specifiers-type|, then return
471 @|(funcall @<func> @<base-type>)|. Otherwise, return a new
472 @|c-storage-specifiers-type|, with the same specifiers, but whose subtype
473 is the result of applying @<func> to the subtype of the original
474 @<base-type>.
475 \end{describe}
476
477 \begin{describe}{cls}{alignas-storage-specifier () \&key :alignment}
478 The class of @|_Alignas| storage specifiers; an instance denotes the
479 specifier @|_Alignas(@<alignment>)|. The @<alignment> parameter may be any
480 printable object, but is usually a string or C fragment.
481
482 The storage specifier form @|(alignas @<alignment>)| returns a storage
483 specifier @|_Alignas(@<alignment>)|, where @<alignment> is evaluated.
484 \end{describe}
485
486
487 \subsection{Leaf types} \label{sec:clang.c-types.leaf}
488
489 A \emph{leaf type} is a type which is not defined in terms of another type.
490 In Sod, the leaf types are
491 \begin{itemize}
492 \item \emph{simple types}, including builtin types like @|int| and @|char|,
493 as well as type names introduced by @|typename|, because Sod isn't
494 interested in what the type name means, merely that it names a type; and
495 \item \emph{tagged types}, i.e., enum, struct and union types which are named
496 by a keyword identifying the kind of type, and a \emph{tag}.
497 \end{itemize}
498
499 \begin{describe}{cls}{simple-c-type (qualifiable-c-type)
500 \&key :qualifiers :name}
501 The class of `simple types'; an instance denotes the type @<qualifiers>
502 @<name>.
503
504 A simple type object maintains a \emph{name}, which is a string whose
505 contents are the C name for the type. The initarg @|:name| may be used to
506 provide this name when calling @|make-instance|.
507
508 Two simple type objects are equal if and only if they have @|string=| names
509 and matching qualifiers.
510
511 \def\x#1{\desclabel{const}{c-type-#1}}
512 \x{bool} \x{char} \x{wchar-t} \x{signed-char} \x{unsigned-char} \x{short}
513 \x{unsigned-short} \x{int} \x{unsigned} \x{long} \x{unsigned-long}
514 \x{long-long} \x{unsigned-long-long} \x{size-t} \x{ptrdiff-t} \x{float}
515 \x{double} \x{long-double} \x{float-imaginary} \x{double-imaginary}
516 \x{long-double-imaginary} \x{float-complex} \x{double-complex}
517 \x{long-double-complex} \x{va-list} \x{void}
518 A number of symbolic type specifiers for builtin types are predefined as
519 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
520 @|define-simple-c-type|, so can be used to construct qualified types.
521 \end{describe}
522
523 \begin{table}
524 \begin{tabular}[C]{ll} \hlx*{hv}
525 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
526 @|void| & @|void| \\ \hlx{v}
527 @|_Bool| & @|bool| \\ \hlx{v}
528 @|char| & @|char| \\ \hlx{}
529 @|wchar_t| & @|wchar-t| \\ \hlx{v}
530 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
531 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
532 @|short| & @|short|, @|signed-short|, @|short-int|,
533 @|signed-short-int| @|sshort| \\ \hlx{}
534 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
535 @|ushort| \\ \hlx{v}
536 @|int| & @|int|, @|signed|, @|signed-int|,
537 @|sint| \\ \hlx{}
538 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
539 @|long| & @|long|, @|signed-long|, @|long-int|,
540 @|signed-long-int|, @|slong| \\ \hlx{}
541 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
542 @|ulong| \\ \hlx{v}
543 @|long long| & @|long-long|, @|signed-long-long|,
544 @|long-long-int|, \\ \hlx{}
545 & \qquad @|signed-long-long-int|,
546 @|llong|, @|sllong| \\ \hlx{v}
547 @|unsigned long long|
548 & @|unsigned-long-long|, @|unsigned-long-long-int|,
549 @|ullong| \\ \hlx{v}
550 @|size_t| & @|size-t| \\ \hlx{}
551 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
552 @|float| & @|float| \\ \hlx{}
553 @|double| & @|double| \\ \hlx{}
554 @|long double| & @|long-double| \\ \hlx{v}
555 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
556 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
557 @|long double _Imaginary|
558 & @|long-double-imaginary| \\ \hlx{v}
559 @|float _Complex| & @|float-complex| \\ \hlx{}
560 @|double _Complex| & @|double-complex| \\ \hlx{}
561 @|long double _Complex|
562 & @|long-double-complex| \\ \hlx{v}
563 @|va_list| & @|va-list| \\ \hlx*{vh}
564 \end{tabular}
565 \caption{Builtin symbolic type specifiers for simple C types}
566 \label{tab:codegen.c-types.simple}
567 \end{table}
568
569 \begin{describe}{fun}
570 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
571 Return the (unique interned) simple C type object for the C type whose name
572 is @<name> (a string) and which has the given @<qualifiers> (a list of
573 keywords).
574 \end{describe}
575
576 \begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
577 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
578 string.
579 \end{describe}
580
581 \begin{describe}{mac}
582 {define-simple-c-type
583 \=@{ @<name> @! (@<name>^+) @}
584 @{ @<string> @! (@<string>^*) @} \+\\
585 @[[ @|:export| @<export-flag> @]]
586 \-\nlret @<name>}
587 Define type specifiers for a new simple C type. Each symbol @<name> is
588 defined as a symbolic type specifier for the (unique interned) simple C
589 type whose name is the value of (the first) @<string>. Further, each
590 @<name> is defined to be a type operator: the type specifier @|(@<name>
591 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
592 name is (the first) @<string> and which has the @<qualifiers> (which are
593 evaluated).
594
595 Each of the @<string>s is associated with the resulting type for retrieval
596 by \descref{fun}{find-simple-c-type}. Furthermore, a variable
597 @|c-type-@<name>| is defined, for the first @<name> only, and initialized
598 with the newly constructed C type object.
599
600 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
601 all of the @<name>s, are exported from the current package.
602 \end{describe}
603
604 \begin{describe}{fun}
605 {find-simple-c-type @<string> @> @{ @<simple-c-type> @! @|nil| @}}
606 If @<string> is the name of a simple C type, as established by the
607 \descref{mac}{define-simple-c-type}[macro], then return the corresponding
608 @|simple-c-type| object; otherwise, return @|nil|.
609 \end{describe}
610
611 \begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
612 \&key :qualifiers :tag}
613 Provides common behaviour for C tagged types. A @<tag> is a string
614 containing a C identifier.
615
616 Two tagged types are equal if and only if they have the same class, their
617 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
618 subclasses may have additional methods on @|c-type-equal-p| which impose
619 further restrictions.)
620 \end{describe}
621 \begin{boxy}[Bug]
622 Sod maintains distinct namespaces for the three kinds of tagged types. In
623 C, there is only one namespace for tags which is shared between enums,
624 structs and unions.
625 \end{boxy}
626
627 \begin{describe}{gf}{c-type-tag @<c-type> @> @<keyword>}
628 \end{describe}
629
630 \begin{describe}{fun}
631 {make-c-tagged-type @<kind> @<tag> \&optional @<qualifiers>
632 @> @<tagged-type>}
633 \end{describe}
634
635 \begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
636 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
637 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
638 should return their own classification symbols. It is intended that
639 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
640 syntax.\footnote{%
641 Alas, C doesn't provide a syntactic category for these keywords;
642 \Cplusplus\ calls them a @<class-key>.} %
643 There is a method defined for each of the built-in tagged type classes
644 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
645 \end{describe}
646
647 \begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
648 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
649 naming a kind of tagged type, return the name of the corresponding C
650 type class as a symbol.
651 \end{describe}
652
653 \begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
654 Represents a C enumerated type. An instance denotes the C type @|enum|
655 @<tag>. See the direct superclass @|tagged-c-type| for details.
656
657 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
658 interned) enumerated type with the given @<tag> and @<qualifier>s (all
659 evaluated).
660 \end{describe}
661
662 \begin{describe}{fun}
663 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
664 Return the (unique interned) C type object for the enumerated C type whose
665 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
666 keywords).
667 \end{describe}
668
669 \begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
670 Represents a C structured type. An instance denotes the C type @|struct|
671 @<tag>. See the direct superclass @|tagged-c-type| for details.
672
673 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
674 interned) structured type with the given @<tag> and @<qualifier>s (all
675 evaluated).
676 \end{describe}
677
678 \begin{describe}{fun}
679 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
680 Return the (unique interned) C type object for the structured C type whose
681 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
682 keywords).
683 \end{describe}
684
685 \begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
686 Represents a C union type. An instance denotes the C type @|union|
687 @<tag>. See the direct superclass @|tagged-c-type|
688 for details.
689
690 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
691 interned) union type with the given @<tag> and @<qualifier>s (all
692 evaluated).
693 \end{describe}
694 \begin{describe}{fun}
695 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
696 Return the (unique interned) C type object for the union C type whose tag
697 is @<tag> (a string) and which has the given @<qualifiers> (a list of
698 keywords).
699 \end{describe}
700
701
702 \subsection{Compound C types} \label{sec:code.c-types.compound}
703
704 Some C types are \emph{compound types}: they're defined in terms of existing
705 types. The classes which represent compound types implement a common
706 protocol.
707
708 \begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
709 Returns the underlying type of a compound type @<c-type>. Precisely what
710 this means depends on the class of @<c-type>.
711 \end{describe}
712
713
714 \subsection{Atomic types} \label{sec:clang.c-types.atomic}
715
716 Atomic types are compound types. The subtype of an atomic type is simply the
717 underlying type of the object. Note that, as far as Sod is concerned, atomic
718 types are not the same as atomic-qualified types: you must be consistent
719 about which you use.
720
721 \begin{describe}{cls}
722 {c-atomic-type (qualifiable-c-type) \&key :qualifiers :subtype}
723 Represents an atomic type. An instance denotes the C type
724 @|_Atomic(@<subtype>)|.
725
726 The @<subtype> may be any C type.\footnote{%
727 C does not permit atomic function or array types.} %
728 Two atomic types are equal if and only if their subtypes are equal and they
729 have matching qualifiers. It is possible, though probably not useful, to
730 have an atomic-qualified atomic type.
731
732 The type specifier @|(atomic @<type-spec> @<qualifier>^*)| returns a type
733 qualified atomic @<subtype>, where @<subtype> is the type specified by
734 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
735 evaluated).
736 \end{describe}
737
738 \begin{describe}{fun}
739 {make-atomic-type @<c-type> \&optional @<qualifiers> @> @<c-atomic-type>}
740 Return an object describing the type qualified atomic @<subtype>. If
741 @<subtype> is interned, then the returned atomic type object is interned
742 also.
743 \end{describe}
744
745
746 \subsection{Pointer types} \label{sec:clang.c-types.pointer}
747
748 Pointers are compound types. The subtype of a pointer type is the type it
749 points to.
750
751 \begin{describe}{cls}
752 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
753 Represents a C pointer type. An instance denotes the C type @<subtype>
754 @|*|@<qualifiers>.
755
756 The @<subtype> may be any C type. Two pointer types are equal if and only
757 if their subtypes are equal and they have matching qualifiers.
758
759 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
760 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
761 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
762 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
763 star @`*'.
764
765 The symbol @|string| is a type specifier for the type pointer to
766 characters; the symbol @|const-string| is a type specifier for the type
767 pointer to constant characters.
768 \end{describe}
769
770 \begin{describe}{fun}
771 {make-pointer-type @<c-type> \&optional @<qualifiers>
772 @> @<c-pointer-type>}
773 Return an object describing the type qualified pointer to @<subtype>.
774 If @<subtype> is interned, then the returned pointer type object is
775 interned also.
776 \end{describe}
777
778
779 \subsection{Array types} \label{sec:clang.c-types.array}
780
781 Arrays implement the compound-type protocol. The subtype of an array type is
782 the array element type.
783
784 \begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
785 Represents a multidimensional C array type. The @<dimensions> are a list
786 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
787 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
788 individual dimension specifier is either a string containing a C integral
789 constant expression, or nil which is equivalent to an empty string. Only
790 the first (outermost) dimension $d_0$ should be empty.
791
792 C doesn't actually have multidimensional arrays as a primitive notion;
793 rather, it permits an array (with known extent) to be the element type of
794 an array, which achieves an equivalent effect. C arrays are stored in
795 row-major order: i.e., if we write down the indices of the elements of an
796 array in order of ascending address, the rightmost index varies fastest;
797 hence, the type constructed is more accurately an array of $d_0$ arrays of
798 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
799 continue to abuse terminology and refer to multidimensional arrays.
800
801 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
802 multidimensional array with the given @<dimension>s whose elements have the
803 type specified by @<type-spec>. If no dimensions are given then a
804 single-dimensional array with unspecified extent. The synonyms @|array|
805 and @|vector| may be used in place of the brackets @`[]'.
806 \end{describe}
807
808 \begin{describe}{fun}
809 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
810 Return an object describing the type of arrays with given @<dimensions> and
811 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
812 argument is a list whose elements are strings or nil; see the description
813 of the class @|c-array-type| above for details.
814 \end{describe}
815
816 \begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
817 Returns the dimensions of @<c-type>, an array type, as an immutable list.
818 \end{describe}
819
820
821 \subsection{Function types} \label{sec:clang.c-types.fun}
822
823 Function types implement the compound-type protocol. The subtype of a
824 function type is the type of the function's return value.
825
826 \begin{describe}{cls}{argument}
827 Represents an ordinary function argument.
828 \end{describe}
829
830 \begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
831 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
832 not return nil.
833 \end{describe}
834
835 \begin{describe}{fun}
836 {make-argument @<name> @<c-type> \&optional @<default> @> @<argument>}
837 Construct and a return a new @<argument> object. The argument has type
838 @<c-type>, which must be a @|c-type| object, and is named @<name>.
839
840 The @<name> may be nil to indicate that the argument has no name: in this
841 case the argument will be formatted as an abstract declarator, which is not
842 suitable for function definitions. If @<name> is not nil, then the
843 @<name>'s print representation, with @|*print-escape*| nil, is used as the
844 argument name.
845
846 A @<default> may be supplied. If the argument is used in a
847 keyword-argument list (e.g., in a \descref{cls}{c-keyword-function-type}
848 [object]), and the @<default> value is provided and non-nil, then its
849 (unescaped) printed representation is used to provide a default value if
850 the keyword argument is not supplied by the caller.
851 \end{describe}
852
853 \begin{describe*}
854 {\dhead{fun}{argument-name @<argument> @> @<name>}
855 \dhead{fun}{argument-type @<argument> @> @<c-type>}
856 \dhead{fun}{argument-default @<argument> @> @<default>}}
857 Accessor functions for @|argument| objects. They return the appropriate
858 component of the object, as set by to @|make-argument|. The @<default> is
859 nil if no default was provided to @|make-argument|.
860 \end{describe*}
861
862 \begin{describe}{gf}
863 {commentify-argument-name @<name> @> @<commentified-name>}
864 Convert the argument name @<name> so that it's suitable to declare the
865 function in a header file.
866
867 Robust header files shouldn't include literal argument names in
868 declarations of functions or function types, since this restricts the
869 including file from defining such names as macros. This generic function
870 is used to convert names into a safe form.
871
872 \begin{describe}{meth}{null}
873 {commentify-argument-name (@<name> null) @> nil}
874 Returns nil: if the argument name is already omitted, it's safe for use
875 in a header file.
876 \end{describe}
877 \begin{describe}{meth}{t}
878 {commentify-argument-name (@<name> t) @> @<string>}
879 Returns the print form of @<name> wrapped in a C comment, as
880 @`/*@<name>*/'.
881 \end{describe}
882 \end{describe}
883
884 \begin{describe}{fun}
885 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
886 Convert the @<arguments> list so that it's suitable for use in a header
887 file.
888
889 The @<arguments> list should be a list whose items are @|argument| objects
890 or the keyword @|:ellipsis|. The return value is a list constructed as
891 follows. For each @|argument| object in the input list, there is a
892 corresponding @|argument| object in the returned list, with the same type,
893 and whose name is the result of @|commentify-argument-name| applied to the
894 input argument name; an @|:ellipsis| in the input list is passed through
895 unchanged.
896 \end{describe}
897
898 \begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
899 Represents C function types. An instance denotes the type of a C
900 function which accepts the @<arguments> and returns @<subtype>.
901
902 The @<arguments> are a possibly empty list. All but the last element of
903 the list must be @|argument| objects; the final element may instead be the
904 keyword @|:ellipsis|, which denotes a variable argument list.
905
906 An @<arguments> list consisting of a single argument with type @|void| is
907 converted into an empty list. On output as C code, an empty argument list
908 is written as @|void|. It is not possible to represent a pre-ANSI C
909 function without prototypes.
910
911 Two function types are considered to be the same if their return types are
912 the same, and their argument lists consist of arguments with the same type,
913 in the same order, and either both or neither argument list ends with
914 @|:ellipsis|; argument names are not compared.
915
916 The type specifier
917 \begin{prog}
918 (fun @<return-type>
919 @{ (@<arg-name> @<arg-type>) @}^*
920 @[:ellipsis @! . @<form>@])
921 \end{prog}
922 constructs a function type. The function has the subtype @<return-type>.
923 The remaining items in the type-specifier list are used to construct the
924 argument list. The argument items are a possibly improper list, beginning
925 with zero or more \emph{explicit arguments}: two-item
926 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
927 is constructed with the given name (evaluated) and type. Following the
928 explicit arguments, there may be
929 \begin{itemize}
930 \item nothing, in which case the function's argument list consists only of
931 the explicit arguments;
932 \item the keyword @|:ellipsis|, as the final item in the type-specifier
933 list, indicating a variable argument list may follow the explicit
934 arguments; or
935 \item a possibly-improper list tail, beginning with an atom either as a
936 list item or as the final list cdr, indicating that the entire list tail
937 is a Lisp expression which is to be evaluated to compute the remaining
938 arguments.
939 \end{itemize}
940 A tail expression may return a list of @|argument| objects, optionally
941 followed by an @|:ellipsis|.
942
943 For example,
944 \begin{prog}
945 (c-type (fun \=(lisp (c-type-subtype other-func)) \+\\
946 ("first" int) . (c-function-arguments other-func))
947 \end{prog}
948 evaluates to a function type like @|other-func|, only with an additional
949 argument of type @|int| added to the front of its argument list. This
950 could also have been written
951 \begin{prog}
952 (let (\=(args (c-function-arguments other-func)) \+\\
953 (ret (c-type-subtype other-func))) \-\\ \ind
954 (c-type (fun \=(lisp ret) ("first" int) . args)
955 \end{prog}
956 \end{describe}
957
958 \begin{describe}{cls}
959 {c-keyword-function-type (c-function-type)
960 \&key :subtype :arguments :keywords}
961 Represents `functions' which accept keyword arguments. Of course, actual C
962 functions can't accept keyword arguments directly, but this type is useful
963 for describing messages and methods which deal with keyword arguments.
964
965 An instance denotes the type of C function which accepts the position
966 argument list @<arguments>, and keyword arguments from the @<keywords>
967 list, and returns @<subtype>. Either or both of the @<arguments> and
968 @<keywords> lists may be empty. (It is important to note the distinction
969 between a function which doesn't accept keyword arguments, and one which
970 does but for which no keyword arguments are defined. In particular, the
971 latter function can be changed later to accept a keyword argument without
972 breaking compatibility with old code.) The @<arguments> and @<keywords>
973 lists must \emph{not} contain @|:ellipsis| markers: a function can accept
974 keywords, or a variable-length argument tail, but not both.
975
976 Keyword arguments may (but need not) have a \emph{default value} which is
977 supplied to the function body if the keyword is omitted.
978
979 Keyword functions are never considered to be the same as ordinary
980 functions. Two keyword function types are considered to be the same if
981 their return types are the same, and their positional argument lists
982 consist of arguments with the same type, in the same order: the keyword
983 arguments accepted by the functions is not significant.
984
985 Keyword functions are constructed using an extended version of the @|fun|
986 specifier used for ordinary C function types. The extended syntax is as
987 follows.
988 \begin{prog}
989 (fun \=@<return-type>
990 @{ (@<arg-name> @<arg-type>) @}^* \+\\
991 @{ \=:keys @{ (@<kw-name> @<kw-type> @[@<kw-default>@]) @}^*
992 @[. @<form>@] @! \+\\
993 . @<form> @}
994 \end{prog}
995 where either the symbol @|:keys| appears literally in the specifier, or the
996 @<form> evaluates to a list containing the symbol @|:keys|. (If neither of
997 these circumstances obtains, then the specifier constructs an ordinary
998 function type.)
999
1000 See the description of \descref{cls}{c-function-type} for how a trailing
1001 @<form> is handled.
1002
1003 The list of @<arg-name>s and @<arg-type>s describes the positional
1004 arguments. The list of @<kw-name>s, @<kw-type>s and @<kw-defaults>s
1005 describes the keyword arguments.
1006 \end{describe}
1007
1008 \begin{describe}{fun}
1009 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
1010 Construct and return a new function type, returning @<subtype> and
1011 accepting the @<arguments>.
1012
1013 If the @<arguments> list contains a @|:keys| marker, then a
1014 \descref{cls}{c-keyword-function-type}[object] is returned: those arguments
1015 preceding the @|:keys| marker form the positional argument list, and those
1016 following the marker form the list of keyword arguments.
1017 \end{describe}
1018
1019 \begin{describe}{fun}
1020 {make-keyword-function-type @<subtype> @<arguments> @<keywords>
1021 \nlret @<c-keyword-function-type>}
1022 Construct and return a new keyword-function type, returning @<subtype> and
1023 accepting the @<arguments> and @<keywords>.
1024 \end{describe}
1025
1026 \begin{describe}{gf}
1027 {c-function-arguments @<c-function-type> @> @<arguments>}
1028 Return the (non-keyword) argument list of the @<c-function-type>.
1029 \end{describe}
1030
1031 \begin{describe}{gf}
1032 {c-function-keywords @<c-function-type> @> @<keywords>}
1033 Return the keyword-argument list of the @<c-function-type>.
1034 \end{describe}
1035
1036 \begin{describe}{fun}
1037 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
1038 Return a commentified version of the @<c-function-type>.
1039
1040 The returned type has the same subtype as the given type, and the argument
1041 list of the returned type is the result of applying
1042 @|commentify-argument-names| to the argument list of the given type.
1043 \end{describe}
1044
1045 \begin{describe}{fun}{reify-variable-argument-tail @<arguments> @> @<list>}
1046 If the @<argument> list contains an @|:ellipsis| marker, then replace it
1047 with a @|va_list|. The name for the new argument, if any, is taken from
1048 the \descref{var}{*sod-ap*}[variable]. The new list is returned; the
1049 original list is not modified, but may share structure with the new list.
1050 \end{describe}
1051
1052 \begin{describe}{fun}
1053 {merge-keyword-lists @<what-function> @<lists> @> @<list>}
1054 Merge a number of keyword-argument lists together and return the result.
1055
1056 The @<what-function> is either nil or a function designator; see below.
1057
1058 The @<lists> parameter is a list consisting of a number of
1059 @|(@<report-function> . @<args>)| pairs: in each pair, @<report-function>
1060 is either nil or a function designator, and @<args> is a list of
1061 \descref{cls}{argument} objects.
1062
1063 The resulting list contains exactly one argument for each distinct argument
1064 name appearing in the input @<lists>; this argument will contain the
1065 default value from the earliest occurrence in the input @<lists> of an
1066 argument with that name.
1067
1068 If the same name appears multiple times with different types, a continuable
1069 error will be signalled, and one of the conflicting argument types will be
1070 chosen arbitrarily. The @<what-function> will be called to establish
1071 information which will be reported to the user. It will be called with no
1072 arguments and is expected to return two values:
1073 \begin{itemize}
1074 \item a file location @<floc> or other object acceptable to
1075 \descref{gf}{file-location}, to be used as the location of the main
1076 error; and
1077 \item an object @<what>, whose printed representation should be a noun
1078 phrase describing the object for which the argument lists are being
1079 combined.
1080 \end{itemize}
1081 The phrasing of the error message is `type mismatch in @<what>'. Either,
1082 or both, of @<floc> and @<what> may be nil, though this is considered poor
1083 practice; if @<what-function> is nil, this is equivalent to a function
1084 which returns two nil values. Following the error, the @<report-function>s
1085 for the @<args> lists containing the conflicting argument objects are
1086 called, in an arbitrary order, with a single argument which is the
1087 offending @|argument| object; the function is expected to issue information
1088 messages (see \descref{fun}{info}) to give more detail for diagnosing the
1089 conflict. If a @<report-function> is nil, then nothing happens; this is
1090 considered poor practice.
1091 \end{describe}
1092
1093 \begin{describe}{fun}
1094 {pprint-c-function-type @<return-type> @<stream>
1095 @<print-args> @<print-kernel>}
1096 Provides the top-level structure for printing C function types.
1097
1098 Output is written to @<stream> to describe a function type returning
1099 @<return-type>, whose declarator kernel (containing the name, and any
1100 further type operands) will be printed by @<print-kernel>, and whose
1101 arguments, if any, will be printed by @<print-args>.
1102
1103 The @<print-kernel> function is a standard kernel-printing function
1104 following the \descref{gf}{pprint-c-type}[protocol].
1105
1106 The @<print-args> function is given a single argument, which is the
1107 @<stream> to print on. It should not print the surrounding parentheses.
1108
1109 The output written to @<stream> looks approximately like
1110 \begin{prog}
1111 @<return-type> @<kernel>(@<args>)
1112 \end{prog}
1113 \end{describe}
1114
1115 \begin{describe}{fun}{pprint-argument-list @<args> @<stream> @> @<flag>}
1116 Print an argument list to @<stream>.
1117
1118 The @<args> is a list of \descref{cls}{argument}[objects], optionally
1119 containing an @|:ellipsis| marker. The function returns true if any
1120 arguments were actually printed.
1121 \end{describe}
1122
1123
1124 \subsection{Parsing C types} \label{sec:clang.c-types.parsing}
1125
1126 \begin{describe}{fun}
1127 {parse-c-type @<scanner>
1128 @> @<result> @<success-flag> @<consumed-flag>}
1129 \end{describe}
1130
1131 \begin{describe}{fun}
1132 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
1133 \nlret @<result> @<success-flag> @<consumed-flag>}
1134 \end{describe}
1135
1136
1137 \subsection{Class types} \label{sec:clang.c-types.class}
1138
1139 \begin{describe}{cls}
1140 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
1141 \end{describe}
1142
1143 \begin{describe*}
1144 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
1145 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
1146 \end{describe*}
1147
1148 \begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
1149 \end{describe}
1150
1151 \begin{describe}{fun}
1152 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
1153 \end{describe}
1154
1155 \begin{describe}{fun}{find-sod-class @<name> @> @<class>}
1156 \end{describe}
1157
1158 \begin{describe}{fun}{record-sod-class @<class>}
1159 \end{describe}
1160
1161 %%%--------------------------------------------------------------------------
1162 \section{Generating C code} \label{sec:clang.codegen}
1163
1164 This section deals with Sod's facilities for constructing and manipulating C
1165 expressions, declarations, instructions and definitions.
1166
1167
1168 \subsection{Temporary names} \label{sec:clang.codegen.temporaries}
1169
1170 Many C-level objects, especially ones with external linkage or inclusion in a
1171 header file, are assigned names which are simple strings, perhaps fixed ones,
1172 perhaps constructed. Other objects don't need meaningful names, and
1173 suitably unique constructed names would be tedious and most likely rather
1174 opaque. Therefore Sod has an ability to construct \emph{temporary names}.
1175
1176 These aren't temporary in the sense that they name C objects which have
1177 limited lifetimes at runtime. Rather, the idea is that the names be
1178 significant only to small pieces of Lisp code, which will soon forget about
1179 them.
1180
1181 \subsubsection{The temporary name protocol}
1182 Temporary names are represented by objects which implement a simple protocol.
1183
1184 \begin{describe}{gf}{format-temporary-name @<var> @<stream>}
1185 \end{describe}
1186
1187 \begin{describe*}
1188 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
1189 \dhead{gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
1190 \end{describe*}
1191
1192 \subsubsection{Temporary name objects}
1193
1194 \begin{describe}{cls}{temporary-name () \&key :tag}
1195 A temporary name object. This is the root of a small collection of
1196 subclasses, but is also usable on its own.
1197 \end{describe}
1198
1199 \begin{describe}{gf}{temp-tag @<name> @> @<tag>}
1200 \end{describe}
1201
1202 \begin{describe}{meth}{temporary-name}
1203 {commentify-argument-name (@<name> temporary-name) @> nil}
1204 \end{describe}
1205
1206 \begin{table}
1207 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1208 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1209 temporary-name & @<tag> \\
1210 temporary-argument & sod__a@<tag> \\
1211 temporary-function & sod__f@<tag> \\
1212 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
1213 \end{tabular}
1214 \caption{Temporary name formats}
1215 \label{tab:codegen.codegen.temps-format}
1216 \end{table}
1217
1218 \begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
1219 \end{describe}
1220
1221 \begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
1222 \end{describe}
1223
1224 \begin{describe}{fun}{temporary-function @> @<name>}
1225 \end{describe}
1226
1227 \begin{describe}{cls}
1228 {temporary-variable (temporary-name) \&key :tag :in-use-p}
1229 \end{describe}
1230
1231 \subsubsection{Well-known `temporary' names}
1232
1233 \begin{table}
1234 \def\x#1{\desclabel{var}{#1}}
1235 \x{*sod-ap*} \x{*sod-master-ap*} \x{*null-pointer*}
1236 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1237 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1238 {}*sod-ap* & sod__ap \\
1239 {}*sod-master-ap* & sod__master_ap \\
1240 {}*null-pointer* & NULL \\ \hlx*{vh}
1241 \end{tabular}
1242 \caption{Well-known temporary names}
1243 \label{tab:codegen.codegen.well-known-temps}
1244 \end{table}
1245
1246
1247 \subsection{Instructions} \label{sec:clang.codegen.insts}
1248
1249 \begin{describe}{cls}{inst () \&key}
1250 \end{describe}
1251
1252 \begin{describe}{gf}{inst-metric @<inst>}
1253 \end{describe}
1254
1255 \begin{describe}{mac}
1256 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
1257 @[[ @<declaration>^* @! @<doc-string> @]] \\
1258 @<form>^*
1259 \-\nlret @<code>}
1260 \end{describe}
1261
1262 \begin{describe}{mac}
1263 {format-compound-statement
1264 (@<stream> @<child> \&optional @<morep>) \\ \ind
1265 @<declaration>^* \\
1266 @<form>^*}
1267 \end{describe}
1268
1269 \begin{describe}{fun}
1270 {format-banner-comment @<stream> @<control> \&rest @<args>}
1271 \end{describe}
1272
1273 \begin{table}
1274 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
1275 \thd{Class name} &
1276 \thd{Arguments} &
1277 \thd{Output format} \\ \hlx{vhv}
1278 @|var| & @<name> @<type> @|\&optional| @<init>
1279 & @<type> @<name> @[= @<init>@];
1280 \\ \hlx{v}
1281 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
1282 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
1283 \\ \hlx{v}
1284 @|cond| & @<cond> @<conseq> @<alt> & @<cond> ? @<conseq> : @<alt>
1285 \\ \hlx{v}
1286 @|return| & @<expr> & return @[@<expr>@];
1287 \\ \hlx{v}
1288 @|break| & --- & break; \\ \hlx{v}
1289 @|continue| & --- & continue; \\ \hlx{v}
1290 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
1291 @|call| & @<func> @|\&rest| @<args>
1292 & @<func>(@<arg>_1,
1293 $\ldots$,
1294 @<arg>_n) \\ \hlx{v}
1295 @|banner| & @<control> @|\&rest| @<args>
1296 & /* @<banner> */ \\ \hlx{vhv}
1297 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
1298 \\ \hlx{v}
1299 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
1300 & if (@<cond>) @<conseq>
1301 @[else @<alt>@] \\ \hlx{v}
1302 @|for| & @<init> @<cond> @<update> @<body> &
1303 for (@<init>; @<cond>; @<update>) @<body> \\ \hlx{v}
1304 @|while| & @<cond> @<body> & while (@<cond>) @<body>
1305 \\ \hlx{v}
1306 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
1307 \\ \hlx{v}
1308 @|function| &
1309 \vtop{\hbox{\strut @<name> @<type> @<body>}
1310 \hbox{\strut \quad @|\&optional @<banner>|}
1311 \hbox{\strut \quad @|\&rest| @<banner-args>}} &
1312 \vtop{\hbox{\strut @[/* @<banner> */@]}
1313 \hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
1314 @<type>_n @<arg>_n @[, \dots@])}
1315 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
1316 \end{tabular}
1317 \caption{Instruction classes}
1318 \label{tab:codegen.codegen.insts}
1319 \end{table}
1320
1321 \begin{describe*}
1322 {\dhead*{cls}{@<code>-inst (inst) \&key \dots}
1323 \dhead*{fn}{make-@<code>-inst \dots}
1324 \dhead*{gf}{inst-@<slot> @<inst> @> @<value>}}
1325 \def\instclass#1#2#3{%
1326 #1{cls}{#3-inst}[#2]%
1327 #1{fun}{make-#3-inst}[#2]%
1328 }
1329 \def\instslot#1#2#3{#1{gf}{inst-#3}[#2]}
1330 \def\makelabels#1#2{%
1331 \def\x{\instclass{#1}{#2}}
1332 \x{var} \x{set} \x{update} \x{cond} \x{return} \x{break} \x{continue}
1333 \x{expr} \x{call} \x{banner} \x{block} \x{if} \x{for} \x{while}
1334 \x{do-while} \x{function}
1335 \def\x{\instslot{#1}{#2}}
1336 \x{name} \x{type} \x{init} \x{var} \x{expr} \x{op} \x{cond} \x{conseq}
1337 \x{alt} \x{func} \x{args} \x{control} \x{decls} \x{body} \x{update}
1338 \x{banner} \x{banner-args}
1339 }
1340 \makelabels{\desclabel}{|(}
1341
1342 Sod provides a number of built-in instruction types generated by
1343 \descref{mac}{definst}: see \xref{tab:codegen.codegen.insts}.
1344
1345 \makelabels{\descindex}{|)}
1346 \end{describe*}
1347
1348
1349 \subsection{Code generation} \label{sec:clang.codegen.codegen}
1350
1351 \begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
1352 \end{describe}
1353
1354 \begin{describe}{gf}
1355 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
1356 \end{describe}
1357
1358 \begin{describe}{gf}{emit-inst @<codegen> @<inst>}
1359 \end{describe}
1360
1361 \begin{describe}{gf}{emit-insts @<codegen> @<insts>}
1362 \end{describe}
1363
1364 \begin{describe}{gf}{emit-decl @<codegen> @<decl>}
1365 \end{describe}
1366
1367 \begin{describe}{gf}{emit-decls @<codegen> @<decls>}
1368 \end{describe}
1369
1370 \begin{describe}{fun}{emit-banner @<codegen> @<control> \&rest @<args>}
1371 \end{describe}
1372
1373 \begin{describe}{gf}{codegen-push @<codegen>}
1374 \end{describe}
1375
1376 \begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
1377 \end{describe}
1378
1379 \begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
1380 \end{describe}
1381
1382 \begin{describe}{gf}
1383 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1384 \end{describe}
1385
1386 \begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1387 \end{describe}
1388
1389 \begin{describe}{fun}
1390 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1391 @> @<name>}
1392 \end{describe}
1393
1394 \begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1395 \end{describe}
1396
1397 \begin{describe}{mac}
1398 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1399 @<declaration>^* \\
1400 @<form>^*
1401 \-\nlret @<value>^*}
1402 \end{describe}
1403
1404 \begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1405 \end{describe}
1406
1407 \begin{describe}{fun}
1408 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1409 \end{describe}
1410
1411 \begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1412 \end{describe}
1413
1414 \begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1415 \end{describe}
1416
1417 %%%--------------------------------------------------------------------------
1418 \section{Literal C code fragments} \label{sec:clang.fragment}
1419
1420 \begin{describe}{cls}{c-fragment () \&key :location :text}
1421 \end{describe}
1422
1423 \begin{describe*}
1424 {\dhead{gf}{c-fragment-text @<fragment> @> @<string>}
1425 \dhead{meth}{c-fragment}
1426 {file-location (@<fragment> c-fragment) @> @<floc>}}
1427 \end{describe*}
1428
1429 \begin{describe}{fun}
1430 {scan-c-fragment @<scanner> @<end-chars>
1431 @> @<result> @<success-flag> @<consumed-flag>}
1432 \end{describe}
1433
1434 \begin{describe}{fun}
1435 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1436 \nlret @<result> @<success-flag> @<consumed-flag>}
1437 \end{describe}
1438
1439 %%%----- That's all, folks --------------------------------------------------
1440
1441 %%% Local variables:
1442 %%% mode: LaTeX
1443 %%% TeX-master: "sod.tex"
1444 %%% TeX-PDF-mode: t
1445 %%% End: