doc/module.tex: Add stub for missing function `clear-the-decks'.
[sod] / doc / clang.tex
1 %%% -*-latex-*-
2 %%%
3 %%% C language utilities
4 %%%
5 %%% (c) 2015 Straylight/Edgeware
6 %%%
7
8 %%%----- Licensing notice ---------------------------------------------------
9 %%%
10 %%% This file is part of the Sensible Object Design, an object system for C.
11 %%%
12 %%% SOD is free software; you can redistribute it and/or modify
13 %%% it under the terms of the GNU General Public License as published by
14 %%% the Free Software Foundation; either version 2 of the License, or
15 %%% (at your option) any later version.
16 %%%
17 %%% SOD is distributed in the hope that it will be useful,
18 %%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19 %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 %%% GNU General Public License for more details.
21 %%%
22 %%% You should have received a copy of the GNU General Public License
23 %%% along with SOD; if not, write to the Free Software Foundation,
24 %%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 \chapter{C language utilities} \label{ch:clang}
27
28 %%%--------------------------------------------------------------------------
29 \section{C type representation} \label{sec:clang.c-types}
30
31 \subsection{Overview} \label{sec:clang.c-types.over}
32
33 The Sod translator represents C types in a fairly simple and direct way.
34 However, because it spends a fair amount of its time dealing with C types, it
35 provides a number of useful operations and macros.
36
37 The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
38
39 \begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
41 @|c-type| \\ \ind
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
44 @|c-class-type| \-\\
45 @|tagged-c-type| \\ \ind
46 @|c-struct-type| \\
47 @|c-union-type| \\
48 @|c-enum-type| \-\\
49 @|c-atomic-type| \\
50 @|c-pointer-type| \-\\
51 @|c-array-type| \\
52 @|c-function-type| \\ \ind
53 @|c-keyword-function-type| \-
54 \end{tabbing}}
55 \caption{Classes representing C types}
56 \label{fig:codegen.c-types.classes}
57 \end{figure}
58
59 C type objects are immutable unless otherwise specified.
60
61 \subsubsection{Constructing C type objects}
62 There is a constructor function for each non-abstract class of C type object.
63 Note, however, that constructor functions need not generate a fresh type
64 object if a previously existing type object is suitable. In this case, we
65 say that the objects are \emph{interned}. Some constructor functions are
66 specified to return interned objects: programs may rely on receiving the same
67 (@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
68 not specified, clients may still not rely on receiving fresh objects.
69
70 A convenient S-expression notation is provided by the
71 \descref{mac}{c-type}[macro]. Use of this macro is merely an abbreviation
72 for corresponding use of the various constructor functions, and therefore
73 interns type objects in the same manner. The syntax accepted by the macro
74 can be extended in order to support new classes: see \descref{mac}{defctype},
75 \descref{mac}{c-type-alias} and \descref{mac}{define-c-type-syntax}.
76
77 The descriptions of each of the various classes include descriptions of the
78 initargs which may be passed to @|make-instance| when constructing a new
79 instance of the class. However, the constructor functions and S-expression
80 syntax are strongly recommended over direct use of @|make-instance|.
81
82 \subsubsection{Printing}
83 There are two protocols for printing C types. Unfortunately they have
84 similar names.
85 \begin{itemize}
86 \item The \descref{gf}{print-c-type}[function] prints a C type value using
87 the S-expression notation. It is mainly useful for diagnostic purposes.
88 \item The \descref{gf}{pprint-c-type}[function] prints a C type as a
89 C-syntax declaration.
90 \end{itemize}
91 Neither generic function defines a default primary method; subclasses of
92 @|c-type| must define their own methods in order to print correctly.
93
94
95 \subsection{The C type root class} \label{sec:clang.c-types.root}
96
97 \begin{describe}{cls}{c-type ()}
98 The class @|c-type| marks the root of the built-in C type hierarchy.
99
100 Users may define subclasses of @|c-type|. All non-abstract subclasses must
101 have a primary method defined on @|pprint-c-type|; unless instances of the
102 subclass are interned, a method on @|c-type-equal-p| is also required.
103
104 The class @|c-type| is abstract.
105 \end{describe}
106
107
108 \subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
109
110 The S-expression representation of a type is described syntactically as a
111 type specifier. Type specifiers fit into two syntactic categories.
112 \begin{itemize}
113 \item A \emph{symbolic type specifier} consists of a symbol. It has a
114 single, fixed meaning: if @<name> is a symbolic type specifier, then each
115 use of @<name> in a type specifier evaluates to the same (@|eq|) type
116 object, until the @<name> is redefined.
117 \item A \emph{type operator} is a symbol; the corresponding specifier is a
118 list whose @|car| is the operator. The remaining items in the list are
119 arguments to the type operator.
120 \end{itemize}
121
122 \begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
123 Evaluates to a C type object, as described by the type specifier
124 @<type-spec>.
125 \end{describe}
126
127 \begin{describe}{mac}
128 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+\\
129 @[[ @|:export| @<export-flag> @]]^*
130 \-\nlret @<names>}
131 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
132 given, then all are defined in the same way. The type constructed by using
133 any of the @<name>s is as described by the type specifier @<type-spec>.
134
135 The resulting type object is constructed once, at the time that the macro
136 expansion is evaluated; the same (@|eq|) value is used each time any
137 @<name> is used in a type specifier.
138
139 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
140 and initialized to contain the C type object so constructed. Altering or
141 binding this name is discouraged.
142
143 If @<export-flag> is true, then the variable name, and all of the @<name>s,
144 are exported from the current package.
145 \end{describe}
146
147 \begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
148 Defines each @<alias> as being a type operator identical in behaviour to
149 @<original>. If @<original> is later redefined then the behaviour of the
150 @<alias>es changes too.
151 \end{describe}
152
153 \begin{describe}{mac}
154 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
155 @[[ @<declaration>^* @! @<doc-string> @]] \\
156 @<form>^*
157 \-\nlret @<name>}
158 Defines the symbol @<name> as a new type operator. When a list of the form
159 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
160 are bound to fresh variables according to @<lambda-list> (a destructuring
161 lambda-list) and the @<form>s evaluated in order in the resulting lexical
162 environment as an implicit @|progn|. The value should be a Lisp form which
163 will evaluate to the type specified by the arguments.
164
165 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
166 type specifiers among its arguments.
167 \end{describe}
168
169 \begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
170 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
171
172 If @<type-spec> is a list, then \descref{gf}{expand-c-type-form} is
173 invoked.
174 \end{describe}
175
176 \begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
177 Returns the Lisp form that @|(c-type (@<head> . @<tail>))| would expand
178 into.
179 \end{describe}
180
181 \begin{describe}{gf}
182 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
183 Print the C type object @<type> to @<stream> in S-expression form. The
184 @<colon> and @<atsign> arguments may be interpreted in any way which seems
185 appropriate: they are provided so that @|print-c-type| may be called via
186 @|format|'s @|\char`\~/\dots/| command; they are not set when
187 @|print-c-type| is called by Sod functions.
188
189 There should be a method defined for every C type class; there is no
190 default method.
191 \end{describe}
192
193
194 \subsection{Comparing C types} \label{sec:clang.c-types.cmp}
195
196 It is necessary to compare C types for equality, for example when checking
197 argument lists for methods. This is done by @|c-type-equal-p|.
198
199 \begin{describe}{gf}
200 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
201 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
202 @<c-type>_2 for equality; it returns true if the two types are equal and
203 false if they are not.
204
205 Two types are equal if they are structurally similar, where this property
206 is defined by methods for each individual class; see the descriptions of
207 the classes for the details.
208
209 The generic function @|c-type-equal-p| uses the @|and| method combination.
210
211 \begin{describe}{meth}{t,t}{c-type-equal-p @<c-type>_1 @<c-type>_2}
212 A default primary method for @|c-type-equal-p| is defined. It simply
213 returns @|nil|. This way, methods can specialize on both arguments
214 without fear that a call will fail because no methods are applicable.
215 \end{describe}
216 \begin{describe}{ar-meth}{}{c-type-equal-p @<c-type>_1 @<c-type>_2}
217 A default around-method for @|c-type-equal-p| is defined. It returns
218 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
219 the primary methods. Since several common kinds of C types are interned,
220 this is a common case worth optimizing.
221 \end{describe}
222 \end{describe}
223
224
225 \subsection{Outputting C types} \label{sec:clang.c-types.output}
226
227 \begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
228 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
229 declaration of an object or function of type @<c-type>. The result is
230 written to @<stream>.
231
232 A C declaration has two parts: a sequence of \emph{declaration specifiers}
233 and a \emph{declarator}. The declarator syntax involves parentheses and
234 operators, in order to reflect the operators applicable to the declared
235 variable. For example, the name of a pointer variable is preceded by @`*';
236 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
237
238 The @<kernel> argument must be a function designator (though see the
239 standard around-method); it is invoked as
240 \begin{quote} \codeface
241 (funcall @<kernel> @<stream> @<priority> @<spacep>)
242 \end{quote}
243 It should write to @<stream> -- which may not be the same stream originally
244 passed into the generic function -- the `kernel' of the declarator, i.e.,
245 the part to which prefix and/or postfix operators are attached to form the
246 full declarator.
247
248 The methods on @|pprint-c-type| specialized for compound types work by
249 recursively calling @|pprint-c-type| on the subtype, passing down a closure
250 which prints the necessary additional declarator operators before calling
251 the original @<kernel> function. The additional arguments @<priority> and
252 @<spacep> support this implementation technique.
253
254 The @<priority> argument describes the surrounding operator context. It is
255 zero if no type operators are directly attached to the kernel (i.e., there
256 are no operators at all, or the kernel is enclosed in parentheses), one if
257 a prefix operator is directly attached, or two if a postfix operator is
258 directly attached. If the @<kernel> function intends to provide its own
259 additional declarator operators, it should check the @<priority> in order
260 to determine whether parentheses are necessary. See also the
261 \descref{mac}{maybe-in-parens}[macro].
262
263 The @<spacep> argument indicates whether a space needs to be printed in
264 order to separate the declarator from the declaration specifiers. A kernel
265 which contains an identifier should insert a space before the identifier
266 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
267 declarator (one that specifies no name), looks more pleasing without a
268 trailing space. See also the \descref{fun}{c-type-space}[function].
269
270 Every concrete subclass of @|c-type| is expected to provide a primary
271 method on this function. There is no default primary method.
272
273 \begin{describe}{ar-meth}{}{pprint-c-type @<c-type> @<stream> @<kernel>}
274 A default around method is defined on @|pprint-c-type| which `canonifies'
275 non-function @<kernel> arguments. In particular:
276 \begin{itemize}
277 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
278 with a @<kernel> function that does nothing; and
279 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
280 called recursively with a @<kernel> function that prints the object as
281 if by @|princ|, preceded if necessary by space using @|c-type-space|.
282 \end{itemize}
283 \end{describe}
284 \end{describe}
285
286 \begin{describe}{fun}{c-type-space @<stream>}
287 Writes a space and other pretty-printing instructions to @<stream> in order
288 visually to separate a declarator from the preceding declaration
289 specifiers. The precise details are subject to change.
290 \end{describe}
291
292 \begin{describe}{mac}
293 {maybe-in-parens (@<stream-var> @<guard-form>)
294 @<declaration>^*
295 @<form>^*}
296 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
297 sequence within a pretty-printer logical block writing to the stream named
298 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
299 the logical block has empty prefix and suffix strings; if it evaluates to a
300 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
301 respectively.
302
303 Note that this may cause @<stream> to be bound to a different stream object
304 within the @<form>s.
305 \end{describe}
306
307
308 \subsection{Type qualifiers and qualifiable types}
309 \label{sec:clang.ctypes.qual}
310
311 Qualifiers -- @|const|, @|volatile|, and so on -- are represented as lists of
312 keywords attached to types. Not all C types can carry qualifiers: notably,
313 function and array types cannot be qualified.
314
315 For the most part, the C qualifier keywords correspond to like-named Lisp
316 keywords, only the Lisp keyword names are in uppercase. The correspondence
317 is shown in \xref{tab:clang.ctypes.qual}.
318
319 \begin{table}
320 \begin{tabular}[C]{*2{>{\codeface}l}l} \hlx*{hv}
321 \thd{\textbf{C name}} & \thd{\textbf{Lisp name}} \\ \hlx{vhv}
322 _Atomic & :atomic \\
323 const & :const \\
324 restrict & :restrict \\
325 volatile & :volatile \\ \hlx*{vh}
326 \end{tabular}
327 \caption{C and Lisp qualifier names} \label{tab:clang.ctypes.qual}
328 \end{table}
329
330 The default behaviour, on output, is to convert keywords to lowercase and
331 hope for the best: special cases can be dealt with by adding appropriate
332 methods to \descref{gf}{c-qualifier-keyword}.
333
334 \begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
335 The class @|qualifiable-c-type| describes C types which can bear
336 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
337 @|restrict| and @|volatile|.
338
339 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
340 @|:volatile|. There is no built-in limitation to these particular
341 qualifiers; others keywords may be used, though this isn't recommended.
342
343 Two qualifiable types are equal only if they have \emph{matching
344 qualifiers}: i.e., every qualifier attached to one is also attached to the
345 other: order is not significant, and neither is multiplicity.
346
347 The class @|qualifiable-c-type| is abstract.
348 \end{describe}
349
350 \begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
351 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
352 an immutable list.
353 \end{describe}
354
355 \begin{describe}{fun}{qualify-type @<c-type> @<qualifiers> @> @<c-type>}
356 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
357 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
358 keywords. The result is a C type object like @<c-type> except that it
359 bears the given @<qualifiers>.
360
361 The @<c-type> is not modified. If @<c-type> is interned, then the returned
362 type will be interned.
363 \end{describe}
364
365 \begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
366 Returns a string containing the qualifiers listed in @<qualifiers> in C
367 syntax, with a space after each. In particular, if @<qualifiers> is
368 non-null then the final character of the returned string will be a space.
369 \end{describe}
370
371 \begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
372 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
373
374 There is a standard method, which deals with many qualifiers. Additional
375 methods exist for qualifier keywords which need special handling, such as
376 @|:atomic|; they are not listed here explicitly.
377
378 \begin{describe}{meth}{keyword}
379 {c-qualifier-keyword @<keyword> @> @<string>}
380 Returns the @<keyword>'s print-name, in lower case. This is sufficient
381 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
382 \end{describe}
383 \end{describe}
384
385 \begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
386 Return the @<c-type>'s qualifiers, as a list of C keyword names.
387 \end{describe}
388
389
390 \subsection{Storage specifiers} \label{sec:clang.ctypes.specs}
391
392 Some declaration specifiers, mostly to do with how to store the specific
393 object in question, are determinedly `top level', and, unlike qualifiers,
394 don't stay attached to the base type when acted on by declarator operators.
395 Sod calls these `storage specifiers', though no such category exists in the C
396 standard. They have their own protocol, which is similar in many ways to
397 that of C types.
398
399 Every Lisp keyword is potentially a storage specifier, which simply maps to
400 its lower-case print name in C; but other storage specifiers may be more
401 complicated objects.
402
403 \begin{describe}{cls}
404 {c-storage-specifiers-type (c-type) \&key :subtype :specifiers}
405 A type which carries storage specifiers. The @<subtype> is the actual
406 type, and may be any C type; the @<specifiers> are a list of
407 storage-specifier objects.
408
409 The type specifier @|(specs @<subtype> @<specifier>^*)| wraps the
410 @<subtype> in a @|c-storage-specifiers-type|, carrying the @<specifier>s,
411 which are a list of storage specifiers in S-expression notation.
412 \end{describe}
413
414 \begin{describe}{fun}{c-type-specifiers @<type> @> @<list>}
415 Returns the list of type specifiers attached to the @<type> object, which
416 must be a @|c-storage-specifiers-type|.
417 \end{describe}
418
419 \begin{describe}{mac}
420 {define-c-storage-specifier-syntax @<name> @<lambda-list> \\ \ind
421 @[[ @<declaration>^* @! @<doc-string> @]] \\
422 @<form>^* \-
423 \nlret @<name>}
424
425 Defines the symbol @<name> as a new storage-specifier operator. When a
426 list of the form @|(@<name> @<argument>^*)| is used as a storage specifier,
427 the @<argument>s are bound to fresh variables according to the
428 @<lambda-list> (a destructuring lambda-list) and the @<form>s evaluated in
429 order in the resulting lexical environment as an implicit @<progn>. The
430 value should be a Lisp form which will evaluate to the storage-specifier
431 object described by the arguments.
432
433 The @<form>s may call @|expand-c-storage-specifier| in order to recursively
434 expand storage specifiers among its arguments.
435 \end{describe}
436
437 \begin{describe}{gf}{expand-c-storage-specifier @<spec> @> @<form>}
438 Returns the Lisp form that @<spec> expands to within @|(c-type (specs
439 @<subtype> @<spec>))|.
440
441 If @<spec> is a list, then \descref{gf}{expand-c-storage-specifier-form} is
442 invoked.
443 \end{describe}
444
445 \begin{describe}{gf}{expand-c-storage-specifier-form @<spec> @> @<form>}
446 Returns the Lisp form that @|(@<head> . @<tail>)| expands to within
447 @|(c-type (specs @<subtype> (@<head> . @<tail>)))|.
448 \end{describe}
449
450 \begin{describe}{gf}{pprint-c-storage-specifier @<spec> @<stream>}
451 \end{describe}
452
453 \begin{describe}{gf}
454 {print-c-storage-specifier @<stream> @<spec>
455 \&optional @<colon> @<atsign>}
456 \end{describe}
457
458 \begin{describe}{fun}{wrap-c-type @<func> @<base-type> @> @<c-type>}
459 Apply @<func> to the underlying C type of @<base-type> to create a new
460 `wrapped' type, and attach the storage specifiers of @<base-type> to the
461 wrapped type.
462
463 If @<base-type> is \emph{not} a @|c-storage-specifiers-type|, then return
464 @|(funcall @<func> @<base-type>)|. Otherwise, return a new
465 @|c-storage-specifiers-type|, with the same specifiers, but whose subtype
466 is the result of applying @<func> to the subtype of the original
467 @<base-type>.
468 \end{describe}
469
470 \begin{describe}{cls}{alignas-storage-specifier () \&key :alignment}
471 The class of @|_Alignas| storage specifiers; an instance denotes the
472 specifier @|_Alignas(@<alignment>)|. The @<alignment> parameter may be any
473 printable object, but is usually a string or C fragment.
474
475 The storage specifier form @|(alignas @<alignment>)| returns a storage
476 specifier @|_Alignas(@<alignment>)|, where @<alignment> is evaluated.
477 \end{describe}
478
479
480 \subsection{Leaf types} \label{sec:clang.c-types.leaf}
481
482 A \emph{leaf type} is a type which is not defined in terms of another type.
483 In Sod, the leaf types are
484 \begin{itemize}
485 \item \emph{simple types}, including builtin types like @|int| and @|char|,
486 as well as type names introduced by @|typename|, because Sod isn't
487 interested in what the type name means, merely that it names a type; and
488 \item \emph{tagged types}, i.e., enum, struct and union types which are named
489 by a keyword identifying the kind of type, and a \emph{tag}.
490 \end{itemize}
491
492 \begin{describe}{cls}{simple-c-type (qualifiable-c-type)
493 \&key :qualifiers :name}
494 The class of `simple types'; an instance denotes the type @<qualifiers>
495 @<name>.
496
497 A simple type object maintains a \emph{name}, which is a string whose
498 contents are the C name for the type. The initarg @|:name| may be used to
499 provide this name when calling @|make-instance|.
500
501 Two simple type objects are equal if and only if they have @|string=| names
502 and matching qualifiers.
503
504 A number of symbolic type specifiers for builtin types are predefined as
505 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
506 @|define-simple-c-type|, so can be used to construct qualified types.
507 \end{describe}
508
509 \begin{table}
510 \begin{tabular}[C]{ll} \hlx*{hv}
511 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
512 @|void| & @|void| \\ \hlx{v}
513 @|_Bool| & @|bool| \\ \hlx{v}
514 @|char| & @|char| \\ \hlx{}
515 @|wchar_t| & @|wchar-t| \\ \hlx{v}
516 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
517 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
518 @|short| & @|short|, @|signed-short|, @|short-int|,
519 @|signed-short-int| @|sshort| \\ \hlx{}
520 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
521 @|ushort| \\ \hlx{v}
522 @|int| & @|int|, @|signed|, @|signed-int|,
523 @|sint| \\ \hlx{}
524 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
525 @|long| & @|long|, @|signed-long|, @|long-int|,
526 @|signed-long-int|, @|slong| \\ \hlx{}
527 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
528 @|ulong| \\ \hlx{v}
529 @|long long| & @|long-long|, @|signed-long-long|,
530 @|long-long-int|, \\ \hlx{}
531 & \qquad @|signed-long-long-int|,
532 @|llong|, @|sllong| \\ \hlx{v}
533 @|unsigned long long|
534 & @|unsigned-long-long|, @|unsigned-long-long-int|,
535 @|ullong| \\ \hlx{v}
536 @|size_t| & @|size-t| \\ \hlx{}
537 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
538 @|float| & @|float| \\ \hlx{}
539 @|double| & @|double| \\ \hlx{}
540 @|long double| & @|long-double| \\ \hlx{v}
541 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
542 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
543 @|long double _Imaginary|
544 & @|long-double-imaginary| \\ \hlx{v}
545 @|float _Complex| & @|float-complex| \\ \hlx{}
546 @|double _Complex| & @|double-complex| \\ \hlx{}
547 @|long double _Complex|
548 & @|long-double-complex| \\ \hlx{v}
549 @|va_list| & @|va-list| \\ \hlx*{vh}
550 \end{tabular}
551 \caption{Builtin symbolic type specifiers for simple C types}
552 \label{tab:codegen.c-types.simple}
553 \end{table}
554
555 \begin{describe}{fun}
556 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
557 Return the (unique interned) simple C type object for the C type whose name
558 is @<name> (a string) and which has the given @<qualifiers> (a list of
559 keywords).
560 \end{describe}
561
562 \begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
563 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
564 string.
565 \end{describe}
566
567 \begin{describe}{mac}
568 {define-simple-c-type
569 \=@{ @<name> @! (@<name>^+) @}
570 @{ @<string> @! (@<string>^*) @} \+\\
571 @[[ @|:export| @<export-flag> @]]
572 \-\nlret @<name>}
573 Define type specifiers for a new simple C type. Each symbol @<name> is
574 defined as a symbolic type specifier for the (unique interned) simple C
575 type whose name is the value of (the first) @<string>. Further, each
576 @<name> is defined to be a type operator: the type specifier @|(@<name>
577 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
578 name is (the first) @<string> and which has the @<qualifiers> (which are
579 evaluated).
580
581 Each of the @<string>s is associated with the resulting type for retrieval
582 by \descref{fun}{find-simple-c-type}. Furthermore, a variable
583 @|c-type-@<name>| is defined, for the first @<name> only, and initialized
584 with the newly constructed C type object.
585
586 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
587 all of the @<name>s, are exported from the current package.
588 \end{describe}
589
590 \begin{describe}{fun}
591 {find-simple-c-type @<string> @> @{ @<simple-c-type> @! @|nil| @}}
592 If @<string> is the name of a simple C type, as established by the
593 \descref{mac}{define-simple-c-type}[macro], then return the corresponding
594 @|simple-c-type| object; otherwise, return @|nil|.
595 \end{describe}
596
597 \begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
598 \&key :qualifiers :tag}
599 Provides common behaviour for C tagged types. A @<tag> is a string
600 containing a C identifier.
601
602 Two tagged types are equal if and only if they have the same class, their
603 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
604 subclasses may have additional methods on @|c-type-equal-p| which impose
605 further restrictions.)
606 \end{describe}
607 \begin{boxy}[Bug]
608 Sod maintains distinct namespaces for the three kinds of tagged types. In
609 C, there is only one namespace for tags which is shared between enums,
610 structs and unions.
611 \end{boxy}
612
613 \begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
614 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
615 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
616 should return their own classification symbols. It is intended that
617 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
618 syntax.\footnote{%
619 Alas, C doesn't provide a syntactic category for these keywords;
620 \Cplusplus\ calls them a @<class-key>.} %
621 There is a method defined for each of the built-in tagged type classes
622 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
623 \end{describe}
624
625 \begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
626 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
627 naming a kind of tagged type, return the name of the corresponding C
628 type class as a symbol.
629 \end{describe}
630
631 \begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
632 Represents a C enumerated type. An instance denotes the C type @|enum|
633 @<tag>. See the direct superclass @|tagged-c-type| for details.
634
635 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
636 interned) enumerated type with the given @<tag> and @<qualifier>s (all
637 evaluated).
638 \end{describe}
639 \begin{describe}{fun}
640 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
641 Return the (unique interned) C type object for the enumerated C type whose
642 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
643 keywords).
644 \end{describe}
645
646 \begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
647 Represents a C structured type. An instance denotes the C type @|struct|
648 @<tag>. See the direct superclass @|tagged-c-type| for details.
649
650 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
651 interned) structured type with the given @<tag> and @<qualifier>s (all
652 evaluated).
653 \end{describe}
654 \begin{describe}{fun}
655 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
656 Return the (unique interned) C type object for the structured C type whose
657 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
658 keywords).
659 \end{describe}
660
661 \begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
662 Represents a C union type. An instance denotes the C type @|union|
663 @<tag>. See the direct superclass @|tagged-c-type|
664 for details.
665
666 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
667 interned) union type with the given @<tag> and @<qualifier>s (all
668 evaluated).
669 \end{describe}
670 \begin{describe}{fun}
671 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
672 Return the (unique interned) C type object for the union C type whose tag
673 is @<tag> (a string) and which has the given @<qualifiers> (a list of
674 keywords).
675 \end{describe}
676
677
678 \subsection{Compound C types} \label{sec:code.c-types.compound}
679
680 Some C types are \emph{compound types}: they're defined in terms of existing
681 types. The classes which represent compound types implement a common
682 protocol.
683
684 \begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
685 Returns the underlying type of a compound type @<c-type>. Precisely what
686 this means depends on the class of @<c-type>.
687 \end{describe}
688
689
690 \subsection{Atomic types} \label{sec:clang.c-types.atomic}
691
692 Atomic types are compound types. The subtype of an atomic type is simply the
693 underlying type of the object. Note that, as far as Sod is concerned, atomic
694 types are not the same as atomic-qualified types: you must be consistent
695 about which you use.
696
697 \begin{describe}{cls}
698 {c-atomic-type (qualifiable-c-type) \&key :qualifiers :subtype}
699 Represents an atomic type. An instance denotes the C type
700 @|_Atomic(@<subtype>)|.
701
702 The @<subtype> may be any C type.\footnote{%
703 C does not permit atomic function or array types.} %
704 Two atomic types are equal if and only if their subtypes are equal and they
705 have matching qualifiers. It is possible, though probably not useful, to
706 have an atomic-qualified atomic type.
707
708 The type specifier @|(atomic @<type-spec> @<qualifier>^*)| returns a type
709 qualified atomic @<subtype>, where @<subtype> is the type specified by
710 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
711 evaluated).
712 \end{describe}
713
714 \begin{describe}{fun}
715 {make-atomic-type @<c-type> \&optional @<qualifiers> @> @<c-atomic-type>}
716 Return an object describing the type qualified atomic @<subtype>. If
717 @<subtype> is interned, then the returned atomic type object is interned
718 also.
719 \end{describe}
720
721
722 \subsection{Pointer types} \label{sec:clang.c-types.pointer}
723
724 Pointers are compound types. The subtype of a pointer type is the type it
725 points to.
726
727 \begin{describe}{cls}
728 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
729 Represents a C pointer type. An instance denotes the C type @<subtype>
730 @|*|@<qualifiers>.
731
732 The @<subtype> may be any C type. Two pointer types are equal if and only
733 if their subtypes are equal and they have matching qualifiers.
734
735 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
736 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
737 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
738 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
739 star @`*'.
740
741 The symbol @|string| is a type specifier for the type pointer to
742 characters; the symbol @|const-string| is a type specifier for the type
743 pointer to constant characters.
744 \end{describe}
745
746 \begin{describe}{fun}
747 {make-pointer-type @<c-type> \&optional @<qualifiers>
748 @> @<c-pointer-type>}
749 Return an object describing the type qualified pointer to @<subtype>.
750 If @<subtype> is interned, then the returned pointer type object is
751 interned also.
752 \end{describe}
753
754
755 \subsection{Array types} \label{sec:clang.c-types.array}
756
757 Arrays implement the compound-type protocol. The subtype of an array type is
758 the array element type.
759
760 \begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
761 Represents a multidimensional C array type. The @<dimensions> are a list
762 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
763 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
764 individual dimension specifier is either a string containing a C integral
765 constant expression, or nil which is equivalent to an empty string. Only
766 the first (outermost) dimension $d_0$ should be empty.
767
768 C doesn't actually have multidimensional arrays as a primitive notion;
769 rather, it permits an array (with known extent) to be the element type of
770 an array, which achieves an equivalent effect. C arrays are stored in
771 row-major order: i.e., if we write down the indices of the elements of an
772 array in order of ascending address, the rightmost index varies fastest;
773 hence, the type constructed is more accurately an array of $d_0$ arrays of
774 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
775 continue to abuse terminology and refer to multidimensional arrays.
776
777 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
778 multidimensional array with the given @<dimension>s whose elements have the
779 type specified by @<type-spec>. If no dimensions are given then a
780 single-dimensional array with unspecified extent. The synonyms @|array|
781 and @|vector| may be used in place of the brackets @`[]'.
782 \end{describe}
783
784 \begin{describe}{fun}
785 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
786 Return an object describing the type of arrays with given @<dimensions> and
787 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
788 argument is a list whose elements are strings or nil; see the description
789 of the class @|c-array-type| above for details.
790 \end{describe}
791
792 \begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
793 Returns the dimensions of @<c-type>, an array type, as an immutable list.
794 \end{describe}
795
796
797 \subsection{Function types} \label{sec:clang.c-types.fun}
798
799 Function types implement the compound-type protocol. The subtype of a
800 function type is the type of the function's return value.
801
802 \begin{describe}{cls}{argument}
803 Represents an ordinary function argument.
804 \end{describe}
805
806 \begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
807 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
808 not return nil.
809 \end{describe}
810
811 \begin{describe}{fun}
812 {make-argument @<name> @<c-type> \&optional @<default> @> @<argument>}
813 Construct and a return a new @<argument> object. The argument has type
814 @<c-type>, which must be a @|c-type| object, and is named @<name>.
815
816 The @<name> may be nil to indicate that the argument has no name: in this
817 case the argument will be formatted as an abstract declarator, which is not
818 suitable for function definitions. If @<name> is not nil, then the
819 @<name>'s print representation, with @|*print-escape*| nil, is used as the
820 argument name.
821
822 A @<default> may be supplied. If the argument is used in a
823 keyword-argument list (e.g., in a \descref{cls}{c-keyword-function-type}
824 [object]), and the @<default> value is provided and non-nil, then its
825 (unescaped) printed representation is used to provide a default value if
826 the keyword argument is not supplied by the caller.
827 \end{describe}
828
829 \begin{describe*}
830 {\dhead{fun}{argument-name @<argument> @> @<name>}
831 \dhead{fun}{argument-type @<argument> @> @<c-type>}
832 \dhead{fun}{argument-default @<argument> @> @<default>}}
833 Accessor functions for @|argument| objects. They return the appropriate
834 component of the object, as set by to @|make-argument|. The @<default> is
835 nil if no default was provided to @|make-argument|.
836 \end{describe*}
837
838 \begin{describe}{gf}
839 {commentify-argument-name @<name> @> @<commentified-name>}
840 Convert the argument name @<name> so that it's suitable to declare the
841 function in a header file.
842
843 Robust header files shouldn't include literal argument names in
844 declarations of functions or function types, since this restricts the
845 including file from defining such names as macros. This generic function
846 is used to convert names into a safe form.
847
848 \begin{describe}{meth}{null}
849 {commentify-argument-name (@<name> null) @> nil}
850 Returns nil: if the argument name is already omitted, it's safe for use
851 in a header file.
852 \end{describe}
853 \begin{describe}{meth}{t}
854 {commentify-argument-name (@<name> t) @> @<string>}
855 Returns the print form of @<name> wrapped in a C comment, as
856 @`/*@<name>*/'.
857 \end{describe}
858 \end{describe}
859
860 \begin{describe}{fun}
861 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
862 Convert the @<arguments> list so that it's suitable for use in a header
863 file.
864
865 The @<arguments> list should be a list whose items are @|argument| objects
866 or the keyword @|:ellipsis|. The return value is a list constructed as
867 follows. For each @|argument| object in the input list, there is a
868 corresponding @|argument| object in the returned list, with the same type,
869 and whose name is the result of @|commentify-argument-name| applied to the
870 input argument name; an @|:ellipsis| in the input list is passed through
871 unchanged.
872 \end{describe}
873
874 \begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
875 Represents C function types. An instance denotes the type of a C
876 function which accepts the @<arguments> and returns @<subtype>.
877
878 The @<arguments> are a possibly empty list. All but the last element of
879 the list must be @|argument| objects; the final element may instead be the
880 keyword @|:ellipsis|, which denotes a variable argument list.
881
882 An @<arguments> list consisting of a single argument with type @|void| is
883 converted into an empty list. On output as C code, an empty argument list
884 is written as @|void|. It is not possible to represent a pre-ANSI C
885 function without prototypes.
886
887 Two function types are considered to be the same if their return types are
888 the same, and their argument lists consist of arguments with the same type,
889 in the same order, and either both or neither argument list ends with
890 @|:ellipsis|; argument names are not compared.
891
892 The type specifier
893 \begin{prog}
894 (fun @<return-type>
895 @{ (@<arg-name> @<arg-type>) @}^*
896 @[:ellipsis @! . @<form>@])
897 \end{prog}
898 constructs a function type. The function has the subtype @<return-type>.
899 The remaining items in the type-specifier list are used to construct the
900 argument list. The argument items are a possibly improper list, beginning
901 with zero or more \emph{explicit arguments}: two-item
902 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
903 is constructed with the given name (evaluated) and type. Following the
904 explicit arguments, there may be
905 \begin{itemize}
906 \item nothing, in which case the function's argument list consists only of
907 the explicit arguments;
908 \item the keyword @|:ellipsis|, as the final item in the type-specifier
909 list, indicating a variable argument list may follow the explicit
910 arguments; or
911 \item a possibly-improper list tail, beginning with an atom either as a
912 list item or as the final list cdr, indicating that the entire list tail
913 is a Lisp expression which is to be evaluated to compute the remaining
914 arguments.
915 \end{itemize}
916 A tail expression may return a list of @|argument| objects, optionally
917 followed by an @|:ellipsis|.
918
919 For example,
920 \begin{prog}
921 (c-type (fun \=(lisp (c-type-subtype other-func)) \+\\
922 ("first" int) . (c-function-arguments other-func))
923 \end{prog}
924 evaluates to a function type like @|other-func|, only with an additional
925 argument of type @|int| added to the front of its argument list. This
926 could also have been written
927 \begin{prog}
928 (let (\=(args (c-function-arguments other-func)) \+\\
929 (ret (c-type-subtype other-func))) \-\\ \ind
930 (c-type (fun \=(lisp ret) ("first" int) . args)
931 \end{prog}
932 \end{describe}
933
934 \begin{describe}{cls}
935 {c-keyword-function-type (c-function-type)
936 \&key :subtype :arguments :keywords}
937 Represents `functions' which accept keyword arguments. Of course, actual C
938 functions can't accept keyword arguments directly, but this type is useful
939 for describing messages and methods which deal with keyword arguments.
940
941 An instance denotes the type of C function which accepts the position
942 argument list @<arguments>, and keyword arguments from the @<keywords>
943 list, and returns @<subtype>. Either or both of the @<arguments> and
944 @<keywords> lists may be empty. (It is important to note the distinction
945 between a function which doesn't accept keyword arguments, and one which
946 does but for which no keyword arguments are defined. In particular, the
947 latter function can be changed later to accept a keyword argument without
948 breaking compatibility with old code.) The @<arguments> and @<keywords>
949 lists must \emph{not} contain @|:ellipsis| markers: a function can accept
950 keywords, or a variable-length argument tail, but not both.
951
952 Keyword arguments may (but need not) have a \emph{default value} which is
953 supplied to the function body if the keyword is omitted.
954
955 Keyword functions are never considered to be the same as ordinary
956 functions. Two keyword function types are considered to be the same if
957 their return types are the same, and their positional argument lists consist of
958 arguments with the same type, in the same order: the keyword arguments
959 accepted by the functions is not significant.
960
961 Keyword functions are constructed using an extended version of the @|fun|
962 specifier used for ordinary C function types. The extended syntax is as
963 follows.
964 \begin{prog}
965 (fun \=@<return-type>
966 @{ (@<arg-name> @<arg-type>) @}^* \+\\
967 @{ \=:keys @{ (@<kw-name> @<kw-type> @[@<kw-default>@]) @}^*
968 @[. @<form>@] @! \+\\
969 . @<form> @}
970 \end{prog}
971 where either the symbol @|:keys| appears literally in the specifier, or the
972 @<form> evaluates to a list containing the symbol @|:keys|. (If neither of
973 these circumstances obtains, then the specifier constructs an ordinary
974 function type.)
975
976 See the description of \descref{cls}{c-function-type} for how a trailing
977 @<form> is handled.
978
979 The list of @<arg-name>s and @<arg-type>s describes the positional
980 arguments. The list of @<kw-name>s, @<kw-type>s and @<kw-defaults>s
981 describes the keyword arguments.
982 \end{describe}
983
984 \begin{describe}{fun}
985 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
986 Construct and return a new function type, returning @<subtype> and
987 accepting the @<arguments>.
988
989 If the @<arguments> list contains a @|:keys| marker, then a
990 \descref{cls}{c-keyword-function-type}[object] is returned: those arguments
991 preceding the @|:keys| marker form the positional argument list, and those
992 following the marker form the list of keyword arguments.
993 \end{describe}
994
995 \begin{describe}{fun}
996 {make-keyword-function-type @<subtype> @<arguments> @<keywords>
997 \nlret @<c-keyword-function-type>}
998 Construct and return a new keyword-function type, returning @<subtype> and
999 accepting the @<arguments> and @<keywords>.
1000 \end{describe}
1001
1002 \begin{describe}{gf}
1003 {c-function-arguments @<c-function-type> @> @<arguments>}
1004 Return the arguments list of the @<c-function-type>.
1005 \end{describe}
1006
1007 \begin{describe}{fun}
1008 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
1009 Return a commentified version of the @<c-function-type>.
1010
1011 The returned type has the same subtype as the given type, and the argument
1012 list of the returned type is the result of applying
1013 @|commentify-argument-names| to the argument list of the given type.
1014 \end{describe}
1015
1016 \begin{describe}{fun}{reify-variable-argument-tail @<arguments> @> @<list>}
1017 If the @<argument> list contains an @|:ellipsis| marker, then replace it
1018 with a @|va_list|. The name for the new argument, if any, is taken from
1019 the \descref{var}{*sod-ap*}[variable]. The new list is returned; the
1020 original list is not modified, but may share structure with the new list.
1021 \end{describe}
1022
1023 \begin{describe}{fun}
1024 {merge-keyword-lists @<what-function> @<lists> @> @<list>}
1025 Merge a number of keyword-argument lists together and return the result.
1026
1027 The @<what-function> is either nil or a function designator; see below.
1028
1029 The @<lists> parameter is a list consisting of a number of
1030 @|(@<report-function> . @<args>)| pairs: in each pair, @<report-function>
1031 is either nil or a function designator, and @<args> is a list of
1032 \descref{cls}{argument} objects.
1033
1034 The resulting list contains exactly one argument for each distinct argument
1035 name appearing in the input @<lists>; this argument will contain the
1036 default value from the earliest occurrence in the input @<lists> of an
1037 argument with that name.
1038
1039 If the same name appears multiple times with different types, a continuable
1040 error will be signalled, and one of the conflicting argument types will be
1041 chosen arbitrarily. The @<what-function> will be called to establish
1042 information which will be reported to the user. It will be called with no
1043 arguments and is expected to return two values:
1044 \begin{itemize}
1045 \item a file location @<floc> or other object acceptable to
1046 \descref{gf}{file-location}, to be used as the location of the main
1047 error; and
1048 \item an object @<what>, whose printed representation should be a noun
1049 phrase describing the object for which the argument lists are being
1050 combined.
1051 \end{itemize}
1052 The phrasing of the error message is `type mismatch in @<what>'. Either,
1053 or both, of @<floc> and @<what> may be nil, though this is considered poor
1054 practice; if @<what-function> is nil, this is equivalent to a function
1055 which returns two nil values. Following the error, the @<report-function>s
1056 for the @<args> lists containing the conflicting argument objects are
1057 called, in an arbitrary order, with a single argument which is the
1058 offending @|argument| object; the function is expected to issue information
1059 messages (see \descref{fun}{info}) to give more detail for diagnosing the
1060 conflict. If a @<report-function> is nil, then nothing happens; this is
1061 considered poor practice.
1062 \end{describe}
1063
1064 \begin{describe}{fun}
1065 {pprint-c-function-type @<return-type> @<stream>
1066 @<print-args> @<print-kernel>}
1067 Provides the top-level structure for printing C function types.
1068
1069 Output is written to @<stream> to describe a function type returning
1070 @<return-type>, whose declarator kernel (containing the name, and any
1071 further type operands) will be printed by @<print-kernel>, and whose
1072 arguments, if any, will be printed by @<print-args>.
1073
1074 The @<print-kernel> function is a standard kernel-printing function
1075 following the \descref{gf}{pprint-c-type}[protocol].
1076
1077 The @<print-args> function is given a single argument, which is the
1078 @<stream> to print on. It should not print the surrounding parentheses.
1079
1080 The output written to @<stream> looks approximately like
1081 \begin{prog}
1082 @<return-type> @<kernel>(@<args>)
1083 \end{prog}
1084 \end{describe}
1085
1086 \begin{describe}{fun}{pprint-argument-list @<args> @<stream> @> @<flag>}
1087 Print an argument list to @<stream>.
1088
1089 The @<args> is a list of \descref{cls}{argument}[objects], optionally
1090 containing an @|:ellipsis| marker. The function returns true if any
1091 arguments were actually printed.
1092 \end{describe}
1093
1094
1095 \subsection{Parsing C types} \label{sec:clang.c-types.parsing}
1096
1097 \begin{describe}{fun}
1098 {parse-c-type @<scanner>
1099 @> @<result> @<success-flag> @<consumed-flag>}
1100 \end{describe}
1101
1102 \begin{describe}{fun}
1103 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
1104 \nlret @<result> @<success-flag> @<consumed-flag>}
1105 \end{describe}
1106
1107
1108 \subsection{Class types} \label{sec:clang.c-types.class}
1109
1110 \begin{describe}{cls}
1111 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
1112 \end{describe}
1113
1114 \begin{describe*}
1115 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
1116 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
1117 \end{describe*}
1118
1119 \begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
1120 \end{describe}
1121
1122 \begin{describe}{fun}
1123 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
1124 \end{describe}
1125
1126 \begin{describe}{fun}{find-sod-class @<name> @> @<class>}
1127 \end{describe}
1128
1129 \begin{describe}{fun}{record-sod-class @<class>}
1130 \end{describe}
1131
1132 %%%--------------------------------------------------------------------------
1133 \section{Generating C code} \label{sec:clang.codegen}
1134
1135 This section deals with Sod's facilities for constructing and manipulating C
1136 expressions, declarations, instructions and definitions.
1137
1138
1139 \subsection{Temporary names} \label{sec:clang.codegen.temporaries}
1140
1141 Many C-level objects, especially ones with external linkage or inclusion in a
1142 header file, are assigned names which are simple strings, perhaps fixed ones,
1143 perhaps constructed. Other objects don't need meaningful names, and
1144 suitably unique constructed names would be tedious and most likely rather
1145 opaque. Therefore Sod has an ability to construct \emph{temporary names}.
1146
1147 These aren't temporary in the sense that they name C objects which have
1148 limited lifetimes at runtime. Rather, the idea is that the names be
1149 significant only to small pieces of Lisp code, which will soon forget about
1150 them.
1151
1152 \subsubsection{The temporary name protocol}
1153 Temporary names are represented by objects which implement a simple protocol.
1154
1155 \begin{describe}{gf}{format-temporary-name @<var> @<stream>}
1156 \end{describe}
1157
1158 \begin{describe*}
1159 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
1160 \dhead{gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
1161 \end{describe*}
1162
1163 \subsubsection{Temporary name objects}
1164
1165 \begin{describe}{cls}{temporary-name () \&key :tag}
1166 A temporary name object. This is the root of a small collection of
1167 subclasses, but is also usable on its own.
1168 \end{describe}
1169
1170 \begin{describe}{meth}{temporary-name}
1171 {commentify-argument-name (@<name> temporary-name) @> nil}
1172 \end{describe}
1173
1174 \begin{table}
1175 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1176 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1177 temporary-name & @<tag> \\
1178 temporary-argument & sod__a@<tag> \\
1179 temporary-function & sod__f@<tag> \\
1180 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
1181 \end{tabular}
1182 \caption{Temporary name formats}
1183 \label{tab:codegen.codegen.temps-format}
1184 \end{table}
1185
1186 \begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
1187 \end{describe}
1188
1189 \begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
1190 \end{describe}
1191
1192 \begin{describe}{fun}{temporary-function @> @<name>}
1193 \end{describe}
1194
1195 \begin{describe}{cls}
1196 {temporary-variable (temporary-name) \&key :tag :in-use-p}
1197 \end{describe}
1198
1199 \subsubsection{Well-known `temporary' names}
1200
1201 \begin{table}
1202 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1203 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1204 {}*sod-ap* & sod__ap \\
1205 {}*sod-master-ap* & sod__master_ap \\
1206 {}*null-pointer* & NULL \\ \hlx*{vh}
1207 \end{tabular}
1208 \caption{Well-known temporary names}
1209 \label{tab:codegen.codegen.well-known-temps}
1210 \end{table}
1211
1212
1213 \subsection{Instructions} \label{sec:clang.codegen.insts}
1214
1215 \begin{describe}{cls}{inst () \&key}
1216 \end{describe}
1217
1218 \begin{describe}{gf}{inst-metric @<inst>}
1219 \end{describe}
1220
1221 \begin{describe}{mac}
1222 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
1223 @[[ @<declaration>^* @! @<doc-string> @]] \\
1224 @<form>^*
1225 \-\nlret @<code>}
1226 \end{describe}
1227
1228 \begin{describe}{mac}
1229 {format-compound-statement
1230 (@<stream> @<child> \&optional @<morep>) \\ \ind
1231 @<declaration>^* \\
1232 @<form>^*}
1233 \end{describe}
1234
1235 \begin{describe}{fun}
1236 {format-banner-comment @<stream> @<control> \&rest @<args>}
1237 \end{describe}
1238
1239 \begin{table}
1240 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
1241 \thd{Class name} &
1242 \thd{Arguments} &
1243 \thd{Output format} \\ \hlx{vhv}
1244 @|var| & @<name> @<type> @|\&optional| @<init>
1245 & @<type> @<name> @[= @<init>@];
1246 \\ \hlx{v}
1247 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
1248 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
1249 \\ \hlx{v}
1250 @|cond| & @<cond> @<conseq> @<alt> & @<cond> ? @<conseq> : @<alt>
1251 \\ \hlx{v}
1252 @|return| & @<expr> & return @[@<expr>@];
1253 \\ \hlx{v}
1254 @|break| & --- & break; \\ \hlx{v}
1255 @|continue| & --- & continue; \\ \hlx{v}
1256 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
1257 @|call| & @<func> @|\&rest| @<args>
1258 & @<func>(@<arg>_1,
1259 $\ldots$,
1260 @<arg>_n) \\ \hlx{v}
1261 @|banner| & @<control> @|\&rest| @<args>
1262 & /* @<banner> */ \\ \hlx{vhv}
1263 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
1264 \\ \hlx{v}
1265 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
1266 & if (@<cond>) @<conseq>
1267 @[else @<alt>@] \\ \hlx{v}
1268 @|for| & @<init> @<cond> @<update> @<body> &
1269 for (@<init>; @<cond>; @<update>) @<body> \\ \hlx{v}
1270 @|while| & @<cond> @<body> & while (@<cond>) @<body>
1271 \\ \hlx{v}
1272 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
1273 \\ \hlx{v}
1274 @|function| &
1275 \vtop{\hbox{\strut @<name> @<type> @<body>}
1276 \hbox{\strut \quad @|\&optional @<banner>|}
1277 \hbox{\strut \quad @|\&rest| @<banner-args>}} &
1278 \vtop{\hbox{\strut @[/* @<banner> */@]}
1279 \hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
1280 @<type>_n @<arg>_n @[, \dots@])}
1281 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
1282 \end{tabular}
1283 \caption{Instruction classes}
1284 \label{tab:codegen.codegen.insts}
1285 \end{table}
1286
1287
1288 \subsection{Code generation} \label{sec:clang.codegen.codegen}
1289
1290 \begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
1291 \end{describe}
1292
1293 \begin{describe}{gf}
1294 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
1295 \end{describe}
1296
1297 \begin{describe}{gf}{emit-inst @<codegen> @<inst>}
1298 \end{describe}
1299
1300 \begin{describe}{gf}{emit-insts @<codegen> @<insts>}
1301 \end{describe}
1302
1303 \begin{describe}{gf}{emit-decl @<codegen> @<decl>}
1304 \end{describe}
1305
1306 \begin{describe}{gf}{emit-decls @<codegen> @<decls>}
1307 \end{describe}
1308
1309 \begin{describe}{fun}{emit-banner @<codegen> @<control> \&rest @<args>}
1310 \end{describe}
1311
1312 \begin{describe}{gf}{codegen-push @<codegen>}
1313 \end{describe}
1314
1315 \begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
1316 \end{describe}
1317
1318 \begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
1319 \end{describe}
1320
1321 \begin{describe}{gf}
1322 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1323 \end{describe}
1324
1325 \begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1326 \end{describe}
1327
1328 \begin{describe}{fun}
1329 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1330 @> @<name>}
1331 \end{describe}
1332
1333 \begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1334 \end{describe}
1335
1336 \begin{describe}{mac}
1337 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1338 @<declaration>^* \\
1339 @<form>^*
1340 \-\nlret @<value>^*}
1341 \end{describe}
1342
1343 \begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1344 \end{describe}
1345
1346 \begin{describe}{fun}
1347 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1348 \end{describe}
1349
1350 \begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1351 \end{describe}
1352
1353 \begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1354 \end{describe}
1355
1356 %%%--------------------------------------------------------------------------
1357 \section{Literal C code fragments} \label{sec:clang.fragment}
1358
1359 \begin{describe}{cls}{c-fragment () \&key :location :text}
1360 \end{describe}
1361
1362 \begin{describe}{gf}{c-fragment-text @<fragment> @> @<string>}
1363 \end{describe}
1364
1365 \begin{describe}{fun}
1366 {scan-c-fragment @<scanner> @<end-chars>
1367 @> @<result> @<success-flag> @<consumed-flag>}
1368 \end{describe}
1369
1370 \begin{describe}{fun}
1371 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1372 \nlret @<result> @<success-flag> @<consumed-flag>}
1373 \end{describe}
1374
1375 %%%----- That's all, folks --------------------------------------------------
1376
1377 %%% Local variables:
1378 %%% mode: LaTeX
1379 %%% TeX-master: "sod.tex"
1380 %%% TeX-PDF-mode: t
1381 %%% End: