src/c-types-parse.lisp: Introduce a pluggable parser for declspecs.
[sod] / src / c-types-parse.lisp
1 ;;; -*-lisp-*-
2 ;;;
3 ;;; Parser for C types
4 ;;;
5 ;;; (c) 2009 Straylight/Edgeware
6 ;;;
7
8 ;;;----- Licensing notice ---------------------------------------------------
9 ;;;
10 ;;; This file is part of the Sensible Object Design, an object system for C.
11 ;;;
12 ;;; SOD is free software; you can redistribute it and/or modify
13 ;;; it under the terms of the GNU General Public License as published by
14 ;;; the Free Software Foundation; either version 2 of the License, or
15 ;;; (at your option) any later version.
16 ;;;
17 ;;; SOD is distributed in the hope that it will be useful,
18 ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;;; GNU General Public License for more details.
21 ;;;
22 ;;; You should have received a copy of the GNU General Public License
23 ;;; along with SOD; if not, write to the Free Software Foundation,
24 ;;; Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 (cl:in-package #:sod)
27
28 ;;;--------------------------------------------------------------------------
29 ;;; Declaration specifiers.
30 ;;;
31 ;;; This stuff is distressingly complicated.
32 ;;;
33 ;;; Parsing a (single) declaration specifier is quite easy, and a declaration
34 ;;; is just a sequence of these things. Except that there are a stack of
35 ;;; rules about which ones are allowed to go together, and the language
36 ;;; doesn't require them to appear in any particular order.
37 ;;;
38 ;;; A collection of declaration specifiers is carried about in a purpose-made
39 ;;; object with a number of handy operations defined on it, and then I build
40 ;;; some parsers in terms of them. The basic strategy is to parse
41 ;;; declaration specifiers while they're valid, and keep track of what we've
42 ;;; read. When I've reached the end, we'll convert what we've got into a
43 ;;; `canonical form', and then convert that into a C type object of the
44 ;;; appropriate kind. The whole business is rather more complicated than it
45 ;;; really ought to be.
46
47 ;; Firstly, a table of interesting things about the various declaration
48 ;; specifiers that I might encounter. I categorize declaration specifiers
49 ;; into four kinds.
50 ;;
51 ;; * `Type specifiers' describe the actual type, whether that's integer,
52 ;; character, floating point, or some tagged or user-named type.
53 ;;
54 ;; * `Size specifiers' distinguish different sizes of the same basic type.
55 ;; This is how we tell the difference between `int' and `long'.
56 ;;
57 ;; * `Sign specifiers' distinguish different signednesses. This is how we
58 ;; tell the difference between `int' and `unsigned'.
59 ;;
60 ;; * `Qualifiers' are our old friends `const', `restrict' and `volatile'.
61 ;;
62 ;; These groupings are for my benefit here, in determining whether a
63 ;; particular declaration specifier is valid in the current context. I don't
64 ;; accept `function specifiers' (of which the only current example is
65 ;; `inline') since it's meaningless to me.
66
67 (defclass declspec ()
68 ;; Despite the fact that it looks pretty trivial, this can't be done with
69 ;; `defstruct' for the simple reason that we add more methods to the
70 ;; accessor functions later.
71 ((label :type keyword :initarg :label :reader ds-label)
72 (name :type string :initarg :name :reader ds-name)
73 (kind :type (member type complexity sign size qualifier)
74 :initarg :kind :reader ds-kind)
75 (taggedp :type boolean :initarg :taggedp
76 :initform nil :reader ds-taggedp))
77 (:documentation
78 "Represents the important components of a declaration specifier.
79
80 The only interesting instances of this class are in the table
81 `*declspec-map*'."))
82
83 (defmethod shared-initialize :after ((ds declspec) slot-names &key)
84 "If no name is provided then derive one from the label.
85
86 Most declaration specifiers have simple names for which this works well."
87 (default-slot (ds 'name slot-names)
88 (string-downcase (ds-label ds))))
89
90 (defparameter *declspec-map*
91 (let ((map (make-hash-table :test #'equal)))
92 (dolist (item '((type :void :char :int :float :double
93 (:bool :compat "_Bool"))
94 (complexity (:complex :compat "_Complex")
95 (:imaginary :compat "_Imaginary"))
96 ((type :taggedp t) :enum :struct :union)
97 (size :short :long (:long-long :name "long long"))
98 (sign :signed :unsigned)
99 (qualifier :const :restrict :volatile)))
100 (destructuring-bind (kind &key (taggedp nil))
101 (let ((spec (car item)))
102 (if (consp spec) spec (list spec)))
103 (dolist (spec (cdr item))
104 (destructuring-bind (label
105 &key
106 (name (string-downcase label))
107 compat
108 (taggedp taggedp))
109 (if (consp spec) spec (list spec))
110 (let ((ds (make-instance 'declspec
111 :label label
112 :name (or compat name)
113 :kind kind
114 :taggedp taggedp)))
115 (setf (gethash name map) ds
116 (gethash label map) ds)
117 (when compat
118 (setf (gethash compat map) ds)))))))
119 map)
120 "Maps symbolic labels and textual names to `declspec' instances.")
121
122 (defmethod ds-label ((ty c-type)) :c-type)
123 (defmethod ds-name ((ty c-type)) (princ-to-string ty))
124 (defmethod ds-kind ((ty c-type)) 'type)
125
126 ;; A collection of declaration specifiers, and how to merge them together.
127
128 (defclass declspecs ()
129 ;; This could have been done with `defstruct' just as well, but a
130 ;; `defclass' can be tweaked interactively, which is a win at the moment.
131 ((type :initform nil :initarg :type :reader ds-type)
132 (complexity :initform nil :initarg :complexity :reader ds-complexity)
133 (sign :initform nil :initarg :sign :reader ds-sign)
134 (size :initform nil :initarg :size :reader ds-size)
135 (qualifier :initform nil :initarg :qualifiers :reader ds-qualifiers))
136 (:documentation "Represents a collection of declaration specifiers.
137
138 This is used during type parsing to represent the type under construction.
139 Instances are immutable: we build new ones rather than modifying existing
140 ones. This leads to a certain amount of churn, but we'll just have to
141 live with that.
142
143 (Why are instances immutable? Because it's much easier to merge a new
144 specifier into an existing collection and then check that the resulting
145 thing is valid, rather than having to deal with all of the possible
146 special cases of what the new thing might be. And if the merged
147 collection isn't good, I must roll back to the previous version. So I
148 don't get to take advantage of a mutable structure.)"))
149
150 (defparameter *good-declspecs*
151 '(((:int) (:signed :unsigned) (:short :long :long-long) ())
152 ((:char) (:signed :unsigned) () ())
153 ((:double) () (:long) (:complex :imaginary))
154 (t () () ()))
155 "List of good collections of declaration specifiers.
156
157 Each item is a list of the form (TYPES SIGNS SIZES COMPLEXITIES). Each of
158 TYPES, SIGNS, SIZES, and COMPLEXITIES, is either a list of acceptable
159 specifiers of the appropriate kind, or T, which matches any specifier.")
160
161 (defun good-declspecs-p (specs)
162 "Are SPECS a good collection of declaration specifiers?"
163 (let ((speclist (list (ds-type specs)
164 (ds-sign specs)
165 (ds-size specs)
166 (ds-complexity specs))))
167 (some (lambda (it)
168 (every (lambda (spec pat)
169 (or (eq pat t) (null spec)
170 (member (ds-label spec) pat)))
171 speclist it))
172 *good-declspecs*)))
173
174 (defun combine-declspec (specs ds)
175 "Combine the declspec DS with the existing SPECS.
176
177 Returns new DECLSPECS if they're OK, or `nil' if not. The old SPECS are
178 not modified."
179
180 (let* ((kind (ds-kind ds))
181 (old (slot-value specs kind)))
182 (multiple-value-bind (ok new)
183 (case kind
184 (qualifier (values t (adjoin ds old)))
185 (size (cond ((not old) (values t ds))
186 ((and (eq (ds-label old) :long) (eq ds old))
187 (values t (gethash :long-long *declspec-map*)))
188 (t (values nil nil))))
189 (t (values (not old) ds)))
190 (if ok
191 (let ((copy (copy-instance specs)))
192 (setf (slot-value copy kind) new)
193 (and (good-declspecs-p copy) copy))
194 nil))))
195
196 (defun declspecs-type (specs)
197 "Convert `declspecs' SPECS into a standalone C type object."
198 (let ((type (ds-type specs))
199 (size (ds-size specs))
200 (sign (ds-sign specs))
201 (cplx (ds-complexity specs))
202 (quals (mapcar #'ds-label (ds-qualifiers specs))))
203 (cond ((typep type 'c-type)
204 (qualify-c-type type quals))
205 ((or type size sign cplx)
206 (when (and sign (eq (ds-label sign) :signed)
207 (eq (ds-label type) :int))
208 (setf sign nil))
209 (cond ((and (or (null type) (eq (ds-label type) :int))
210 (or size sign))
211 (setf type nil))
212 ((null type)
213 (setf type (gethash :int *declspec-map*))))
214 (make-simple-type (format nil "~{~@[~A~^ ~]~}"
215 (mapcar #'ds-name
216 (remove nil
217 (list sign cplx
218 size type))))
219 quals))
220 (t
221 nil))))
222
223 ;; Parsing declaration specifiers.
224
225 (define-indicator :declspec "<declaration-specifier>")
226
227 (defun scan-simple-declspec
228 (scanner &key (predicate (constantly t)) (indicator :declspec))
229 "Scan a simple `declspec' from SCANNER.
230
231 Simple declspecs are the ones defined in the `*declspec-map*' or
232 `*module-type-map*'. This covers the remaining possibilities if the
233 `complex-declspec' pluggable parser didn't find anything to match.
234
235 If PREDICATE is provided then only succeed if (funcall PREDICATE DECLSPEC)
236 is true, where DECLSPEC is the raw declaration specifier or C-type object,
237 so we won't have fetched the tag for a tagged type yet. If the PREDICATE
238 returns false then the scan fails without consuming input.
239
240 If we couldn't find an acceptable declaration specifier then issue
241 INDICATOR as the failure indicator. Value on success is either a
242 `declspec' object or a `c-type' object."
243
244 ;; Turns out to be easier to do this by hand.
245 (let ((ds (and (eq (token-type scanner) :id)
246 (let ((kw (token-value scanner)))
247 (or (and (boundp '*module-type-map*)
248 (gethash kw *module-type-map*))
249 (gethash kw *declspec-map*))))))
250 (cond ((or (not ds) (and predicate (not (funcall predicate ds))))
251 (values (list indicator) nil nil))
252 ((and (typep ds 'declspec) (ds-taggedp ds))
253 (scanner-step scanner)
254 (if (eq (token-type scanner) :id)
255 (let ((ty (make-c-tagged-type (ds-label ds)
256 (token-value scanner))))
257 (scanner-step scanner)
258 (values ty t t))
259 (values :tag nil t)))
260 (t
261 (scanner-step scanner)
262 (values ds t t)))))
263
264 (defun scan-and-merge-declspec (scanner specs)
265 "Scan a declaration specifier and merge it with SPECS.
266
267 This is a parser function. If it succeeds, it returns the merged
268 `declspecs' object. It can fail either if no valid declaration specifier
269 is found or it cannot merge the declaration specifier with the existing
270 SPECS."
271
272 (with-parser-context (token-scanner-context :scanner scanner)
273 (if-parse (:consumedp consumedp)
274 (or (plug complex-declspec scanner)
275 (scan-simple-declspec scanner))
276 (aif (combine-declspec specs it)
277 (values it t consumedp)
278 (values (list :declspec) nil consumedp)))))
279
280 (export 'parse-c-type)
281 (defun parse-c-type (scanner)
282 "Parse a C type from declaration specifiers.
283
284 This is a parser function. If it succeeds then the result is a `c-type'
285 object representing the type it found. Note that this function won't try
286 to parse a C declarator."
287
288 (with-parser-context (token-scanner-context :scanner scanner)
289 (if-parse (:result specs :consumedp cp)
290 (many (specs (make-instance 'declspecs) it :min 1)
291 (peek (scan-and-merge-declspec scanner specs)))
292 (let ((type (declspecs-type specs)))
293 (if type (values type t cp)
294 (values (list :declspec) nil cp))))))
295
296 ;;;--------------------------------------------------------------------------
297 ;;; Parsing declarators.
298 ;;;
299 ;;; The syntax of declaration specifiers was horrific. Declarators are a
300 ;;; very simple expression syntax, but this time the semantics are awful. In
301 ;;; particular, they're inside-out. If <> denotes mumble of foo, then op <>
302 ;;; is something like mumble of op of foo. Unfortunately, the expression
303 ;;; parser engine wants to apply op of mumble of foo, so I'll have to do some
304 ;;; work to fix the impedance mismatch.
305 ;;;
306 ;;; The currency we'll use is a pair (FUNC . NAME), with the semantics that
307 ;;; (funcall FUNC TYPE) returns the derived type. The result of
308 ;;; `parse-declarator' will be of this form.
309
310 (export 'parse-declarator)
311 (defun parse-declarator (scanner base-type &key kernel abstractp)
312 "Parse a C declarator, returning a pair (C-TYPE . NAME).
313
314 The SCANNER is a token scanner to read from. The BASE-TYPE is the type
315 extracted from the preceding declaration specifiers, as parsed by
316 `parse-c-type'.
317
318 The result contains both the resulting constructed C-TYPE (with any
319 qualifiers etc. as necessary), and the name from the middle of the
320 declarator. The name is parsed using the KERNEL parser provided, and
321 defaults to matching a simple identifier `:id'. This might, e.g., be
322 (? :id) to parse an `abstract declarator' which has optional names.
323
324 There's an annoying ambiguity in the syntax, if an empty KERNEL is
325 permitted. In this case, you must ensure that ABSTRACTP is true so that
326 the appropriate heuristic can be applied. As a convenience, if ABSTRACTP
327 is true then `(? :id)' is used as the default KERNEL."
328 (with-parser-context (token-scanner-context :scanner scanner)
329 (let ((kernel-parser (cond (kernel kernel)
330 (abstractp (parser () (? :id)))
331 (t (parser () :id)))))
332
333 (labels ((qualifiers ()
334 ;; qualifier*
335
336 (parse
337 (seq ((quals (list ()
338 (scan-simple-declspec
339 scanner
340 :indicator :qualifier
341 :predicate (lambda (ds)
342 (and (typep ds 'declspec)
343 (eq (ds-kind ds)
344 'qualifier)))))))
345 (mapcar #'ds-label quals))))
346
347 (star ()
348 ;; Prefix: `*' qualifiers
349
350 (parse (seq (#\* (quals (qualifiers)))
351 (preop "*" (state 9)
352 (cons (lambda (type)
353 (funcall (car state)
354 (make-pointer-type type quals)))
355 (cdr state))))))
356
357 (predict-argument-list-p ()
358 ;; See `prefix-lparen'. Predict an argument list rather
359 ;; than a nested declarator if (a) abstract declarators are
360 ;; permitted and (b) the next token is a declaration
361 ;; specifier or ellipsis.
362 (let ((type (token-type scanner))
363 (value (token-value scanner)))
364 (and abstractp
365 (or (eq type :ellipsis)
366 (and (eq type :id)
367 (or (gethash value *module-type-map*)
368 (gethash value *declspec-map*)))))))
369
370 (prefix-lparen ()
371 ;; Prefix: `('
372 ;;
373 ;; Opening parentheses are treated as prefix operators by
374 ;; the expression parsing engine. There's an annoying
375 ;; ambiguity in the syntax if abstract declarators are
376 ;; permitted: a `(' might be either the start of a nested
377 ;; subdeclarator or the start of a postfix function argument
378 ;; list. The two are disambiguated by stating that if the
379 ;; token following the `(' is a `)' or a declaration
380 ;; specifier, then we have a postfix argument list.
381 (parse
382 (peek (seq (#\(
383 (nil (if (predict-argument-list-p)
384 (values nil nil nil)
385 (values t t nil))))
386 (lparen #\))))))
387
388 (kernel ()
389 (parse (seq ((name (funcall kernel-parser)))
390 (cons #'identity name))))
391
392 (argument-list ()
393 ;; [argument [`,' argument]* [`,' `...']] | `...'
394 ;;
395 ;; The possibility of a trailing `,' `...' means that we
396 ;; can't use the standard `list' parser. Note that, unlike
397 ;; `real' C, we allow an ellipsis even if there are no
398 ;; explicit arguments.
399
400 (let ((args nil))
401 (loop
402 (when (eq (token-type scanner) :ellipsis)
403 (push :ellipsis args)
404 (scanner-step scanner)
405 (return))
406 (multiple-value-bind (arg winp consumedp)
407 (parse (seq ((base-type (parse-c-type scanner))
408 (dtor (parse-declarator scanner
409 base-type
410 :abstractp t)))
411 (make-argument (cdr dtor) (car dtor))))
412 (unless winp
413 (if (or consumedp args)
414 (return-from argument-list (values arg nil t))
415 (return)))
416 (push arg args))
417 (unless (eq (token-type scanner) #\,)
418 (return))
419 (scanner-step scanner))
420 (values (nreverse args) t args)))
421
422 (postfix-lparen ()
423 ;; Postfix: `(' argument-list `)'
424
425 (parse (seq (#\( (args (argument-list)) #\))
426 (postop "()" (state 10)
427 (cons (lambda (type)
428 (funcall (car state)
429 (make-function-type type args)))
430 (cdr state))))))
431
432 (dimension ()
433 ;; `[' c-fragment ']'
434
435 (parse (seq ((frag (parse-delimited-fragment
436 scanner #\[ #\])))
437 (c-fragment-text frag))))
438
439 (lbracket ()
440 ;; Postfix: dimension+
441
442 (parse (seq ((dims (list (:min 1) (dimension))))
443 (postop "[]" (state 10)
444 (cons (lambda (type)
445 (funcall (car state)
446 (make-array-type type dims)))
447 (cdr state)))))))
448
449 ;; And now we actually do the declarator parsing.
450 (parse (seq ((value (expr (:nestedp nestedp)
451
452 ;; An actual operand.
453 (kernel)
454
455 ;; Binary operators. There aren't any.
456 nil
457
458 ;; Prefix operators.
459 (or (star)
460 (prefix-lparen))
461
462 ;; Postfix operators.
463 (or (postfix-lparen)
464 (lbracket)
465 (when nestedp (seq (#\)) (rparen #\))))))))
466 (cons (funcall (car value) base-type) (cdr value))))))))
467
468 ;;;----- That's all, folks --------------------------------------------------