Merge branches 'mdw/kwargs-fixes' and 'mdw/c11-fixes'
[sod] / doc / clang.tex
1 %%% -*-latex-*-
2 %%%
3 %%% C language utilities
4 %%%
5 %%% (c) 2015 Straylight/Edgeware
6 %%%
7
8 %%%----- Licensing notice ---------------------------------------------------
9 %%%
10 %%% This file is part of the Sensible Object Design, an object system for C.
11 %%%
12 %%% SOD is free software; you can redistribute it and/or modify
13 %%% it under the terms of the GNU General Public License as published by
14 %%% the Free Software Foundation; either version 2 of the License, or
15 %%% (at your option) any later version.
16 %%%
17 %%% SOD is distributed in the hope that it will be useful,
18 %%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19 %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 %%% GNU General Public License for more details.
21 %%%
22 %%% You should have received a copy of the GNU General Public License
23 %%% along with SOD; if not, write to the Free Software Foundation,
24 %%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 \chapter{C language utilities} \label{ch:clang}
27
28 %%%--------------------------------------------------------------------------
29 \section{C type representation} \label{sec:clang.c-types}
30
31 \subsection{Overview} \label{sec:clang.c-types.over}
32
33 The Sod translator represents C types in a fairly simple and direct way.
34 However, because it spends a fair amount of its time dealing with C types, it
35 provides a number of useful operations and macros.
36
37 The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
38
39 \begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
41 @|c-type| \\ \ind
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
44 @|c-class-type| \- \\
45 @|tagged-c-type| \\ \ind
46 @|c-struct-type| \\
47 @|c-union-type| \\
48 @|c-enum-type| \- \\
49 @|c-pointer-type| \- \\
50 @|c-array-type| \\
51 @|c-function-type|
52 \end{tabbing}}
53 \caption{Classes representing C types}
54 \label{fig:codegen.c-types.classes}
55 \end{figure}
56
57 C type objects are immutable unless otherwise specified.
58
59 \subsubsection{Constructing C type objects}
60 There is a constructor function for each non-abstract class of C type object.
61 Note, however, that constructor functions need not generate a fresh type
62 object if a previously existing type object is suitable. In this case, we
63 say that the objects are \emph{interned}. Some constructor functions are
64 specified to return interned objects: programs may rely on receiving the same
65 (@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
66 not specified, clients may still not rely on receiving fresh objects.
67
68 A convenient S-expression notation is provided by the @|c-type| macro. Use
69 of this macro is merely an abbreviation for corresponding use of the various
70 constructor functions, and therefore interns type objects in the same manner.
71 The syntax accepted by the macro can be extended in order to support new
72 classes: see @|defctype|, @|c-type-alias| and @|define-c-type-syntax|.
73
74 The descriptions of each of the various classes include descriptions of the
75 initargs which may be passed to @|make-instance| when constructing a new
76 instance of the class. However, the constructor functions and S-expression
77 syntax are strongly recommended over direct use of @|make-instance|.
78
79 \subsubsection{Printing}
80 There are two protocols for printing C types. Unfortunately they have
81 similar names.
82 \begin{itemize}
83 \item The @|print-c-type| function prints a C type value using the
84 S-expression notation. It is mainly useful for diagnostic purposes.
85 \item The @|pprint-c-type| function prints a C type as a C-syntax
86 declaration.
87 \end{itemize}
88 Neither generic function defines a default primary method; subclasses of
89 @|c-type| must define their own methods in order to print correctly.
90
91
92 \subsection{The C type root class} \label{sec:clang.c-types.root}
93
94 \begin{describe}{cls}{c-type ()}
95 The class @|c-type| marks the root of the built-in C type hierarchy.
96
97 Users may define subclasses of @|c-type|. All non-abstract subclasses must
98 have a primary method defined on @|pprint-c-type|; unless instances of the
99 subclass are interned, a method on @|c-type-equal-p| is also required.
100
101 The class @|c-type| is abstract.
102 \end{describe}
103
104
105 \subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
106
107 The S-expression representation of a type is described syntactically as a
108 type specifier. Type specifiers fit into two syntactic categories.
109 \begin{itemize}
110 \item A \emph{symbolic type specifier} consists of a symbol. It has a
111 single, fixed meaning: if @<name> is a symbolic type specifier, then each
112 use of @<name> in a type specifier evaluates to the same (@|eq|) type
113 object, until the @<name> is redefined.
114 \item A \emph{type operator} is a symbol; the corresponding specifier is a
115 list whose @|car| is the operator. The remaining items in the list are
116 arguments to the type operator.
117 \end{itemize}
118
119 \begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
120 Evaluates to a C type object, as described by the type specifier
121 @<type-spec>.
122 \end{describe}
123
124 \begin{describe}{mac}
125 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+ \\
126 @[[ @|:export| @<export-flag> @]]^* \-
127 \nlret @<names>}
128 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
129 given, then all are defined in the same way. The type constructed by using
130 any of the @<name>s is as described by the type specifier @<type-spec>.
131
132 The resulting type object is constructed once, at the time that the macro
133 expansion is evaluated; the same (@|eq|) value is used each time any
134 @<name> is used in a type specifier.
135
136 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
137 and initialized to contain the C type object so constructed. Altering or
138 binding this name is discouraged.
139
140 If @<export-flag> is true, then the variable name, and all of the @<name>s,
141 are exported from the current package.
142 \end{describe}
143
144 \begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
145 Defines each @<alias> as being a type operator identical in behaviour to
146 @<original>. If @<original> is later redefined then the behaviour of the
147 @<alias>es changes too.
148 \end{describe}
149
150 \begin{describe}{mac}
151 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
152 @[[ @<declaration>^* @! @<doc-string> @]] \\
153 @<form>^* \-
154 \nlret @<name>}
155 Defines the symbol @<name> as a new type operator. When a list of the form
156 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
157 are bound to fresh variables according to @<lambda-list> (a destructuring
158 lambda-list) and the @<form>s evaluated in order in the resulting lexical
159 environment as an implicit @|progn|. The value should be a Lisp form which
160 will evaluate to the type specified by the arguments.
161
162 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
163 type specifiers among its arguments.
164 \end{describe}
165
166 \begin{describe}{fun}{expand-c-type-spec @<type-spec> @> @<form>}
167 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
168 \end{describe}
169
170 \begin{describe}{gf}
171 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
172 Print the C type object @<type> to @<stream> in S-expression form. The
173 @<colon> and @<atsign> arguments may be interpreted in any way which seems
174 appropriate: they are provided so that @|print-c-type| may be called via
175 @|format|'s @|\char`\~/\dots/| command; they are not set when
176 @|print-c-type| is called by Sod functions.
177
178 There should be a method defined for every C type class; there is no
179 default method.
180 \end{describe}
181
182
183 \subsection{Comparing C types} \label{sec:clang.c-types.cmp}
184
185 It is necessary to compare C types for equality, for example when checking
186 argument lists for methods. This is done by @|c-type-equal-p|.
187
188 \begin{describe}{gf}
189 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
190 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
191 @<c-type>_2 for equality; it returns true if the two types are equal and
192 false if they are not.
193
194 Two types are equal if they are structurally similar, where this property
195 is defined by methods for each individual class; see the descriptions of
196 the classes for the details.
197
198 The generic function @|c-type-equal-p| uses the @|and| method combination.
199
200 \begin{describe}{meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
201 A default primary method for @|c-type-equal-p| is defined. It simply
202 returns @|nil|. This way, methods can specialize on both arguments
203 without fear that a call will fail because no methods are applicable.
204 \end{describe}
205 \begin{describe}{ar-meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
206 A default around-method for @|c-type-equal-p| is defined. It returns
207 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
208 the primary methods. Since several common kinds of C types are interned,
209 this is a common case worth optimizing.
210 \end{describe}
211 \end{describe}
212
213
214 \subsection{Outputting C types} \label{sec:clang.c-types.output}
215
216 \begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
217 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
218 declaration of an object or function of type @<c-type>. The result is
219 written to @<stream>.
220
221 A C declaration has two parts: a sequence of \emph{declaration specifiers}
222 and a \emph{declarator}. The declarator syntax involves parentheses and
223 operators, in order to reflect the operators applicable to the declared
224 variable. For example, the name of a pointer variable is preceded by @`*';
225 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
226
227 The @<kernel> argument must be a function designator (though see the
228 standard around-method); it is invoked as
229 \begin{quote} \codeface
230 (funcall @<kernel> @<stream> @<priority> @<spacep>)
231 \end{quote}
232 It should write to @<stream> -- which may not be the same stream originally
233 passed into the generic function -- the `kernel' of the declarator, i.e.,
234 the part to which prefix and/or postfix operators are attached to form the
235 full declarator.
236
237 The methods on @|pprint-c-type| specialized for compound types work by
238 recursively calling @|pprint-c-type| on the subtype, passing down a closure
239 which prints the necessary additional declarator operators before calling
240 the original @<kernel> function. The additional arguments @<priority> and
241 @<spacep> support this implementation technique.
242
243 The @<priority> argument describes the surrounding operator context. It is
244 zero if no type operators are directly attached to the kernel (i.e., there
245 are no operators at all, or the kernel is enclosed in parentheses), one if
246 a prefix operator is directly attached, or two if a postfix operator is
247 directly attached. If the @<kernel> function intends to provide its own
248 additional declarator operators, it should check the @<priority> in order
249 to determine whether parentheses are necessary. See also the
250 @|maybe-in-parens| macro (page~\pageref{mac:maybe-in-parens}).
251
252 The @<spacep> argument indicates whether a space needs to be printed in
253 order to separate the declarator from the declaration specifiers. A kernel
254 which contains an identifier should insert a space before the identifier
255 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
256 declarator (one that specifies no name), looks more pleasing without a
257 trailing space. See also the @|c-type-space| function
258 (page~\pageref{fun:c-type-space}).
259
260 Every concrete subclass of @|c-type| is expected to provide a primary
261 method on this function. There is no default primary method.
262
263 \begin{describe}{ar-meth}{pprint-c-type @<c-type> @<stream> @<kernel>}
264 A default around method is defined on @|pprint-c-type| which `canonifies'
265 non-function @<kernel> arguments. In particular:
266 \begin{itemize}
267 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
268 with a @<kernel> function that does nothing; and
269 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
270 called recursively with a @<kernel> function that prints the object as
271 if by @|princ|, preceded if necessary by space using @|c-type-space|.
272 \end{itemize}
273 \end{describe}
274 \end{describe}
275
276 \begin{describe}{fun}{c-type-space @<stream>}
277 Writes a space and other pretty-printing instructions to @<stream> in order
278 visually to separate a declarator from the preceding declaration
279 specifiers. The precise details are subject to change.
280 \end{describe}
281
282 \begin{describe}{mac}
283 {maybe-in-parens (@<stream-var> @<guard-form>)
284 @<declaration>^*
285 @<form>^*}
286 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
287 sequence within a pretty-printer logical block writing to the stream named
288 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
289 the logical block has empty prefix and suffix strings; if it evaluates to a
290 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
291 respectively.
292
293 Note that this may cause @<stream> to be bound to a different stream object
294 within the @<form>s.
295 \end{describe}
296
297
298 \subsection{Type qualifiers and qualifiable types}
299 \label{sec:clang.ctypes.qual}
300
301 \begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
302 The class @|qualifiable-c-type| describes C types which can bear
303 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
304 @|restrict| and @|volatile|.
305
306 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
307 @|:volatile|. There is no built-in limitation to these particular
308 qualifiers; others keywords may be used, though this isn't recommended.
309
310 Two qualifiable types are equal only if they have \emph{matching
311 qualifiers}: i.e., every qualifier attached to one is also attached to the
312 other: order is not significant, and neither is multiplicity.
313
314 The class @|qualifiable-c-type| is abstract.
315 \end{describe}
316
317 \begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
318 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
319 an immutable list.
320 \end{describe}
321
322 \begin{describe}{fun}{qualify-type @<c-type> @<qualifiers> @> @<c-type>}
323 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
324 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
325 keywords. The result is a C type object like @<c-type> except that it
326 bears the given @<qualifiers>.
327
328 The @<c-type> is not modified. If @<c-type> is interned, then the returned
329 type will be interned.
330 \end{describe}
331
332 \begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
333 Returns a string containing the qualifiers listed in @<qualifiers> in C
334 syntax, with a space after each. In particular, if @<qualifiers> is
335 non-null then the final character of the returned string will be a space.
336 \end{describe}
337
338
339 \subsection{Leaf types} \label{sec:clang.c-types.leaf}
340
341 A \emph{leaf type} is a type which is not defined in terms of another type.
342 In Sod, the leaf types are
343 \begin{itemize}
344 \item \emph{simple types}, including builtin types like @|int| and @|char|,
345 as well as type names introduced by @|typename|, because Sod isn't
346 interested in what the type name means, merely that it names a type; and
347 \item \emph{tagged types}, i.e., enum, struct and union types which are named
348 by a keyword identifying the kind of type, and a \emph{tag}.
349 \end{itemize}
350
351 \begin{describe}{cls}{simple-c-type (qualifiable-c-type)
352 \&key :qualifiers :name}
353 The class of `simple types'; an instance denotes the type @<qualifiers>
354 @<name>.
355
356 A simple type object maintains a \emph{name}, which is a string whose
357 contents are the C name for the type. The initarg @|:name| may be used to
358 provide this name when calling @|make-instance|.
359
360 Two simple type objects are equal if and only if they have @|string=| names
361 and matching qualifiers.
362
363 A number of symbolic type specifiers for builtin types are predefined as
364 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
365 @|define-simple-c-type|, so can be used to construct qualified types.
366 \end{describe}
367
368 \begin{table}
369 \begin{tabular}[C]{ll} \hlx*{hv}
370 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
371 @|void| & @|void| \\ \hlx{v}
372 @|_Bool| & @|bool| \\ \hlx{v}
373 @|char| & @|char| \\ \hlx{}
374 @|wchar_t| & @|wchar-t| \\ \hlx{v}
375 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
376 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
377 @|short| & @|short|, @|signed-short|, @|short-int|,
378 @|signed-short-int| @|sshort| \\ \hlx{}
379 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
380 @|ushort| \\ \hlx{v}
381 @|int| & @|int|, @|signed|, @|signed-int|,
382 @|sint| \\ \hlx{}
383 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
384 @|long| & @|long|, @|signed-long|, @|long-int|,
385 @|signed-long-int|, @|slong| \\ \hlx{}
386 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
387 @|ulong| \\ \hlx{v}
388 @|long long| & @|long-long|, @|signed-long-long|,
389 @|long-long-int|, \\ \hlx{}
390 & \qquad @|signed-long-long-int|,
391 @|llong|, @|sllong| \\ \hlx{v}
392 @|unsigned long long|
393 & @|unsigned-long-long|, @|unsigned-long-long-int|,
394 @|ullong| \\ \hlx{v}
395 @|size_t| & @|size-t| \\ \hlx{}
396 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
397 @|float| & @|float| \\ \hlx{}
398 @|double| & @|double| \\ \hlx{}
399 @|long double| & @|long-double| \\ \hlx{v}
400 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
401 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
402 @|long double _Imaginary|
403 & @|long-double-imaginary| \\ \hlx{v}
404 @|float _Complex| & @|float-complex| \\ \hlx{}
405 @|double _Complex| & @|double-complex| \\ \hlx{}
406 @|long double _Complex|
407 & @|long-double-complex| \\ \hlx{v}
408 @|va_list| & @|va-list| \\ \hlx*{vh}
409 \end{tabular}
410 \caption{Builtin symbolic type specifiers for simple C types}
411 \label{tab:codegen.c-types.simple}
412 \end{table}
413
414 \begin{describe}{fun}
415 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
416 Return the (unique interned) simple C type object for the C type whose name
417 is @<name> (a string) and which has the given @<qualifiers> (a list of
418 keywords).
419 \end{describe}
420
421 \begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
422 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
423 string.
424 \end{describe}
425
426 \begin{describe}{mac}
427 {define-simple-c-type \=@{ @<name> @! (@<name>^+) @} @<string> \+ \\
428 @[[ @|:export| @<export-flag> @]] \-
429 \nlret @<name>}
430 Define type specifiers for a new simple C type. Each symbol @<name> is
431 defined as a symbolic type specifier for the (unique interned) simple C
432 type whose name is the value of @<string>. Further, each @<name> is
433 defined to be a type operator: the type specifier @|(@<name>
434 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
435 name is @<string> and which has the @<qualifiers> (which are evaluated).
436
437 Furthermore, a variable @|c-type-@<name>| is defined, for the first @<name>
438 only, and initialized with the newly constructed C type object.
439
440 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
441 all of the @<name>s, are exported from the current package.
442 \end{describe}
443
444 \begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
445 \&key :qualifiers :tag}
446 Provides common behaviour for C tagged types. A @<tag> is a string
447 containing a C identifier.
448
449 Two tagged types are equal if and only if they have the same class, their
450 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
451 subclasses may have additional methods on @|c-type-equal-p| which impose
452 further restrictions.)
453 \end{describe}
454 \begin{boxy}[Bug]
455 Sod maintains distinct namespaces for the three kinds of tagged types. In
456 C, there is only one namespace for tags which is shared between enums,
457 structs and unions.
458 \end{boxy}
459
460 \begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
461 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
462 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
463 should return their own classification symbols. It is intended that
464 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
465 syntax.\footnote{%
466 Alas, C doesn't provide a syntactic category for these keywords;
467 \Cplusplus\ calls them a @<class-key>.} %
468 There is a method defined for each of the built-in tagged type classes
469 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
470 \end{describe}
471
472 \begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
473 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
474 naming a kind of tagged type, return the name of the corresponding C
475 type class as a symbol.
476 \end{describe}
477
478 \begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
479 Represents a C enumerated type. An instance denotes the C type @|enum|
480 @<tag>. See the direct superclass @|tagged-c-type| for details.
481
482 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
483 interned) enumerated type with the given @<tag> and @<qualifier>s (all
484 evaluated).
485 \end{describe}
486 \begin{describe}{fun}
487 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
488 Return the (unique interned) C type object for the enumerated C type whose
489 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
490 keywords).
491 \end{describe}
492
493 \begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
494 Represents a C structured type. An instance denotes the C type @|struct|
495 @<tag>. See the direct superclass @|tagged-c-type| for details.
496
497 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
498 interned) structured type with the given @<tag> and @<qualifier>s (all
499 evaluated).
500 \end{describe}
501 \begin{describe}{fun}
502 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
503 Return the (unique interned) C type object for the structured C type whose
504 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
505 keywords).
506 \end{describe}
507
508 \begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
509 Represents a C union type. An instance denotes the C type @|union|
510 @<tag>. See the direct superclass @|tagged-c-type|
511 for details.
512
513 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
514 interned) union type with the given @<tag> and @<qualifier>s (all
515 evaluated).
516 \end{describe}
517 \begin{describe}{fun}
518 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
519 Return the (unique interned) C type object for the union C type whose tag
520 is @<tag> (a string) and which has the given @<qualifiers> (a list of
521 keywords).
522 \end{describe}
523
524
525 \subsection{Compound C types} \label{sec:code.c-types.compound}
526
527 Some C types are \emph{compound types}: they're defined in terms of existing
528 types. The classes which represent compound types implement a common
529 protocol.
530
531 \begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
532 Returns the underlying type of a compound type @<c-type>. Precisely what
533 this means depends on the class of @<c-type>.
534 \end{describe}
535
536
537 \subsection{Pointer types} \label{sec:clang.c-types.pointer}
538
539 Pointers are compound types. The subtype of a pointer type is the type it
540 points to.
541
542 \begin{describe}{cls}
543 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
544 Represents a C pointer type. An instance denotes the C type @<subtype>
545 @|*|@<qualifiers>.
546
547 The @<subtype> may be any C type. Two pointer types are equal if and only
548 if their subtypes are equal and they have matching qualifiers.
549
550 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
551 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
552 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
553 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
554 star @`*'.
555
556 The symbol @|string| is a type specifier for the type pointer to
557 characters; the symbol @|const-string| is a type specifier for the type
558 pointer to constant characters.
559 \end{describe}
560
561 \begin{describe}{fun}
562 {make-pointer-type @<c-type> \&optional @<qualifiers>
563 @> @<c-pointer-type>}
564 Return an object describing the type qualified pointer to @<subtype>.
565 If @<subtype> is interned, then the returned pointer type object is
566 interned also.
567 \end{describe}
568
569
570 \subsection{Array types} \label{sec:clang.c-types.array}
571
572 Arrays implement the compound-type protocol. The subtype of an array type is
573 the array element type.
574
575 \begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
576 Represents a multidimensional C array type. The @<dimensions> are a list
577 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
578 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
579 individual dimension specifier is either a string containing a C integral
580 constant expression, or nil which is equivalent to an empty string. Only
581 the first (outermost) dimension $d_0$ should be empty.
582
583 C doesn't actually have multidimensional arrays as a primitive notion;
584 rather, it permits an array (with known extent) to be the element type of
585 an array, which achieves an equivalent effect. C arrays are stored in
586 row-major order: i.e., if we write down the indices of the elements of an
587 array in order of ascending address, the rightmost index varies fastest;
588 hence, the type constructed is more accurately an array of $d_0$ arrays of
589 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
590 continue to abuse terminology and refer to multidimensional arrays.
591
592 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
593 multidimensional array with the given @<dimension>s whose elements have the
594 type specified by @<type-spec>. If no dimensions are given then a
595 single-dimensional array with unspecified extent. The synonyms @|array|
596 and @|vector| may be used in place of the brackets @`[]'.
597 \end{describe}
598
599 \begin{describe}{fun}
600 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
601 Return an object describing the type of arrays with given @<dimensions> and
602 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
603 argument is a list whose elements are strings or nil; see the description
604 of the class @|c-array-type| above for details.
605 \end{describe}
606
607 \begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
608 Returns the dimensions of @<c-type>, an array type, as an immutable list.
609 \end{describe}
610
611
612 \subsection{Function types} \label{sec:clang.c-types.fun}
613
614 Function types implement the compound-type protocol. The subtype of a
615 function type is the type of the function's return value.
616
617 \begin{describe}{cls}{argument}
618 Represents an ordinary function argument.
619 \end{describe}
620
621 \begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
622 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
623 not return nil.
624 \end{describe}
625
626 \begin{describe}{fun}{make-argument @<name> @<c-type> @> @<argument>}
627 Construct and a return a new @<argument> object. The argument has type
628 @<c-type>, which must be a @|c-type| object, and is named @<name>.
629
630 The @<name> may be nil to indicate that the argument has no name: in this
631 case the argument will be formatted as an abstract declarator, which is not
632 suitable for function definitions. If @<name> is not nil, then the
633 @<name>'s print representation, with @|*print-escape*| nil, is used as the
634 argument name.
635 \end{describe}
636
637 \begin{describe*}
638 {\dhead{fun}{argument-name @<argument> @> @<name>}
639 \dhead{fun}{argument-type @<argument> @> @<c-type>}}
640 Accessor functions for @|argument| objects. They return the name (for
641 @|argument-name|) or type (for @|argument-type|) from the object, as passed
642 to @|make-argument|.
643 \end{describe*}
644
645 \begin{describe}{gf}
646 {commentify-argument-name @<name> @> @<commentified-name>}
647 Convert the argument name @<name> so that it's suitable to declare the
648 function in a header file.
649
650 Robust header files shouldn't include literal argument names in
651 declarations of functions or function types, since this restricts the
652 including file from defining such names as macros. This generic function
653 is used to convert names into a safe form.
654
655 \begin{describe}{meth}{commentify-argument-name (@<name> null) @> nil}
656 Returns nil: if the argument name is already omitted, it's safe for use
657 in a header file.
658 \end{describe}
659 \begin{describe}{meth}{commentify-argument-name (@<name> t) @> @<string>}
660 Returns the print form of @<name> wrapped in a C comment, as
661 @`/*@<name>*/'.
662 \end{describe}
663 \end{describe}
664
665 \begin{describe}{fun}
666 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
667 Convert the @<arguments> list so that it's suitable for use in a header
668 file.
669
670 The @<arguments> list should be a list whose items are @|argument| objects
671 or the keyword @|:ellipsis|. The return value is a list constructed as
672 follows. For each @|argument| object in the input list, there is a
673 corresponding @|argument| object in the returned list, with the same type,
674 and whose name is the result of @|commentify-argument-name| applied to the
675 input argument name; an @|:ellipsis| in the input list is passed through
676 unchanged.
677 \end{describe}
678
679 \begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
680 Represents C function types. An instance denotes the type of a C
681 function which accepts the @<arguments> and returns @<subtype>.
682
683 The @<arguments> are a possibly empty list. All but the last element of
684 the list must be @|argument| objects; the final element may instead be the
685 keyword @|:ellipsis|, which denotes a variable argument list.
686
687 An @<arguments> list consisting of a single argument with type @|void| is
688 converted into an empty list. On output as C code, an empty argument list
689 is written as @|void|. It is not possible to represent a pre-ANSI C
690 function without prototypes.
691
692 Two function types are considered to be the same if their return types are
693 the same, and their argument lists consist of arguments with the same type,
694 in the same order, and either both or neither argument list ends with
695 @|:ellipsis|; argument names are not compared.
696
697 The type specifier
698 \begin{prog}
699 (fun @<return-type>
700 @{ (@<arg-name> @<arg-type>) @}^*
701 @[:ellipsis @! . @<form>@])
702 \end{prog}
703 constructs a function type. The function has the subtype @<return-type>.
704 The remaining items in the type-specifier list are used to construct the
705 argument list. The argument items are a possibly improper list, beginning
706 with zero or more \emph{explicit arguments}: two-item
707 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
708 is constructed with the given name (evaluated) and type. Following the
709 explicit arguments, there may be
710 \begin{itemize}
711 \item nothing, in which case the function's argument list consists only of
712 the explicit arguments;
713 \item the keyword @|:ellipsis|, as the final item in the type-specifier
714 list, indicating a variable argument list may follow the explicit
715 arguments; or
716 \item a possibly-improper list tail, beginning with an atom either as a
717 list item or as the final list cdr, indicating that the entire list tail
718 is Lisp expression which is to be evaluated to compute the remaining
719 arguments.
720 \end{itemize}
721 A tail expression may return a list of @|argument| objects, optionally
722 followed by an @|:ellipsis|.
723
724 For example,
725 \begin{prog}
726 (c-type (fun \=(lisp (c-type-subtype other-func)) \+ \\
727 ("first" int) . (c-function-arguments other-func))
728 \end{prog}
729 evaluates to a function type like @|other-func|, only with an additional
730 argument of type @|int| added to the front of its argument list. This
731 could also have been written
732 \begin{prog}
733 (let (\=(args (c-function-arguments other-func)) \+ \\
734 (ret (c-type-subtype other-func))) \- \\ \ind
735 (c-type (fun \=(lisp ret) ("first" int) . args)
736 \end{prog}
737 \end{describe}
738
739 \begin{describe}{fun}
740 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
741 Construct and return a new function type, returning @<subtype> and
742 accepting the @<arguments>.
743 \end{describe}
744
745 \begin{describe}{gf}
746 {c-function-arguments @<c-function-type> @> @<arguments>}
747 Return the arguments list of the @<c-function-type>.
748 \end{describe}
749
750 \begin{describe}{fun}
751 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
752 Return a commentified version of the @<c-function-type>.
753
754 The returned type has the same subtype as the given type, and the argument
755 list of the returned type is the result of applying
756 @|commentify-argument-names| to the argument list of the given type.
757 \end{describe}
758
759
760 \subsection{Parsing C types} \label{sec:clang.c-types.parsing}
761
762 \begin{describe}{fun}
763 {parse-c-type @<scanner>
764 @> @<result> @<success-flag> @<consumed-flag>}
765 \end{describe}
766
767 \begin{describe}{fun}
768 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
769 \nlret @<result> @<success-flag> @<consumed-flag>}
770 \end{describe}
771
772
773 \subsection{Class types} \label{sec:clang.c-types.class}
774
775 \begin{describe}{cls}
776 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
777 \end{describe}
778
779 \begin{describe*}
780 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
781 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
782 \end{describe*}
783
784 \begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
785 \end{describe}
786
787 \begin{describe}{fun}
788 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
789 \end{describe}
790
791 \begin{describe}{fun}
792 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
793 \end{describe}
794
795 \begin{describe}{fun}{find-sod-class @<name> @> @<class>}
796 \end{describe}
797
798 \begin{describe}{fun}{record-sod-class @<class>}
799 \end{describe}
800
801 %%%--------------------------------------------------------------------------
802 \section{Generating C code} \label{sec:clang.codegen}
803
804 This section deals with Sod's facilities for constructing and manipulating C
805 expressions, declarations, instructions and definitions.
806
807
808 \subsection{Temporary names} \label{sec:clang.codegen.temporaries}
809
810 Many C-level objects, especially ones with external linkage or inclusion in a
811 header file, are assigned names which are simple strings, perhaps fixed ones,
812 perhaps constructed. Other objects don't need meaningful names, and
813 suitably unique constructed names would be tedious and most likely rather
814 opaque. Therefore Sod has an ability to construct \emph{temporary names}.
815
816 These aren't temporary in the sense that they name C objects which have
817 limited lifetimes at runtime. Rather, the idea is that the names be
818 significant only to small pieces of Lisp code, which will soon forget about
819 them.
820
821 \subsubsection{The temporary name protocol}
822 Temporary names are represented by objects which implement a simple protocol.
823
824 \begin{describe}{gf}{format-temporary-name @<var> @<stream>}
825 \end{describe}
826
827 \begin{describe*}
828 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
829 \dhead[setf var-in-use-p]
830 {gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
831 \end{describe*}
832
833 \subsubsection{Temporary name objects}
834
835 \begin{describe}{cls}{temporary-name () \&key :tag}
836 A temporary name object. This is the root of a small collection of
837 subclasses, but is also usable on its own.
838 \end{describe}
839
840 \begin{describe}{meth}
841 {commentify-argument-name (@<name> temporary-name) @> nil}
842 \end{describe}
843
844 \begin{table}
845 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
846 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
847 temporary-name & @<tag> \\
848 temporary-argument & sod__a@<tag> \\
849 temporary-function & sod__f@<tag> \\
850 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
851 \end{tabular}
852 \caption{Temporary name formats}
853 \label{tab:codegen.codegen.temps-format}
854 \end{table}
855
856 \begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
857 \end{describe}
858
859 \begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
860 \end{describe}
861
862 \begin{describe}{fun}{temporary-function @> @<name>}
863 \end{describe}
864
865 \begin{describe}{cls}
866 {temporary-variable (temporary-name) \&key :tag :in-use-p}
867 \end{describe}
868
869 \subsubsection{Well-known `temporary' names}
870
871 \begin{table}
872 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
873 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
874 {}*sod-ap* & sod__ap \\
875 {}*sod-master-ap* & sod__master_ap \\
876 {}*null-pointer* & NULL \\ \hlx*{vh}
877 \end{tabular}
878 \caption{Well-known temporary names}
879 \label{tab:codegen.codegen.well-known-temps}
880 \end{table}
881
882
883 \subsection{Instructions} \label{sec:clang.codegen.insts}
884
885 \begin{describe}{cls}{inst () \&key}
886 \end{describe}
887
888 \begin{describe}{gf}{inst-metric @<inst>}
889 \end{describe}
890
891 \begin{describe}{mac}
892 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
893 @[[ @<declaration>^* @! @<doc-string> @]] \\
894 @<form>^* \-
895 \nlret @<code>}
896 \end{describe}
897
898 \begin{describe}{mac}
899 {format-compound-statement
900 (@<stream> @<child> \&optional @<morep>) \\ \ind
901 @<declaration>^* \\
902 @<form>^*}
903 \end{describe}
904
905 \begin{table}
906 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
907 \thd{Class name} &
908 \thd{Arguments} &
909 \thd{Output format} \\ \hlx{vhv}
910 @|var| & @<name> @<type> @|\&optional| @<init>
911 & @<type> @<name> @[= @<init>@];
912 \\ \hlx{v}
913 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
914 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
915 \\ \hlx{v}
916 @|return| & @<expr> & return @[@<expr>@];
917 \\ \hlx{v}
918 @|break| & --- & break; \\ \hlx{v}
919 @|continue| & --- & continue; \\ \hlx{v}
920 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
921 @|call| & @<func> @|\&rest| @<args>
922 & @<func>(@<arg>_1,
923 $\ldots$,
924 @<arg>_n) \\ \hlx{vhv}
925 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
926 \\ \hlx{v}
927 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
928 & if (@<cond>) @<conseq>
929 @[else @<alt>@] \\ \hlx{v}
930 @|while| & @<cond> @<body> & while (@<cond>) @<body>
931 \\ \hlx{v}
932 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
933 \\ \hlx{v}
934 @|function| & @<name> @<type> @<body> &
935 \vtop{\hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
936 @<type>_n @<arg>_n @[, \dots@])}
937 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
938 \end{tabular}
939 \caption{Instruction classes}
940 \label{tab:codegen.codegen.insts}
941 \end{table}
942
943
944 \subsection{Code generation} \label{sec:clang.codegen.codegen}
945
946 \begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
947 \end{describe}
948
949 \begin{describe}{gf}
950 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
951 \end{describe}
952
953 \begin{describe}{gf}{emit-inst @<codegen> @<inst>}
954 \end{describe}
955
956 \begin{describe}{gf}{emit-insts @<codegen> @<insts>}
957 \end{describe}
958
959 \begin{describe}{gf}{emit-decl @<codegen> @<decl>}
960 \end{describe}
961
962 \begin{describe}{gf}{emit-decls @<codegen> @<decls>}
963 \end{describe}
964
965 \begin{describe}{gf}{codegen-push @<codegen>}
966 \end{describe}
967
968 \begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
969 \end{describe}
970
971 \begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
972 \end{describe}
973
974 \begin{describe}{gf}
975 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
976 \end{describe}
977
978 \begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
979 \end{describe}
980
981 \begin{describe}{fun}
982 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
983 @> @<name>}
984 \end{describe}
985
986 \begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
987 \end{describe}
988
989 \begin{describe}{mac}
990 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
991 @<declaration>^* \\
992 @<form>^* \-
993 \nlret @<value>^*}
994 \end{describe}
995
996 \begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
997 \end{describe}
998
999 \begin{describe}{fun}
1000 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1001 \end{describe}
1002
1003 \begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1004 \end{describe}
1005
1006 \begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1007 \end{describe}
1008
1009 %%%--------------------------------------------------------------------------
1010 \section{Literal C code fragments} \label{sec:clang.fragment}
1011
1012 \begin{describe}{cls}{c-fragment () \&key :location :text}
1013 \end{describe}
1014
1015 \begin{describe}{gf}{c-fragment-text @<fragment> @> @<string>}
1016 \end{describe}
1017
1018 \begin{describe}{fun}
1019 {scan-c-fragment @<scanner> @<end-chars>
1020 @> @<result> @<success-flag> @<consumed-flag>}
1021 \end{describe}
1022
1023 \begin{describe}{fun}
1024 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1025 \nlret @<result> @<success-flag> @<consumed-flag>}
1026 \end{describe}
1027
1028 %%%----- That's all, folks --------------------------------------------------
1029
1030 %%% Local variables:
1031 %%% mode: LaTeX
1032 %%% TeX-master: "sod.tex"
1033 %%% TeX-PDF-mode: t
1034 %%% End: