doc/clang.tex: Remove redundant `\textbf{...}' inside `\thd'.
[sod] / doc / clang.tex
CommitLineData
dea4d055
MW
1%%% -*-latex-*-
2%%%
1f7d590d 3%%% C language utilities
dea4d055 4%%%
1f7d590d 5%%% (c) 2015 Straylight/Edgeware
dea4d055
MW
6%%%
7
8%%%----- Licensing notice ---------------------------------------------------
9%%%
e0808c47 10%%% This file is part of the Sensible Object Design, an object system for C.
dea4d055
MW
11%%%
12%%% SOD is free software; you can redistribute it and/or modify
13%%% it under the terms of the GNU General Public License as published by
14%%% the Free Software Foundation; either version 2 of the License, or
15%%% (at your option) any later version.
16%%%
17%%% SOD is distributed in the hope that it will be useful,
18%%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19%%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20%%% GNU General Public License for more details.
21%%%
22%%% You should have received a copy of the GNU General Public License
23%%% along with SOD; if not, write to the Free Software Foundation,
24%%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
1f7d590d 26\chapter{C language utilities} \label{ch:clang}
dea4d055
MW
27
28%%%--------------------------------------------------------------------------
1f7d590d 29\section{C type representation} \label{sec:clang.c-types}
dea4d055 30
1f7d590d 31\subsection{Overview} \label{sec:clang.c-types.over}
dea4d055
MW
32
33The Sod translator represents C types in a fairly simple and direct way.
34However, because it spends a fair amount of its time dealing with C types, it
35provides a number of useful operations and macros.
36
64d1ecf7 37The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
dea4d055
MW
38
39\begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
020b9e2b
MW
41 @|c-type| \\ \ind
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
44 @|c-class-type| \-\\
45 @|tagged-c-type| \\ \ind
46 @|c-struct-type| \\
47 @|c-union-type| \\
48 @|c-enum-type| \-\\
49 @|c-atomic-type| \\
50 @|c-pointer-type| \-\\
51 @|c-array-type| \\
52 @|c-function-type| \\ \ind
53 @|c-keyword-function-type| \-
dea4d055
MW
54 \end{tabbing}}
55 \caption{Classes representing C types}
64d1ecf7 56\label{fig:codegen.c-types.classes}
dea4d055
MW
57\end{figure}
58
59C type objects are immutable unless otherwise specified.
60
61\subsubsection{Constructing C type objects}
62There is a constructor function for each non-abstract class of C type object.
63Note, however, that constructor functions need not generate a fresh type
64object if a previously existing type object is suitable. In this case, we
65say that the objects are \emph{interned}. Some constructor functions are
66specified to return interned objects: programs may rely on receiving the same
67(@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
68not specified, clients may still not rely on receiving fresh objects.
69
58f9b400 70A convenient S-expression notation is provided by the
e8d70b1b 71\descref{mac}{c-type}[macro]. Use of this macro is merely an abbreviation
58f9b400
MW
72for corresponding use of the various constructor functions, and therefore
73interns type objects in the same manner. The syntax accepted by the macro
e8d70b1b
MW
74can be extended in order to support new classes: see \descref{mac}{defctype},
75\descref{mac}{c-type-alias} and \descref{mac}{define-c-type-syntax}.
dea4d055
MW
76
77The descriptions of each of the various classes include descriptions of the
78initargs which may be passed to @|make-instance| when constructing a new
79instance of the class. However, the constructor functions and S-expression
80syntax are strongly recommended over direct use of @|make-instance|.
81
82\subsubsection{Printing}
83There are two protocols for printing C types. Unfortunately they have
84similar names.
85\begin{itemize}
e8d70b1b 86\item The \descref{gf}{print-c-type}[function] prints a C type value using
58f9b400 87 the S-expression notation. It is mainly useful for diagnostic purposes.
e8d70b1b 88\item The \descref{gf}{pprint-c-type}[function] prints a C type as a
58f9b400 89 C-syntax declaration.
dea4d055
MW
90\end{itemize}
91Neither generic function defines a default primary method; subclasses of
92@|c-type| must define their own methods in order to print correctly.
93
a75cd932
MW
94\begin{describe}{fun}{c-name-case @<name> @> @<string>}
95\end{describe}
96
31d4431b 97
1f7d590d 98\subsection{The C type root class} \label{sec:clang.c-types.root}
dea4d055
MW
99
100\begin{describe}{cls}{c-type ()}
101 The class @|c-type| marks the root of the built-in C type hierarchy.
102
103 Users may define subclasses of @|c-type|. All non-abstract subclasses must
104 have a primary method defined on @|pprint-c-type|; unless instances of the
105 subclass are interned, a method on @|c-type-equal-p| is also required.
106
107 The class @|c-type| is abstract.
108\end{describe}
109
31d4431b 110
1f7d590d 111\subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
dea4d055
MW
112
113The S-expression representation of a type is described syntactically as a
114type specifier. Type specifiers fit into two syntactic categories.
115\begin{itemize}
116\item A \emph{symbolic type specifier} consists of a symbol. It has a
117 single, fixed meaning: if @<name> is a symbolic type specifier, then each
118 use of @<name> in a type specifier evaluates to the same (@|eq|) type
119 object, until the @<name> is redefined.
120\item A \emph{type operator} is a symbol; the corresponding specifier is a
121 list whose @|car| is the operator. The remaining items in the list are
122 arguments to the type operator.
123\end{itemize}
124
1f7d590d 125\begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
dea4d055
MW
126 Evaluates to a C type object, as described by the type specifier
127 @<type-spec>.
128\end{describe}
129
1f7d590d 130\begin{describe}{mac}
020b9e2b
MW
131 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+\\
132 @[[ @|:export| @<export-flag> @]]^*
133 \-\nlret @<names>}
dea4d055
MW
134 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
135 given, then all are defined in the same way. The type constructed by using
136 any of the @<name>s is as described by the type specifier @<type-spec>.
137
138 The resulting type object is constructed once, at the time that the macro
139 expansion is evaluated; the same (@|eq|) value is used each time any
140 @<name> is used in a type specifier.
e43d3532
MW
141
142 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
143 and initialized to contain the C type object so constructed. Altering or
144 binding this name is discouraged.
145
146 If @<export-flag> is true, then the variable name, and all of the @<name>s,
147 are exported from the current package.
dea4d055
MW
148\end{describe}
149
1f7d590d 150\begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
dea4d055
MW
151 Defines each @<alias> as being a type operator identical in behaviour to
152 @<original>. If @<original> is later redefined then the behaviour of the
153 @<alias>es changes too.
154\end{describe}
155
1f7d590d 156\begin{describe}{mac}
020b9e2b
MW
157 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
158 @[[ @<declaration>^* @! @<doc-string> @]] \\
159 @<form>^*
160 \-\nlret @<name>}
dea4d055
MW
161 Defines the symbol @<name> as a new type operator. When a list of the form
162 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
163 are bound to fresh variables according to @<lambda-list> (a destructuring
164 lambda-list) and the @<form>s evaluated in order in the resulting lexical
165 environment as an implicit @|progn|. The value should be a Lisp form which
166 will evaluate to the type specified by the arguments.
167
168 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
169 type specifiers among its arguments.
170\end{describe}
171
e07fb83c 172\begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
dea4d055 173 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
e07fb83c 174
e8d70b1b 175 If @<type-spec> is a list, then \descref{gf}{expand-c-type-form} is
e07fb83c
MW
176 invoked.
177\end{describe}
178
179\begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
054e8f8f 180 Returns the Lisp form that @|(c-type (@<head> . @<tail>))| would expand
e07fb83c 181 into.
dea4d055
MW
182\end{describe}
183
1f7d590d
MW
184\begin{describe}{gf}
185 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
dea4d055
MW
186 Print the C type object @<type> to @<stream> in S-expression form. The
187 @<colon> and @<atsign> arguments may be interpreted in any way which seems
188 appropriate: they are provided so that @|print-c-type| may be called via
189 @|format|'s @|\char`\~/\dots/| command; they are not set when
190 @|print-c-type| is called by Sod functions.
191
192 There should be a method defined for every C type class; there is no
193 default method.
194\end{describe}
195
31d4431b 196
1f7d590d 197\subsection{Comparing C types} \label{sec:clang.c-types.cmp}
dea4d055
MW
198
199It is necessary to compare C types for equality, for example when checking
200argument lists for methods. This is done by @|c-type-equal-p|.
201
1f7d590d
MW
202\begin{describe}{gf}
203 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
204 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
205 @<c-type>_2 for equality; it returns true if the two types are equal and
dea4d055
MW
206 false if they are not.
207
208 Two types are equal if they are structurally similar, where this property
209 is defined by methods for each individual class; see the descriptions of
210 the classes for the details.
211
212 The generic function @|c-type-equal-p| uses the @|and| method combination.
213
87883222 214 \begin{describe}{meth}{t,t}{c-type-equal-p @<c-type>_1 @<c-type>_2}
dea4d055
MW
215 A default primary method for @|c-type-equal-p| is defined. It simply
216 returns @|nil|. This way, methods can specialize on both arguments
217 without fear that a call will fail because no methods are applicable.
218 \end{describe}
87883222 219 \begin{describe}{ar-meth}{}{c-type-equal-p @<c-type>_1 @<c-type>_2}
dea4d055 220 A default around-method for @|c-type-equal-p| is defined. It returns
1f7d590d
MW
221 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
222 the primary methods. Since several common kinds of C types are interned,
dea4d055
MW
223 this is a common case worth optimizing.
224 \end{describe}
225\end{describe}
226
31d4431b 227
1f7d590d 228\subsection{Outputting C types} \label{sec:clang.c-types.output}
dea4d055 229
1f7d590d 230\begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
dea4d055 231 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
1f7d590d 232 declaration of an object or function of type @<c-type>. The result is
dea4d055
MW
233 written to @<stream>.
234
235 A C declaration has two parts: a sequence of \emph{declaration specifiers}
236 and a \emph{declarator}. The declarator syntax involves parentheses and
237 operators, in order to reflect the operators applicable to the declared
238 variable. For example, the name of a pointer variable is preceded by @`*';
239 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
240
241 The @<kernel> argument must be a function designator (though see the
242 standard around-method); it is invoked as
243 \begin{quote} \codeface
244 (funcall @<kernel> @<stream> @<priority> @<spacep>)
245 \end{quote}
246 It should write to @<stream> -- which may not be the same stream originally
247 passed into the generic function -- the `kernel' of the declarator, i.e.,
248 the part to which prefix and/or postfix operators are attached to form the
249 full declarator.
250
251 The methods on @|pprint-c-type| specialized for compound types work by
252 recursively calling @|pprint-c-type| on the subtype, passing down a closure
253 which prints the necessary additional declarator operators before calling
254 the original @<kernel> function. The additional arguments @<priority> and
255 @<spacep> support this implementation technique.
256
257 The @<priority> argument describes the surrounding operator context. It is
258 zero if no type operators are directly attached to the kernel (i.e., there
259 are no operators at all, or the kernel is enclosed in parentheses), one if
260 a prefix operator is directly attached, or two if a postfix operator is
261 directly attached. If the @<kernel> function intends to provide its own
262 additional declarator operators, it should check the @<priority> in order
263 to determine whether parentheses are necessary. See also the
e8d70b1b 264 \descref{mac}{maybe-in-parens}[macro].
dea4d055
MW
265
266 The @<spacep> argument indicates whether a space needs to be printed in
267 order to separate the declarator from the declaration specifiers. A kernel
268 which contains an identifier should insert a space before the identifier
269 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
270 declarator (one that specifies no name), looks more pleasing without a
e8d70b1b 271 trailing space. See also the \descref{fun}{c-type-space}[function].
dea4d055
MW
272
273 Every concrete subclass of @|c-type| is expected to provide a primary
274 method on this function. There is no default primary method.
275
87883222 276 \begin{describe}{ar-meth}{}{pprint-c-type @<c-type> @<stream> @<kernel>}
dea4d055
MW
277 A default around method is defined on @|pprint-c-type| which `canonifies'
278 non-function @<kernel> arguments. In particular:
279 \begin{itemize}
280 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
281 with a @<kernel> function that does nothing; and
282 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
283 called recursively with a @<kernel> function that prints the object as
284 if by @|princ|, preceded if necessary by space using @|c-type-space|.
285 \end{itemize}
286 \end{describe}
287\end{describe}
288
289\begin{describe}{fun}{c-type-space @<stream>}
290 Writes a space and other pretty-printing instructions to @<stream> in order
291 visually to separate a declarator from the preceding declaration
292 specifiers. The precise details are subject to change.
293\end{describe}
294
1f7d590d 295\begin{describe}{mac}
cac85e0b
MW
296 {maybe-in-parens (@<stream-var> @<guard-form>)
297 @<declaration>^*
298 @<form>^*}
dea4d055
MW
299 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
300 sequence within a pretty-printer logical block writing to the stream named
301 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
302 the logical block has empty prefix and suffix strings; if it evaluates to a
303 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
304 respectively.
305
306 Note that this may cause @<stream> to be bound to a different stream object
307 within the @<form>s.
308\end{describe}
309
31d4431b 310
dea4d055 311\subsection{Type qualifiers and qualifiable types}
1f7d590d 312\label{sec:clang.ctypes.qual}
dea4d055 313
ae0f15ee
MW
314Qualifiers -- @|const|, @|volatile|, and so on -- are represented as lists of
315keywords attached to types. Not all C types can carry qualifiers: notably,
316function and array types cannot be qualified.
317
318For the most part, the C qualifier keywords correspond to like-named Lisp
319keywords, only the Lisp keyword names are in uppercase. The correspondence
320is shown in \xref{tab:clang.ctypes.qual}.
321
322\begin{table}
323 \begin{tabular}[C]{*2{>{\codeface}l}l} \hlx*{hv}
6e26f47b
MW
324 \thd{C name} & \thd{Lisp name} \\ \hlx{vhv}
325 _Atomic & :atomic \\
326 const & :const \\
327 restrict & :restrict \\
328 volatile & :volatile \\ \hlx*{vh}
ae0f15ee
MW
329 \end{tabular}
330 \caption{C and Lisp qualifier names} \label{tab:clang.ctypes.qual}
331\end{table}
332
333The default behaviour, on output, is to convert keywords to lowercase and
334hope for the best: special cases can be dealt with by adding appropriate
e8d70b1b 335methods to \descref{gf}{c-qualifier-keyword}.
ae0f15ee 336
dea4d055
MW
337\begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
338 The class @|qualifiable-c-type| describes C types which can bear
339 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
340 @|restrict| and @|volatile|.
341
342 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
343 @|:volatile|. There is no built-in limitation to these particular
344 qualifiers; others keywords may be used, though this isn't recommended.
345
346 Two qualifiable types are equal only if they have \emph{matching
31d4431b
MW
347 qualifiers}: i.e., every qualifier attached to one is also attached to the
348 other: order is not significant, and neither is multiplicity.
dea4d055
MW
349
350 The class @|qualifiable-c-type| is abstract.
351\end{describe}
352
a75cd932
MW
353\begin{describe}{fun}
354 {canonify-qualifiers @<qualifiers> @> @<canonfied-qualifiers>}
355\end{describe}
356
1f7d590d
MW
357\begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
358 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
359 an immutable list.
dea4d055
MW
360\end{describe}
361
a75cd932 362\begin{describe}{fun}{qualify-c-type @<c-type> @<qualifiers> @> @<c-type>}
1f7d590d 363 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
dea4d055
MW
364 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
365 keywords. The result is a C type object like @<c-type> except that it
366 bears the given @<qualifiers>.
367
1f7d590d 368 The @<c-type> is not modified. If @<c-type> is interned, then the returned
dea4d055
MW
369 type will be interned.
370\end{describe}
371
0b80399d 372\begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
dea4d055
MW
373 Returns a string containing the qualifiers listed in @<qualifiers> in C
374 syntax, with a space after each. In particular, if @<qualifiers> is
375 non-null then the final character of the returned string will be a space.
376\end{describe}
377
ff4e398b
MW
378\begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
379 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
380
381 There is a standard method, which deals with many qualifiers. Additional
382 methods exist for qualifier keywords which need special handling, such as
383 @|:atomic|; they are not listed here explicitly.
384
87883222
MW
385 \begin{describe}{meth}{keyword}
386 {c-qualifier-keyword @<keyword> @> @<string>}
ff4e398b
MW
387 Returns the @<keyword>'s print-name, in lower case. This is sufficient
388 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
389 \end{describe}
390\end{describe}
391
392\begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
393 Return the @<c-type>'s qualifiers, as a list of C keyword names.
394\end{describe}
395
31d4431b 396
b7fcf941
MW
397\subsection{Storage specifiers} \label{sec:clang.ctypes.specs}
398
399Some declaration specifiers, mostly to do with how to store the specific
400object in question, are determinedly `top level', and, unlike qualifiers,
401don't stay attached to the base type when acted on by declarator operators.
402Sod calls these `storage specifiers', though no such category exists in the C
403standard. They have their own protocol, which is similar in many ways to
404that of C types.
405
406Every Lisp keyword is potentially a storage specifier, which simply maps to
407its lower-case print name in C; but other storage specifiers may be more
408complicated objects.
409
410\begin{describe}{cls}
411 {c-storage-specifiers-type (c-type) \&key :subtype :specifiers}
412 A type which carries storage specifiers. The @<subtype> is the actual
413 type, and may be any C type; the @<specifiers> are a list of
414 storage-specifier objects.
415
416 The type specifier @|(specs @<subtype> @<specifier>^*)| wraps the
417 @<subtype> in a @|c-storage-specifiers-type|, carrying the @<specifier>s,
418 which are a list of storage specifiers in S-expression notation.
419\end{describe}
420
421\begin{describe}{fun}{c-type-specifiers @<type> @> @<list>}
422 Returns the list of type specifiers attached to the @<type> object, which
423 must be a @|c-storage-specifiers-type|.
424\end{describe}
425
426\begin{describe}{mac}
427 {define-c-storage-specifier-syntax @<name> @<lambda-list> \\ \ind
428 @[[ @<declaration>^* @! @<doc-string> @]] \\
429 @<form>^* \-
430 \nlret @<name>}
431
432 Defines the symbol @<name> as a new storage-specifier operator. When a
433 list of the form @|(@<name> @<argument>^*)| is used as a storage specifier,
434 the @<argument>s are bound to fresh variables according to the
435 @<lambda-list> (a destructuring lambda-list) and the @<form>s evaluated in
436 order in the resulting lexical environment as an implicit @<progn>. The
437 value should be a Lisp form which will evaluate to the storage-specifier
438 object described by the arguments.
439
440 The @<form>s may call @|expand-c-storage-specifier| in order to recursively
441 expand storage specifiers among its arguments.
442\end{describe}
443
444\begin{describe}{gf}{expand-c-storage-specifier @<spec> @> @<form>}
445 Returns the Lisp form that @<spec> expands to within @|(c-type (specs
446 @<subtype> @<spec>))|.
447
588e0b33 448 If @<spec> is a list, then \descref{gf}{expand-c-storage-specifier-form} is
b7fcf941
MW
449 invoked.
450\end{describe}
451
452\begin{describe}{gf}{expand-c-storage-specifier-form @<spec> @> @<form>}
453 Returns the Lisp form that @|(@<head> . @<tail>)| expands to within
454 @|(c-type (specs @<subtype> (@<head> . @<tail>)))|.
455\end{describe}
456
457\begin{describe}{gf}{pprint-c-storage-specifier @<spec> @<stream>}
458\end{describe}
459
460\begin{describe}{gf}
461 {print-c-storage-specifier @<stream> @<spec>
462 \&optional @<colon> @<atsign>}
463\end{describe}
464
465\begin{describe}{fun}{wrap-c-type @<func> @<base-type> @> @<c-type>}
466 Apply @<func> to the underlying C type of @<base-type> to create a new
467 `wrapped' type, and attach the storage specifiers of @<base-type> to the
468 wrapped type.
469
470 If @<base-type> is \emph{not} a @|c-storage-specifiers-type|, then return
471 @|(funcall @<func> @<base-type>)|. Otherwise, return a new
472 @|c-storage-specifiers-type|, with the same specifiers, but whose subtype
473 is the result of applying @<func> to the subtype of the original
474 @<base-type>.
475\end{describe}
476
db56b1d3
MW
477\begin{describe}{cls}{alignas-storage-specifier () \&key :alignment}
478 The class of @|_Alignas| storage specifiers; an instance denotes the
479 specifier @|_Alignas(@<alignment>)|. The @<alignment> parameter may be any
480 printable object, but is usually a string or C fragment.
481
482 The storage specifier form @|(alignas @<alignment>)| returns a storage
483 specifier @|_Alignas(@<alignment>)|, where @<alignment> is evaluated.
484\end{describe}
485
31d4431b 486
1f7d590d 487\subsection{Leaf types} \label{sec:clang.c-types.leaf}
dea4d055
MW
488
489A \emph{leaf type} is a type which is not defined in terms of another type.
490In Sod, the leaf types are
491\begin{itemize}
492\item \emph{simple types}, including builtin types like @|int| and @|char|,
493 as well as type names introduced by @|typename|, because Sod isn't
494 interested in what the type name means, merely that it names a type; and
495\item \emph{tagged types}, i.e., enum, struct and union types which are named
496 by a keyword identifying the kind of type, and a \emph{tag}.
497\end{itemize}
498
499\begin{describe}{cls}{simple-c-type (qualifiable-c-type)
500 \&key :qualifiers :name}
501 The class of `simple types'; an instance denotes the type @<qualifiers>
502 @<name>.
503
504 A simple type object maintains a \emph{name}, which is a string whose
505 contents are the C name for the type. The initarg @|:name| may be used to
506 provide this name when calling @|make-instance|.
507
508 Two simple type objects are equal if and only if they have @|string=| names
509 and matching qualifiers.
510
a13386ba
MW
511 \def\x#1{\desclabel{const}{c-type-#1}}
512 \x{bool} \x{char} \x{wchar-t} \x{signed-char} \x{unsigned-char} \x{short}
513 \x{unsigned-short} \x{int} \x{unsigned} \x{long} \x{unsigned-long}
514 \x{long-long} \x{unsigned-long-long} \x{size-t} \x{ptrdiff-t} \x{float}
515 \x{double} \x{long-double} \x{float-imaginary} \x{double-imaginary}
516 \x{long-double-imaginary} \x{float-complex} \x{double-complex}
517 \x{long-double-complex} \x{va-list} \x{void}
0a8f78ec
MW
518 \crossproduct\x{{{int}{uint}}{{}{-least}{-fast}}{{8}{16}{32}{64}}{{-t}}}
519 \crossproduct\x{{{int}{uint}}{{ptr}{max}}{{-t}}}
520
dea4d055 521 A number of symbolic type specifiers for builtin types are predefined as
64d1ecf7 522 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
dea4d055
MW
523 @|define-simple-c-type|, so can be used to construct qualified types.
524\end{describe}
525
526\begin{table}
fcb6c0fb
MW
527 \begin{tabular}[C]{ll} \hlx*{hv}
528 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
529 @|void| & @|void| \\ \hlx{v}
a4434457
MW
530 @|_Bool| & @|bool| \\ \hlx{v}
531 @|char| & @|char| \\ \hlx{}
a4434457 532 @|wchar_t| & @|wchar-t| \\ \hlx{v}
d21ac4d9
MW
533 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
534 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
dea4d055 535 @|short| & @|short|, @|signed-short|, @|short-int|,
fcb6c0fb 536 @|signed-short-int| @|sshort| \\ \hlx{}
dea4d055 537 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
fcb6c0fb 538 @|ushort| \\ \hlx{v}
dea4d055 539 @|int| & @|int|, @|signed|, @|signed-int|,
fcb6c0fb
MW
540 @|sint| \\ \hlx{}
541 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
dea4d055 542 @|long| & @|long|, @|signed-long|, @|long-int|,
fcb6c0fb 543 @|signed-long-int|, @|slong| \\ \hlx{}
dea4d055 544 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
fcb6c0fb 545 @|ulong| \\ \hlx{v}
dea4d055 546 @|long long| & @|long-long|, @|signed-long-long|,
d21ac4d9 547 @|long-long-int|, \\ \hlx{}
dea4d055
MW
548 & \qquad @|signed-long-long-int|,
549 @|llong|, @|sllong| \\ \hlx{v}
550 @|unsigned long long|
551 & @|unsigned-long-long|, @|unsigned-long-long-int|,
fcb6c0fb 552 @|ullong| \\ \hlx{v}
d21ac4d9
MW
553 @|size_t| & @|size-t| \\ \hlx{}
554 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
0a8f78ec
MW
555 @|int$n$_t| & @|int$n$-t|
556 (for $n \in \{ @|8|, @|16|, @|32|, @|64| \}$)
557 \\ \hlx{}
558 @|uint$n$_t| & @|uint$n$-t| \\ \hlx{}
559 @|int_least$n$_t| & @|int_least$n$-t| \\ \hlx{}
560 @|uint_least$n$_t| & @|uint_least$n$-t| \\ \hlx{}
561 @|int_fast$n$_t| & @|int_fast$n$-t| \\ \hlx{}
562 @|uint_fast$n$_t| & @|uint_fast$n$-t| \\ \hlx{v}
563 @|intptr_t| & @|intptr-t| \\ \hlx{}
564 @|uintptr_t| & @|uintptr-t| \\ \hlx{}
565 @|intmax_t| & @|intmax-t| \\ \hlx{}
566 @|uintmax_t| & @|uintmax-t| \\ \hlx{v}
fcb6c0fb 567 @|float| & @|float| \\ \hlx{}
a4434457
MW
568 @|double| & @|double| \\ \hlx{}
569 @|long double| & @|long-double| \\ \hlx{v}
570 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
a4434457 571 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
a4434457 572 @|long double _Imaginary|
d21ac4d9
MW
573 & @|long-double-imaginary| \\ \hlx{v}
574 @|float _Complex| & @|float-complex| \\ \hlx{}
575 @|double _Complex| & @|double-complex| \\ \hlx{}
a4434457 576 @|long double _Complex|
d21ac4d9
MW
577 & @|long-double-complex| \\ \hlx{v}
578 @|va_list| & @|va-list| \\ \hlx*{vh}
dea4d055
MW
579 \end{tabular}
580 \caption{Builtin symbolic type specifiers for simple C types}
64d1ecf7 581 \label{tab:codegen.c-types.simple}
dea4d055
MW
582\end{table}
583
1f7d590d
MW
584\begin{describe}{fun}
585 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
dea4d055
MW
586 Return the (unique interned) simple C type object for the C type whose name
587 is @<name> (a string) and which has the given @<qualifiers> (a list of
588 keywords).
589\end{describe}
590
1f7d590d
MW
591\begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
592 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
dea4d055
MW
593 string.
594\end{describe}
595
1f7d590d 596\begin{describe}{mac}
020b9e2b 597 {define-simple-c-type
14adef2f
MW
598 \=@{ @<name> @! (@<name>^+) @}
599 @{ @<string> @! (@<string>^*) @} \+\\
020b9e2b
MW
600 @[[ @|:export| @<export-flag> @]]
601 \-\nlret @<name>}
dea4d055
MW
602 Define type specifiers for a new simple C type. Each symbol @<name> is
603 defined as a symbolic type specifier for the (unique interned) simple C
14adef2f
MW
604 type whose name is the value of (the first) @<string>. Further, each
605 @<name> is defined to be a type operator: the type specifier @|(@<name>
dea4d055 606 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
14adef2f
MW
607 name is (the first) @<string> and which has the @<qualifiers> (which are
608 evaluated).
e43d3532 609
14adef2f 610 Each of the @<string>s is associated with the resulting type for retrieval
e8d70b1b 611 by \descref{fun}{find-simple-c-type}. Furthermore, a variable
14adef2f
MW
612 @|c-type-@<name>| is defined, for the first @<name> only, and initialized
613 with the newly constructed C type object.
e43d3532
MW
614
615 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
616 all of the @<name>s, are exported from the current package.
dea4d055
MW
617\end{describe}
618
14adef2f
MW
619\begin{describe}{fun}
620 {find-simple-c-type @<string> @> @{ @<simple-c-type> @! @|nil| @}}
621 If @<string> is the name of a simple C type, as established by the
e8d70b1b 622 \descref{mac}{define-simple-c-type}[macro], then return the corresponding
14adef2f
MW
623 @|simple-c-type| object; otherwise, return @|nil|.
624\end{describe}
625
dea4d055
MW
626\begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
627 \&key :qualifiers :tag}
628 Provides common behaviour for C tagged types. A @<tag> is a string
629 containing a C identifier.
630
631 Two tagged types are equal if and only if they have the same class, their
632 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
633 subclasses may have additional methods on @|c-type-equal-p| which impose
634 further restrictions.)
635\end{describe}
636\begin{boxy}[Bug]
637 Sod maintains distinct namespaces for the three kinds of tagged types. In
638 C, there is only one namespace for tags which is shared between enums,
639 structs and unions.
640\end{boxy}
641
a75cd932
MW
642\begin{describe}{gf}{c-type-tag @<c-type> @> @<keyword>}
643\end{describe}
644
645\begin{describe}{fun}
646 {make-c-tagged-type @<kind> @<tag> \&optional @<qualifiers>
647 @> @<tagged-type>}
648\end{describe}
649
1f7d590d
MW
650\begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
651 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
652 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
653 should return their own classification symbols. It is intended that
654 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
655 syntax.\footnote{%
dea4d055
MW
656 Alas, C doesn't provide a syntactic category for these keywords;
657 \Cplusplus\ calls them a @<class-key>.} %
1f7d590d
MW
658 There is a method defined for each of the built-in tagged type classes
659 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
660\end{describe}
661
662\begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
663 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
664 naming a kind of tagged type, return the name of the corresponding C
665 type class as a symbol.
dea4d055
MW
666\end{describe}
667
668\begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
669 Represents a C enumerated type. An instance denotes the C type @|enum|
670 @<tag>. See the direct superclass @|tagged-c-type| for details.
671
672 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
673 interned) enumerated type with the given @<tag> and @<qualifier>s (all
674 evaluated).
675\end{describe}
e38e8367 676
1f7d590d
MW
677\begin{describe}{fun}
678 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
dea4d055
MW
679 Return the (unique interned) C type object for the enumerated C type whose
680 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
681 keywords).
682\end{describe}
683
684\begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
685 Represents a C structured type. An instance denotes the C type @|struct|
686 @<tag>. See the direct superclass @|tagged-c-type| for details.
687
688 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
689 interned) structured type with the given @<tag> and @<qualifier>s (all
690 evaluated).
691\end{describe}
e38e8367 692
1f7d590d
MW
693\begin{describe}{fun}
694 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
dea4d055
MW
695 Return the (unique interned) C type object for the structured C type whose
696 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
697 keywords).
698\end{describe}
699
700\begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
701 Represents a C union type. An instance denotes the C type @|union|
702 @<tag>. See the direct superclass @|tagged-c-type|
703 for details.
704
705 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
706 interned) union type with the given @<tag> and @<qualifier>s (all
707 evaluated).
708\end{describe}
1f7d590d
MW
709\begin{describe}{fun}
710 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
dea4d055
MW
711 Return the (unique interned) C type object for the union C type whose tag
712 is @<tag> (a string) and which has the given @<qualifiers> (a list of
713 keywords).
714\end{describe}
715
31d4431b 716
1f7d590d
MW
717\subsection{Compound C types} \label{sec:code.c-types.compound}
718
719Some C types are \emph{compound types}: they're defined in terms of existing
720types. The classes which represent compound types implement a common
721protocol.
dea4d055 722
1f7d590d
MW
723\begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
724 Returns the underlying type of a compound type @<c-type>. Precisely what
725 this means depends on the class of @<c-type>.
dea4d055
MW
726\end{describe}
727
31d4431b 728
ae0f15ee
MW
729\subsection{Atomic types} \label{sec:clang.c-types.atomic}
730
731Atomic types are compound types. The subtype of an atomic type is simply the
732underlying type of the object. Note that, as far as Sod is concerned, atomic
733types are not the same as atomic-qualified types: you must be consistent
734about which you use.
735
736\begin{describe}{cls}
737 {c-atomic-type (qualifiable-c-type) \&key :qualifiers :subtype}
738 Represents an atomic type. An instance denotes the C type
739 @|_Atomic(@<subtype>)|.
740
741 The @<subtype> may be any C type.\footnote{%
742 C does not permit atomic function or array types.} %
743 Two atomic types are equal if and only if their subtypes are equal and they
744 have matching qualifiers. It is possible, though probably not useful, to
745 have an atomic-qualified atomic type.
746
747 The type specifier @|(atomic @<type-spec> @<qualifier>^*)| returns a type
748 qualified atomic @<subtype>, where @<subtype> is the type specified by
749 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
750 evaluated).
751\end{describe}
752
753\begin{describe}{fun}
754 {make-atomic-type @<c-type> \&optional @<qualifiers> @> @<c-atomic-type>}
755 Return an object describing the type qualified atomic @<subtype>. If
756 @<subtype> is interned, then the returned atomic type object is interned
757 also.
758\end{describe}
759
760
1f7d590d
MW
761\subsection{Pointer types} \label{sec:clang.c-types.pointer}
762
cf7f1f46
MW
763Pointers are compound types. The subtype of a pointer type is the type it
764points to.
1f7d590d
MW
765
766\begin{describe}{cls}
767 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
dea4d055
MW
768 Represents a C pointer type. An instance denotes the C type @<subtype>
769 @|*|@<qualifiers>.
770
771 The @<subtype> may be any C type. Two pointer types are equal if and only
772 if their subtypes are equal and they have matching qualifiers.
773
774 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
775 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
776 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
777 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
778 star @`*'.
779
fcb6c0fb 780 The symbol @|string| is a type specifier for the type pointer to
dea4d055
MW
781 characters; the symbol @|const-string| is a type specifier for the type
782 pointer to constant characters.
783\end{describe}
1f7d590d
MW
784
785\begin{describe}{fun}
786 {make-pointer-type @<c-type> \&optional @<qualifiers>
787 @> @<c-pointer-type>}
fcb6c0fb 788 Return an object describing the type qualified pointer to @<subtype>.
dea4d055
MW
789 If @<subtype> is interned, then the returned pointer type object is
790 interned also.
791\end{describe}
792
31d4431b 793
1f7d590d
MW
794\subsection{Array types} \label{sec:clang.c-types.array}
795
fcb6c0fb
MW
796Arrays implement the compound-type protocol. The subtype of an array type is
797the array element type.
1f7d590d 798
dea4d055
MW
799\begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
800 Represents a multidimensional C array type. The @<dimensions> are a list
801 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
802 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
803 individual dimension specifier is either a string containing a C integral
804 constant expression, or nil which is equivalent to an empty string. Only
805 the first (outermost) dimension $d_0$ should be empty.
806
807 C doesn't actually have multidimensional arrays as a primitive notion;
808 rather, it permits an array (with known extent) to be the element type of
809 an array, which achieves an equivalent effect. C arrays are stored in
810 row-major order: i.e., if we write down the indices of the elements of an
811 array in order of ascending address, the rightmost index varies fastest;
812 hence, the type constructed is more accurately an array of $d_0$ arrays of
813 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
814 continue to abuse terminology and refer to multidimensional arrays.
815
816 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
817 multidimensional array with the given @<dimension>s whose elements have the
818 type specified by @<type-spec>. If no dimensions are given then a
819 single-dimensional array with unspecified extent. The synonyms @|array|
820 and @|vector| may be used in place of the brackets @`[]'.
821\end{describe}
1f7d590d
MW
822
823\begin{describe}{fun}
824 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
dea4d055
MW
825 Return an object describing the type of arrays with given @<dimensions> and
826 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
827 argument is a list whose elements are strings or nil; see the description
828 of the class @|c-array-type| above for details.
829\end{describe}
1f7d590d
MW
830
831\begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
832 Returns the dimensions of @<c-type>, an array type, as an immutable list.
833\end{describe}
834
31d4431b 835
1f7d590d
MW
836\subsection{Function types} \label{sec:clang.c-types.fun}
837
fcb6c0fb
MW
838Function types implement the compound-type protocol. The subtype of a
839function type is the type of the function's return value.
840
1f7d590d 841\begin{describe}{cls}{argument}
fcb6c0fb 842 Represents an ordinary function argument.
1f7d590d
MW
843\end{describe}
844
845\begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
fcb6c0fb
MW
846 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
847 not return nil.
1f7d590d
MW
848\end{describe}
849
ced609b8
MW
850\begin{describe}{fun}
851 {make-argument @<name> @<c-type> \&optional @<default> @> @<argument>}
fcb6c0fb
MW
852 Construct and a return a new @<argument> object. The argument has type
853 @<c-type>, which must be a @|c-type| object, and is named @<name>.
854
855 The @<name> may be nil to indicate that the argument has no name: in this
856 case the argument will be formatted as an abstract declarator, which is not
857 suitable for function definitions. If @<name> is not nil, then the
858 @<name>'s print representation, with @|*print-escape*| nil, is used as the
859 argument name.
ced609b8
MW
860
861 A @<default> may be supplied. If the argument is used in a
e8d70b1b
MW
862 keyword-argument list (e.g., in a \descref{cls}{c-keyword-function-type}
863 [object]), and the @<default> value is provided and non-nil, then its
ced609b8
MW
864 (unescaped) printed representation is used to provide a default value if
865 the keyword argument is not supplied by the caller.
1f7d590d
MW
866\end{describe}
867
52e2a70f 868\begin{describe*}
31d4431b 869 {\dhead{fun}{argument-name @<argument> @> @<name>}
ced609b8
MW
870 \dhead{fun}{argument-type @<argument> @> @<c-type>}
871 \dhead{fun}{argument-default @<argument> @> @<default>}}
872 Accessor functions for @|argument| objects. They return the appropriate
873 component of the object, as set by to @|make-argument|. The @<default> is
874 nil if no default was provided to @|make-argument|.
52e2a70f 875\end{describe*}
dea4d055 876
fcb6c0fb 877\begin{describe}{gf}
1f7d590d 878 {commentify-argument-name @<name> @> @<commentified-name>}
fcb6c0fb
MW
879 Convert the argument name @<name> so that it's suitable to declare the
880 function in a header file.
dea4d055 881
fcb6c0fb
MW
882 Robust header files shouldn't include literal argument names in
883 declarations of functions or function types, since this restricts the
884 including file from defining such names as macros. This generic function
885 is used to convert names into a safe form.
886
87883222
MW
887 \begin{describe}{meth}{null}
888 {commentify-argument-name (@<name> null) @> nil}
fcb6c0fb
MW
889 Returns nil: if the argument name is already omitted, it's safe for use
890 in a header file.
891 \end{describe}
87883222
MW
892 \begin{describe}{meth}{t}
893 {commentify-argument-name (@<name> t) @> @<string>}
fcb6c0fb
MW
894 Returns the print form of @<name> wrapped in a C comment, as
895 @`/*@<name>*/'.
896 \end{describe}
1f7d590d
MW
897\end{describe}
898
899\begin{describe}{fun}
fcb6c0fb
MW
900 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
901 Convert the @<arguments> list so that it's suitable for use in a header
902 file.
903
904 The @<arguments> list should be a list whose items are @|argument| objects
905 or the keyword @|:ellipsis|. The return value is a list constructed as
906 follows. For each @|argument| object in the input list, there is a
907 corresponding @|argument| object in the returned list, with the same type,
908 and whose name is the result of @|commentify-argument-name| applied to the
909 input argument name; an @|:ellipsis| in the input list is passed through
910 unchanged.
1f7d590d
MW
911\end{describe}
912
fcb6c0fb
MW
913\begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
914 Represents C function types. An instance denotes the type of a C
915 function which accepts the @<arguments> and returns @<subtype>.
916
917 The @<arguments> are a possibly empty list. All but the last element of
918 the list must be @|argument| objects; the final element may instead be the
919 keyword @|:ellipsis|, which denotes a variable argument list.
920
921 An @<arguments> list consisting of a single argument with type @|void| is
922 converted into an empty list. On output as C code, an empty argument list
923 is written as @|void|. It is not possible to represent a pre-ANSI C
924 function without prototypes.
925
926 Two function types are considered to be the same if their return types are
927 the same, and their argument lists consist of arguments with the same type,
928 in the same order, and either both or neither argument list ends with
929 @|:ellipsis|; argument names are not compared.
930
ed76585e
MW
931 The type specifier
932 \begin{prog}
933 (fun @<return-type>
934 @{ (@<arg-name> @<arg-type>) @}^*
935 @[:ellipsis @! . @<form>@])
936 \end{prog}
937 constructs a function type. The function has the subtype @<return-type>.
938 The remaining items in the type-specifier list are used to construct the
939 argument list. The argument items are a possibly improper list, beginning
940 with zero or more \emph{explicit arguments}: two-item
941 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
942 is constructed with the given name (evaluated) and type. Following the
943 explicit arguments, there may be
fcb6c0fb
MW
944 \begin{itemize}
945 \item nothing, in which case the function's argument list consists only of
946 the explicit arguments;
947 \item the keyword @|:ellipsis|, as the final item in the type-specifier
948 list, indicating a variable argument list may follow the explicit
949 arguments; or
950 \item a possibly-improper list tail, beginning with an atom either as a
951 list item or as the final list cdr, indicating that the entire list tail
2249baa7 952 is a Lisp expression which is to be evaluated to compute the remaining
fcb6c0fb
MW
953 arguments.
954 \end{itemize}
955 A tail expression may return a list of @|argument| objects, optionally
956 followed by an @|:ellipsis|.
957
958 For example,
959 \begin{prog}
020b9e2b 960 (c-type (fun \=(lisp (c-type-subtype other-func)) \+\\
fcb6c0fb
MW
961 ("first" int) . (c-function-arguments other-func))
962 \end{prog}
963 evaluates to a function type like @|other-func|, only with an additional
964 argument of type @|int| added to the front of its argument list. This
965 could also have been written
966 \begin{prog}
020b9e2b
MW
967 (let (\=(args (c-function-arguments other-func)) \+\\
968 (ret (c-type-subtype other-func))) \-\\ \ind
fcb6c0fb
MW
969 (c-type (fun \=(lisp ret) ("first" int) . args)
970 \end{prog}
1f7d590d
MW
971\end{describe}
972
ced609b8
MW
973\begin{describe}{cls}
974 {c-keyword-function-type (c-function-type)
975 \&key :subtype :arguments :keywords}
976 Represents `functions' which accept keyword arguments. Of course, actual C
977 functions can't accept keyword arguments directly, but this type is useful
978 for describing messages and methods which deal with keyword arguments.
979
980 An instance denotes the type of C function which accepts the position
981 argument list @<arguments>, and keyword arguments from the @<keywords>
982 list, and returns @<subtype>. Either or both of the @<arguments> and
983 @<keywords> lists may be empty. (It is important to note the distinction
984 between a function which doesn't accept keyword arguments, and one which
985 does but for which no keyword arguments are defined. In particular, the
986 latter function can be changed later to accept a keyword argument without
987 breaking compatibility with old code.) The @<arguments> and @<keywords>
988 lists must \emph{not} contain @|:ellipsis| markers: a function can accept
989 keywords, or a variable-length argument tail, but not both.
990
991 Keyword arguments may (but need not) have a \emph{default value} which is
992 supplied to the function body if the keyword is omitted.
993
994 Keyword functions are never considered to be the same as ordinary
995 functions. Two keyword function types are considered to be the same if
e38e8367
MW
996 their return types are the same, and their positional argument lists
997 consist of arguments with the same type, in the same order: the keyword
998 arguments accepted by the functions is not significant.
ced609b8
MW
999
1000 Keyword functions are constructed using an extended version of the @|fun|
1001 specifier used for ordinary C function types. The extended syntax is as
1002 follows.
1003 \begin{prog}
1004 (fun \=@<return-type>
020b9e2b 1005 @{ (@<arg-name> @<arg-type>) @}^* \+\\
ced609b8 1006 @{ \=:keys @{ (@<kw-name> @<kw-type> @[@<kw-default>@]) @}^*
020b9e2b 1007 @[. @<form>@] @! \+\\
ced609b8
MW
1008 . @<form> @}
1009 \end{prog}
1010 where either the symbol @|:keys| appears literally in the specifier, or the
1011 @<form> evaluates to a list containing the symbol @|:keys|. (If neither of
1012 these circumstances obtains, then the specifier constructs an ordinary
1013 function type.)
1014
e8d70b1b 1015 See the description of \descref{cls}{c-function-type} for how a trailing
ced609b8
MW
1016 @<form> is handled.
1017
1018 The list of @<arg-name>s and @<arg-type>s describes the positional
1019 arguments. The list of @<kw-name>s, @<kw-type>s and @<kw-defaults>s
1020 describes the keyword arguments.
1021\end{describe}
1022
1f7d590d 1023\begin{describe}{fun}
fcb6c0fb
MW
1024 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
1025 Construct and return a new function type, returning @<subtype> and
1026 accepting the @<arguments>.
ced609b8
MW
1027
1028 If the @<arguments> list contains a @|:keys| marker, then a
e8d70b1b 1029 \descref{cls}{c-keyword-function-type}[object] is returned: those arguments
ced609b8
MW
1030 preceding the @|:keys| marker form the positional argument list, and those
1031 following the marker form the list of keyword arguments.
1032\end{describe}
1033
1034\begin{describe}{fun}
1035 {make-keyword-function-type @<subtype> @<arguments> @<keywords>
1036 \nlret @<c-keyword-function-type>}
1037 Construct and return a new keyword-function type, returning @<subtype> and
1038 accepting the @<arguments> and @<keywords>.
fcb6c0fb
MW
1039\end{describe}
1040
1041\begin{describe}{gf}
1042 {c-function-arguments @<c-function-type> @> @<arguments>}
e048fa59 1043 Return the (non-keyword) argument list of the @<c-function-type>.
1f7d590d
MW
1044\end{describe}
1045
a75cd932
MW
1046\begin{describe}{gf}
1047 {c-function-keywords @<c-function-type> @> @<keywords>}
1048 Return the keyword-argument list of the @<c-function-type>.
1049\end{describe}
1050
1f7d590d 1051\begin{describe}{fun}
fcb6c0fb
MW
1052 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
1053 Return a commentified version of the @<c-function-type>.
1054
1055 The returned type has the same subtype as the given type, and the argument
1056 list of the returned type is the result of applying
1057 @|commentify-argument-names| to the argument list of the given type.
dea4d055
MW
1058\end{describe}
1059
074650bc
MW
1060\begin{describe}{fun}{reify-variable-argument-tail @<arguments> @> @<list>}
1061 If the @<argument> list contains an @|:ellipsis| marker, then replace it
1062 with a @|va_list|. The name for the new argument, if any, is taken from
e8d70b1b 1063 the \descref{var}{*sod-ap*}[variable]. The new list is returned; the
074650bc
MW
1064 original list is not modified, but may share structure with the new list.
1065\end{describe}
1066
84b9d17a
MW
1067\begin{describe}{fun}
1068 {merge-keyword-lists @<what-function> @<lists> @> @<list>}
ced609b8
MW
1069 Merge a number of keyword-argument lists together and return the result.
1070
84b9d17a
MW
1071 The @<what-function> is either nil or a function designator; see below.
1072
1073 The @<lists> parameter is a list consisting of a number of
1074 @|(@<report-function> . @<args>)| pairs: in each pair, @<report-function>
1075 is either nil or a function designator, and @<args> is a list of
e8d70b1b 1076 \descref{cls}{argument} objects.
ced609b8
MW
1077
1078 The resulting list contains exactly one argument for each distinct argument
1079 name appearing in the input @<lists>; this argument will contain the
1080 default value from the earliest occurrence in the input @<lists> of an
1081 argument with that name.
1082
84b9d17a
MW
1083 If the same name appears multiple times with different types, a continuable
1084 error will be signalled, and one of the conflicting argument types will be
1085 chosen arbitrarily. The @<what-function> will be called to establish
1086 information which will be reported to the user. It will be called with no
1087 arguments and is expected to return two values:
1088 \begin{itemize}
1089 \item a file location @<floc> or other object acceptable to
e8d70b1b 1090 \descref{gf}{file-location}, to be used as the location of the main
84b9d17a
MW
1091 error; and
1092 \item an object @<what>, whose printed representation should be a noun
1093 phrase describing the object for which the argument lists are being
1094 combined.
1095 \end{itemize}
1096 The phrasing of the error message is `type mismatch in @<what>'. Either,
1097 or both, of @<floc> and @<what> may be nil, though this is considered poor
1098 practice; if @<what-function> is nil, this is equivalent to a function
1099 which returns two nil values. Following the error, the @<report-function>s
1100 for the @<args> lists containing the conflicting argument objects are
1101 called, in an arbitrary order, with a single argument which is the
1102 offending @|argument| object; the function is expected to issue information
e8d70b1b 1103 messages (see \descref{fun}{info}) to give more detail for diagnosing the
84b9d17a
MW
1104 conflict. If a @<report-function> is nil, then nothing happens; this is
1105 considered poor practice.
ced609b8
MW
1106\end{describe}
1107
678b6c0f
MW
1108\begin{describe}{fun}
1109 {pprint-c-function-type @<return-type> @<stream>
1110 @<print-args> @<print-kernel>}
1111 Provides the top-level structure for printing C function types.
1112
1113 Output is written to @<stream> to describe a function type returning
1114 @<return-type>, whose declarator kernel (containing the name, and any
1115 further type operands) will be printed by @<print-kernel>, and whose
1116 arguments, if any, will be printed by @<print-args>.
1117
1118 The @<print-kernel> function is a standard kernel-printing function
e8d70b1b 1119 following the \descref{gf}{pprint-c-type}[protocol].
678b6c0f
MW
1120
1121 The @<print-args> function is given a single argument, which is the
1122 @<stream> to print on. It should not print the surrounding parentheses.
1123
1124 The output written to @<stream> looks approximately like
1125 \begin{prog}
1126 @<return-type> @<kernel>(@<args>)
1127 \end{prog}
1128\end{describe}
1129
1130\begin{describe}{fun}{pprint-argument-list @<args> @<stream> @> @<flag>}
1131 Print an argument list to @<stream>.
1132
e8d70b1b 1133 The @<args> is a list of \descref{cls}{argument}[objects], optionally
678b6c0f
MW
1134 containing an @|:ellipsis| marker. The function returns true if any
1135 arguments were actually printed.
1136\end{describe}
1137
31d4431b 1138
1f7d590d
MW
1139\subsection{Parsing C types} \label{sec:clang.c-types.parsing}
1140
756f4928
MW
1141\begin{describe}{fun}
1142 {parse-c-type @<scanner>
1143 @> @<result> @<success-flag> @<consumed-flag>}
1144\end{describe}
1145
1146\begin{describe}{fun}
1147 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
1148 \nlret @<result> @<success-flag> @<consumed-flag>}
1149\end{describe}
1150
31d4431b 1151
756f4928
MW
1152\subsection{Class types} \label{sec:clang.c-types.class}
1153
1154\begin{describe}{cls}
1155 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
1156\end{describe}
1157
1158\begin{describe*}
1159 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
1160 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
1161\end{describe*}
1162
1163\begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
1164\end{describe}
1165
1166\begin{describe}{fun}
1167 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
1168\end{describe}
1169
756f4928
MW
1170\begin{describe}{fun}{find-sod-class @<name> @> @<class>}
1171\end{describe}
1172
1173\begin{describe}{fun}{record-sod-class @<class>}
1174\end{describe}
1175
1f7d590d
MW
1176%%%--------------------------------------------------------------------------
1177\section{Generating C code} \label{sec:clang.codegen}
1178
fcb6c0fb
MW
1179This section deals with Sod's facilities for constructing and manipulating C
1180expressions, declarations, instructions and definitions.
1181
31d4431b 1182
fcb6c0fb
MW
1183\subsection{Temporary names} \label{sec:clang.codegen.temporaries}
1184
1185Many C-level objects, especially ones with external linkage or inclusion in a
1186header file, are assigned names which are simple strings, perhaps fixed ones,
1187perhaps constructed. Other objects don't need meaningful names, and
1188suitably unique constructed names would be tedious and most likely rather
1189opaque. Therefore Sod has an ability to construct \emph{temporary names}.
1190
1191These aren't temporary in the sense that they name C objects which have
1192limited lifetimes at runtime. Rather, the idea is that the names be
1193significant only to small pieces of Lisp code, which will soon forget about
1194them.
1195
1196\subsubsection{The temporary name protocol}
1197Temporary names are represented by objects which implement a simple protocol.
1198
1199\begin{describe}{gf}{format-temporary-name @<var> @<stream>}
1200\end{describe}
1201
1202\begin{describe*}
1203 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
73786167 1204 \dhead{gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
fcb6c0fb
MW
1205\end{describe*}
1206
1207\subsubsection{Temporary name objects}
1208
1209\begin{describe}{cls}{temporary-name () \&key :tag}
1210 A temporary name object. This is the root of a small collection of
1211 subclasses, but is also usable on its own.
1212\end{describe}
1213
a75cd932
MW
1214\begin{describe}{gf}{temp-tag @<name> @> @<tag>}
1215\end{describe}
1216
87883222 1217\begin{describe}{meth}{temporary-name}
fcb6c0fb
MW
1218 {commentify-argument-name (@<name> temporary-name) @> nil}
1219\end{describe}
1220
1221\begin{table}
1222 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
6e26f47b
MW
1223 \thd{Class} & \thd{Name format} \\ \hlx{vhv}
1224 temporary-name & @<tag> \\
1225 temporary-argument & sod__a@<tag> \\
1226 temporary-function & sod__f@<tag> \\
1227 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
fcb6c0fb
MW
1228 \end{tabular}
1229 \caption{Temporary name formats}
1230 \label{tab:codegen.codegen.temps-format}
1231\end{table}
1232
1233\begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
1234\end{describe}
1235
1236\begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
1237\end{describe}
1238
1239\begin{describe}{fun}{temporary-function @> @<name>}
1240\end{describe}
1241
1242\begin{describe}{cls}
1243 {temporary-variable (temporary-name) \&key :tag :in-use-p}
1244\end{describe}
1245
1246\subsubsection{Well-known `temporary' names}
1247
1248\begin{table}
0dfd5c6d
MW
1249 \def\x#1{\desclabel{var}{#1}}
1250 \x{*sod-ap*} \x{*sod-master-ap*} \x{*null-pointer*}
fcb6c0fb 1251 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
6e26f47b
MW
1252 \thd{Variable} & \thd{Name format} \\ \hlx{vhv}
1253 {}*sod-ap* & sod__ap \\
1254 {}*sod-master-ap* & sod__master_ap \\
1255 {}*null-pointer* & NULL \\ \hlx*{vh}
fcb6c0fb
MW
1256 \end{tabular}
1257 \caption{Well-known temporary names}
1258 \label{tab:codegen.codegen.well-known-temps}
1259\end{table}
1260
31d4431b 1261
fcb6c0fb
MW
1262\subsection{Instructions} \label{sec:clang.codegen.insts}
1263
1264\begin{describe}{cls}{inst () \&key}
1265\end{describe}
1266
1267\begin{describe}{gf}{inst-metric @<inst>}
1268\end{describe}
1269
1270\begin{describe}{mac}
020b9e2b
MW
1271 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
1272 @[[ @<declaration>^* @! @<doc-string> @]] \\
1273 @<form>^*
1274 \-\nlret @<code>}
fcb6c0fb
MW
1275\end{describe}
1276
1277\begin{describe}{mac}
cac85e0b 1278 {format-compound-statement
020b9e2b
MW
1279 (@<stream> @<child> \&optional @<morep>) \\ \ind
1280 @<declaration>^* \\
cac85e0b 1281 @<form>^*}
fcb6c0fb
MW
1282\end{describe}
1283
7de8c666
MW
1284\begin{describe}{fun}
1285 {format-banner-comment @<stream> @<control> \&rest @<args>}
1286\end{describe}
1287
fcb6c0fb
MW
1288\begin{table}
1289 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
1290 \thd{Class name} &
6e26f47b
MW
1291 \thd{Arguments} &
1292 \thd{Output format}\\ \hlx{vhv}
167524b5
MW
1293 @|var| & @<name> @<type> @|\&optional| @<init>
1294 & @<type> @<name> @[= @<init>@];
fcb6c0fb
MW
1295 \\ \hlx{v}
1296 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
1297 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
1298 \\ \hlx{v}
2d8d81c5
MW
1299 @|cond| & @<cond> @<conseq> @<alt> & @<cond> ? @<conseq> : @<alt>
1300 \\ \hlx{v}
fcb6c0fb
MW
1301 @|return| & @<expr> & return @[@<expr>@];
1302 \\ \hlx{v}
1303 @|break| & --- & break; \\ \hlx{v}
1304 @|continue| & --- & continue; \\ \hlx{v}
1305 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
167524b5
MW
1306 @|call| & @<func> @|\&rest| @<args>
1307 & @<func>(@<arg>_1,
fcb6c0fb 1308 $\ldots$,
7de8c666
MW
1309 @<arg>_n) \\ \hlx{v}
1310 @|banner| & @<control> @|\&rest| @<args>
1311 & /* @<banner> */ \\ \hlx{vhv}
fcb6c0fb
MW
1312 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
1313 \\ \hlx{v}
167524b5
MW
1314 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
1315 & if (@<cond>) @<conseq>
fcb6c0fb 1316 @[else @<alt>@] \\ \hlx{v}
2d8d81c5
MW
1317 @|for| & @<init> @<cond> @<update> @<body> &
1318 for (@<init>; @<cond>; @<update>) @<body> \\ \hlx{v}
fcb6c0fb
MW
1319 @|while| & @<cond> @<body> & while (@<cond>) @<body>
1320 \\ \hlx{v}
1321 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
1322 \\ \hlx{v}
7de8c666
MW
1323 @|function| &
1324 \vtop{\hbox{\strut @<name> @<type> @<body>}
1325 \hbox{\strut \quad @|\&optional @<banner>|}
1326 \hbox{\strut \quad @|\&rest| @<banner-args>}} &
1327 \vtop{\hbox{\strut @[/* @<banner> */@]}
1328 \hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
167524b5
MW
1329 @<type>_n @<arg>_n @[, \dots@])}
1330 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
fcb6c0fb
MW
1331 \end{tabular}
1332 \caption{Instruction classes}
1333 \label{tab:codegen.codegen.insts}
1334\end{table}
1335
0dfd5c6d
MW
1336\begin{describe*}
1337 {\dhead*{cls}{@<code>-inst (inst) \&key \dots}
1338 \dhead*{fn}{make-@<code>-inst \dots}
1339 \dhead*{gf}{inst-@<slot> @<inst> @> @<value>}}
1340 \def\instclass#1#2#3{%
1341 #1{cls}{#3-inst}[#2]%
1342 #1{fun}{make-#3-inst}[#2]%
1343 }
1344 \def\instslot#1#2#3{#1{gf}{inst-#3}[#2]}
1345 \def\makelabels#1#2{%
1346 \def\x{\instclass{#1}{#2}}
1347 \x{var} \x{set} \x{update} \x{cond} \x{return} \x{break} \x{continue}
1348 \x{expr} \x{call} \x{banner} \x{block} \x{if} \x{for} \x{while}
1349 \x{do-while} \x{function}
1350 \def\x{\instslot{#1}{#2}}
1351 \x{name} \x{type} \x{init} \x{var} \x{expr} \x{op} \x{cond} \x{conseq}
1352 \x{alt} \x{func} \x{args} \x{control} \x{decls} \x{body} \x{update}
1353 \x{banner} \x{banner-args}
1354 }
1355 \makelabels{\desclabel}{|(}
1356
1357 Sod provides a number of built-in instruction types generated by
1358 \descref{mac}{definst}: see \xref{tab:codegen.codegen.insts}.
1359
1360 \makelabels{\descindex}{|)}
1361\end{describe*}
1362
31d4431b 1363
fcb6c0fb
MW
1364\subsection{Code generation} \label{sec:clang.codegen.codegen}
1365
1366\begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
1367\end{describe}
1368
1369\begin{describe}{gf}
1370 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
1371\end{describe}
1372
1373\begin{describe}{gf}{emit-inst @<codegen> @<inst>}
1374\end{describe}
1375
1376\begin{describe}{gf}{emit-insts @<codegen> @<insts>}
1377\end{describe}
1378
1379\begin{describe}{gf}{emit-decl @<codegen> @<decl>}
1380\end{describe}
1381
7c3f8ae6 1382\begin{describe}{gf}{emit-decls @<codegen> @<decls>}
fcb6c0fb
MW
1383\end{describe}
1384
7de8c666
MW
1385\begin{describe}{fun}{emit-banner @<codegen> @<control> \&rest @<args>}
1386\end{describe}
1387
fcb6c0fb
MW
1388\begin{describe}{gf}{codegen-push @<codegen>}
1389\end{describe}
1390
1391\begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
1392\end{describe}
1393
1394\begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
1395\end{describe}
1396
1397\begin{describe}{gf}
1398 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1399\end{describe}
1400
1401\begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1402\end{describe}
1403
1404\begin{describe}{fun}
1405 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1406 @> @<name>}
1407\end{describe}
1408
1409\begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1410\end{describe}
1411
1412\begin{describe}{mac}
020b9e2b
MW
1413 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1414 @<declaration>^* \\
1415 @<form>^*
1416 \-\nlret @<value>^*}
fcb6c0fb
MW
1417\end{describe}
1418
1419\begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1420\end{describe}
1421
357885be
MW
1422\begin{describe}{fun}
1423 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1424\end{describe}
1425
fcb6c0fb
MW
1426\begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1427\end{describe}
1428
1429\begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1430\end{describe}
1431
2c7465ac
MW
1432%%%--------------------------------------------------------------------------
1433\section{Literal C code fragments} \label{sec:clang.fragment}
1434
1435\begin{describe}{cls}{c-fragment () \&key :location :text}
1436\end{describe}
1437
1dd7dba9
MW
1438\begin{describe*}
1439 {\dhead{gf}{c-fragment-text @<fragment> @> @<string>}
1440 \dhead{meth}{c-fragment}
1441 {file-location (@<fragment> c-fragment) @> @<floc>}}
1442\end{describe*}
2c7465ac
MW
1443
1444\begin{describe}{fun}
1445 {scan-c-fragment @<scanner> @<end-chars>
1446 @> @<result> @<success-flag> @<consumed-flag>}
1447\end{describe}
1448
1449\begin{describe}{fun}
1450 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1451 \nlret @<result> @<success-flag> @<consumed-flag>}
1452\end{describe}
1453
dea4d055
MW
1454%%%----- That's all, folks --------------------------------------------------
1455
1456%%% Local variables:
1457%%% mode: LaTeX
1458%%% TeX-master: "sod.tex"
1459%%% TeX-PDF-mode: t
1460%%% End: