Alter the `Octagon' board preset so that instead of presenting you
authorsimon <simon@cda61777-01e9-0310-a592-d414129be87e>
Sat, 9 Jul 2005 10:19:41 +0000 (10:19 +0000)
committersimon <simon@cda61777-01e9-0310-a592-d414129be87e>
Sat, 9 Jul 2005 10:19:41 +0000 (10:19 +0000)
with the obvious central hole it presents you with a randomly chosen
one of twelve other holes. The reason is, the central-hole starting
position is provably insoluble (proof given in comments), so instead
we pick from the ones that are actually possible.

git-svn-id: svn://svn.tartarus.org/sgt/puzzles@6083 cda61777-01e9-0310-a592-d414129be87e

pegs.c

diff --git a/pegs.c b/pegs.c
index 2a03902..ebc7085 100644 (file)
--- a/pegs.c
+++ b/pegs.c
@@ -530,9 +530,7 @@ static char *new_game_desc(game_params *params, random_state *rs,
                  case TYPE_OCTAGON:
                    cx = abs(x - w/2);
                    cy = abs(y - h/2);
-                   if (cx == 0 && cy == 0)
-                       v = GRID_HOLE;
-                   else if (cx + cy > 1 + max(w,h)/2)
+                   if (cx + cy > 1 + max(w,h)/2)
                        v = GRID_OBST;
                    else
                        v = GRID_PEG;
@@ -540,6 +538,107 @@ static char *new_game_desc(game_params *params, random_state *rs,
                }
                grid[y*w+x] = v;
            }
+
+       if (params->type == TYPE_OCTAGON) {
+           /*
+            * The octagonal (European) solitaire layout is
+            * actually _insoluble_ with the starting hole at the
+            * centre. Here's a proof:
+            * 
+            * Colour the squares of the board diagonally in
+            * stripes of three different colours, which I'll call
+            * A, B and C. So the board looks like this:
+            * 
+            *     A B C
+            *   A B C A B
+            * A B C A B C A
+            * B C A B C A B
+            * C A B C A B C
+            *   B C A B C
+            *     A B C
+            * 
+            * Suppose we keep running track of the number of pegs
+            * occuping each colour of square. This colouring has
+            * the property that any valid move whatsoever changes
+            * all three of those counts by one (two of them go
+            * down and one goes up), which means that the _parity_
+            * of every count flips on every move.
+            * 
+            * If the centre square starts off unoccupied, then
+            * there are twelve pegs on each colour and all three
+            * counts start off even; therefore, after 35 moves all
+            * three counts would have to be odd, which isn't
+            * possible if there's only one peg left. []
+            * 
+            * This proof works just as well if the starting hole
+            * is _any_ of the thirteen positions labelled B. Also,
+            * we can stripe the board in the opposite direction
+            * and rule out any square labelled B in that colouring
+            * as well. This leaves:
+            * 
+            *     Y n Y
+            *   n n Y n n
+            * Y n n Y n n Y
+            * n Y Y n Y Y n
+            * Y n n Y n n Y
+            *   n n Y n n
+            *     Y n Y
+            * 
+            * where the ns are squares we've proved insoluble, and
+            * the Ys are the ones remaining.
+            * 
+            * That doesn't prove all those starting positions to
+            * be soluble, of course; they're merely the ones we
+            * _haven't_ proved to be impossible. Nevertheless, it
+            * turns out that they are all soluble, so when the
+            * user requests an Octagon board the simplest thing is
+            * to pick one of these at random.
+            * 
+            * Rather than picking equiprobably from those twelve
+            * positions, we'll pick equiprobably from the three
+            * equivalence classes
+            */
+           switch (random_upto(rs, 3)) {
+             case 0:
+               /* Remove a random corner piece. */
+               {
+                   int dx, dy;
+
+                   dx = random_upto(rs, 2) * 2 - 1;   /* +1 or -1 */
+                   dy = random_upto(rs, 2) * 2 - 1;   /* +1 or -1 */
+                   if (random_upto(rs, 2))
+                       dy *= 3;
+                   else
+                       dx *= 3;
+                   grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
+               }
+               break;
+             case 1:
+               /* Remove a random piece two from the centre. */
+               {
+                   int dx, dy;
+                   dx = 2 * (random_upto(rs, 2) * 2 - 1);
+                   if (random_upto(rs, 2))
+                       dy = 0;
+                   else
+                       dy = dx, dx = 0;
+                   grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
+               }
+               break;
+             default /* case 2 */:
+               /* Remove a random piece one from the centre. */
+               {
+                   int dx, dy;
+                   dx = random_upto(rs, 2) * 2 - 1;
+                   if (random_upto(rs, 2))
+                       dy = 0;
+                   else
+                       dy = dx, dx = 0;
+                   grid[(3+dy)*w+(3+dx)] = GRID_HOLE;
+               }
+               break;
+           }
+       }
     }
 
     /*