Yet another complete rewrite of Slant's loop detection during
[sgt/puzzles] / slant.c
1 /*
2 * slant.c: Puzzle from nikoli.co.jp involving drawing a diagonal
3 * line through each square of a grid.
4 */
5
6 /*
7 * In this puzzle you have a grid of squares, each of which must
8 * contain a diagonal line; you also have clue numbers placed at
9 * _points_ of that grid, which means there's a (w+1) x (h+1) array
10 * of possible clue positions.
11 *
12 * I'm therefore going to adopt a rigid convention throughout this
13 * source file of using w and h for the dimensions of the grid of
14 * squares, and W and H for the dimensions of the grid of points.
15 * Thus, W == w+1 and H == h+1 always.
16 *
17 * Clue arrays will be W*H `signed char's, and the clue at each
18 * point will be a number from 0 to 4, or -1 if there's no clue.
19 *
20 * Solution arrays will be W*H `signed char's, and the number at
21 * each point will be +1 for a forward slash (/), -1 for a
22 * backslash (\), and 0 for unknown.
23 */
24
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <stdarg.h>
28 #include <string.h>
29 #include <assert.h>
30 #include <ctype.h>
31 #include <math.h>
32
33 #include "puzzles.h"
34
35 enum {
36 COL_BACKGROUND,
37 COL_GRID,
38 COL_INK,
39 COL_SLANT1,
40 COL_SLANT2,
41 COL_ERROR,
42 NCOLOURS
43 };
44
45 /*
46 * In standalone solver mode, `verbose' is a variable which can be
47 * set by command-line option; in debugging mode it's simply always
48 * true.
49 */
50 #if defined STANDALONE_SOLVER
51 #define SOLVER_DIAGNOSTICS
52 int verbose = FALSE;
53 #elif defined SOLVER_DIAGNOSTICS
54 #define verbose TRUE
55 #endif
56
57 /*
58 * Difficulty levels. I do some macro ickery here to ensure that my
59 * enum and the various forms of my name list always match up.
60 */
61 #define DIFFLIST(A) \
62 A(EASY,Easy,e) \
63 A(HARD,Hard,h)
64 #define ENUM(upper,title,lower) DIFF_ ## upper,
65 #define TITLE(upper,title,lower) #title,
66 #define ENCODE(upper,title,lower) #lower
67 #define CONFIG(upper,title,lower) ":" #title
68 enum { DIFFLIST(ENUM) DIFFCOUNT };
69 static char const *const slant_diffnames[] = { DIFFLIST(TITLE) };
70 static char const slant_diffchars[] = DIFFLIST(ENCODE);
71 #define DIFFCONFIG DIFFLIST(CONFIG)
72
73 struct game_params {
74 int w, h, diff;
75 };
76
77 typedef struct game_clues {
78 int w, h;
79 signed char *clues;
80 int *tmpdsf;
81 int refcount;
82 } game_clues;
83
84 #define ERR_VERTEX 1
85 #define ERR_SQUARE 2
86
87 struct game_state {
88 struct game_params p;
89 game_clues *clues;
90 signed char *soln;
91 unsigned char *errors;
92 int completed;
93 int used_solve; /* used to suppress completion flash */
94 };
95
96 static game_params *default_params(void)
97 {
98 game_params *ret = snew(game_params);
99
100 ret->w = ret->h = 8;
101 ret->diff = DIFF_EASY;
102
103 return ret;
104 }
105
106 static const struct game_params slant_presets[] = {
107 {5, 5, DIFF_EASY},
108 {5, 5, DIFF_HARD},
109 {8, 8, DIFF_EASY},
110 {8, 8, DIFF_HARD},
111 {12, 10, DIFF_EASY},
112 {12, 10, DIFF_HARD},
113 };
114
115 static int game_fetch_preset(int i, char **name, game_params **params)
116 {
117 game_params *ret;
118 char str[80];
119
120 if (i < 0 || i >= lenof(slant_presets))
121 return FALSE;
122
123 ret = snew(game_params);
124 *ret = slant_presets[i];
125
126 sprintf(str, "%dx%d %s", ret->w, ret->h, slant_diffnames[ret->diff]);
127
128 *name = dupstr(str);
129 *params = ret;
130 return TRUE;
131 }
132
133 static void free_params(game_params *params)
134 {
135 sfree(params);
136 }
137
138 static game_params *dup_params(game_params *params)
139 {
140 game_params *ret = snew(game_params);
141 *ret = *params; /* structure copy */
142 return ret;
143 }
144
145 static void decode_params(game_params *ret, char const *string)
146 {
147 ret->w = ret->h = atoi(string);
148 while (*string && isdigit((unsigned char)*string)) string++;
149 if (*string == 'x') {
150 string++;
151 ret->h = atoi(string);
152 while (*string && isdigit((unsigned char)*string)) string++;
153 }
154 if (*string == 'd') {
155 int i;
156 string++;
157 for (i = 0; i < DIFFCOUNT; i++)
158 if (*string == slant_diffchars[i])
159 ret->diff = i;
160 if (*string) string++;
161 }
162 }
163
164 static char *encode_params(game_params *params, int full)
165 {
166 char data[256];
167
168 sprintf(data, "%dx%d", params->w, params->h);
169 if (full)
170 sprintf(data + strlen(data), "d%c", slant_diffchars[params->diff]);
171
172 return dupstr(data);
173 }
174
175 static config_item *game_configure(game_params *params)
176 {
177 config_item *ret;
178 char buf[80];
179
180 ret = snewn(4, config_item);
181
182 ret[0].name = "Width";
183 ret[0].type = C_STRING;
184 sprintf(buf, "%d", params->w);
185 ret[0].sval = dupstr(buf);
186 ret[0].ival = 0;
187
188 ret[1].name = "Height";
189 ret[1].type = C_STRING;
190 sprintf(buf, "%d", params->h);
191 ret[1].sval = dupstr(buf);
192 ret[1].ival = 0;
193
194 ret[2].name = "Difficulty";
195 ret[2].type = C_CHOICES;
196 ret[2].sval = DIFFCONFIG;
197 ret[2].ival = params->diff;
198
199 ret[3].name = NULL;
200 ret[3].type = C_END;
201 ret[3].sval = NULL;
202 ret[3].ival = 0;
203
204 return ret;
205 }
206
207 static game_params *custom_params(config_item *cfg)
208 {
209 game_params *ret = snew(game_params);
210
211 ret->w = atoi(cfg[0].sval);
212 ret->h = atoi(cfg[1].sval);
213 ret->diff = cfg[2].ival;
214
215 return ret;
216 }
217
218 static char *validate_params(game_params *params, int full)
219 {
220 /*
221 * (At least at the time of writing this comment) The grid
222 * generator is actually capable of handling even zero grid
223 * dimensions without crashing. Puzzles with a zero-area grid
224 * are a bit boring, though, because they're already solved :-)
225 * And puzzles with a dimension of 1 can't be made Hard, which
226 * means the simplest thing is to forbid them altogether.
227 */
228
229 if (params->w < 2 || params->h < 2)
230 return "Width and height must both be at least two";
231
232 return NULL;
233 }
234
235 /*
236 * Scratch space for solver.
237 */
238 struct solver_scratch {
239 /*
240 * Disjoint set forest which tracks the connected sets of
241 * points.
242 */
243 int *connected;
244
245 /*
246 * Counts the number of possible exits from each connected set
247 * of points. (That is, the number of possible _simultaneous_
248 * exits: an unconnected point labelled 2 has an exit count of
249 * 2 even if all four possible edges are still under
250 * consideration.)
251 */
252 int *exits;
253
254 /*
255 * Tracks whether each connected set of points includes a
256 * border point.
257 */
258 unsigned char *border;
259
260 /*
261 * Another disjoint set forest. This one tracks _squares_ which
262 * are known to slant in the same direction.
263 */
264 int *equiv;
265
266 /*
267 * Stores slash values which we know for an equivalence class.
268 * When we fill in a square, we set slashval[canonify(x)] to
269 * the same value as soln[x], so that we can then spot other
270 * squares equivalent to it and fill them in immediately via
271 * their known equivalence.
272 */
273 signed char *slashval;
274
275 /*
276 * Stores possible v-shapes. This array is w by h in size, but
277 * not every bit of every entry is meaningful. The bits mean:
278 *
279 * - bit 0 for a square means that that square and the one to
280 * its right might form a v-shape between them
281 * - bit 1 for a square means that that square and the one to
282 * its right might form a ^-shape between them
283 * - bit 2 for a square means that that square and the one
284 * below it might form a >-shape between them
285 * - bit 3 for a square means that that square and the one
286 * below it might form a <-shape between them
287 *
288 * Any starting 1 or 3 clue rules out four bits in this array
289 * immediately; a 2 clue propagates any ruled-out bit past it
290 * (if the two squares on one side of a 2 cannot be a v-shape,
291 * then neither can the two on the other side be the same
292 * v-shape); we can rule out further bits during play using
293 * partially filled 2 clues; whenever a pair of squares is
294 * known not to be _either_ kind of v-shape, we can mark them
295 * as equivalent.
296 */
297 unsigned char *vbitmap;
298
299 /*
300 * Useful to have this information automatically passed to
301 * solver subroutines. (This pointer is not dynamically
302 * allocated by new_scratch and free_scratch.)
303 */
304 const signed char *clues;
305 };
306
307 static struct solver_scratch *new_scratch(int w, int h)
308 {
309 int W = w+1, H = h+1;
310 struct solver_scratch *ret = snew(struct solver_scratch);
311 ret->connected = snewn(W*H, int);
312 ret->exits = snewn(W*H, int);
313 ret->border = snewn(W*H, unsigned char);
314 ret->equiv = snewn(w*h, int);
315 ret->slashval = snewn(w*h, signed char);
316 ret->vbitmap = snewn(w*h, unsigned char);
317 return ret;
318 }
319
320 static void free_scratch(struct solver_scratch *sc)
321 {
322 sfree(sc->vbitmap);
323 sfree(sc->slashval);
324 sfree(sc->equiv);
325 sfree(sc->border);
326 sfree(sc->exits);
327 sfree(sc->connected);
328 sfree(sc);
329 }
330
331 /*
332 * Wrapper on dsf_merge() which updates the `exits' and `border'
333 * arrays.
334 */
335 static void merge_vertices(int *connected,
336 struct solver_scratch *sc, int i, int j)
337 {
338 int exits = -1, border = FALSE; /* initialise to placate optimiser */
339
340 if (sc) {
341 i = dsf_canonify(connected, i);
342 j = dsf_canonify(connected, j);
343
344 /*
345 * We have used one possible exit from each of the two
346 * classes. Thus, the viable exit count of the new class is
347 * the sum of the old exit counts minus two.
348 */
349 exits = sc->exits[i] + sc->exits[j] - 2;
350
351 border = sc->border[i] || sc->border[j];
352 }
353
354 dsf_merge(connected, i, j);
355
356 if (sc) {
357 i = dsf_canonify(connected, i);
358 sc->exits[i] = exits;
359 sc->border[i] = border;
360 }
361 }
362
363 /*
364 * Called when we have just blocked one way out of a particular
365 * point. If that point is a non-clue point (thus has a variable
366 * number of exits), we have therefore decreased its potential exit
367 * count, so we must decrement the exit count for the group as a
368 * whole.
369 */
370 static void decr_exits(struct solver_scratch *sc, int i)
371 {
372 if (sc->clues[i] < 0) {
373 i = dsf_canonify(sc->connected, i);
374 sc->exits[i]--;
375 }
376 }
377
378 static void fill_square(int w, int h, int x, int y, int v,
379 signed char *soln,
380 int *connected, struct solver_scratch *sc)
381 {
382 int W = w+1 /*, H = h+1 */;
383
384 assert(x >= 0 && x < w && y >= 0 && y < h);
385
386 if (soln[y*w+x] != 0) {
387 return; /* do nothing */
388 }
389
390 #ifdef SOLVER_DIAGNOSTICS
391 if (verbose)
392 printf(" placing %c in %d,%d\n", v == -1 ? '\\' : '/', x, y);
393 #endif
394
395 soln[y*w+x] = v;
396
397 if (sc) {
398 int c = dsf_canonify(sc->equiv, y*w+x);
399 sc->slashval[c] = v;
400 }
401
402 if (v < 0) {
403 merge_vertices(connected, sc, y*W+x, (y+1)*W+(x+1));
404 if (sc) {
405 decr_exits(sc, y*W+(x+1));
406 decr_exits(sc, (y+1)*W+x);
407 }
408 } else {
409 merge_vertices(connected, sc, y*W+(x+1), (y+1)*W+x);
410 if (sc) {
411 decr_exits(sc, y*W+x);
412 decr_exits(sc, (y+1)*W+(x+1));
413 }
414 }
415 }
416
417 static int vbitmap_clear(int w, int h, struct solver_scratch *sc,
418 int x, int y, int vbits, char *reason, ...)
419 {
420 int done_something = FALSE;
421 int vbit;
422
423 for (vbit = 1; vbit <= 8; vbit <<= 1)
424 if (vbits & sc->vbitmap[y*w+x] & vbit) {
425 done_something = TRUE;
426 #ifdef SOLVER_DIAGNOSTICS
427 if (verbose) {
428 va_list ap;
429
430 printf("ruling out %c shape at (%d,%d)-(%d,%d) (",
431 "!v^!>!!!<"[vbit], x, y,
432 x+((vbit&0x3)!=0), y+((vbit&0xC)!=0));
433
434 va_start(ap, reason);
435 vprintf(reason, ap);
436 va_end(ap);
437
438 printf(")\n");
439 }
440 #endif
441 sc->vbitmap[y*w+x] &= ~vbit;
442 }
443
444 return done_something;
445 }
446
447 /*
448 * Solver. Returns 0 for impossibility, 1 for success, 2 for
449 * ambiguity or failure to converge.
450 */
451 static int slant_solve(int w, int h, const signed char *clues,
452 signed char *soln, struct solver_scratch *sc,
453 int difficulty)
454 {
455 int W = w+1, H = h+1;
456 int x, y, i, j;
457 int done_something;
458
459 /*
460 * Clear the output.
461 */
462 memset(soln, 0, w*h);
463
464 sc->clues = clues;
465
466 /*
467 * Establish a disjoint set forest for tracking connectedness
468 * between grid points.
469 */
470 dsf_init(sc->connected, W*H);
471
472 /*
473 * Establish a disjoint set forest for tracking which squares
474 * are known to slant in the same direction.
475 */
476 dsf_init(sc->equiv, w*h);
477
478 /*
479 * Clear the slashval array.
480 */
481 memset(sc->slashval, 0, w*h);
482
483 /*
484 * Set up the vbitmap array. Initially all types of v are possible.
485 */
486 memset(sc->vbitmap, 0xF, w*h);
487
488 /*
489 * Initialise the `exits' and `border' arrays. These are used
490 * to do second-order loop avoidance: the dual of the no loops
491 * constraint is that every point must be somehow connected to
492 * the border of the grid (otherwise there would be a solid
493 * loop around it which prevented this).
494 *
495 * I define a `dead end' to be a connected group of points
496 * which contains no border point, and which can form at most
497 * one new connection outside itself. Then I forbid placing an
498 * edge so that it connects together two dead-end groups, since
499 * this would yield a non-border-connected isolated subgraph
500 * with no further scope to extend it.
501 */
502 for (y = 0; y < H; y++)
503 for (x = 0; x < W; x++) {
504 if (y == 0 || y == H-1 || x == 0 || x == W-1)
505 sc->border[y*W+x] = TRUE;
506 else
507 sc->border[y*W+x] = FALSE;
508
509 if (clues[y*W+x] < 0)
510 sc->exits[y*W+x] = 4;
511 else
512 sc->exits[y*W+x] = clues[y*W+x];
513 }
514
515 /*
516 * Repeatedly try to deduce something until we can't.
517 */
518 do {
519 done_something = FALSE;
520
521 /*
522 * Any clue point with the number of remaining lines equal
523 * to zero or to the number of remaining undecided
524 * neighbouring squares can be filled in completely.
525 */
526 for (y = 0; y < H; y++)
527 for (x = 0; x < W; x++) {
528 struct {
529 int pos, slash;
530 } neighbours[4];
531 int nneighbours;
532 int nu, nl, c, s, eq, eq2, last, meq, mj1, mj2;
533
534 if ((c = clues[y*W+x]) < 0)
535 continue;
536
537 /*
538 * We have a clue point. Start by listing its
539 * neighbouring squares, in order around the point,
540 * together with the type of slash that would be
541 * required in that square to connect to the point.
542 */
543 nneighbours = 0;
544 if (x > 0 && y > 0) {
545 neighbours[nneighbours].pos = (y-1)*w+(x-1);
546 neighbours[nneighbours].slash = -1;
547 nneighbours++;
548 }
549 if (x > 0 && y < h) {
550 neighbours[nneighbours].pos = y*w+(x-1);
551 neighbours[nneighbours].slash = +1;
552 nneighbours++;
553 }
554 if (x < w && y < h) {
555 neighbours[nneighbours].pos = y*w+x;
556 neighbours[nneighbours].slash = -1;
557 nneighbours++;
558 }
559 if (x < w && y > 0) {
560 neighbours[nneighbours].pos = (y-1)*w+x;
561 neighbours[nneighbours].slash = +1;
562 nneighbours++;
563 }
564
565 /*
566 * Count up the number of undecided neighbours, and
567 * also the number of lines already present.
568 *
569 * If we're not on DIFF_EASY, then in this loop we
570 * also track whether we've seen two adjacent empty
571 * squares belonging to the same equivalence class
572 * (meaning they have the same type of slash). If
573 * so, we count them jointly as one line.
574 */
575 nu = 0;
576 nl = c;
577 last = neighbours[nneighbours-1].pos;
578 if (soln[last] == 0)
579 eq = dsf_canonify(sc->equiv, last);
580 else
581 eq = -1;
582 meq = mj1 = mj2 = -1;
583 for (i = 0; i < nneighbours; i++) {
584 j = neighbours[i].pos;
585 s = neighbours[i].slash;
586 if (soln[j] == 0) {
587 nu++; /* undecided */
588 if (meq < 0 && difficulty > DIFF_EASY) {
589 eq2 = dsf_canonify(sc->equiv, j);
590 if (eq == eq2 && last != j) {
591 /*
592 * We've found an equivalent pair.
593 * Mark it. This also inhibits any
594 * further equivalence tracking
595 * around this square, since we can
596 * only handle one pair (and in
597 * particular we want to avoid
598 * being misled by two overlapping
599 * equivalence pairs).
600 */
601 meq = eq;
602 mj1 = last;
603 mj2 = j;
604 nl--; /* count one line */
605 nu -= 2; /* and lose two undecideds */
606 } else
607 eq = eq2;
608 }
609 } else {
610 eq = -1;
611 if (soln[j] == s)
612 nl--; /* here's a line */
613 }
614 last = j;
615 }
616
617 /*
618 * Check the counts.
619 */
620 if (nl < 0 || nl > nu) {
621 /*
622 * No consistent value for this at all!
623 */
624 #ifdef SOLVER_DIAGNOSTICS
625 if (verbose)
626 printf("need %d / %d lines around clue point at %d,%d!\n",
627 nl, nu, x, y);
628 #endif
629 return 0; /* impossible */
630 }
631
632 if (nu > 0 && (nl == 0 || nl == nu)) {
633 #ifdef SOLVER_DIAGNOSTICS
634 if (verbose) {
635 if (meq >= 0)
636 printf("partially (since %d,%d == %d,%d) ",
637 mj1%w, mj1/w, mj2%w, mj2/w);
638 printf("%s around clue point at %d,%d\n",
639 nl ? "filling" : "emptying", x, y);
640 }
641 #endif
642 for (i = 0; i < nneighbours; i++) {
643 j = neighbours[i].pos;
644 s = neighbours[i].slash;
645 if (soln[j] == 0 && j != mj1 && j != mj2)
646 fill_square(w, h, j%w, j/w, (nl ? s : -s), soln,
647 sc->connected, sc);
648 }
649
650 done_something = TRUE;
651 } else if (nu == 2 && nl == 1 && difficulty > DIFF_EASY) {
652 /*
653 * If we have precisely two undecided squares
654 * and precisely one line to place between
655 * them, _and_ those squares are adjacent, then
656 * we can mark them as equivalent to one
657 * another.
658 *
659 * This even applies if meq >= 0: if we have a
660 * 2 clue point and two of its neighbours are
661 * already marked equivalent, we can indeed
662 * mark the other two as equivalent.
663 *
664 * We don't bother with this on DIFF_EASY,
665 * since we wouldn't have used the results
666 * anyway.
667 */
668 last = -1;
669 for (i = 0; i < nneighbours; i++) {
670 j = neighbours[i].pos;
671 if (soln[j] == 0 && j != mj1 && j != mj2) {
672 if (last < 0)
673 last = i;
674 else if (last == i-1 || (last == 0 && i == 3))
675 break; /* found a pair */
676 }
677 }
678 if (i < nneighbours) {
679 int sv1, sv2;
680
681 assert(last >= 0);
682 /*
683 * neighbours[last] and neighbours[i] are
684 * the pair. Mark them equivalent.
685 */
686 #ifdef SOLVER_DIAGNOSTICS
687 if (verbose) {
688 if (meq >= 0)
689 printf("since %d,%d == %d,%d, ",
690 mj1%w, mj1/w, mj2%w, mj2/w);
691 }
692 #endif
693 mj1 = neighbours[last].pos;
694 mj2 = neighbours[i].pos;
695 #ifdef SOLVER_DIAGNOSTICS
696 if (verbose)
697 printf("clue point at %d,%d implies %d,%d == %d,"
698 "%d\n", x, y, mj1%w, mj1/w, mj2%w, mj2/w);
699 #endif
700 mj1 = dsf_canonify(sc->equiv, mj1);
701 sv1 = sc->slashval[mj1];
702 mj2 = dsf_canonify(sc->equiv, mj2);
703 sv2 = sc->slashval[mj2];
704 if (sv1 != 0 && sv2 != 0 && sv1 != sv2) {
705 #ifdef SOLVER_DIAGNOSTICS
706 if (verbose)
707 printf("merged two equivalence classes with"
708 " different slash values!\n");
709 #endif
710 return 0;
711 }
712 sv1 = sv1 ? sv1 : sv2;
713 dsf_merge(sc->equiv, mj1, mj2);
714 mj1 = dsf_canonify(sc->equiv, mj1);
715 sc->slashval[mj1] = sv1;
716 }
717 }
718 }
719
720 if (done_something)
721 continue;
722
723 /*
724 * Failing that, we now apply the second condition, which
725 * is that no square may be filled in such a way as to form
726 * a loop. Also in this loop (since it's over squares
727 * rather than points), we check slashval to see if we've
728 * already filled in another square in the same equivalence
729 * class.
730 *
731 * The slashval check is disabled on DIFF_EASY, as is dead
732 * end avoidance. Only _immediate_ loop avoidance remains.
733 */
734 for (y = 0; y < h; y++)
735 for (x = 0; x < w; x++) {
736 int fs, bs, v;
737 int c1, c2;
738 #ifdef SOLVER_DIAGNOSTICS
739 char *reason = "<internal error>";
740 #endif
741
742 if (soln[y*w+x])
743 continue; /* got this one already */
744
745 fs = FALSE;
746 bs = FALSE;
747
748 if (difficulty > DIFF_EASY)
749 v = sc->slashval[dsf_canonify(sc->equiv, y*w+x)];
750 else
751 v = 0;
752
753 /*
754 * Try to rule out connectivity between (x,y) and
755 * (x+1,y+1); if successful, we will deduce that we
756 * must have a forward slash.
757 */
758 c1 = dsf_canonify(sc->connected, y*W+x);
759 c2 = dsf_canonify(sc->connected, (y+1)*W+(x+1));
760 if (c1 == c2) {
761 fs = TRUE;
762 #ifdef SOLVER_DIAGNOSTICS
763 reason = "simple loop avoidance";
764 #endif
765 }
766 if (difficulty > DIFF_EASY &&
767 !sc->border[c1] && !sc->border[c2] &&
768 sc->exits[c1] <= 1 && sc->exits[c2] <= 1) {
769 fs = TRUE;
770 #ifdef SOLVER_DIAGNOSTICS
771 reason = "dead end avoidance";
772 #endif
773 }
774 if (v == +1) {
775 fs = TRUE;
776 #ifdef SOLVER_DIAGNOSTICS
777 reason = "equivalence to an already filled square";
778 #endif
779 }
780
781 /*
782 * Now do the same between (x+1,y) and (x,y+1), to
783 * see if we are required to have a backslash.
784 */
785 c1 = dsf_canonify(sc->connected, y*W+(x+1));
786 c2 = dsf_canonify(sc->connected, (y+1)*W+x);
787 if (c1 == c2) {
788 bs = TRUE;
789 #ifdef SOLVER_DIAGNOSTICS
790 reason = "simple loop avoidance";
791 #endif
792 }
793 if (difficulty > DIFF_EASY &&
794 !sc->border[c1] && !sc->border[c2] &&
795 sc->exits[c1] <= 1 && sc->exits[c2] <= 1) {
796 bs = TRUE;
797 #ifdef SOLVER_DIAGNOSTICS
798 reason = "dead end avoidance";
799 #endif
800 }
801 if (v == -1) {
802 bs = TRUE;
803 #ifdef SOLVER_DIAGNOSTICS
804 reason = "equivalence to an already filled square";
805 #endif
806 }
807
808 if (fs && bs) {
809 /*
810 * No consistent value for this at all!
811 */
812 #ifdef SOLVER_DIAGNOSTICS
813 if (verbose)
814 printf("%d,%d has no consistent slash!\n", x, y);
815 #endif
816 return 0; /* impossible */
817 }
818
819 if (fs) {
820 #ifdef SOLVER_DIAGNOSTICS
821 if (verbose)
822 printf("employing %s\n", reason);
823 #endif
824 fill_square(w, h, x, y, +1, soln, sc->connected, sc);
825 done_something = TRUE;
826 } else if (bs) {
827 #ifdef SOLVER_DIAGNOSTICS
828 if (verbose)
829 printf("employing %s\n", reason);
830 #endif
831 fill_square(w, h, x, y, -1, soln, sc->connected, sc);
832 done_something = TRUE;
833 }
834 }
835
836 if (done_something)
837 continue;
838
839 /*
840 * Now see what we can do with the vbitmap array. All
841 * vbitmap deductions are disabled at Easy level.
842 */
843 if (difficulty <= DIFF_EASY)
844 continue;
845
846 for (y = 0; y < h; y++)
847 for (x = 0; x < w; x++) {
848 int s, c;
849
850 /*
851 * Any line already placed in a square must rule
852 * out any type of v which contradicts it.
853 */
854 if ((s = soln[y*w+x]) != 0) {
855 if (x > 0)
856 done_something |=
857 vbitmap_clear(w, h, sc, x-1, y, (s < 0 ? 0x1 : 0x2),
858 "contradicts known edge at (%d,%d)",x,y);
859 if (x+1 < w)
860 done_something |=
861 vbitmap_clear(w, h, sc, x, y, (s < 0 ? 0x2 : 0x1),
862 "contradicts known edge at (%d,%d)",x,y);
863 if (y > 0)
864 done_something |=
865 vbitmap_clear(w, h, sc, x, y-1, (s < 0 ? 0x4 : 0x8),
866 "contradicts known edge at (%d,%d)",x,y);
867 if (y+1 < h)
868 done_something |=
869 vbitmap_clear(w, h, sc, x, y, (s < 0 ? 0x8 : 0x4),
870 "contradicts known edge at (%d,%d)",x,y);
871 }
872
873 /*
874 * If both types of v are ruled out for a pair of
875 * adjacent squares, mark them as equivalent.
876 */
877 if (x+1 < w && !(sc->vbitmap[y*w+x] & 0x3)) {
878 int n1 = y*w+x, n2 = y*w+(x+1);
879 if (dsf_canonify(sc->equiv, n1) !=
880 dsf_canonify(sc->equiv, n2)) {
881 dsf_merge(sc->equiv, n1, n2);
882 done_something = TRUE;
883 #ifdef SOLVER_DIAGNOSTICS
884 if (verbose)
885 printf("(%d,%d) and (%d,%d) must be equivalent"
886 " because both v-shapes are ruled out\n",
887 x, y, x+1, y);
888 #endif
889 }
890 }
891 if (y+1 < h && !(sc->vbitmap[y*w+x] & 0xC)) {
892 int n1 = y*w+x, n2 = (y+1)*w+x;
893 if (dsf_canonify(sc->equiv, n1) !=
894 dsf_canonify(sc->equiv, n2)) {
895 dsf_merge(sc->equiv, n1, n2);
896 done_something = TRUE;
897 #ifdef SOLVER_DIAGNOSTICS
898 if (verbose)
899 printf("(%d,%d) and (%d,%d) must be equivalent"
900 " because both v-shapes are ruled out\n",
901 x, y, x, y+1);
902 #endif
903 }
904 }
905
906 /*
907 * The remaining work in this loop only works
908 * around non-edge clue points.
909 */
910 if (y == 0 || x == 0)
911 continue;
912 if ((c = clues[y*W+x]) < 0)
913 continue;
914
915 /*
916 * x,y marks a clue point not on the grid edge. See
917 * if this clue point allows us to rule out any v
918 * shapes.
919 */
920
921 if (c == 1) {
922 /*
923 * A 1 clue can never have any v shape pointing
924 * at it.
925 */
926 done_something |=
927 vbitmap_clear(w, h, sc, x-1, y-1, 0x5,
928 "points at 1 clue at (%d,%d)", x, y);
929 done_something |=
930 vbitmap_clear(w, h, sc, x-1, y, 0x2,
931 "points at 1 clue at (%d,%d)", x, y);
932 done_something |=
933 vbitmap_clear(w, h, sc, x, y-1, 0x8,
934 "points at 1 clue at (%d,%d)", x, y);
935 } else if (c == 3) {
936 /*
937 * A 3 clue can never have any v shape pointing
938 * away from it.
939 */
940 done_something |=
941 vbitmap_clear(w, h, sc, x-1, y-1, 0xA,
942 "points away from 3 clue at (%d,%d)", x, y);
943 done_something |=
944 vbitmap_clear(w, h, sc, x-1, y, 0x1,
945 "points away from 3 clue at (%d,%d)", x, y);
946 done_something |=
947 vbitmap_clear(w, h, sc, x, y-1, 0x4,
948 "points away from 3 clue at (%d,%d)", x, y);
949 } else if (c == 2) {
950 /*
951 * If a 2 clue has any kind of v ruled out on
952 * one side of it, the same v is ruled out on
953 * the other side.
954 */
955 done_something |=
956 vbitmap_clear(w, h, sc, x-1, y-1,
957 (sc->vbitmap[(y )*w+(x-1)] & 0x3) ^ 0x3,
958 "propagated by 2 clue at (%d,%d)", x, y);
959 done_something |=
960 vbitmap_clear(w, h, sc, x-1, y-1,
961 (sc->vbitmap[(y-1)*w+(x )] & 0xC) ^ 0xC,
962 "propagated by 2 clue at (%d,%d)", x, y);
963 done_something |=
964 vbitmap_clear(w, h, sc, x-1, y,
965 (sc->vbitmap[(y-1)*w+(x-1)] & 0x3) ^ 0x3,
966 "propagated by 2 clue at (%d,%d)", x, y);
967 done_something |=
968 vbitmap_clear(w, h, sc, x, y-1,
969 (sc->vbitmap[(y-1)*w+(x-1)] & 0xC) ^ 0xC,
970 "propagated by 2 clue at (%d,%d)", x, y);
971 }
972
973 #undef CLEARBITS
974
975 }
976
977 } while (done_something);
978
979 /*
980 * Solver can make no more progress. See if the grid is full.
981 */
982 for (i = 0; i < w*h; i++)
983 if (!soln[i])
984 return 2; /* failed to converge */
985 return 1; /* success */
986 }
987
988 /*
989 * Filled-grid generator.
990 */
991 static void slant_generate(int w, int h, signed char *soln, random_state *rs)
992 {
993 int W = w+1, H = h+1;
994 int x, y, i;
995 int *connected, *indices;
996
997 /*
998 * Clear the output.
999 */
1000 memset(soln, 0, w*h);
1001
1002 /*
1003 * Establish a disjoint set forest for tracking connectedness
1004 * between grid points.
1005 */
1006 connected = snew_dsf(W*H);
1007
1008 /*
1009 * Prepare a list of the squares in the grid, and fill them in
1010 * in a random order.
1011 */
1012 indices = snewn(w*h, int);
1013 for (i = 0; i < w*h; i++)
1014 indices[i] = i;
1015 shuffle(indices, w*h, sizeof(*indices), rs);
1016
1017 /*
1018 * Fill in each one in turn.
1019 */
1020 for (i = 0; i < w*h; i++) {
1021 int fs, bs, v;
1022
1023 y = indices[i] / w;
1024 x = indices[i] % w;
1025
1026 fs = (dsf_canonify(connected, y*W+x) ==
1027 dsf_canonify(connected, (y+1)*W+(x+1)));
1028 bs = (dsf_canonify(connected, (y+1)*W+x) ==
1029 dsf_canonify(connected, y*W+(x+1)));
1030
1031 /*
1032 * It isn't possible to get into a situation where we
1033 * aren't allowed to place _either_ type of slash in a
1034 * square. Thus, filled-grid generation never has to
1035 * backtrack.
1036 *
1037 * Proof (thanks to Gareth Taylor):
1038 *
1039 * If it were possible, it would have to be because there
1040 * was an existing path (not using this square) between the
1041 * top-left and bottom-right corners of this square, and
1042 * another between the other two. These two paths would
1043 * have to cross at some point.
1044 *
1045 * Obviously they can't cross in the middle of a square, so
1046 * they must cross by sharing a point in common. But this
1047 * isn't possible either: if you chessboard-colour all the
1048 * points on the grid, you find that any continuous
1049 * diagonal path is entirely composed of points of the same
1050 * colour. And one of our two hypothetical paths is between
1051 * two black points, and the other is between two white
1052 * points - therefore they can have no point in common. []
1053 */
1054 assert(!(fs && bs));
1055
1056 v = fs ? +1 : bs ? -1 : 2 * random_upto(rs, 2) - 1;
1057 fill_square(w, h, x, y, v, soln, connected, NULL);
1058 }
1059
1060 sfree(indices);
1061 sfree(connected);
1062 }
1063
1064 static char *new_game_desc(game_params *params, random_state *rs,
1065 char **aux, int interactive)
1066 {
1067 int w = params->w, h = params->h, W = w+1, H = h+1;
1068 signed char *soln, *tmpsoln, *clues;
1069 int *clueindices;
1070 struct solver_scratch *sc;
1071 int x, y, v, i, j;
1072 char *desc;
1073
1074 soln = snewn(w*h, signed char);
1075 tmpsoln = snewn(w*h, signed char);
1076 clues = snewn(W*H, signed char);
1077 clueindices = snewn(W*H, int);
1078 sc = new_scratch(w, h);
1079
1080 do {
1081 /*
1082 * Create the filled grid.
1083 */
1084 slant_generate(w, h, soln, rs);
1085
1086 /*
1087 * Fill in the complete set of clues.
1088 */
1089 for (y = 0; y < H; y++)
1090 for (x = 0; x < W; x++) {
1091 v = 0;
1092
1093 if (x > 0 && y > 0 && soln[(y-1)*w+(x-1)] == -1) v++;
1094 if (x > 0 && y < h && soln[y*w+(x-1)] == +1) v++;
1095 if (x < w && y > 0 && soln[(y-1)*w+x] == +1) v++;
1096 if (x < w && y < h && soln[y*w+x] == -1) v++;
1097
1098 clues[y*W+x] = v;
1099 }
1100
1101 /*
1102 * With all clue points filled in, all puzzles are easy: we can
1103 * simply process the clue points in lexicographic order, and
1104 * at each clue point we will always have at most one square
1105 * undecided, which we can then fill in uniquely.
1106 */
1107 assert(slant_solve(w, h, clues, tmpsoln, sc, DIFF_EASY) == 1);
1108
1109 /*
1110 * Remove as many clues as possible while retaining solubility.
1111 *
1112 * In DIFF_HARD mode, we prioritise the removal of obvious
1113 * starting points (4s, 0s, border 2s and corner 1s), on
1114 * the grounds that having as few of these as possible
1115 * seems like a good thing. In particular, we can often get
1116 * away without _any_ completely obvious starting points,
1117 * which is even better.
1118 */
1119 for (i = 0; i < W*H; i++)
1120 clueindices[i] = i;
1121 shuffle(clueindices, W*H, sizeof(*clueindices), rs);
1122 for (j = 0; j < 2; j++) {
1123 for (i = 0; i < W*H; i++) {
1124 int pass, yb, xb;
1125
1126 y = clueindices[i] / W;
1127 x = clueindices[i] % W;
1128 v = clues[y*W+x];
1129
1130 /*
1131 * Identify which pass we should process this point
1132 * in. If it's an obvious start point, _or_ we're
1133 * in DIFF_EASY, then it goes in pass 0; otherwise
1134 * pass 1.
1135 */
1136 xb = (x == 0 || x == W-1);
1137 yb = (y == 0 || y == H-1);
1138 if (params->diff == DIFF_EASY || v == 4 || v == 0 ||
1139 (v == 2 && (xb||yb)) || (v == 1 && xb && yb))
1140 pass = 0;
1141 else
1142 pass = 1;
1143
1144 if (pass == j) {
1145 clues[y*W+x] = -1;
1146 if (slant_solve(w, h, clues, tmpsoln, sc,
1147 params->diff) != 1)
1148 clues[y*W+x] = v; /* put it back */
1149 }
1150 }
1151 }
1152
1153 /*
1154 * And finally, verify that the grid is of _at least_ the
1155 * requested difficulty, by running the solver one level
1156 * down and verifying that it can't manage it.
1157 */
1158 } while (params->diff > 0 &&
1159 slant_solve(w, h, clues, tmpsoln, sc, params->diff - 1) <= 1);
1160
1161 /*
1162 * Now we have the clue set as it will be presented to the
1163 * user. Encode it in a game desc.
1164 */
1165 {
1166 char *p;
1167 int run, i;
1168
1169 desc = snewn(W*H+1, char);
1170 p = desc;
1171 run = 0;
1172 for (i = 0; i <= W*H; i++) {
1173 int n = (i < W*H ? clues[i] : -2);
1174
1175 if (n == -1)
1176 run++;
1177 else {
1178 if (run) {
1179 while (run > 0) {
1180 int c = 'a' - 1 + run;
1181 if (run > 26)
1182 c = 'z';
1183 *p++ = c;
1184 run -= c - ('a' - 1);
1185 }
1186 }
1187 if (n >= 0)
1188 *p++ = '0' + n;
1189 run = 0;
1190 }
1191 }
1192 assert(p - desc <= W*H);
1193 *p++ = '\0';
1194 desc = sresize(desc, p - desc, char);
1195 }
1196
1197 /*
1198 * Encode the solution as an aux_info.
1199 */
1200 {
1201 char *auxbuf;
1202 *aux = auxbuf = snewn(w*h+1, char);
1203 for (i = 0; i < w*h; i++)
1204 auxbuf[i] = soln[i] < 0 ? '\\' : '/';
1205 auxbuf[w*h] = '\0';
1206 }
1207
1208 free_scratch(sc);
1209 sfree(clueindices);
1210 sfree(clues);
1211 sfree(tmpsoln);
1212 sfree(soln);
1213
1214 return desc;
1215 }
1216
1217 static char *validate_desc(game_params *params, char *desc)
1218 {
1219 int w = params->w, h = params->h, W = w+1, H = h+1;
1220 int area = W*H;
1221 int squares = 0;
1222
1223 while (*desc) {
1224 int n = *desc++;
1225 if (n >= 'a' && n <= 'z') {
1226 squares += n - 'a' + 1;
1227 } else if (n >= '0' && n <= '4') {
1228 squares++;
1229 } else
1230 return "Invalid character in game description";
1231 }
1232
1233 if (squares < area)
1234 return "Not enough data to fill grid";
1235
1236 if (squares > area)
1237 return "Too much data to fit in grid";
1238
1239 return NULL;
1240 }
1241
1242 static game_state *new_game(midend *me, game_params *params, char *desc)
1243 {
1244 int w = params->w, h = params->h, W = w+1, H = h+1;
1245 game_state *state = snew(game_state);
1246 int area = W*H;
1247 int squares = 0;
1248
1249 state->p = *params;
1250 state->soln = snewn(w*h, signed char);
1251 memset(state->soln, 0, w*h);
1252 state->completed = state->used_solve = FALSE;
1253 state->errors = snewn(W*H, unsigned char);
1254 memset(state->errors, 0, W*H);
1255
1256 state->clues = snew(game_clues);
1257 state->clues->w = w;
1258 state->clues->h = h;
1259 state->clues->clues = snewn(W*H, signed char);
1260 state->clues->refcount = 1;
1261 state->clues->tmpdsf = snewn(W*H*2+W+H, int);
1262 memset(state->clues->clues, -1, W*H);
1263 while (*desc) {
1264 int n = *desc++;
1265 if (n >= 'a' && n <= 'z') {
1266 squares += n - 'a' + 1;
1267 } else if (n >= '0' && n <= '4') {
1268 state->clues->clues[squares++] = n - '0';
1269 } else
1270 assert(!"can't get here");
1271 }
1272 assert(squares == area);
1273
1274 return state;
1275 }
1276
1277 static game_state *dup_game(game_state *state)
1278 {
1279 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
1280 game_state *ret = snew(game_state);
1281
1282 ret->p = state->p;
1283 ret->clues = state->clues;
1284 ret->clues->refcount++;
1285 ret->completed = state->completed;
1286 ret->used_solve = state->used_solve;
1287
1288 ret->soln = snewn(w*h, signed char);
1289 memcpy(ret->soln, state->soln, w*h);
1290
1291 ret->errors = snewn(W*H, unsigned char);
1292 memcpy(ret->errors, state->errors, W*H);
1293
1294 return ret;
1295 }
1296
1297 static void free_game(game_state *state)
1298 {
1299 sfree(state->errors);
1300 sfree(state->soln);
1301 assert(state->clues);
1302 if (--state->clues->refcount <= 0) {
1303 sfree(state->clues->clues);
1304 sfree(state->clues->tmpdsf);
1305 sfree(state->clues);
1306 }
1307 sfree(state);
1308 }
1309
1310 /*
1311 * Utility function to return the current degree of a vertex. If
1312 * `anti' is set, it returns the number of filled-in edges
1313 * surrounding the point which _don't_ connect to it; thus 4 minus
1314 * its anti-degree is the maximum degree it could have if all the
1315 * empty spaces around it were filled in.
1316 *
1317 * (Yes, _4_ minus its anti-degree even if it's a border vertex.)
1318 *
1319 * If ret > 0, *sx and *sy are set to the coordinates of one of the
1320 * squares that contributed to it.
1321 */
1322 static int vertex_degree(int w, int h, signed char *soln, int x, int y,
1323 int anti, int *sx, int *sy)
1324 {
1325 int ret = 0;
1326
1327 assert(x >= 0 && x <= w && y >= 0 && y <= h);
1328 if (x > 0 && y > 0 && soln[(y-1)*w+(x-1)] - anti < 0) {
1329 if (sx) *sx = x-1;
1330 if (sy) *sy = y-1;
1331 ret++;
1332 }
1333 if (x > 0 && y < h && soln[y*w+(x-1)] + anti > 0) {
1334 if (sx) *sx = x-1;
1335 if (sy) *sy = y;
1336 ret++;
1337 }
1338 if (x < w && y > 0 && soln[(y-1)*w+x] + anti > 0) {
1339 if (sx) *sx = x;
1340 if (sy) *sy = y-1;
1341 ret++;
1342 }
1343 if (x < w && y < h && soln[y*w+x] - anti < 0) {
1344 if (sx) *sx = x;
1345 if (sy) *sy = y;
1346 ret++;
1347 }
1348
1349 return anti ? 4 - ret : ret;
1350 }
1351
1352 static int check_completion(game_state *state)
1353 {
1354 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
1355 int x, y, err = FALSE;
1356 int *dsf;
1357
1358 memset(state->errors, 0, W*H);
1359
1360 /*
1361 * To detect loops in the grid, we iterate through each edge
1362 * building up a dsf of connected components of the space
1363 * around the edges; if there's more than one such component,
1364 * we have a loop, and in particular we can then easily
1365 * identify and highlight every edge forming part of a loop
1366 * because it separates two nonequivalent regions.
1367 *
1368 * We use the `tmpdsf' scratch space in the shared clues
1369 * structure, to avoid mallocing too often.
1370 *
1371 * For these purposes, the grid is considered to be divided
1372 * into diamond-shaped regions surrounding an orthogonal edge.
1373 * This means we have W*h vertical edges and w*H horizontal
1374 * ones; so our vertical edges are indexed in the dsf as
1375 * (y*W+x) (0<=y<h, 0<=x<W), and the horizontal ones as (W*h +
1376 * y*w+x) (0<=y<H, 0<=x<w), where (x,y) is the topmost or
1377 * leftmost point on the edge.
1378 */
1379 dsf = state->clues->tmpdsf;
1380 dsf_init(dsf, W*h + w*H);
1381 /* Start by identifying all the outer edges with each other. */
1382 for (y = 0; y < h; y++) {
1383 dsf_merge(dsf, 0, y*W+0);
1384 dsf_merge(dsf, 0, y*W+w);
1385 }
1386 for (x = 0; x < w; x++) {
1387 dsf_merge(dsf, 0, W*h + 0*w+x);
1388 dsf_merge(dsf, 0, W*h + h*w+x);
1389 }
1390 /* Now go through the actual grid. */
1391 for (y = 0; y < h; y++)
1392 for (x = 0; x < w; x++) {
1393 if (state->soln[y*w+x] >= 0) {
1394 /*
1395 * There isn't a \ in this square, so we can unify
1396 * the top edge with the left, and the bottom with
1397 * the right.
1398 */
1399 dsf_merge(dsf, y*W+x, W*h + y*w+x);
1400 dsf_merge(dsf, y*W+(x+1), W*h + (y+1)*w+x);
1401 }
1402 if (state->soln[y*w+x] <= 0) {
1403 /*
1404 * There isn't a / in this square, so we can unify
1405 * the top edge with the right, and the bottom
1406 * with the left.
1407 */
1408 dsf_merge(dsf, y*W+x, W*h + (y+1)*w+x);
1409 dsf_merge(dsf, y*W+(x+1), W*h + y*w+x);
1410 }
1411 }
1412 /* Now go through again and mark the appropriate edges as erroneous. */
1413 for (y = 0; y < h; y++)
1414 for (x = 0; x < w; x++) {
1415 int erroneous = 0;
1416 if (state->soln[y*w+x] > 0) {
1417 /*
1418 * A / separates the top and left edges (which
1419 * must already have been identified with each
1420 * other) from the bottom and right (likewise).
1421 * Hence it is erroneous if and only if the top
1422 * and right edges are nonequivalent.
1423 */
1424 erroneous = (dsf_canonify(dsf, y*W+(x+1)) !=
1425 dsf_canonify(dsf, W*h + y*w+x));
1426 } else if (state->soln[y*w+x] < 0) {
1427 /*
1428 * A \ separates the top and right edges (which
1429 * must already have been identified with each
1430 * other) from the bottom and left (likewise).
1431 * Hence it is erroneous if and only if the top
1432 * and left edges are nonequivalent.
1433 */
1434 erroneous = (dsf_canonify(dsf, y*W+x) !=
1435 dsf_canonify(dsf, W*h + y*w+x));
1436 }
1437 if (erroneous) {
1438 state->errors[y*W+x] |= ERR_SQUARE;
1439 err = TRUE;
1440 }
1441 }
1442
1443 /*
1444 * Now go through and check the degree of each clue vertex, and
1445 * mark it with ERR_VERTEX if it cannot be fulfilled.
1446 */
1447 for (y = 0; y < H; y++)
1448 for (x = 0; x < W; x++) {
1449 int c;
1450
1451 if ((c = state->clues->clues[y*W+x]) < 0)
1452 continue;
1453
1454 /*
1455 * Check to see if there are too many connections to
1456 * this vertex _or_ too many non-connections. Either is
1457 * grounds for marking the vertex as erroneous.
1458 */
1459 if (vertex_degree(w, h, state->soln, x, y,
1460 FALSE, NULL, NULL) > c ||
1461 vertex_degree(w, h, state->soln, x, y,
1462 TRUE, NULL, NULL) > 4-c) {
1463 state->errors[y*W+x] |= ERR_VERTEX;
1464 err = TRUE;
1465 }
1466 }
1467
1468 /*
1469 * Now our actual victory condition is that (a) none of the
1470 * above code marked anything as erroneous, and (b) every
1471 * square has an edge in it.
1472 */
1473
1474 if (err)
1475 return FALSE;
1476
1477 for (y = 0; y < h; y++)
1478 for (x = 0; x < w; x++)
1479 if (state->soln[y*w+x] == 0)
1480 return FALSE;
1481
1482 return TRUE;
1483 }
1484
1485 static char *solve_game(game_state *state, game_state *currstate,
1486 char *aux, char **error)
1487 {
1488 int w = state->p.w, h = state->p.h;
1489 signed char *soln;
1490 int bs, ret;
1491 int free_soln = FALSE;
1492 char *move, buf[80];
1493 int movelen, movesize;
1494 int x, y;
1495
1496 if (aux) {
1497 /*
1498 * If we already have the solution, save ourselves some
1499 * time.
1500 */
1501 soln = (signed char *)aux;
1502 bs = (signed char)'\\';
1503 free_soln = FALSE;
1504 } else {
1505 struct solver_scratch *sc = new_scratch(w, h);
1506 soln = snewn(w*h, signed char);
1507 bs = -1;
1508 ret = slant_solve(w, h, state->clues->clues, soln, sc, DIFF_HARD);
1509 free_scratch(sc);
1510 if (ret != 1) {
1511 sfree(soln);
1512 if (ret == 0)
1513 *error = "This puzzle is not self-consistent";
1514 else
1515 *error = "Unable to find a unique solution for this puzzle";
1516 return NULL;
1517 }
1518 free_soln = TRUE;
1519 }
1520
1521 /*
1522 * Construct a move string which turns the current state into
1523 * the solved state.
1524 */
1525 movesize = 256;
1526 move = snewn(movesize, char);
1527 movelen = 0;
1528 move[movelen++] = 'S';
1529 move[movelen] = '\0';
1530 for (y = 0; y < h; y++)
1531 for (x = 0; x < w; x++) {
1532 int v = (soln[y*w+x] == bs ? -1 : +1);
1533 if (state->soln[y*w+x] != v) {
1534 int len = sprintf(buf, ";%c%d,%d", (int)(v < 0 ? '\\' : '/'), x, y);
1535 if (movelen + len >= movesize) {
1536 movesize = movelen + len + 256;
1537 move = sresize(move, movesize, char);
1538 }
1539 strcpy(move + movelen, buf);
1540 movelen += len;
1541 }
1542 }
1543
1544 if (free_soln)
1545 sfree(soln);
1546
1547 return move;
1548 }
1549
1550 static int game_can_format_as_text_now(game_params *params)
1551 {
1552 return TRUE;
1553 }
1554
1555 static char *game_text_format(game_state *state)
1556 {
1557 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
1558 int x, y, len;
1559 char *ret, *p;
1560
1561 /*
1562 * There are h+H rows of w+W columns.
1563 */
1564 len = (h+H) * (w+W+1) + 1;
1565 ret = snewn(len, char);
1566 p = ret;
1567
1568 for (y = 0; y < H; y++) {
1569 for (x = 0; x < W; x++) {
1570 if (state->clues->clues[y*W+x] >= 0)
1571 *p++ = state->clues->clues[y*W+x] + '0';
1572 else
1573 *p++ = '+';
1574 if (x < w)
1575 *p++ = '-';
1576 }
1577 *p++ = '\n';
1578 if (y < h) {
1579 for (x = 0; x < W; x++) {
1580 *p++ = '|';
1581 if (x < w) {
1582 if (state->soln[y*w+x] != 0)
1583 *p++ = (state->soln[y*w+x] < 0 ? '\\' : '/');
1584 else
1585 *p++ = ' ';
1586 }
1587 }
1588 *p++ = '\n';
1589 }
1590 }
1591 *p++ = '\0';
1592
1593 assert(p - ret == len);
1594 return ret;
1595 }
1596
1597 static game_ui *new_ui(game_state *state)
1598 {
1599 return NULL;
1600 }
1601
1602 static void free_ui(game_ui *ui)
1603 {
1604 }
1605
1606 static char *encode_ui(game_ui *ui)
1607 {
1608 return NULL;
1609 }
1610
1611 static void decode_ui(game_ui *ui, char *encoding)
1612 {
1613 }
1614
1615 static void game_changed_state(game_ui *ui, game_state *oldstate,
1616 game_state *newstate)
1617 {
1618 }
1619
1620 #define PREFERRED_TILESIZE 32
1621 #define TILESIZE (ds->tilesize)
1622 #define BORDER TILESIZE
1623 #define CLUE_RADIUS (TILESIZE / 3)
1624 #define CLUE_TEXTSIZE (TILESIZE / 2)
1625 #define COORD(x) ( (x) * TILESIZE + BORDER )
1626 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
1627
1628 #define FLASH_TIME 0.30F
1629
1630 /*
1631 * Bit fields in the `grid' and `todraw' elements of the drawstate.
1632 */
1633 #define BACKSLASH 0x00000001L
1634 #define FORWSLASH 0x00000002L
1635 #define L_T 0x00000004L
1636 #define ERR_L_T 0x00000008L
1637 #define L_B 0x00000010L
1638 #define ERR_L_B 0x00000020L
1639 #define T_L 0x00000040L
1640 #define ERR_T_L 0x00000080L
1641 #define T_R 0x00000100L
1642 #define ERR_T_R 0x00000200L
1643 #define C_TL 0x00000400L
1644 #define ERR_C_TL 0x00000800L
1645 #define FLASH 0x00001000L
1646 #define ERRSLASH 0x00002000L
1647 #define ERR_TL 0x00004000L
1648 #define ERR_TR 0x00008000L
1649 #define ERR_BL 0x00010000L
1650 #define ERR_BR 0x00020000L
1651
1652 struct game_drawstate {
1653 int tilesize;
1654 int started;
1655 long *grid;
1656 long *todraw;
1657 };
1658
1659 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1660 int x, int y, int button)
1661 {
1662 int w = state->p.w, h = state->p.h;
1663
1664 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
1665 int v;
1666 char buf[80];
1667
1668 /*
1669 * This is an utterly awful hack which I should really sort out
1670 * by means of a proper configuration mechanism. One Slant
1671 * player has observed that they prefer the mouse buttons to
1672 * function exactly the opposite way round, so here's a
1673 * mechanism for environment-based configuration. I cache the
1674 * result in a global variable - yuck! - to avoid repeated
1675 * lookups.
1676 */
1677 {
1678 static int swap_buttons = -1;
1679 if (swap_buttons < 0) {
1680 char *env = getenv("SLANT_SWAP_BUTTONS");
1681 swap_buttons = (env && (env[0] == 'y' || env[0] == 'Y'));
1682 }
1683 if (swap_buttons) {
1684 if (button == LEFT_BUTTON)
1685 button = RIGHT_BUTTON;
1686 else
1687 button = LEFT_BUTTON;
1688 }
1689 }
1690
1691 x = FROMCOORD(x);
1692 y = FROMCOORD(y);
1693 if (x < 0 || y < 0 || x >= w || y >= h)
1694 return NULL;
1695
1696 if (button == LEFT_BUTTON) {
1697 /*
1698 * Left-clicking cycles blank -> \ -> / -> blank.
1699 */
1700 v = state->soln[y*w+x] - 1;
1701 if (v == -2)
1702 v = +1;
1703 } else {
1704 /*
1705 * Right-clicking cycles blank -> / -> \ -> blank.
1706 */
1707 v = state->soln[y*w+x] + 1;
1708 if (v == +2)
1709 v = -1;
1710 }
1711
1712 sprintf(buf, "%c%d,%d", (int)(v==-1 ? '\\' : v==+1 ? '/' : 'C'), x, y);
1713 return dupstr(buf);
1714 }
1715
1716 return NULL;
1717 }
1718
1719 static game_state *execute_move(game_state *state, char *move)
1720 {
1721 int w = state->p.w, h = state->p.h;
1722 char c;
1723 int x, y, n;
1724 game_state *ret = dup_game(state);
1725
1726 while (*move) {
1727 c = *move;
1728 if (c == 'S') {
1729 ret->used_solve = TRUE;
1730 move++;
1731 } else if (c == '\\' || c == '/' || c == 'C') {
1732 move++;
1733 if (sscanf(move, "%d,%d%n", &x, &y, &n) != 2 ||
1734 x < 0 || y < 0 || x >= w || y >= h) {
1735 free_game(ret);
1736 return NULL;
1737 }
1738 ret->soln[y*w+x] = (c == '\\' ? -1 : c == '/' ? +1 : 0);
1739 move += n;
1740 } else {
1741 free_game(ret);
1742 return NULL;
1743 }
1744 if (*move == ';')
1745 move++;
1746 else if (*move) {
1747 free_game(ret);
1748 return NULL;
1749 }
1750 }
1751
1752 /*
1753 * We never clear the `completed' flag, but we must always
1754 * re-run the completion check because it also highlights
1755 * errors in the grid.
1756 */
1757 ret->completed = check_completion(ret) || ret->completed;
1758
1759 return ret;
1760 }
1761
1762 /* ----------------------------------------------------------------------
1763 * Drawing routines.
1764 */
1765
1766 static void game_compute_size(game_params *params, int tilesize,
1767 int *x, int *y)
1768 {
1769 /* fool the macros */
1770 struct dummy { int tilesize; } dummy, *ds = &dummy;
1771 dummy.tilesize = tilesize;
1772
1773 *x = 2 * BORDER + params->w * TILESIZE + 1;
1774 *y = 2 * BORDER + params->h * TILESIZE + 1;
1775 }
1776
1777 static void game_set_size(drawing *dr, game_drawstate *ds,
1778 game_params *params, int tilesize)
1779 {
1780 ds->tilesize = tilesize;
1781 }
1782
1783 static float *game_colours(frontend *fe, int *ncolours)
1784 {
1785 float *ret = snewn(3 * NCOLOURS, float);
1786
1787 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1788
1789 ret[COL_GRID * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.7F;
1790 ret[COL_GRID * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.7F;
1791 ret[COL_GRID * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.7F;
1792
1793 ret[COL_INK * 3 + 0] = 0.0F;
1794 ret[COL_INK * 3 + 1] = 0.0F;
1795 ret[COL_INK * 3 + 2] = 0.0F;
1796
1797 ret[COL_SLANT1 * 3 + 0] = 0.0F;
1798 ret[COL_SLANT1 * 3 + 1] = 0.0F;
1799 ret[COL_SLANT1 * 3 + 2] = 0.0F;
1800
1801 ret[COL_SLANT2 * 3 + 0] = 0.0F;
1802 ret[COL_SLANT2 * 3 + 1] = 0.0F;
1803 ret[COL_SLANT2 * 3 + 2] = 0.0F;
1804
1805 ret[COL_ERROR * 3 + 0] = 1.0F;
1806 ret[COL_ERROR * 3 + 1] = 0.0F;
1807 ret[COL_ERROR * 3 + 2] = 0.0F;
1808
1809 *ncolours = NCOLOURS;
1810 return ret;
1811 }
1812
1813 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1814 {
1815 int w = state->p.w, h = state->p.h;
1816 int i;
1817 struct game_drawstate *ds = snew(struct game_drawstate);
1818
1819 ds->tilesize = 0;
1820 ds->started = FALSE;
1821 ds->grid = snewn((w+2)*(h+2), long);
1822 ds->todraw = snewn((w+2)*(h+2), long);
1823 for (i = 0; i < (w+2)*(h+2); i++)
1824 ds->grid[i] = ds->todraw[i] = -1;
1825
1826 return ds;
1827 }
1828
1829 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1830 {
1831 sfree(ds->todraw);
1832 sfree(ds->grid);
1833 sfree(ds);
1834 }
1835
1836 static void draw_clue(drawing *dr, game_drawstate *ds,
1837 int x, int y, long v, long err, int bg, int colour)
1838 {
1839 char p[2];
1840 int ccol = colour >= 0 ? colour : ((x ^ y) & 1) ? COL_SLANT1 : COL_SLANT2;
1841 int tcol = colour >= 0 ? colour : err ? COL_ERROR : COL_INK;
1842
1843 if (v < 0)
1844 return;
1845
1846 p[0] = v + '0';
1847 p[1] = '\0';
1848 draw_circle(dr, COORD(x), COORD(y), CLUE_RADIUS,
1849 bg >= 0 ? bg : COL_BACKGROUND, ccol);
1850 draw_text(dr, COORD(x), COORD(y), FONT_VARIABLE,
1851 CLUE_TEXTSIZE, ALIGN_VCENTRE|ALIGN_HCENTRE, tcol, p);
1852 }
1853
1854 static void draw_tile(drawing *dr, game_drawstate *ds, game_clues *clues,
1855 int x, int y, long v)
1856 {
1857 int w = clues->w, h = clues->h, W = w+1 /*, H = h+1 */;
1858 int chesscolour = (x ^ y) & 1;
1859 int fscol = chesscolour ? COL_SLANT2 : COL_SLANT1;
1860 int bscol = chesscolour ? COL_SLANT1 : COL_SLANT2;
1861
1862 clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
1863
1864 draw_rect(dr, COORD(x), COORD(y), TILESIZE, TILESIZE,
1865 (v & FLASH) ? COL_GRID : COL_BACKGROUND);
1866
1867 /*
1868 * Draw the grid lines.
1869 */
1870 if (x >= 0 && x < w && y >= 0)
1871 draw_rect(dr, COORD(x), COORD(y), TILESIZE+1, 1, COL_GRID);
1872 if (x >= 0 && x < w && y < h)
1873 draw_rect(dr, COORD(x), COORD(y+1), TILESIZE+1, 1, COL_GRID);
1874 if (y >= 0 && y < h && x >= 0)
1875 draw_rect(dr, COORD(x), COORD(y), 1, TILESIZE+1, COL_GRID);
1876 if (y >= 0 && y < h && x < w)
1877 draw_rect(dr, COORD(x+1), COORD(y), 1, TILESIZE+1, COL_GRID);
1878 if (x == -1 && y == -1)
1879 draw_rect(dr, COORD(x+1), COORD(y+1), 1, 1, COL_GRID);
1880 if (x == -1 && y == h)
1881 draw_rect(dr, COORD(x+1), COORD(y), 1, 1, COL_GRID);
1882 if (x == w && y == -1)
1883 draw_rect(dr, COORD(x), COORD(y+1), 1, 1, COL_GRID);
1884 if (x == w && y == h)
1885 draw_rect(dr, COORD(x), COORD(y), 1, 1, COL_GRID);
1886
1887 /*
1888 * Draw the slash.
1889 */
1890 if (v & BACKSLASH) {
1891 int scol = (v & ERRSLASH) ? COL_ERROR : bscol;
1892 draw_line(dr, COORD(x), COORD(y), COORD(x+1), COORD(y+1), scol);
1893 draw_line(dr, COORD(x)+1, COORD(y), COORD(x+1), COORD(y+1)-1,
1894 scol);
1895 draw_line(dr, COORD(x), COORD(y)+1, COORD(x+1)-1, COORD(y+1),
1896 scol);
1897 } else if (v & FORWSLASH) {
1898 int scol = (v & ERRSLASH) ? COL_ERROR : fscol;
1899 draw_line(dr, COORD(x+1), COORD(y), COORD(x), COORD(y+1), scol);
1900 draw_line(dr, COORD(x+1)-1, COORD(y), COORD(x), COORD(y+1)-1,
1901 scol);
1902 draw_line(dr, COORD(x+1), COORD(y)+1, COORD(x)+1, COORD(y+1),
1903 scol);
1904 }
1905
1906 /*
1907 * Draw dots on the grid corners that appear if a slash is in a
1908 * neighbouring cell.
1909 */
1910 if (v & (L_T | BACKSLASH))
1911 draw_rect(dr, COORD(x), COORD(y)+1, 1, 1,
1912 (v & ERR_L_T ? COL_ERROR : bscol));
1913 if (v & (L_B | FORWSLASH))
1914 draw_rect(dr, COORD(x), COORD(y+1)-1, 1, 1,
1915 (v & ERR_L_B ? COL_ERROR : fscol));
1916 if (v & (T_L | BACKSLASH))
1917 draw_rect(dr, COORD(x)+1, COORD(y), 1, 1,
1918 (v & ERR_T_L ? COL_ERROR : bscol));
1919 if (v & (T_R | FORWSLASH))
1920 draw_rect(dr, COORD(x+1)-1, COORD(y), 1, 1,
1921 (v & ERR_T_R ? COL_ERROR : fscol));
1922 if (v & (C_TL | BACKSLASH))
1923 draw_rect(dr, COORD(x), COORD(y), 1, 1,
1924 (v & ERR_C_TL ? COL_ERROR : bscol));
1925
1926 /*
1927 * And finally the clues at the corners.
1928 */
1929 if (x >= 0 && y >= 0)
1930 draw_clue(dr, ds, x, y, clues->clues[y*W+x], v & ERR_TL, -1, -1);
1931 if (x < w && y >= 0)
1932 draw_clue(dr, ds, x+1, y, clues->clues[y*W+(x+1)], v & ERR_TR, -1, -1);
1933 if (x >= 0 && y < h)
1934 draw_clue(dr, ds, x, y+1, clues->clues[(y+1)*W+x], v & ERR_BL, -1, -1);
1935 if (x < w && y < h)
1936 draw_clue(dr, ds, x+1, y+1, clues->clues[(y+1)*W+(x+1)], v & ERR_BR,
1937 -1, -1);
1938
1939 unclip(dr);
1940 draw_update(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
1941 }
1942
1943 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1944 game_state *state, int dir, game_ui *ui,
1945 float animtime, float flashtime)
1946 {
1947 int w = state->p.w, h = state->p.h, W = w+1, H = h+1;
1948 int x, y;
1949 int flashing;
1950
1951 if (flashtime > 0)
1952 flashing = (int)(flashtime * 3 / FLASH_TIME) != 1;
1953 else
1954 flashing = FALSE;
1955
1956 if (!ds->started) {
1957 int ww, wh;
1958 game_compute_size(&state->p, TILESIZE, &ww, &wh);
1959 draw_rect(dr, 0, 0, ww, wh, COL_BACKGROUND);
1960 draw_update(dr, 0, 0, ww, wh);
1961 ds->started = TRUE;
1962 }
1963
1964 /*
1965 * Loop over the grid and work out where all the slashes are.
1966 * We need to do this because a slash in one square affects the
1967 * drawing of the next one along.
1968 */
1969 for (y = -1; y <= h; y++)
1970 for (x = -1; x <= w; x++) {
1971 if (x >= 0 && x < w && y >= 0 && y < h)
1972 ds->todraw[(y+1)*(w+2)+(x+1)] = flashing ? FLASH : 0;
1973 else
1974 ds->todraw[(y+1)*(w+2)+(x+1)] = 0;
1975 }
1976
1977 for (y = 0; y < h; y++) {
1978 for (x = 0; x < w; x++) {
1979 int err = state->errors[y*W+x] & ERR_SQUARE;
1980
1981 if (state->soln[y*w+x] < 0) {
1982 ds->todraw[(y+1)*(w+2)+(x+1)] |= BACKSLASH;
1983 ds->todraw[(y+2)*(w+2)+(x+1)] |= T_R;
1984 ds->todraw[(y+1)*(w+2)+(x+2)] |= L_B;
1985 ds->todraw[(y+2)*(w+2)+(x+2)] |= C_TL;
1986 if (err) {
1987 ds->todraw[(y+1)*(w+2)+(x+1)] |= ERRSLASH |
1988 ERR_T_L | ERR_L_T | ERR_C_TL;
1989 ds->todraw[(y+2)*(w+2)+(x+1)] |= ERR_T_R;
1990 ds->todraw[(y+1)*(w+2)+(x+2)] |= ERR_L_B;
1991 ds->todraw[(y+2)*(w+2)+(x+2)] |= ERR_C_TL;
1992 }
1993 } else if (state->soln[y*w+x] > 0) {
1994 ds->todraw[(y+1)*(w+2)+(x+1)] |= FORWSLASH;
1995 ds->todraw[(y+1)*(w+2)+(x+2)] |= L_T | C_TL;
1996 ds->todraw[(y+2)*(w+2)+(x+1)] |= T_L | C_TL;
1997 if (err) {
1998 ds->todraw[(y+1)*(w+2)+(x+1)] |= ERRSLASH |
1999 ERR_L_B | ERR_T_R;
2000 ds->todraw[(y+1)*(w+2)+(x+2)] |= ERR_L_T | ERR_C_TL;
2001 ds->todraw[(y+2)*(w+2)+(x+1)] |= ERR_T_L | ERR_C_TL;
2002 }
2003 }
2004 }
2005 }
2006
2007 for (y = 0; y < H; y++)
2008 for (x = 0; x < W; x++)
2009 if (state->errors[y*W+x] & ERR_VERTEX) {
2010 ds->todraw[y*(w+2)+x] |= ERR_BR;
2011 ds->todraw[y*(w+2)+(x+1)] |= ERR_BL;
2012 ds->todraw[(y+1)*(w+2)+x] |= ERR_TR;
2013 ds->todraw[(y+1)*(w+2)+(x+1)] |= ERR_TL;
2014 }
2015
2016 /*
2017 * Now go through and draw the grid squares.
2018 */
2019 for (y = -1; y <= h; y++) {
2020 for (x = -1; x <= w; x++) {
2021 if (ds->todraw[(y+1)*(w+2)+(x+1)] != ds->grid[(y+1)*(w+2)+(x+1)]) {
2022 draw_tile(dr, ds, state->clues, x, y,
2023 ds->todraw[(y+1)*(w+2)+(x+1)]);
2024 ds->grid[(y+1)*(w+2)+(x+1)] = ds->todraw[(y+1)*(w+2)+(x+1)];
2025 }
2026 }
2027 }
2028 }
2029
2030 static float game_anim_length(game_state *oldstate, game_state *newstate,
2031 int dir, game_ui *ui)
2032 {
2033 return 0.0F;
2034 }
2035
2036 static float game_flash_length(game_state *oldstate, game_state *newstate,
2037 int dir, game_ui *ui)
2038 {
2039 if (!oldstate->completed && newstate->completed &&
2040 !oldstate->used_solve && !newstate->used_solve)
2041 return FLASH_TIME;
2042
2043 return 0.0F;
2044 }
2045
2046 static int game_timing_state(game_state *state, game_ui *ui)
2047 {
2048 return TRUE;
2049 }
2050
2051 static void game_print_size(game_params *params, float *x, float *y)
2052 {
2053 int pw, ph;
2054
2055 /*
2056 * I'll use 6mm squares by default.
2057 */
2058 game_compute_size(params, 600, &pw, &ph);
2059 *x = pw / 100.0;
2060 *y = ph / 100.0;
2061 }
2062
2063 static void game_print(drawing *dr, game_state *state, int tilesize)
2064 {
2065 int w = state->p.w, h = state->p.h, W = w+1;
2066 int ink = print_mono_colour(dr, 0);
2067 int paper = print_mono_colour(dr, 1);
2068 int x, y;
2069
2070 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2071 game_drawstate ads, *ds = &ads;
2072 game_set_size(dr, ds, NULL, tilesize);
2073
2074 /*
2075 * Border.
2076 */
2077 print_line_width(dr, TILESIZE / 16);
2078 draw_rect_outline(dr, COORD(0), COORD(0), w*TILESIZE, h*TILESIZE, ink);
2079
2080 /*
2081 * Grid.
2082 */
2083 print_line_width(dr, TILESIZE / 24);
2084 for (x = 1; x < w; x++)
2085 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), ink);
2086 for (y = 1; y < h; y++)
2087 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), ink);
2088
2089 /*
2090 * Solution.
2091 */
2092 print_line_width(dr, TILESIZE / 12);
2093 for (y = 0; y < h; y++)
2094 for (x = 0; x < w; x++)
2095 if (state->soln[y*w+x]) {
2096 int ly, ry;
2097 /*
2098 * To prevent nasty line-ending artefacts at
2099 * corners, I'll do something slightly cunning
2100 * here.
2101 */
2102 clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
2103 if (state->soln[y*w+x] < 0)
2104 ly = y-1, ry = y+2;
2105 else
2106 ry = y-1, ly = y+2;
2107 draw_line(dr, COORD(x-1), COORD(ly), COORD(x+2), COORD(ry),
2108 ink);
2109 unclip(dr);
2110 }
2111
2112 /*
2113 * Clues.
2114 */
2115 print_line_width(dr, TILESIZE / 24);
2116 for (y = 0; y <= h; y++)
2117 for (x = 0; x <= w; x++)
2118 draw_clue(dr, ds, x, y, state->clues->clues[y*W+x],
2119 FALSE, paper, ink);
2120 }
2121
2122 #ifdef COMBINED
2123 #define thegame slant
2124 #endif
2125
2126 const struct game thegame = {
2127 "Slant", "games.slant", "slant",
2128 default_params,
2129 game_fetch_preset,
2130 decode_params,
2131 encode_params,
2132 free_params,
2133 dup_params,
2134 TRUE, game_configure, custom_params,
2135 validate_params,
2136 new_game_desc,
2137 validate_desc,
2138 new_game,
2139 dup_game,
2140 free_game,
2141 TRUE, solve_game,
2142 TRUE, game_can_format_as_text_now, game_text_format,
2143 new_ui,
2144 free_ui,
2145 encode_ui,
2146 decode_ui,
2147 game_changed_state,
2148 interpret_move,
2149 execute_move,
2150 PREFERRED_TILESIZE, game_compute_size, game_set_size,
2151 game_colours,
2152 game_new_drawstate,
2153 game_free_drawstate,
2154 game_redraw,
2155 game_anim_length,
2156 game_flash_length,
2157 TRUE, FALSE, game_print_size, game_print,
2158 FALSE, /* wants_statusbar */
2159 FALSE, game_timing_state,
2160 0, /* flags */
2161 };
2162
2163 #ifdef STANDALONE_SOLVER
2164
2165 #include <stdarg.h>
2166
2167 int main(int argc, char **argv)
2168 {
2169 game_params *p;
2170 game_state *s;
2171 char *id = NULL, *desc, *err;
2172 int grade = FALSE;
2173 int ret, diff, really_verbose = FALSE;
2174 struct solver_scratch *sc;
2175
2176 while (--argc > 0) {
2177 char *p = *++argv;
2178 if (!strcmp(p, "-v")) {
2179 really_verbose = TRUE;
2180 } else if (!strcmp(p, "-g")) {
2181 grade = TRUE;
2182 } else if (*p == '-') {
2183 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
2184 return 1;
2185 } else {
2186 id = p;
2187 }
2188 }
2189
2190 if (!id) {
2191 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
2192 return 1;
2193 }
2194
2195 desc = strchr(id, ':');
2196 if (!desc) {
2197 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
2198 return 1;
2199 }
2200 *desc++ = '\0';
2201
2202 p = default_params();
2203 decode_params(p, id);
2204 err = validate_desc(p, desc);
2205 if (err) {
2206 fprintf(stderr, "%s: %s\n", argv[0], err);
2207 return 1;
2208 }
2209 s = new_game(NULL, p, desc);
2210
2211 sc = new_scratch(p->w, p->h);
2212
2213 /*
2214 * When solving an Easy puzzle, we don't want to bother the
2215 * user with Hard-level deductions. For this reason, we grade
2216 * the puzzle internally before doing anything else.
2217 */
2218 ret = -1; /* placate optimiser */
2219 for (diff = 0; diff < DIFFCOUNT; diff++) {
2220 ret = slant_solve(p->w, p->h, s->clues->clues,
2221 s->soln, sc, diff);
2222 if (ret < 2)
2223 break;
2224 }
2225
2226 if (diff == DIFFCOUNT) {
2227 if (grade)
2228 printf("Difficulty rating: harder than Hard, or ambiguous\n");
2229 else
2230 printf("Unable to find a unique solution\n");
2231 } else {
2232 if (grade) {
2233 if (ret == 0)
2234 printf("Difficulty rating: impossible (no solution exists)\n");
2235 else if (ret == 1)
2236 printf("Difficulty rating: %s\n", slant_diffnames[diff]);
2237 } else {
2238 verbose = really_verbose;
2239 ret = slant_solve(p->w, p->h, s->clues->clues,
2240 s->soln, sc, diff);
2241 if (ret == 0)
2242 printf("Puzzle is inconsistent\n");
2243 else
2244 fputs(game_text_format(s), stdout);
2245 }
2246 }
2247
2248 return 0;
2249 }
2250
2251 #endif