Add a menu bar, in both Windows and GTK. In particular, game modules
[sgt/puzzles] / cube.c
1 /*
2 * cube.c: Cube game.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <math.h>
10
11 #include "puzzles.h"
12
13 #define MAXVERTICES 20
14 #define MAXFACES 20
15 #define MAXORDER 4
16 struct solid {
17 int nvertices;
18 float vertices[MAXVERTICES * 3]; /* 3*npoints coordinates */
19 int order;
20 int nfaces;
21 int faces[MAXFACES * MAXORDER]; /* order*nfaces point indices */
22 float normals[MAXFACES * 3]; /* 3*npoints vector components */
23 float shear; /* isometric shear for nice drawing */
24 float border; /* border required around arena */
25 };
26
27 static const struct solid tetrahedron = {
28 4,
29 {
30 0.0, -0.57735026919, -0.20412414523,
31 -0.5, 0.28867513459, -0.20412414523,
32 0.0, -0.0, 0.6123724357,
33 0.5, 0.28867513459, -0.20412414523,
34 },
35 3, 4,
36 {
37 0,2,1, 3,1,2, 2,0,3, 1,3,0
38 },
39 {
40 -0.816496580928, -0.471404520791, 0.333333333334,
41 0.0, 0.942809041583, 0.333333333333,
42 0.816496580928, -0.471404520791, 0.333333333334,
43 0.0, 0.0, -1.0,
44 },
45 0.0, 0.3
46 };
47
48 static const struct solid cube = {
49 8,
50 {
51 -0.5,-0.5,-0.5, -0.5,-0.5,+0.5, -0.5,+0.5,-0.5, -0.5,+0.5,+0.5,
52 +0.5,-0.5,-0.5, +0.5,-0.5,+0.5, +0.5,+0.5,-0.5, +0.5,+0.5,+0.5,
53 },
54 4, 6,
55 {
56 0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
57 },
58 {
59 -1,0,0, 0,0,+1, +1,0,0, 0,0,-1, 0,-1,0, 0,+1,0
60 },
61 0.3, 0.5
62 };
63
64 static const struct solid octahedron = {
65 6,
66 {
67 -0.5, -0.28867513459472505, 0.4082482904638664,
68 0.5, 0.28867513459472505, -0.4082482904638664,
69 -0.5, 0.28867513459472505, -0.4082482904638664,
70 0.5, -0.28867513459472505, 0.4082482904638664,
71 0.0, -0.57735026918945009, -0.4082482904638664,
72 0.0, 0.57735026918945009, 0.4082482904638664,
73 },
74 3, 8,
75 {
76 4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
77 },
78 {
79 -0.816496580928, -0.471404520791, -0.333333333334,
80 -0.816496580928, 0.471404520791, 0.333333333334,
81 0.0, -0.942809041583, 0.333333333333,
82 0.0, 0.0, 1.0,
83 0.0, 0.0, -1.0,
84 0.0, 0.942809041583, -0.333333333333,
85 0.816496580928, -0.471404520791, -0.333333333334,
86 0.816496580928, 0.471404520791, 0.333333333334,
87 },
88 0.0, 0.5
89 };
90
91 static const struct solid icosahedron = {
92 12,
93 {
94 0.0, 0.57735026919, 0.75576131408,
95 0.0, -0.93417235896, 0.17841104489,
96 0.0, 0.93417235896, -0.17841104489,
97 0.0, -0.57735026919, -0.75576131408,
98 -0.5, -0.28867513459, 0.75576131408,
99 -0.5, 0.28867513459, -0.75576131408,
100 0.5, -0.28867513459, 0.75576131408,
101 0.5, 0.28867513459, -0.75576131408,
102 -0.80901699437, 0.46708617948, 0.17841104489,
103 0.80901699437, 0.46708617948, 0.17841104489,
104 -0.80901699437, -0.46708617948, -0.17841104489,
105 0.80901699437, -0.46708617948, -0.17841104489,
106 },
107 3, 20,
108 {
109 8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6,
110 4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10,
111 9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4,
112 1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7,
113 },
114 {
115 -0.356822089773, 0.87267799625, 0.333333333333,
116 0.356822089773, 0.87267799625, 0.333333333333,
117 -0.356822089773, -0.87267799625, -0.333333333333,
118 0.356822089773, -0.87267799625, -0.333333333333,
119 -0.0, 0.0, 1.0,
120 0.0, -0.666666666667, 0.745355992501,
121 0.0, 0.666666666667, -0.745355992501,
122 0.0, 0.0, -1.0,
123 -0.934172358963, -0.12732200375, 0.333333333333,
124 -0.934172358963, 0.12732200375, -0.333333333333,
125 0.934172358963, -0.12732200375, 0.333333333333,
126 0.934172358963, 0.12732200375, -0.333333333333,
127 -0.57735026919, 0.333333333334, 0.745355992501,
128 0.57735026919, 0.333333333334, 0.745355992501,
129 -0.57735026919, -0.745355992501, 0.333333333334,
130 0.57735026919, -0.745355992501, 0.333333333334,
131 -0.57735026919, 0.745355992501, -0.333333333334,
132 0.57735026919, 0.745355992501, -0.333333333334,
133 -0.57735026919, -0.333333333334, -0.745355992501,
134 0.57735026919, -0.333333333334, -0.745355992501,
135 },
136 0.0, 0.8
137 };
138
139 enum {
140 TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON
141 };
142 static const struct solid *solids[] = {
143 &tetrahedron, &cube, &octahedron, &icosahedron
144 };
145
146 enum {
147 COL_BACKGROUND,
148 COL_BORDER,
149 COL_BLUE,
150 NCOLOURS
151 };
152
153 enum { LEFT, RIGHT, UP, DOWN };
154
155 #define GRID_SCALE 48
156 #define ROLLTIME 0.1
157
158 #define SQ(x) ( (x) * (x) )
159
160 #define MATMUL(ra,m,a) do { \
161 float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
162 rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
163 ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
164 rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
165 (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
166 } while (0)
167
168 #define APPROXEQ(x,y) ( SQ(x-y) < 0.1 )
169
170 struct grid_square {
171 float x, y;
172 int npoints;
173 float points[8]; /* maximum */
174 int directions[4]; /* bit masks showing point pairs */
175 int flip;
176 int blue;
177 int tetra_class;
178 };
179
180 struct game_params {
181 int solid;
182 /*
183 * Grid dimensions. For a square grid these are width and
184 * height respectively; otherwise the grid is a hexagon, with
185 * the top side and the two lower diagonals having length d1
186 * and the remaining three sides having length d2 (so that
187 * d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
188 */
189 int d1, d2;
190 };
191
192 struct game_state {
193 struct game_params params;
194 const struct solid *solid;
195 int *facecolours;
196 struct grid_square *squares;
197 int nsquares;
198 int current; /* index of current grid square */
199 int sgkey[2]; /* key-point indices into grid sq */
200 int dgkey[2]; /* key-point indices into grid sq */
201 int spkey[2]; /* key-point indices into polyhedron */
202 int dpkey[2]; /* key-point indices into polyhedron */
203 int previous;
204 float angle;
205 int completed;
206 int movecount;
207 };
208
209 game_params *default_params(void)
210 {
211 game_params *ret = snew(game_params);
212
213 ret->solid = CUBE;
214 ret->d1 = 4;
215 ret->d2 = 4;
216
217 return ret;
218 }
219
220 int game_fetch_preset(int i, char **name, game_params **params)
221 {
222 game_params *ret = snew(game_params);
223 char *str;
224
225 switch (i) {
226 case 0:
227 str = "Cube";
228 ret->solid = CUBE;
229 ret->d1 = 4;
230 ret->d2 = 4;
231 break;
232 case 1:
233 str = "Tetrahedron";
234 ret->solid = TETRAHEDRON;
235 ret->d1 = 2;
236 ret->d2 = 1;
237 break;
238 case 2:
239 str = "Octahedron";
240 ret->solid = OCTAHEDRON;
241 ret->d1 = 2;
242 ret->d2 = 2;
243 break;
244 case 3:
245 str = "Icosahedron";
246 ret->solid = ICOSAHEDRON;
247 ret->d1 = 3;
248 ret->d2 = 3;
249 break;
250 default:
251 sfree(ret);
252 return FALSE;
253 }
254
255 *name = dupstr(str);
256 *params = ret;
257 return TRUE;
258 }
259
260 void free_params(game_params *params)
261 {
262 sfree(params);
263 }
264
265 game_params *dup_params(game_params *params)
266 {
267 game_params *ret = snew(game_params);
268 *ret = *params; /* structure copy */
269 return ret;
270 }
271
272 static void enum_grid_squares(game_params *params,
273 void (*callback)(void *, struct grid_square *),
274 void *ctx)
275 {
276 const struct solid *solid = solids[params->solid];
277
278 if (solid->order == 4) {
279 int x, y;
280
281 for (x = 0; x < params->d1; x++)
282 for (y = 0; y < params->d2; y++) {
283 struct grid_square sq;
284
285 sq.x = x;
286 sq.y = y;
287 sq.points[0] = x - 0.5;
288 sq.points[1] = y - 0.5;
289 sq.points[2] = x - 0.5;
290 sq.points[3] = y + 0.5;
291 sq.points[4] = x + 0.5;
292 sq.points[5] = y + 0.5;
293 sq.points[6] = x + 0.5;
294 sq.points[7] = y - 0.5;
295 sq.npoints = 4;
296
297 sq.directions[LEFT] = 0x03; /* 0,1 */
298 sq.directions[RIGHT] = 0x0C; /* 2,3 */
299 sq.directions[UP] = 0x09; /* 0,3 */
300 sq.directions[DOWN] = 0x06; /* 1,2 */
301
302 sq.flip = FALSE;
303
304 /*
305 * This is supremely irrelevant, but just to avoid
306 * having any uninitialised structure members...
307 */
308 sq.tetra_class = 0;
309
310 callback(ctx, &sq);
311 }
312 } else {
313 int row, rowlen, other, i, firstix = -1;
314 float theight = sqrt(3) / 2.0;
315
316 for (row = 0; row < params->d1 + params->d2; row++) {
317 if (row < params->d1) {
318 other = +1;
319 rowlen = row + params->d2;
320 } else {
321 other = -1;
322 rowlen = 2*params->d1 + params->d2 - row;
323 }
324
325 /*
326 * There are `rowlen' down-pointing triangles.
327 */
328 for (i = 0; i < rowlen; i++) {
329 struct grid_square sq;
330 int ix;
331 float x, y;
332
333 ix = (2 * i - (rowlen-1));
334 x = ix * 0.5;
335 y = theight * row;
336 sq.x = x;
337 sq.y = y + theight / 3;
338 sq.points[0] = x - 0.5;
339 sq.points[1] = y;
340 sq.points[2] = x;
341 sq.points[3] = y + theight;
342 sq.points[4] = x + 0.5;
343 sq.points[5] = y;
344 sq.npoints = 3;
345
346 sq.directions[LEFT] = 0x03; /* 0,1 */
347 sq.directions[RIGHT] = 0x06; /* 1,2 */
348 sq.directions[UP] = 0x05; /* 0,2 */
349 sq.directions[DOWN] = 0; /* invalid move */
350
351 sq.flip = TRUE;
352
353 if (firstix < 0)
354 firstix = ix & 3;
355 ix -= firstix;
356 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
357
358 callback(ctx, &sq);
359 }
360
361 /*
362 * There are `rowlen+other' up-pointing triangles.
363 */
364 for (i = 0; i < rowlen+other; i++) {
365 struct grid_square sq;
366 int ix;
367 float x, y;
368
369 ix = (2 * i - (rowlen+other-1));
370 x = ix * 0.5;
371 y = theight * row;
372 sq.x = x;
373 sq.y = y + 2*theight / 3;
374 sq.points[0] = x + 0.5;
375 sq.points[1] = y + theight;
376 sq.points[2] = x;
377 sq.points[3] = y;
378 sq.points[4] = x - 0.5;
379 sq.points[5] = y + theight;
380 sq.npoints = 3;
381
382 sq.directions[LEFT] = 0x06; /* 1,2 */
383 sq.directions[RIGHT] = 0x03; /* 0,1 */
384 sq.directions[DOWN] = 0x05; /* 0,2 */
385 sq.directions[UP] = 0; /* invalid move */
386
387 sq.flip = FALSE;
388
389 if (firstix < 0)
390 firstix = ix;
391 ix -= firstix;
392 sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
393
394 callback(ctx, &sq);
395 }
396 }
397 }
398 }
399
400 static int grid_area(int d1, int d2, int order)
401 {
402 /*
403 * An NxM grid of squares has NM squares in it.
404 *
405 * A grid of triangles with dimensions A and B has a total of
406 * A^2 + B^2 + 4AB triangles in it. (You can divide it up into
407 * a side-A triangle containing A^2 subtriangles, a side-B
408 * triangle containing B^2, and two congruent parallelograms,
409 * each with side lengths A and B, each therefore containing AB
410 * two-triangle rhombuses.)
411 */
412 if (order == 4)
413 return d1 * d2;
414 else
415 return d1*d1 + d2*d2 + 4*d1*d2;
416 }
417
418 struct grid_data {
419 int *gridptrs[4];
420 int nsquares[4];
421 int nclasses;
422 int squareindex;
423 };
424
425 static void classify_grid_square_callback(void *ctx, struct grid_square *sq)
426 {
427 struct grid_data *data = (struct grid_data *)ctx;
428 int thisclass;
429
430 if (data->nclasses == 4)
431 thisclass = sq->tetra_class;
432 else if (data->nclasses == 2)
433 thisclass = sq->flip;
434 else
435 thisclass = 0;
436
437 data->gridptrs[thisclass][data->nsquares[thisclass]++] =
438 data->squareindex++;
439 }
440
441 char *new_game_seed(game_params *params)
442 {
443 struct grid_data data;
444 int i, j, k, m, area, facesperclass;
445 int *flags;
446 char *seed, *p;
447
448 /*
449 * Enumerate the grid squares, dividing them into equivalence
450 * classes as appropriate. (For the tetrahedron, there is one
451 * equivalence class for each face; for the octahedron there
452 * are two classes; for the other two solids there's only one.)
453 */
454
455 area = grid_area(params->d1, params->d2, solids[params->solid]->order);
456 if (params->solid == TETRAHEDRON)
457 data.nclasses = 4;
458 else if (params->solid == OCTAHEDRON)
459 data.nclasses = 2;
460 else
461 data.nclasses = 1;
462 data.gridptrs[0] = snewn(data.nclasses * area, int);
463 for (i = 0; i < data.nclasses; i++) {
464 data.gridptrs[i] = data.gridptrs[0] + i * area;
465 data.nsquares[i] = 0;
466 }
467 data.squareindex = 0;
468 enum_grid_squares(params, classify_grid_square_callback, &data);
469
470 facesperclass = solids[params->solid]->nfaces / data.nclasses;
471
472 for (i = 0; i < data.nclasses; i++)
473 assert(data.nsquares[i] >= facesperclass);
474 assert(data.squareindex == area);
475
476 /*
477 * So now we know how many faces to allocate in each class. Get
478 * on with it.
479 */
480 flags = snewn(area, int);
481 for (i = 0; i < area; i++)
482 flags[i] = FALSE;
483
484 for (i = 0; i < data.nclasses; i++) {
485 for (j = 0; j < facesperclass; j++) {
486 unsigned long divisor = RAND_MAX / data.nsquares[i];
487 unsigned long max = divisor * data.nsquares[i];
488 int n;
489
490 do {
491 n = rand();
492 } while (n >= max);
493
494 n /= divisor;
495
496 assert(!flags[data.gridptrs[i][n]]);
497 flags[data.gridptrs[i][n]] = TRUE;
498
499 /*
500 * Move everything else up the array. I ought to use a
501 * better data structure for this, but for such small
502 * numbers it hardly seems worth the effort.
503 */
504 while (n < data.nsquares[i]-1) {
505 data.gridptrs[i][n] = data.gridptrs[i][n+1];
506 n++;
507 }
508 data.nsquares[i]--;
509 }
510 }
511
512 /*
513 * Now we know precisely which squares are blue. Encode this
514 * information in hex. While we're looping over this, collect
515 * the non-blue squares into a list in the now-unused gridptrs
516 * array.
517 */
518 seed = snewn(area / 4 + 40, char);
519 p = seed;
520 j = 0;
521 k = 8;
522 m = 0;
523 for (i = 0; i < area; i++) {
524 if (flags[i]) {
525 j |= k;
526 } else {
527 data.gridptrs[0][m++] = i;
528 }
529 k >>= 1;
530 if (!k) {
531 *p++ = "0123456789ABCDEF"[j];
532 k = 8;
533 j = 0;
534 }
535 }
536 if (k != 8)
537 *p++ = "0123456789ABCDEF"[j];
538
539 /*
540 * Choose a non-blue square for the polyhedron.
541 */
542 {
543 unsigned long divisor = RAND_MAX / m;
544 unsigned long max = divisor * m;
545 int n;
546
547 do {
548 n = rand();
549 } while (n >= max);
550
551 n /= divisor;
552
553 sprintf(p, ":%d", data.gridptrs[0][n]);
554 }
555
556 sfree(data.gridptrs[0]);
557 sfree(flags);
558
559 return seed;
560 }
561
562 static void add_grid_square_callback(void *ctx, struct grid_square *sq)
563 {
564 game_state *state = (game_state *)ctx;
565
566 state->squares[state->nsquares] = *sq; /* structure copy */
567 state->squares[state->nsquares].blue = FALSE;
568 state->nsquares++;
569 }
570
571 static int lowest_face(const struct solid *solid)
572 {
573 int i, j, best;
574 float zmin;
575
576 best = 0;
577 zmin = 0.0;
578 for (i = 0; i < solid->nfaces; i++) {
579 float z = 0;
580
581 for (j = 0; j < solid->order; j++) {
582 int f = solid->faces[i*solid->order + j];
583 z += solid->vertices[f*3+2];
584 }
585
586 if (i == 0 || zmin > z) {
587 zmin = z;
588 best = i;
589 }
590 }
591
592 return best;
593 }
594
595 static int align_poly(const struct solid *solid, struct grid_square *sq,
596 int *pkey)
597 {
598 float zmin;
599 int i, j;
600 int flip = (sq->flip ? -1 : +1);
601
602 /*
603 * First, find the lowest z-coordinate present in the solid.
604 */
605 zmin = 0.0;
606 for (i = 0; i < solid->nvertices; i++)
607 if (zmin > solid->vertices[i*3+2])
608 zmin = solid->vertices[i*3+2];
609
610 /*
611 * Now go round the grid square. For each point in the grid
612 * square, we're looking for a point of the polyhedron with the
613 * same x- and y-coordinates (relative to the square's centre),
614 * and z-coordinate equal to zmin (near enough).
615 */
616 for (j = 0; j < sq->npoints; j++) {
617 int matches, index;
618
619 matches = 0;
620 index = -1;
621
622 for (i = 0; i < solid->nvertices; i++) {
623 float dist = 0;
624
625 dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x);
626 dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y);
627 dist += SQ(solid->vertices[i*3+2] - zmin);
628
629 if (dist < 0.1) {
630 matches++;
631 index = i;
632 }
633 }
634
635 if (matches != 1 || index < 0)
636 return FALSE;
637 pkey[j] = index;
638 }
639
640 return TRUE;
641 }
642
643 static void flip_poly(struct solid *solid, int flip)
644 {
645 int i;
646
647 if (flip) {
648 for (i = 0; i < solid->nvertices; i++) {
649 solid->vertices[i*3+0] *= -1;
650 solid->vertices[i*3+1] *= -1;
651 }
652 for (i = 0; i < solid->nfaces; i++) {
653 solid->normals[i*3+0] *= -1;
654 solid->normals[i*3+1] *= -1;
655 }
656 }
657 }
658
659 static struct solid *transform_poly(const struct solid *solid, int flip,
660 int key0, int key1, float angle)
661 {
662 struct solid *ret = snew(struct solid);
663 float vx, vy, ax, ay;
664 float vmatrix[9], amatrix[9], vmatrix2[9];
665 int i;
666
667 *ret = *solid; /* structure copy */
668
669 flip_poly(ret, flip);
670
671 /*
672 * Now rotate the polyhedron through the given angle. We must
673 * rotate about the Z-axis to bring the two vertices key0 and
674 * key1 into horizontal alignment, then rotate about the
675 * X-axis, then rotate back again.
676 */
677 vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0];
678 vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1];
679 assert(APPROXEQ(vx*vx + vy*vy, 1.0));
680
681 vmatrix[0] = vx; vmatrix[3] = vy; vmatrix[6] = 0;
682 vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0;
683 vmatrix[2] = 0; vmatrix[5] = 0; vmatrix[8] = 1;
684
685 ax = cos(angle);
686 ay = sin(angle);
687
688 amatrix[0] = 1; amatrix[3] = 0; amatrix[6] = 0;
689 amatrix[1] = 0; amatrix[4] = ax; amatrix[7] = ay;
690 amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax;
691
692 memcpy(vmatrix2, vmatrix, sizeof(vmatrix));
693 vmatrix2[1] = vy;
694 vmatrix2[3] = -vy;
695
696 for (i = 0; i < ret->nvertices; i++) {
697 MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i);
698 MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i);
699 MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i);
700 }
701 for (i = 0; i < ret->nfaces; i++) {
702 MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i);
703 MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i);
704 MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i);
705 }
706
707 return ret;
708 }
709
710 game_state *new_game(game_params *params, char *seed)
711 {
712 game_state *state = snew(game_state);
713 int area;
714
715 state->params = *params; /* structure copy */
716 state->solid = solids[params->solid];
717
718 area = grid_area(params->d1, params->d2, state->solid->order);
719 state->squares = snewn(area, struct grid_square);
720 state->nsquares = 0;
721 enum_grid_squares(params, add_grid_square_callback, state);
722 assert(state->nsquares == area);
723
724 state->facecolours = snewn(state->solid->nfaces, int);
725 memset(state->facecolours, 0, state->solid->nfaces * sizeof(int));
726
727 /*
728 * Set up the blue squares and polyhedron position according to
729 * the game seed.
730 */
731 {
732 char *p = seed;
733 int i, j, v;
734
735 j = 8;
736 v = 0;
737 for (i = 0; i < state->nsquares; i++) {
738 if (j == 8) {
739 v = *p++;
740 if (v >= '0' && v <= '9')
741 v -= '0';
742 else if (v >= 'A' && v <= 'F')
743 v -= 'A' - 10;
744 else if (v >= 'a' && v <= 'f')
745 v -= 'a' - 10;
746 else
747 break;
748 }
749 if (v & j)
750 state->squares[i].blue = TRUE;
751 j >>= 1;
752 if (j == 0)
753 j = 8;
754 }
755
756 if (*p == ':')
757 p++;
758
759 state->current = atoi(p);
760 if (state->current < 0 || state->current >= state->nsquares)
761 state->current = 0; /* got to do _something_ */
762 }
763
764 /*
765 * Align the polyhedron with its grid square and determine
766 * initial key points.
767 */
768 {
769 int pkey[4];
770 int ret;
771
772 ret = align_poly(state->solid, &state->squares[state->current], pkey);
773 assert(ret);
774
775 state->dpkey[0] = state->spkey[0] = pkey[0];
776 state->dpkey[1] = state->spkey[0] = pkey[1];
777 state->dgkey[0] = state->sgkey[0] = 0;
778 state->dgkey[1] = state->sgkey[0] = 1;
779 }
780
781 state->previous = state->current;
782 state->angle = 0.0;
783 state->completed = FALSE;
784 state->movecount = 0;
785
786 return state;
787 }
788
789 game_state *dup_game(game_state *state)
790 {
791 game_state *ret = snew(game_state);
792
793 ret->params = state->params; /* structure copy */
794 ret->solid = state->solid;
795 ret->facecolours = snewn(ret->solid->nfaces, int);
796 memcpy(ret->facecolours, state->facecolours,
797 ret->solid->nfaces * sizeof(int));
798 ret->nsquares = state->nsquares;
799 ret->squares = snewn(ret->nsquares, struct grid_square);
800 memcpy(ret->squares, state->squares,
801 ret->nsquares * sizeof(struct grid_square));
802 ret->dpkey[0] = state->dpkey[0];
803 ret->dpkey[1] = state->dpkey[1];
804 ret->dgkey[0] = state->dgkey[0];
805 ret->dgkey[1] = state->dgkey[1];
806 ret->spkey[0] = state->spkey[0];
807 ret->spkey[1] = state->spkey[1];
808 ret->sgkey[0] = state->sgkey[0];
809 ret->sgkey[1] = state->sgkey[1];
810 ret->previous = state->previous;
811 ret->angle = state->angle;
812 ret->completed = state->completed;
813 ret->movecount = state->movecount;
814
815 return ret;
816 }
817
818 void free_game(game_state *state)
819 {
820 sfree(state);
821 }
822
823 game_state *make_move(game_state *from, int x, int y, int button)
824 {
825 int direction;
826 int pkey[2], skey[2], dkey[2];
827 float points[4];
828 game_state *ret;
829 float angle;
830 int i, j, dest, mask;
831 struct solid *poly;
832
833 /*
834 * All moves are made with the cursor keys.
835 */
836 if (button == CURSOR_UP)
837 direction = UP;
838 else if (button == CURSOR_DOWN)
839 direction = DOWN;
840 else if (button == CURSOR_LEFT)
841 direction = LEFT;
842 else if (button == CURSOR_RIGHT)
843 direction = RIGHT;
844 else
845 return NULL;
846
847 /*
848 * Find the two points in the current grid square which
849 * correspond to this move.
850 */
851 mask = from->squares[from->current].directions[direction];
852 if (mask == 0)
853 return NULL;
854 for (i = j = 0; i < from->squares[from->current].npoints; i++)
855 if (mask & (1 << i)) {
856 points[j*2] = from->squares[from->current].points[i*2];
857 points[j*2+1] = from->squares[from->current].points[i*2+1];
858 skey[j] = i;
859 j++;
860 }
861 assert(j == 2);
862
863 /*
864 * Now find the other grid square which shares those points.
865 * This is our move destination.
866 */
867 dest = -1;
868 for (i = 0; i < from->nsquares; i++)
869 if (i != from->current) {
870 int match = 0;
871 float dist;
872
873 for (j = 0; j < from->squares[i].npoints; j++) {
874 dist = (SQ(from->squares[i].points[j*2] - points[0]) +
875 SQ(from->squares[i].points[j*2+1] - points[1]));
876 if (dist < 0.1)
877 dkey[match++] = j;
878 dist = (SQ(from->squares[i].points[j*2] - points[2]) +
879 SQ(from->squares[i].points[j*2+1] - points[3]));
880 if (dist < 0.1)
881 dkey[match++] = j;
882 }
883
884 if (match == 2) {
885 dest = i;
886 break;
887 }
888 }
889
890 if (dest < 0)
891 return NULL;
892
893 ret = dup_game(from);
894 ret->current = i;
895
896 /*
897 * So we know what grid square we're aiming for, and we also
898 * know the two key points (as indices in both the source and
899 * destination grid squares) which are invariant between source
900 * and destination.
901 *
902 * Next we must roll the polyhedron on to that square. So we
903 * find the indices of the key points within the polyhedron's
904 * vertex array, then use those in a call to transform_poly,
905 * and align the result on the new grid square.
906 */
907 {
908 int all_pkey[4];
909 align_poly(from->solid, &from->squares[from->current], all_pkey);
910 pkey[0] = all_pkey[skey[0]];
911 pkey[1] = all_pkey[skey[1]];
912 /*
913 * Now pkey[0] corresponds to skey[0] and dkey[0], and
914 * likewise [1].
915 */
916 }
917
918 /*
919 * Now find the angle through which to rotate the polyhedron.
920 * Do this by finding the two faces that share the two vertices
921 * we've found, and taking the dot product of their normals.
922 */
923 {
924 int f[2], nf = 0;
925 float dp;
926
927 for (i = 0; i < from->solid->nfaces; i++) {
928 int match = 0;
929 for (j = 0; j < from->solid->order; j++)
930 if (from->solid->faces[i*from->solid->order + j] == pkey[0] ||
931 from->solid->faces[i*from->solid->order + j] == pkey[1])
932 match++;
933 if (match == 2) {
934 assert(nf < 2);
935 f[nf++] = i;
936 }
937 }
938
939 assert(nf == 2);
940
941 dp = 0;
942 for (i = 0; i < 3; i++)
943 dp += (from->solid->normals[f[0]*3+i] *
944 from->solid->normals[f[1]*3+i]);
945 angle = acos(dp);
946 }
947
948 /*
949 * Now transform the polyhedron. We aren't entirely sure
950 * whether we need to rotate through angle or -angle, and the
951 * simplest way round this is to try both and see which one
952 * aligns successfully!
953 *
954 * Unfortunately, _both_ will align successfully if this is a
955 * cube, which won't tell us anything much. So for that
956 * particular case, I resort to gross hackery: I simply negate
957 * the angle before trying the alignment, depending on the
958 * direction. Which directions work which way is determined by
959 * pure trial and error. I said it was gross :-/
960 */
961 {
962 int all_pkey[4];
963 int success;
964
965 if (from->solid->order == 4 && direction == UP)
966 angle = -angle; /* HACK */
967
968 poly = transform_poly(from->solid,
969 from->squares[from->current].flip,
970 pkey[0], pkey[1], angle);
971 flip_poly(poly, from->squares[ret->current].flip);
972 success = align_poly(poly, &from->squares[ret->current], all_pkey);
973
974 if (!success) {
975 angle = -angle;
976 poly = transform_poly(from->solid,
977 from->squares[from->current].flip,
978 pkey[0], pkey[1], angle);
979 flip_poly(poly, from->squares[ret->current].flip);
980 success = align_poly(poly, &from->squares[ret->current], all_pkey);
981 }
982
983 assert(success);
984 }
985
986 /*
987 * Now we have our rotated polyhedron, which we expect to be
988 * exactly congruent to the one we started with - but with the
989 * faces permuted. So we map that congruence and thereby figure
990 * out how to permute the faces as a result of the polyhedron
991 * having rolled.
992 */
993 {
994 int *newcolours = snewn(from->solid->nfaces, int);
995
996 for (i = 0; i < from->solid->nfaces; i++)
997 newcolours[i] = -1;
998
999 for (i = 0; i < from->solid->nfaces; i++) {
1000 int nmatch = 0;
1001
1002 /*
1003 * Now go through the transformed polyhedron's faces
1004 * and figure out which one's normal is approximately
1005 * equal to this one.
1006 */
1007 for (j = 0; j < poly->nfaces; j++) {
1008 float dist;
1009 int k;
1010
1011 dist = 0;
1012
1013 for (k = 0; k < 3; k++)
1014 dist += SQ(poly->normals[j*3+k] -
1015 from->solid->normals[i*3+k]);
1016
1017 if (APPROXEQ(dist, 0)) {
1018 nmatch++;
1019 newcolours[i] = ret->facecolours[j];
1020 }
1021 }
1022
1023 assert(nmatch == 1);
1024 }
1025
1026 for (i = 0; i < from->solid->nfaces; i++)
1027 assert(newcolours[i] != -1);
1028
1029 sfree(ret->facecolours);
1030 ret->facecolours = newcolours;
1031 }
1032
1033 /*
1034 * And finally, swap the colour between the bottom face of the
1035 * polyhedron and the face we've just landed on.
1036 *
1037 * We don't do this if the game is already complete, since we
1038 * allow the user to roll the fully blue polyhedron around the
1039 * grid as a feeble reward.
1040 */
1041 if (!ret->completed) {
1042 i = lowest_face(from->solid);
1043 j = ret->facecolours[i];
1044 ret->facecolours[i] = ret->squares[ret->current].blue;
1045 ret->squares[ret->current].blue = j;
1046
1047 /*
1048 * Detect game completion.
1049 */
1050 j = 0;
1051 for (i = 0; i < ret->solid->nfaces; i++)
1052 if (ret->facecolours[i])
1053 j++;
1054 if (j == ret->solid->nfaces)
1055 ret->completed = TRUE;
1056 }
1057
1058 sfree(poly);
1059
1060 /*
1061 * Align the normal polyhedron with its grid square, to get key
1062 * points for non-animated display.
1063 */
1064 {
1065 int pkey[4];
1066 int success;
1067
1068 success = align_poly(ret->solid, &ret->squares[ret->current], pkey);
1069 assert(success);
1070
1071 ret->dpkey[0] = pkey[0];
1072 ret->dpkey[1] = pkey[1];
1073 ret->dgkey[0] = 0;
1074 ret->dgkey[1] = 1;
1075 }
1076
1077
1078 ret->spkey[0] = pkey[0];
1079 ret->spkey[1] = pkey[1];
1080 ret->sgkey[0] = skey[0];
1081 ret->sgkey[1] = skey[1];
1082 ret->previous = from->current;
1083 ret->angle = angle;
1084 ret->movecount++;
1085
1086 return ret;
1087 }
1088
1089 /* ----------------------------------------------------------------------
1090 * Drawing routines.
1091 */
1092
1093 struct bbox {
1094 float l, r, u, d;
1095 };
1096
1097 struct game_drawstate {
1098 int ox, oy; /* pixel position of float origin */
1099 };
1100
1101 static void find_bbox_callback(void *ctx, struct grid_square *sq)
1102 {
1103 struct bbox *bb = (struct bbox *)ctx;
1104 int i;
1105
1106 for (i = 0; i < sq->npoints; i++) {
1107 if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2];
1108 if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2];
1109 if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1];
1110 if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1];
1111 }
1112 }
1113
1114 static struct bbox find_bbox(game_params *params)
1115 {
1116 struct bbox bb;
1117
1118 /*
1119 * These should be hugely more than the real bounding box will
1120 * be.
1121 */
1122 bb.l = 2 * (params->d1 + params->d2);
1123 bb.r = -2 * (params->d1 + params->d2);
1124 bb.u = 2 * (params->d1 + params->d2);
1125 bb.d = -2 * (params->d1 + params->d2);
1126 enum_grid_squares(params, find_bbox_callback, &bb);
1127
1128 return bb;
1129 }
1130
1131 void game_size(game_params *params, int *x, int *y)
1132 {
1133 struct bbox bb = find_bbox(params);
1134 *x = (bb.r - bb.l + 2*solids[params->solid]->border) * GRID_SCALE;
1135 *y = (bb.d - bb.u + 2*solids[params->solid]->border) * GRID_SCALE;
1136 }
1137
1138 float *game_colours(frontend *fe, game_state *state, int *ncolours)
1139 {
1140 float *ret = snewn(3 * NCOLOURS, float);
1141
1142 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1143
1144 ret[COL_BORDER * 3 + 0] = 0.0;
1145 ret[COL_BORDER * 3 + 1] = 0.0;
1146 ret[COL_BORDER * 3 + 2] = 0.0;
1147
1148 ret[COL_BLUE * 3 + 0] = 0.0;
1149 ret[COL_BLUE * 3 + 1] = 0.0;
1150 ret[COL_BLUE * 3 + 2] = 1.0;
1151
1152 *ncolours = NCOLOURS;
1153 return ret;
1154 }
1155
1156 game_drawstate *game_new_drawstate(game_state *state)
1157 {
1158 struct game_drawstate *ds = snew(struct game_drawstate);
1159 struct bbox bb = find_bbox(&state->params);
1160
1161 ds->ox = -(bb.l - state->solid->border) * GRID_SCALE;
1162 ds->oy = -(bb.u - state->solid->border) * GRID_SCALE;
1163
1164 return ds;
1165 }
1166
1167 void game_free_drawstate(game_drawstate *ds)
1168 {
1169 sfree(ds);
1170 }
1171
1172 void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
1173 game_state *state, float animtime)
1174 {
1175 int i, j;
1176 struct bbox bb = find_bbox(&state->params);
1177 struct solid *poly;
1178 int *pkey, *gkey;
1179 float t[3];
1180 float angle;
1181 game_state *newstate;
1182 int square;
1183
1184 draw_rect(fe, 0, 0, (bb.r-bb.l+2) * GRID_SCALE,
1185 (bb.d-bb.u+2) * GRID_SCALE, COL_BACKGROUND);
1186
1187 if (oldstate && oldstate->movecount > state->movecount) {
1188 game_state *t;
1189
1190 /*
1191 * This is an Undo. So reverse the order of the states, and
1192 * run the roll timer backwards.
1193 */
1194 t = oldstate;
1195 oldstate = state;
1196 state = t;
1197
1198 animtime = ROLLTIME - animtime;
1199 }
1200
1201 if (!oldstate) {
1202 oldstate = state;
1203 angle = 0.0;
1204 square = state->current;
1205 pkey = state->dpkey;
1206 gkey = state->dgkey;
1207 } else {
1208 angle = state->angle * animtime / ROLLTIME;
1209 square = state->previous;
1210 pkey = state->spkey;
1211 gkey = state->sgkey;
1212 }
1213 newstate = state;
1214 state = oldstate;
1215
1216 for (i = 0; i < state->nsquares; i++) {
1217 int coords[8];
1218
1219 for (j = 0; j < state->squares[i].npoints; j++) {
1220 coords[2*j] = state->squares[i].points[2*j]
1221 * GRID_SCALE + ds->ox;
1222 coords[2*j+1] = state->squares[i].points[2*j+1]
1223 * GRID_SCALE + ds->oy;
1224 }
1225
1226 draw_polygon(fe, coords, state->squares[i].npoints, TRUE,
1227 state->squares[i].blue ? COL_BLUE : COL_BACKGROUND);
1228 draw_polygon(fe, coords, state->squares[i].npoints, FALSE, COL_BORDER);
1229 }
1230
1231 /*
1232 * Now compute and draw the polyhedron.
1233 */
1234 poly = transform_poly(state->solid, state->squares[square].flip,
1235 pkey[0], pkey[1], angle);
1236
1237 /*
1238 * Compute the translation required to align the two key points
1239 * on the polyhedron with the same key points on the current
1240 * face.
1241 */
1242 for (i = 0; i < 3; i++) {
1243 float tc = 0.0;
1244
1245 for (j = 0; j < 2; j++) {
1246 float grid_coord;
1247
1248 if (i < 2) {
1249 grid_coord =
1250 state->squares[square].points[gkey[j]*2+i];
1251 } else {
1252 grid_coord = 0.0;
1253 }
1254
1255 tc += (grid_coord - poly->vertices[pkey[j]*3+i]);
1256 }
1257
1258 t[i] = tc / 2;
1259 }
1260 for (i = 0; i < poly->nvertices; i++)
1261 for (j = 0; j < 3; j++)
1262 poly->vertices[i*3+j] += t[j];
1263
1264 /*
1265 * Now actually draw each face.
1266 */
1267 for (i = 0; i < poly->nfaces; i++) {
1268 float points[8];
1269 int coords[8];
1270
1271 for (j = 0; j < poly->order; j++) {
1272 int f = poly->faces[i*poly->order + j];
1273 points[j*2] = (poly->vertices[f*3+0] -
1274 poly->vertices[f*3+2] * poly->shear);
1275 points[j*2+1] = (poly->vertices[f*3+1] -
1276 poly->vertices[f*3+2] * poly->shear);
1277 }
1278
1279 for (j = 0; j < poly->order; j++) {
1280 coords[j*2] = points[j*2] * GRID_SCALE + ds->ox;
1281 coords[j*2+1] = points[j*2+1] * GRID_SCALE + ds->oy;
1282 }
1283
1284 /*
1285 * Find out whether these points are in a clockwise or
1286 * anticlockwise arrangement. If the latter, discard the
1287 * face because it's facing away from the viewer.
1288 *
1289 * This would involve fiddly winding-number stuff for a
1290 * general polygon, but for the simple parallelograms we'll
1291 * be seeing here, all we have to do is check whether the
1292 * corners turn right or left. So we'll take the vector
1293 * from point 0 to point 1, turn it right 90 degrees,
1294 * and check the sign of the dot product with that and the
1295 * next vector (point 1 to point 2).
1296 */
1297 {
1298 float v1x = points[2]-points[0];
1299 float v1y = points[3]-points[1];
1300 float v2x = points[4]-points[2];
1301 float v2y = points[5]-points[3];
1302 float dp = v1x * v2y - v1y * v2x;
1303
1304 if (dp <= 0)
1305 continue;
1306 }
1307
1308 draw_polygon(fe, coords, poly->order, TRUE,
1309 state->facecolours[i] ? COL_BLUE : COL_BACKGROUND);
1310 draw_polygon(fe, coords, poly->order, FALSE, COL_BORDER);
1311 }
1312 sfree(poly);
1313
1314 draw_update(fe, 0, 0, (bb.r-bb.l+2) * GRID_SCALE,
1315 (bb.d-bb.u+2) * GRID_SCALE);
1316 }
1317
1318 float game_anim_length(game_state *oldstate, game_state *newstate)
1319 {
1320 return ROLLTIME;
1321 }