Now that Map has some seriously complex deductions, it's about time
[sgt/puzzles] / map.c
1 /*
2 * map.c: Game involving four-colouring a map.
3 */
4
5 /*
6 * TODO:
7 *
8 * - clue marking
9 * - better four-colouring algorithm?
10 * - can we make the pencil marks look nicer?
11 * - ability to drag a set of pencil marks?
12 */
13
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <assert.h>
18 #include <ctype.h>
19 #include <math.h>
20
21 #include "puzzles.h"
22
23 /*
24 * In standalone solver mode, `verbose' is a variable which can be
25 * set by command-line option; in debugging mode it's simply always
26 * true.
27 */
28 #if defined STANDALONE_SOLVER
29 #define SOLVER_DIAGNOSTICS
30 int verbose = FALSE;
31 #elif defined SOLVER_DIAGNOSTICS
32 #define verbose TRUE
33 #endif
34
35 /*
36 * I don't seriously anticipate wanting to change the number of
37 * colours used in this game, but it doesn't cost much to use a
38 * #define just in case :-)
39 */
40 #define FOUR 4
41 #define THREE (FOUR-1)
42 #define FIVE (FOUR+1)
43 #define SIX (FOUR+2)
44
45 /*
46 * Ghastly run-time configuration option, just for Gareth (again).
47 */
48 static int flash_type = -1;
49 static float flash_length;
50
51 /*
52 * Difficulty levels. I do some macro ickery here to ensure that my
53 * enum and the various forms of my name list always match up.
54 */
55 #define DIFFLIST(A) \
56 A(EASY,Easy,e) \
57 A(NORMAL,Normal,n) \
58 A(HARD,Hard,h) \
59 A(RECURSE,Unreasonable,u)
60 #define ENUM(upper,title,lower) DIFF_ ## upper,
61 #define TITLE(upper,title,lower) #title,
62 #define ENCODE(upper,title,lower) #lower
63 #define CONFIG(upper,title,lower) ":" #title
64 enum { DIFFLIST(ENUM) DIFFCOUNT };
65 static char const *const map_diffnames[] = { DIFFLIST(TITLE) };
66 static char const map_diffchars[] = DIFFLIST(ENCODE);
67 #define DIFFCONFIG DIFFLIST(CONFIG)
68
69 enum { TE, BE, LE, RE }; /* top/bottom/left/right edges */
70
71 enum {
72 COL_BACKGROUND,
73 COL_GRID,
74 COL_0, COL_1, COL_2, COL_3,
75 COL_ERROR, COL_ERRTEXT,
76 NCOLOURS
77 };
78
79 struct game_params {
80 int w, h, n, diff;
81 };
82
83 struct map {
84 int refcount;
85 int *map;
86 int *graph;
87 int n;
88 int ngraph;
89 int *immutable;
90 int *edgex, *edgey; /* position of a point on each edge */
91 int *regionx, *regiony; /* position of a point in each region */
92 };
93
94 struct game_state {
95 game_params p;
96 struct map *map;
97 int *colouring, *pencil;
98 int completed, cheated;
99 };
100
101 static game_params *default_params(void)
102 {
103 game_params *ret = snew(game_params);
104
105 ret->w = 20;
106 ret->h = 15;
107 ret->n = 30;
108 ret->diff = DIFF_NORMAL;
109
110 return ret;
111 }
112
113 static const struct game_params map_presets[] = {
114 {20, 15, 30, DIFF_EASY},
115 {20, 15, 30, DIFF_NORMAL},
116 {20, 15, 30, DIFF_HARD},
117 {20, 15, 30, DIFF_RECURSE},
118 {30, 25, 75, DIFF_NORMAL},
119 {30, 25, 75, DIFF_HARD},
120 };
121
122 static int game_fetch_preset(int i, char **name, game_params **params)
123 {
124 game_params *ret;
125 char str[80];
126
127 if (i < 0 || i >= lenof(map_presets))
128 return FALSE;
129
130 ret = snew(game_params);
131 *ret = map_presets[i];
132
133 sprintf(str, "%dx%d, %d regions, %s", ret->w, ret->h, ret->n,
134 map_diffnames[ret->diff]);
135
136 *name = dupstr(str);
137 *params = ret;
138 return TRUE;
139 }
140
141 static void free_params(game_params *params)
142 {
143 sfree(params);
144 }
145
146 static game_params *dup_params(game_params *params)
147 {
148 game_params *ret = snew(game_params);
149 *ret = *params; /* structure copy */
150 return ret;
151 }
152
153 static void decode_params(game_params *params, char const *string)
154 {
155 char const *p = string;
156
157 params->w = atoi(p);
158 while (*p && isdigit((unsigned char)*p)) p++;
159 if (*p == 'x') {
160 p++;
161 params->h = atoi(p);
162 while (*p && isdigit((unsigned char)*p)) p++;
163 } else {
164 params->h = params->w;
165 }
166 if (*p == 'n') {
167 p++;
168 params->n = atoi(p);
169 while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
170 } else {
171 params->n = params->w * params->h / 8;
172 }
173 if (*p == 'd') {
174 int i;
175 p++;
176 for (i = 0; i < DIFFCOUNT; i++)
177 if (*p == map_diffchars[i])
178 params->diff = i;
179 if (*p) p++;
180 }
181 }
182
183 static char *encode_params(game_params *params, int full)
184 {
185 char ret[400];
186
187 sprintf(ret, "%dx%dn%d", params->w, params->h, params->n);
188 if (full)
189 sprintf(ret + strlen(ret), "d%c", map_diffchars[params->diff]);
190
191 return dupstr(ret);
192 }
193
194 static config_item *game_configure(game_params *params)
195 {
196 config_item *ret;
197 char buf[80];
198
199 ret = snewn(5, config_item);
200
201 ret[0].name = "Width";
202 ret[0].type = C_STRING;
203 sprintf(buf, "%d", params->w);
204 ret[0].sval = dupstr(buf);
205 ret[0].ival = 0;
206
207 ret[1].name = "Height";
208 ret[1].type = C_STRING;
209 sprintf(buf, "%d", params->h);
210 ret[1].sval = dupstr(buf);
211 ret[1].ival = 0;
212
213 ret[2].name = "Regions";
214 ret[2].type = C_STRING;
215 sprintf(buf, "%d", params->n);
216 ret[2].sval = dupstr(buf);
217 ret[2].ival = 0;
218
219 ret[3].name = "Difficulty";
220 ret[3].type = C_CHOICES;
221 ret[3].sval = DIFFCONFIG;
222 ret[3].ival = params->diff;
223
224 ret[4].name = NULL;
225 ret[4].type = C_END;
226 ret[4].sval = NULL;
227 ret[4].ival = 0;
228
229 return ret;
230 }
231
232 static game_params *custom_params(config_item *cfg)
233 {
234 game_params *ret = snew(game_params);
235
236 ret->w = atoi(cfg[0].sval);
237 ret->h = atoi(cfg[1].sval);
238 ret->n = atoi(cfg[2].sval);
239 ret->diff = cfg[3].ival;
240
241 return ret;
242 }
243
244 static char *validate_params(game_params *params, int full)
245 {
246 if (params->w < 2 || params->h < 2)
247 return "Width and height must be at least two";
248 if (params->n < 5)
249 return "Must have at least five regions";
250 if (params->n > params->w * params->h)
251 return "Too many regions to fit in grid";
252 return NULL;
253 }
254
255 /* ----------------------------------------------------------------------
256 * Cumulative frequency table functions.
257 */
258
259 /*
260 * Initialise a cumulative frequency table. (Hardly worth writing
261 * this function; all it does is to initialise everything in the
262 * array to zero.)
263 */
264 static void cf_init(int *table, int n)
265 {
266 int i;
267
268 for (i = 0; i < n; i++)
269 table[i] = 0;
270 }
271
272 /*
273 * Increment the count of symbol `sym' by `count'.
274 */
275 static void cf_add(int *table, int n, int sym, int count)
276 {
277 int bit;
278
279 bit = 1;
280 while (sym != 0) {
281 if (sym & bit) {
282 table[sym] += count;
283 sym &= ~bit;
284 }
285 bit <<= 1;
286 }
287
288 table[0] += count;
289 }
290
291 /*
292 * Cumulative frequency lookup: return the total count of symbols
293 * with value less than `sym'.
294 */
295 static int cf_clookup(int *table, int n, int sym)
296 {
297 int bit, index, limit, count;
298
299 if (sym == 0)
300 return 0;
301
302 assert(0 < sym && sym <= n);
303
304 count = table[0]; /* start with the whole table size */
305
306 bit = 1;
307 while (bit < n)
308 bit <<= 1;
309
310 limit = n;
311
312 while (bit > 0) {
313 /*
314 * Find the least number with its lowest set bit in this
315 * position which is greater than or equal to sym.
316 */
317 index = ((sym + bit - 1) &~ (bit * 2 - 1)) + bit;
318
319 if (index < limit) {
320 count -= table[index];
321 limit = index;
322 }
323
324 bit >>= 1;
325 }
326
327 return count;
328 }
329
330 /*
331 * Single frequency lookup: return the count of symbol `sym'.
332 */
333 static int cf_slookup(int *table, int n, int sym)
334 {
335 int count, bit;
336
337 assert(0 <= sym && sym < n);
338
339 count = table[sym];
340
341 for (bit = 1; sym+bit < n && !(sym & bit); bit <<= 1)
342 count -= table[sym+bit];
343
344 return count;
345 }
346
347 /*
348 * Return the largest symbol index such that the cumulative
349 * frequency up to that symbol is less than _or equal to_ count.
350 */
351 static int cf_whichsym(int *table, int n, int count) {
352 int bit, sym, top;
353
354 assert(count >= 0 && count < table[0]);
355
356 bit = 1;
357 while (bit < n)
358 bit <<= 1;
359
360 sym = 0;
361 top = table[0];
362
363 while (bit > 0) {
364 if (sym+bit < n) {
365 if (count >= top - table[sym+bit])
366 sym += bit;
367 else
368 top -= table[sym+bit];
369 }
370
371 bit >>= 1;
372 }
373
374 return sym;
375 }
376
377 /* ----------------------------------------------------------------------
378 * Map generation.
379 *
380 * FIXME: this isn't entirely optimal at present, because it
381 * inherently prioritises growing the largest region since there
382 * are more squares adjacent to it. This acts as a destabilising
383 * influence leading to a few large regions and mostly small ones.
384 * It might be better to do it some other way.
385 */
386
387 #define WEIGHT_INCREASED 2 /* for increased perimeter */
388 #define WEIGHT_DECREASED 4 /* for decreased perimeter */
389 #define WEIGHT_UNCHANGED 3 /* for unchanged perimeter */
390
391 /*
392 * Look at a square and decide which colours can be extended into
393 * it.
394 *
395 * If called with index < 0, it adds together one of
396 * WEIGHT_INCREASED, WEIGHT_DECREASED or WEIGHT_UNCHANGED for each
397 * colour that has a valid extension (according to the effect that
398 * it would have on the perimeter of the region being extended) and
399 * returns the overall total.
400 *
401 * If called with index >= 0, it returns one of the possible
402 * colours depending on the value of index, in such a way that the
403 * number of possible inputs which would give rise to a given
404 * return value correspond to the weight of that value.
405 */
406 static int extend_options(int w, int h, int n, int *map,
407 int x, int y, int index)
408 {
409 int c, i, dx, dy;
410 int col[8];
411 int total = 0;
412
413 if (map[y*w+x] >= 0) {
414 assert(index < 0);
415 return 0; /* can't do this square at all */
416 }
417
418 /*
419 * Fetch the eight neighbours of this square, in order around
420 * the square.
421 */
422 for (dy = -1; dy <= +1; dy++)
423 for (dx = -1; dx <= +1; dx++) {
424 int index = (dy < 0 ? 6-dx : dy > 0 ? 2+dx : 2*(1+dx));
425 if (x+dx >= 0 && x+dx < w && y+dy >= 0 && y+dy < h)
426 col[index] = map[(y+dy)*w+(x+dx)];
427 else
428 col[index] = -1;
429 }
430
431 /*
432 * Iterate over each colour that might be feasible.
433 *
434 * FIXME: this routine currently has O(n) running time. We
435 * could turn it into O(FOUR) by only bothering to iterate over
436 * the colours mentioned in the four neighbouring squares.
437 */
438
439 for (c = 0; c < n; c++) {
440 int count, neighbours, runs;
441
442 /*
443 * One of the even indices of col (representing the
444 * orthogonal neighbours of this square) must be equal to
445 * c, or else this square is not adjacent to region c and
446 * obviously cannot become an extension of it at this time.
447 */
448 neighbours = 0;
449 for (i = 0; i < 8; i += 2)
450 if (col[i] == c)
451 neighbours++;
452 if (!neighbours)
453 continue;
454
455 /*
456 * Now we know this square is adjacent to region c. The
457 * next question is, would extending it cause the region to
458 * become non-simply-connected? If so, we mustn't do it.
459 *
460 * We determine this by looking around col to see if we can
461 * find more than one separate run of colour c.
462 */
463 runs = 0;
464 for (i = 0; i < 8; i++)
465 if (col[i] == c && col[(i+1) & 7] != c)
466 runs++;
467 if (runs > 1)
468 continue;
469
470 assert(runs == 1);
471
472 /*
473 * This square is a possibility. Determine its effect on
474 * the region's perimeter (computed from the number of
475 * orthogonal neighbours - 1 means a perimeter increase, 3
476 * a decrease, 2 no change; 4 is impossible because the
477 * region would already not be simply connected) and we're
478 * done.
479 */
480 assert(neighbours > 0 && neighbours < 4);
481 count = (neighbours == 1 ? WEIGHT_INCREASED :
482 neighbours == 2 ? WEIGHT_UNCHANGED : WEIGHT_DECREASED);
483
484 total += count;
485 if (index >= 0 && index < count)
486 return c;
487 else
488 index -= count;
489 }
490
491 assert(index < 0);
492
493 return total;
494 }
495
496 static void genmap(int w, int h, int n, int *map, random_state *rs)
497 {
498 int wh = w*h;
499 int x, y, i, k;
500 int *tmp;
501
502 assert(n <= wh);
503 tmp = snewn(wh, int);
504
505 /*
506 * Clear the map, and set up `tmp' as a list of grid indices.
507 */
508 for (i = 0; i < wh; i++) {
509 map[i] = -1;
510 tmp[i] = i;
511 }
512
513 /*
514 * Place the region seeds by selecting n members from `tmp'.
515 */
516 k = wh;
517 for (i = 0; i < n; i++) {
518 int j = random_upto(rs, k);
519 map[tmp[j]] = i;
520 tmp[j] = tmp[--k];
521 }
522
523 /*
524 * Re-initialise `tmp' as a cumulative frequency table. This
525 * will store the number of possible region colours we can
526 * extend into each square.
527 */
528 cf_init(tmp, wh);
529
530 /*
531 * Go through the grid and set up the initial cumulative
532 * frequencies.
533 */
534 for (y = 0; y < h; y++)
535 for (x = 0; x < w; x++)
536 cf_add(tmp, wh, y*w+x,
537 extend_options(w, h, n, map, x, y, -1));
538
539 /*
540 * Now repeatedly choose a square we can extend a region into,
541 * and do so.
542 */
543 while (tmp[0] > 0) {
544 int k = random_upto(rs, tmp[0]);
545 int sq;
546 int colour;
547 int xx, yy;
548
549 sq = cf_whichsym(tmp, wh, k);
550 k -= cf_clookup(tmp, wh, sq);
551 x = sq % w;
552 y = sq / w;
553 colour = extend_options(w, h, n, map, x, y, k);
554
555 map[sq] = colour;
556
557 /*
558 * Re-scan the nine cells around the one we've just
559 * modified.
560 */
561 for (yy = max(y-1, 0); yy < min(y+2, h); yy++)
562 for (xx = max(x-1, 0); xx < min(x+2, w); xx++) {
563 cf_add(tmp, wh, yy*w+xx,
564 -cf_slookup(tmp, wh, yy*w+xx) +
565 extend_options(w, h, n, map, xx, yy, -1));
566 }
567 }
568
569 /*
570 * Finally, go through and normalise the region labels into
571 * order, meaning that indistinguishable maps are actually
572 * identical.
573 */
574 for (i = 0; i < n; i++)
575 tmp[i] = -1;
576 k = 0;
577 for (i = 0; i < wh; i++) {
578 assert(map[i] >= 0);
579 if (tmp[map[i]] < 0)
580 tmp[map[i]] = k++;
581 map[i] = tmp[map[i]];
582 }
583
584 sfree(tmp);
585 }
586
587 /* ----------------------------------------------------------------------
588 * Functions to handle graphs.
589 */
590
591 /*
592 * Having got a map in a square grid, convert it into a graph
593 * representation.
594 */
595 static int gengraph(int w, int h, int n, int *map, int *graph)
596 {
597 int i, j, x, y;
598
599 /*
600 * Start by setting the graph up as an adjacency matrix. We'll
601 * turn it into a list later.
602 */
603 for (i = 0; i < n*n; i++)
604 graph[i] = 0;
605
606 /*
607 * Iterate over the map looking for all adjacencies.
608 */
609 for (y = 0; y < h; y++)
610 for (x = 0; x < w; x++) {
611 int v, vx, vy;
612 v = map[y*w+x];
613 if (x+1 < w && (vx = map[y*w+(x+1)]) != v)
614 graph[v*n+vx] = graph[vx*n+v] = 1;
615 if (y+1 < h && (vy = map[(y+1)*w+x]) != v)
616 graph[v*n+vy] = graph[vy*n+v] = 1;
617 }
618
619 /*
620 * Turn the matrix into a list.
621 */
622 for (i = j = 0; i < n*n; i++)
623 if (graph[i])
624 graph[j++] = i;
625
626 return j;
627 }
628
629 static int graph_edge_index(int *graph, int n, int ngraph, int i, int j)
630 {
631 int v = i*n+j;
632 int top, bot, mid;
633
634 bot = -1;
635 top = ngraph;
636 while (top - bot > 1) {
637 mid = (top + bot) / 2;
638 if (graph[mid] == v)
639 return mid;
640 else if (graph[mid] < v)
641 bot = mid;
642 else
643 top = mid;
644 }
645 return -1;
646 }
647
648 #define graph_adjacent(graph, n, ngraph, i, j) \
649 (graph_edge_index((graph), (n), (ngraph), (i), (j)) >= 0)
650
651 static int graph_vertex_start(int *graph, int n, int ngraph, int i)
652 {
653 int v = i*n;
654 int top, bot, mid;
655
656 bot = -1;
657 top = ngraph;
658 while (top - bot > 1) {
659 mid = (top + bot) / 2;
660 if (graph[mid] < v)
661 bot = mid;
662 else
663 top = mid;
664 }
665 return top;
666 }
667
668 /* ----------------------------------------------------------------------
669 * Generate a four-colouring of a graph.
670 *
671 * FIXME: it would be nice if we could convert this recursion into
672 * pseudo-recursion using some sort of explicit stack array, for
673 * the sake of the Palm port and its limited stack.
674 */
675
676 static int fourcolour_recurse(int *graph, int n, int ngraph,
677 int *colouring, int *scratch, random_state *rs)
678 {
679 int nfree, nvert, start, i, j, k, c, ci;
680 int cs[FOUR];
681
682 /*
683 * Find the smallest number of free colours in any uncoloured
684 * vertex, and count the number of such vertices.
685 */
686
687 nfree = FIVE; /* start off bigger than FOUR! */
688 nvert = 0;
689 for (i = 0; i < n; i++)
690 if (colouring[i] < 0 && scratch[i*FIVE+FOUR] <= nfree) {
691 if (nfree > scratch[i*FIVE+FOUR]) {
692 nfree = scratch[i*FIVE+FOUR];
693 nvert = 0;
694 }
695 nvert++;
696 }
697
698 /*
699 * If there aren't any uncoloured vertices at all, we're done.
700 */
701 if (nvert == 0)
702 return TRUE; /* we've got a colouring! */
703
704 /*
705 * Pick a random vertex in that set.
706 */
707 j = random_upto(rs, nvert);
708 for (i = 0; i < n; i++)
709 if (colouring[i] < 0 && scratch[i*FIVE+FOUR] == nfree)
710 if (j-- == 0)
711 break;
712 assert(i < n);
713 start = graph_vertex_start(graph, n, ngraph, i);
714
715 /*
716 * Loop over the possible colours for i, and recurse for each
717 * one.
718 */
719 ci = 0;
720 for (c = 0; c < FOUR; c++)
721 if (scratch[i*FIVE+c] == 0)
722 cs[ci++] = c;
723 shuffle(cs, ci, sizeof(*cs), rs);
724
725 while (ci-- > 0) {
726 c = cs[ci];
727
728 /*
729 * Fill in this colour.
730 */
731 colouring[i] = c;
732
733 /*
734 * Update the scratch space to reflect a new neighbour
735 * of this colour for each neighbour of vertex i.
736 */
737 for (j = start; j < ngraph && graph[j] < n*(i+1); j++) {
738 k = graph[j] - i*n;
739 if (scratch[k*FIVE+c] == 0)
740 scratch[k*FIVE+FOUR]--;
741 scratch[k*FIVE+c]++;
742 }
743
744 /*
745 * Recurse.
746 */
747 if (fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs))
748 return TRUE; /* got one! */
749
750 /*
751 * If that didn't work, clean up and try again with a
752 * different colour.
753 */
754 for (j = start; j < ngraph && graph[j] < n*(i+1); j++) {
755 k = graph[j] - i*n;
756 scratch[k*FIVE+c]--;
757 if (scratch[k*FIVE+c] == 0)
758 scratch[k*FIVE+FOUR]++;
759 }
760 colouring[i] = -1;
761 }
762
763 /*
764 * If we reach here, we were unable to find a colouring at all.
765 * (This doesn't necessarily mean the Four Colour Theorem is
766 * violated; it might just mean we've gone down a dead end and
767 * need to back up and look somewhere else. It's only an FCT
768 * violation if we get all the way back up to the top level and
769 * still fail.)
770 */
771 return FALSE;
772 }
773
774 static void fourcolour(int *graph, int n, int ngraph, int *colouring,
775 random_state *rs)
776 {
777 int *scratch;
778 int i;
779
780 /*
781 * For each vertex and each colour, we store the number of
782 * neighbours that have that colour. Also, we store the number
783 * of free colours for the vertex.
784 */
785 scratch = snewn(n * FIVE, int);
786 for (i = 0; i < n * FIVE; i++)
787 scratch[i] = (i % FIVE == FOUR ? FOUR : 0);
788
789 /*
790 * Clear the colouring to start with.
791 */
792 for (i = 0; i < n; i++)
793 colouring[i] = -1;
794
795 i = fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs);
796 assert(i); /* by the Four Colour Theorem :-) */
797
798 sfree(scratch);
799 }
800
801 /* ----------------------------------------------------------------------
802 * Non-recursive solver.
803 */
804
805 struct solver_scratch {
806 unsigned char *possible; /* bitmap of colours for each region */
807 int *graph;
808 int *bfsqueue;
809 int *bfscolour;
810 #ifdef SOLVER_DIAGNOSTICS
811 int *bfsprev;
812 #endif
813 int n;
814 int ngraph;
815 int depth;
816 };
817
818 static struct solver_scratch *new_scratch(int *graph, int n, int ngraph)
819 {
820 struct solver_scratch *sc;
821
822 sc = snew(struct solver_scratch);
823 sc->graph = graph;
824 sc->n = n;
825 sc->ngraph = ngraph;
826 sc->possible = snewn(n, unsigned char);
827 sc->depth = 0;
828 sc->bfsqueue = snewn(n, int);
829 sc->bfscolour = snewn(n, int);
830 #ifdef SOLVER_DIAGNOSTICS
831 sc->bfsprev = snewn(n, int);
832 #endif
833
834 return sc;
835 }
836
837 static void free_scratch(struct solver_scratch *sc)
838 {
839 sfree(sc->possible);
840 sfree(sc->bfsqueue);
841 sfree(sc->bfscolour);
842 #ifdef SOLVER_DIAGNOSTICS
843 sfree(sc->bfsprev);
844 #endif
845 sfree(sc);
846 }
847
848 /*
849 * Count the bits in a word. Only needs to cope with FOUR bits.
850 */
851 static int bitcount(int word)
852 {
853 assert(FOUR <= 4); /* or this needs changing */
854 word = ((word & 0xA) >> 1) + (word & 0x5);
855 word = ((word & 0xC) >> 2) + (word & 0x3);
856 return word;
857 }
858
859 #ifdef SOLVER_DIAGNOSTICS
860 static const char colnames[FOUR] = { 'R', 'Y', 'G', 'B' };
861 #endif
862
863 static int place_colour(struct solver_scratch *sc,
864 int *colouring, int index, int colour
865 #ifdef SOLVER_DIAGNOSTICS
866 , char *verb
867 #endif
868 )
869 {
870 int *graph = sc->graph, n = sc->n, ngraph = sc->ngraph;
871 int j, k;
872
873 if (!(sc->possible[index] & (1 << colour)))
874 return FALSE; /* can't do it */
875
876 sc->possible[index] = 1 << colour;
877 colouring[index] = colour;
878
879 #ifdef SOLVER_DIAGNOSTICS
880 if (verbose)
881 printf("%s %c in region %d\n", verb, colnames[colour], index);
882 #endif
883
884 /*
885 * Rule out this colour from all the region's neighbours.
886 */
887 for (j = graph_vertex_start(graph, n, ngraph, index);
888 j < ngraph && graph[j] < n*(index+1); j++) {
889 k = graph[j] - index*n;
890 #ifdef SOLVER_DIAGNOSTICS
891 if (verbose && (sc->possible[k] & (1 << colour)))
892 printf(" ruling out %c in region %d\n", colnames[colour], k);
893 #endif
894 sc->possible[k] &= ~(1 << colour);
895 }
896
897 return TRUE;
898 }
899
900 #ifdef SOLVER_DIAGNOSTICS
901 static char *colourset(char *buf, int set)
902 {
903 int i;
904 char *p = buf;
905 char *sep = "";
906
907 for (i = 0; i < FOUR; i++)
908 if (set & (1 << i)) {
909 p += sprintf(p, "%s%c", sep, colnames[i]);
910 sep = ",";
911 }
912
913 return buf;
914 }
915 #endif
916
917 /*
918 * Returns 0 for impossible, 1 for success, 2 for failure to
919 * converge (i.e. puzzle is either ambiguous or just too
920 * difficult).
921 */
922 static int map_solver(struct solver_scratch *sc,
923 int *graph, int n, int ngraph, int *colouring,
924 int difficulty)
925 {
926 int i;
927
928 /*
929 * Initialise scratch space.
930 */
931 for (i = 0; i < n; i++)
932 sc->possible[i] = (1 << FOUR) - 1;
933
934 /*
935 * Place clues.
936 */
937 for (i = 0; i < n; i++)
938 if (colouring[i] >= 0) {
939 if (!place_colour(sc, colouring, i, colouring[i]
940 #ifdef SOLVER_DIAGNOSTICS
941 , "initial clue:"
942 #endif
943 ))
944 return 0; /* the clues aren't even consistent! */
945 }
946
947 /*
948 * Now repeatedly loop until we find nothing further to do.
949 */
950 while (1) {
951 int done_something = FALSE;
952
953 if (difficulty < DIFF_EASY)
954 break; /* can't do anything at all! */
955
956 /*
957 * Simplest possible deduction: find a region with only one
958 * possible colour.
959 */
960 for (i = 0; i < n; i++) if (colouring[i] < 0) {
961 int p = sc->possible[i];
962
963 if (p == 0)
964 return 0; /* puzzle is inconsistent */
965
966 if ((p & (p-1)) == 0) { /* p is a power of two */
967 int c;
968 for (c = 0; c < FOUR; c++)
969 if (p == (1 << c))
970 break;
971 assert(c < FOUR);
972 if (!place_colour(sc, colouring, i, c
973 #ifdef SOLVER_DIAGNOSTICS
974 , "placing"
975 #endif
976 ))
977 return 0; /* found puzzle to be inconsistent */
978 done_something = TRUE;
979 }
980 }
981
982 if (done_something)
983 continue;
984
985 if (difficulty < DIFF_NORMAL)
986 break; /* can't do anything harder */
987
988 /*
989 * Failing that, go up one level. Look for pairs of regions
990 * which (a) both have the same pair of possible colours,
991 * (b) are adjacent to one another, (c) are adjacent to the
992 * same region, and (d) that region still thinks it has one
993 * or both of those possible colours.
994 *
995 * Simplest way to do this is by going through the graph
996 * edge by edge, so that we start with property (b) and
997 * then look for (a) and finally (c) and (d).
998 */
999 for (i = 0; i < ngraph; i++) {
1000 int j1 = graph[i] / n, j2 = graph[i] % n;
1001 int j, k, v, v2;
1002 #ifdef SOLVER_DIAGNOSTICS
1003 int started = FALSE;
1004 #endif
1005
1006 if (j1 > j2)
1007 continue; /* done it already, other way round */
1008
1009 if (colouring[j1] >= 0 || colouring[j2] >= 0)
1010 continue; /* they're not undecided */
1011
1012 if (sc->possible[j1] != sc->possible[j2])
1013 continue; /* they don't have the same possibles */
1014
1015 v = sc->possible[j1];
1016 /*
1017 * See if v contains exactly two set bits.
1018 */
1019 v2 = v & -v; /* find lowest set bit */
1020 v2 = v & ~v2; /* clear it */
1021 if (v2 == 0 || (v2 & (v2-1)) != 0) /* not power of 2 */
1022 continue;
1023
1024 /*
1025 * We've found regions j1 and j2 satisfying properties
1026 * (a) and (b): they have two possible colours between
1027 * them, and since they're adjacent to one another they
1028 * must use _both_ those colours between them.
1029 * Therefore, if they are both adjacent to any other
1030 * region then that region cannot be either colour.
1031 *
1032 * Go through the neighbours of j1 and see if any are
1033 * shared with j2.
1034 */
1035 for (j = graph_vertex_start(graph, n, ngraph, j1);
1036 j < ngraph && graph[j] < n*(j1+1); j++) {
1037 k = graph[j] - j1*n;
1038 if (graph_adjacent(graph, n, ngraph, k, j2) &&
1039 (sc->possible[k] & v)) {
1040 #ifdef SOLVER_DIAGNOSTICS
1041 if (verbose) {
1042 char buf[80];
1043 if (!started)
1044 printf("adjacent regions %d,%d share colours %s\n",
1045 j1, j2, colourset(buf, v));
1046 started = TRUE;
1047 printf(" ruling out %s in region %d\n",
1048 colourset(buf, sc->possible[k] & v), k);
1049 }
1050 #endif
1051 sc->possible[k] &= ~v;
1052 done_something = TRUE;
1053 }
1054 }
1055 }
1056
1057 if (done_something)
1058 continue;
1059
1060 if (difficulty < DIFF_HARD)
1061 break; /* can't do anything harder */
1062
1063 /*
1064 * Right; now we get creative. Now we're going to look for
1065 * `forcing chains'. A forcing chain is a path through the
1066 * graph with the following properties:
1067 *
1068 * (a) Each vertex on the path has precisely two possible
1069 * colours.
1070 *
1071 * (b) Each pair of vertices which are adjacent on the
1072 * path share at least one possible colour in common.
1073 *
1074 * (c) Each vertex in the middle of the path shares _both_
1075 * of its colours with at least one of its neighbours
1076 * (not the same one with both neighbours).
1077 *
1078 * These together imply that at least one of the possible
1079 * colour choices at one end of the path forces _all_ the
1080 * rest of the colours along the path. In order to make
1081 * real use of this, we need further properties:
1082 *
1083 * (c) Ruling out some colour C from the vertex at one end
1084 * of the path forces the vertex at the other end to
1085 * take colour C.
1086 *
1087 * (d) The two end vertices are mutually adjacent to some
1088 * third vertex.
1089 *
1090 * (e) That third vertex currently has C as a possibility.
1091 *
1092 * If we can find all of that lot, we can deduce that at
1093 * least one of the two ends of the forcing chain has
1094 * colour C, and that therefore the mutually adjacent third
1095 * vertex does not.
1096 *
1097 * To find forcing chains, we're going to start a bfs at
1098 * each suitable vertex of the graph, once for each of its
1099 * two possible colours.
1100 */
1101 for (i = 0; i < n; i++) {
1102 int c;
1103
1104 if (colouring[i] >= 0 || bitcount(sc->possible[i]) != 2)
1105 continue;
1106
1107 for (c = 0; c < FOUR; c++)
1108 if (sc->possible[i] & (1 << c)) {
1109 int j, k, gi, origc, currc, head, tail;
1110 /*
1111 * Try a bfs from this vertex, ruling out
1112 * colour c.
1113 *
1114 * Within this loop, we work in colour bitmaps
1115 * rather than actual colours, because
1116 * converting back and forth is a needless
1117 * computational expense.
1118 */
1119
1120 origc = 1 << c;
1121
1122 for (j = 0; j < n; j++) {
1123 sc->bfscolour[j] = -1;
1124 #ifdef SOLVER_DIAGNOSTICS
1125 sc->bfsprev[j] = -1;
1126 #endif
1127 }
1128 head = tail = 0;
1129 sc->bfsqueue[tail++] = i;
1130 sc->bfscolour[i] = sc->possible[i] &~ origc;
1131
1132 while (head < tail) {
1133 j = sc->bfsqueue[head++];
1134 currc = sc->bfscolour[j];
1135
1136 /*
1137 * Try neighbours of j.
1138 */
1139 for (gi = graph_vertex_start(graph, n, ngraph, j);
1140 gi < ngraph && graph[gi] < n*(j+1); gi++) {
1141 k = graph[gi] - j*n;
1142
1143 /*
1144 * To continue with the bfs in vertex
1145 * k, we need k to be
1146 * (a) not already visited
1147 * (b) have two possible colours
1148 * (c) those colours include currc.
1149 */
1150
1151 if (sc->bfscolour[k] < 0 &&
1152 colouring[k] < 0 &&
1153 bitcount(sc->possible[k]) == 2 &&
1154 (sc->possible[k] & currc)) {
1155 sc->bfsqueue[tail++] = k;
1156 sc->bfscolour[k] =
1157 sc->possible[k] &~ currc;
1158 #ifdef SOLVER_DIAGNOSTICS
1159 sc->bfsprev[k] = j;
1160 #endif
1161 }
1162
1163 /*
1164 * One other possibility is that k
1165 * might be the region in which we can
1166 * make a real deduction: if it's
1167 * adjacent to i, contains currc as a
1168 * possibility, and currc is equal to
1169 * the original colour we ruled out.
1170 */
1171 if (currc == origc &&
1172 graph_adjacent(graph, n, ngraph, k, i) &&
1173 (sc->possible[k] & currc)) {
1174 #ifdef SOLVER_DIAGNOSTICS
1175 if (verbose) {
1176 char buf[80], *sep = "";
1177 int r;
1178
1179 printf("forcing chain, colour %s, ",
1180 colourset(buf, origc));
1181 for (r = j; r != -1; r = sc->bfsprev[r]) {
1182 printf("%s%d", sep, r);
1183 sep = "-";
1184 }
1185 printf("\n ruling out %s in region %d\n",
1186 colourset(buf, origc), k);
1187 }
1188 #endif
1189 sc->possible[k] &= ~origc;
1190 done_something = TRUE;
1191 }
1192 }
1193 }
1194
1195 assert(tail <= n);
1196 }
1197 }
1198
1199 if (!done_something)
1200 break;
1201 }
1202
1203 /*
1204 * See if we've got a complete solution, and return if so.
1205 */
1206 for (i = 0; i < n; i++)
1207 if (colouring[i] < 0)
1208 break;
1209 if (i == n)
1210 return 1; /* success! */
1211
1212 /*
1213 * If recursion is not permissible, we now give up.
1214 */
1215 if (difficulty < DIFF_RECURSE)
1216 return 2; /* unable to complete */
1217
1218 /*
1219 * Now we've got to do something recursive. So first hunt for a
1220 * currently-most-constrained region.
1221 */
1222 {
1223 int best, bestc;
1224 struct solver_scratch *rsc;
1225 int *subcolouring, *origcolouring;
1226 int ret, subret;
1227 int we_already_got_one;
1228
1229 best = -1;
1230 bestc = FIVE;
1231
1232 for (i = 0; i < n; i++) if (colouring[i] < 0) {
1233 int p = sc->possible[i];
1234 enum { compile_time_assertion = 1 / (FOUR <= 4) };
1235 int c;
1236
1237 /* Count the set bits. */
1238 c = (p & 5) + ((p >> 1) & 5);
1239 c = (c & 3) + ((c >> 2) & 3);
1240 assert(c > 1); /* or colouring[i] would be >= 0 */
1241
1242 if (c < bestc) {
1243 best = i;
1244 bestc = c;
1245 }
1246 }
1247
1248 assert(best >= 0); /* or we'd be solved already */
1249
1250 /*
1251 * Now iterate over the possible colours for this region.
1252 */
1253 rsc = new_scratch(graph, n, ngraph);
1254 rsc->depth = sc->depth + 1;
1255 origcolouring = snewn(n, int);
1256 memcpy(origcolouring, colouring, n * sizeof(int));
1257 subcolouring = snewn(n, int);
1258 we_already_got_one = FALSE;
1259 ret = 0;
1260
1261 for (i = 0; i < FOUR; i++) {
1262 if (!(sc->possible[best] & (1 << i)))
1263 continue;
1264
1265 memcpy(subcolouring, origcolouring, n * sizeof(int));
1266 subcolouring[best] = i;
1267 subret = map_solver(rsc, graph, n, ngraph,
1268 subcolouring, difficulty);
1269
1270 /*
1271 * If this possibility turned up more than one valid
1272 * solution, or if it turned up one and we already had
1273 * one, we're definitely ambiguous.
1274 */
1275 if (subret == 2 || (subret == 1 && we_already_got_one)) {
1276 ret = 2;
1277 break;
1278 }
1279
1280 /*
1281 * If this possibility turned up one valid solution and
1282 * it's the first we've seen, copy it into the output.
1283 */
1284 if (subret == 1) {
1285 memcpy(colouring, subcolouring, n * sizeof(int));
1286 we_already_got_one = TRUE;
1287 ret = 1;
1288 }
1289
1290 /*
1291 * Otherwise, this guess led to a contradiction, so we
1292 * do nothing.
1293 */
1294 }
1295
1296 sfree(subcolouring);
1297 free_scratch(rsc);
1298
1299 return ret;
1300 }
1301 }
1302
1303 /* ----------------------------------------------------------------------
1304 * Game generation main function.
1305 */
1306
1307 static char *new_game_desc(game_params *params, random_state *rs,
1308 char **aux, int interactive)
1309 {
1310 struct solver_scratch *sc = NULL;
1311 int *map, *graph, ngraph, *colouring, *colouring2, *regions;
1312 int i, j, w, h, n, solveret, cfreq[FOUR];
1313 int wh;
1314 int mindiff, tries;
1315 #ifdef GENERATION_DIAGNOSTICS
1316 int x, y;
1317 #endif
1318 char *ret, buf[80];
1319 int retlen, retsize;
1320
1321 w = params->w;
1322 h = params->h;
1323 n = params->n;
1324 wh = w*h;
1325
1326 *aux = NULL;
1327
1328 map = snewn(wh, int);
1329 graph = snewn(n*n, int);
1330 colouring = snewn(n, int);
1331 colouring2 = snewn(n, int);
1332 regions = snewn(n, int);
1333
1334 /*
1335 * This is the minimum difficulty below which we'll completely
1336 * reject a map design. Normally we set this to one below the
1337 * requested difficulty, ensuring that we have the right
1338 * result. However, for particularly dense maps or maps with
1339 * particularly few regions it might not be possible to get the
1340 * desired difficulty, so we will eventually drop this down to
1341 * -1 to indicate that any old map will do.
1342 */
1343 mindiff = params->diff;
1344 tries = 50;
1345
1346 while (1) {
1347
1348 /*
1349 * Create the map.
1350 */
1351 genmap(w, h, n, map, rs);
1352
1353 #ifdef GENERATION_DIAGNOSTICS
1354 for (y = 0; y < h; y++) {
1355 for (x = 0; x < w; x++) {
1356 int v = map[y*w+x];
1357 if (v >= 62)
1358 putchar('!');
1359 else if (v >= 36)
1360 putchar('a' + v-36);
1361 else if (v >= 10)
1362 putchar('A' + v-10);
1363 else
1364 putchar('0' + v);
1365 }
1366 putchar('\n');
1367 }
1368 #endif
1369
1370 /*
1371 * Convert the map into a graph.
1372 */
1373 ngraph = gengraph(w, h, n, map, graph);
1374
1375 #ifdef GENERATION_DIAGNOSTICS
1376 for (i = 0; i < ngraph; i++)
1377 printf("%d-%d\n", graph[i]/n, graph[i]%n);
1378 #endif
1379
1380 /*
1381 * Colour the map.
1382 */
1383 fourcolour(graph, n, ngraph, colouring, rs);
1384
1385 #ifdef GENERATION_DIAGNOSTICS
1386 for (i = 0; i < n; i++)
1387 printf("%d: %d\n", i, colouring[i]);
1388
1389 for (y = 0; y < h; y++) {
1390 for (x = 0; x < w; x++) {
1391 int v = colouring[map[y*w+x]];
1392 if (v >= 36)
1393 putchar('a' + v-36);
1394 else if (v >= 10)
1395 putchar('A' + v-10);
1396 else
1397 putchar('0' + v);
1398 }
1399 putchar('\n');
1400 }
1401 #endif
1402
1403 /*
1404 * Encode the solution as an aux string.
1405 */
1406 if (*aux) /* in case we've come round again */
1407 sfree(*aux);
1408 retlen = retsize = 0;
1409 ret = NULL;
1410 for (i = 0; i < n; i++) {
1411 int len;
1412
1413 if (colouring[i] < 0)
1414 continue;
1415
1416 len = sprintf(buf, "%s%d:%d", i ? ";" : "S;", colouring[i], i);
1417 if (retlen + len >= retsize) {
1418 retsize = retlen + len + 256;
1419 ret = sresize(ret, retsize, char);
1420 }
1421 strcpy(ret + retlen, buf);
1422 retlen += len;
1423 }
1424 *aux = ret;
1425
1426 /*
1427 * Remove the region colours one by one, keeping
1428 * solubility. Also ensure that there always remains at
1429 * least one region of every colour, so that the user can
1430 * drag from somewhere.
1431 */
1432 for (i = 0; i < FOUR; i++)
1433 cfreq[i] = 0;
1434 for (i = 0; i < n; i++) {
1435 regions[i] = i;
1436 cfreq[colouring[i]]++;
1437 }
1438 for (i = 0; i < FOUR; i++)
1439 if (cfreq[i] == 0)
1440 continue;
1441
1442 shuffle(regions, n, sizeof(*regions), rs);
1443
1444 if (sc) free_scratch(sc);
1445 sc = new_scratch(graph, n, ngraph);
1446
1447 for (i = 0; i < n; i++) {
1448 j = regions[i];
1449
1450 if (cfreq[colouring[j]] == 1)
1451 continue; /* can't remove last region of colour */
1452
1453 memcpy(colouring2, colouring, n*sizeof(int));
1454 colouring2[j] = -1;
1455 solveret = map_solver(sc, graph, n, ngraph, colouring2,
1456 params->diff);
1457 assert(solveret >= 0); /* mustn't be impossible! */
1458 if (solveret == 1) {
1459 cfreq[colouring[j]]--;
1460 colouring[j] = -1;
1461 }
1462 }
1463
1464 #ifdef GENERATION_DIAGNOSTICS
1465 for (i = 0; i < n; i++)
1466 if (colouring[i] >= 0) {
1467 if (i >= 62)
1468 putchar('!');
1469 else if (i >= 36)
1470 putchar('a' + i-36);
1471 else if (i >= 10)
1472 putchar('A' + i-10);
1473 else
1474 putchar('0' + i);
1475 printf(": %d\n", colouring[i]);
1476 }
1477 #endif
1478
1479 /*
1480 * Finally, check that the puzzle is _at least_ as hard as
1481 * required, and indeed that it isn't already solved.
1482 * (Calling map_solver with negative difficulty ensures the
1483 * latter - if a solver which _does nothing_ can solve it,
1484 * it's too easy!)
1485 */
1486 memcpy(colouring2, colouring, n*sizeof(int));
1487 if (map_solver(sc, graph, n, ngraph, colouring2,
1488 mindiff - 1) == 1) {
1489 /*
1490 * Drop minimum difficulty if necessary.
1491 */
1492 if (mindiff > 0 && (n < 9 || n > 2*wh/3)) {
1493 if (tries-- <= 0)
1494 mindiff = 0; /* give up and go for Easy */
1495 }
1496 continue;
1497 }
1498
1499 break;
1500 }
1501
1502 /*
1503 * Encode as a game ID. We do this by:
1504 *
1505 * - first going along the horizontal edges row by row, and
1506 * then the vertical edges column by column
1507 * - encoding the lengths of runs of edges and runs of
1508 * non-edges
1509 * - the decoder will reconstitute the region boundaries from
1510 * this and automatically number them the same way we did
1511 * - then we encode the initial region colours in a Slant-like
1512 * fashion (digits 0-3 interspersed with letters giving
1513 * lengths of runs of empty spaces).
1514 */
1515 retlen = retsize = 0;
1516 ret = NULL;
1517
1518 {
1519 int run, pv;
1520
1521 /*
1522 * Start with a notional non-edge, so that there'll be an
1523 * explicit `a' to distinguish the case where we start with
1524 * an edge.
1525 */
1526 run = 1;
1527 pv = 0;
1528
1529 for (i = 0; i < w*(h-1) + (w-1)*h; i++) {
1530 int x, y, dx, dy, v;
1531
1532 if (i < w*(h-1)) {
1533 /* Horizontal edge. */
1534 y = i / w;
1535 x = i % w;
1536 dx = 0;
1537 dy = 1;
1538 } else {
1539 /* Vertical edge. */
1540 x = (i - w*(h-1)) / h;
1541 y = (i - w*(h-1)) % h;
1542 dx = 1;
1543 dy = 0;
1544 }
1545
1546 if (retlen + 10 >= retsize) {
1547 retsize = retlen + 256;
1548 ret = sresize(ret, retsize, char);
1549 }
1550
1551 v = (map[y*w+x] != map[(y+dy)*w+(x+dx)]);
1552
1553 if (pv != v) {
1554 ret[retlen++] = 'a'-1 + run;
1555 run = 1;
1556 pv = v;
1557 } else {
1558 /*
1559 * 'z' is a special case in this encoding. Rather
1560 * than meaning a run of 26 and a state switch, it
1561 * means a run of 25 and _no_ state switch, because
1562 * otherwise there'd be no way to encode runs of
1563 * more than 26.
1564 */
1565 if (run == 25) {
1566 ret[retlen++] = 'z';
1567 run = 0;
1568 }
1569 run++;
1570 }
1571 }
1572
1573 ret[retlen++] = 'a'-1 + run;
1574 ret[retlen++] = ',';
1575
1576 run = 0;
1577 for (i = 0; i < n; i++) {
1578 if (retlen + 10 >= retsize) {
1579 retsize = retlen + 256;
1580 ret = sresize(ret, retsize, char);
1581 }
1582
1583 if (colouring[i] < 0) {
1584 /*
1585 * In _this_ encoding, 'z' is a run of 26, since
1586 * there's no implicit state switch after each run.
1587 * Confusingly different, but more compact.
1588 */
1589 if (run == 26) {
1590 ret[retlen++] = 'z';
1591 run = 0;
1592 }
1593 run++;
1594 } else {
1595 if (run > 0)
1596 ret[retlen++] = 'a'-1 + run;
1597 ret[retlen++] = '0' + colouring[i];
1598 run = 0;
1599 }
1600 }
1601 if (run > 0)
1602 ret[retlen++] = 'a'-1 + run;
1603 ret[retlen] = '\0';
1604
1605 assert(retlen < retsize);
1606 }
1607
1608 free_scratch(sc);
1609 sfree(regions);
1610 sfree(colouring2);
1611 sfree(colouring);
1612 sfree(graph);
1613 sfree(map);
1614
1615 return ret;
1616 }
1617
1618 static char *parse_edge_list(game_params *params, char **desc, int *map)
1619 {
1620 int w = params->w, h = params->h, wh = w*h, n = params->n;
1621 int i, k, pos, state;
1622 char *p = *desc;
1623
1624 for (i = 0; i < wh; i++)
1625 map[wh+i] = i;
1626
1627 pos = -1;
1628 state = 0;
1629
1630 /*
1631 * Parse the game description to get the list of edges, and
1632 * build up a disjoint set forest as we go (by identifying
1633 * pairs of squares whenever the edge list shows a non-edge).
1634 */
1635 while (*p && *p != ',') {
1636 if (*p < 'a' || *p > 'z')
1637 return "Unexpected character in edge list";
1638 if (*p == 'z')
1639 k = 25;
1640 else
1641 k = *p - 'a' + 1;
1642 while (k-- > 0) {
1643 int x, y, dx, dy;
1644
1645 if (pos < 0) {
1646 pos++;
1647 continue;
1648 } else if (pos < w*(h-1)) {
1649 /* Horizontal edge. */
1650 y = pos / w;
1651 x = pos % w;
1652 dx = 0;
1653 dy = 1;
1654 } else if (pos < 2*wh-w-h) {
1655 /* Vertical edge. */
1656 x = (pos - w*(h-1)) / h;
1657 y = (pos - w*(h-1)) % h;
1658 dx = 1;
1659 dy = 0;
1660 } else
1661 return "Too much data in edge list";
1662 if (!state)
1663 dsf_merge(map+wh, y*w+x, (y+dy)*w+(x+dx));
1664
1665 pos++;
1666 }
1667 if (*p != 'z')
1668 state = !state;
1669 p++;
1670 }
1671 assert(pos <= 2*wh-w-h);
1672 if (pos < 2*wh-w-h)
1673 return "Too little data in edge list";
1674
1675 /*
1676 * Now go through again and allocate region numbers.
1677 */
1678 pos = 0;
1679 for (i = 0; i < wh; i++)
1680 map[i] = -1;
1681 for (i = 0; i < wh; i++) {
1682 k = dsf_canonify(map+wh, i);
1683 if (map[k] < 0)
1684 map[k] = pos++;
1685 map[i] = map[k];
1686 }
1687 if (pos != n)
1688 return "Edge list defines the wrong number of regions";
1689
1690 *desc = p;
1691
1692 return NULL;
1693 }
1694
1695 static char *validate_desc(game_params *params, char *desc)
1696 {
1697 int w = params->w, h = params->h, wh = w*h, n = params->n;
1698 int area;
1699 int *map;
1700 char *ret;
1701
1702 map = snewn(2*wh, int);
1703 ret = parse_edge_list(params, &desc, map);
1704 if (ret)
1705 return ret;
1706 sfree(map);
1707
1708 if (*desc != ',')
1709 return "Expected comma before clue list";
1710 desc++; /* eat comma */
1711
1712 area = 0;
1713 while (*desc) {
1714 if (*desc >= '0' && *desc < '0'+FOUR)
1715 area++;
1716 else if (*desc >= 'a' && *desc <= 'z')
1717 area += *desc - 'a' + 1;
1718 else
1719 return "Unexpected character in clue list";
1720 desc++;
1721 }
1722 if (area < n)
1723 return "Too little data in clue list";
1724 else if (area > n)
1725 return "Too much data in clue list";
1726
1727 return NULL;
1728 }
1729
1730 static game_state *new_game(midend *me, game_params *params, char *desc)
1731 {
1732 int w = params->w, h = params->h, wh = w*h, n = params->n;
1733 int i, pos;
1734 char *p;
1735 game_state *state = snew(game_state);
1736
1737 state->p = *params;
1738 state->colouring = snewn(n, int);
1739 for (i = 0; i < n; i++)
1740 state->colouring[i] = -1;
1741 state->pencil = snewn(n, int);
1742 for (i = 0; i < n; i++)
1743 state->pencil[i] = 0;
1744
1745 state->completed = state->cheated = FALSE;
1746
1747 state->map = snew(struct map);
1748 state->map->refcount = 1;
1749 state->map->map = snewn(wh*4, int);
1750 state->map->graph = snewn(n*n, int);
1751 state->map->n = n;
1752 state->map->immutable = snewn(n, int);
1753 for (i = 0; i < n; i++)
1754 state->map->immutable[i] = FALSE;
1755
1756 p = desc;
1757
1758 {
1759 char *ret;
1760 ret = parse_edge_list(params, &p, state->map->map);
1761 assert(!ret);
1762 }
1763
1764 /*
1765 * Set up the other three quadrants in `map'.
1766 */
1767 for (i = wh; i < 4*wh; i++)
1768 state->map->map[i] = state->map->map[i % wh];
1769
1770 assert(*p == ',');
1771 p++;
1772
1773 /*
1774 * Now process the clue list.
1775 */
1776 pos = 0;
1777 while (*p) {
1778 if (*p >= '0' && *p < '0'+FOUR) {
1779 state->colouring[pos] = *p - '0';
1780 state->map->immutable[pos] = TRUE;
1781 pos++;
1782 } else {
1783 assert(*p >= 'a' && *p <= 'z');
1784 pos += *p - 'a' + 1;
1785 }
1786 p++;
1787 }
1788 assert(pos == n);
1789
1790 state->map->ngraph = gengraph(w, h, n, state->map->map, state->map->graph);
1791
1792 /*
1793 * Attempt to smooth out some of the more jagged region
1794 * outlines by the judicious use of diagonally divided squares.
1795 */
1796 {
1797 random_state *rs = random_init(desc, strlen(desc));
1798 int *squares = snewn(wh, int);
1799 int done_something;
1800
1801 for (i = 0; i < wh; i++)
1802 squares[i] = i;
1803 shuffle(squares, wh, sizeof(*squares), rs);
1804
1805 do {
1806 done_something = FALSE;
1807 for (i = 0; i < wh; i++) {
1808 int y = squares[i] / w, x = squares[i] % w;
1809 int c = state->map->map[y*w+x];
1810 int tc, bc, lc, rc;
1811
1812 if (x == 0 || x == w-1 || y == 0 || y == h-1)
1813 continue;
1814
1815 if (state->map->map[TE * wh + y*w+x] !=
1816 state->map->map[BE * wh + y*w+x])
1817 continue;
1818
1819 tc = state->map->map[BE * wh + (y-1)*w+x];
1820 bc = state->map->map[TE * wh + (y+1)*w+x];
1821 lc = state->map->map[RE * wh + y*w+(x-1)];
1822 rc = state->map->map[LE * wh + y*w+(x+1)];
1823
1824 /*
1825 * If this square is adjacent on two sides to one
1826 * region and on the other two sides to the other
1827 * region, and is itself one of the two regions, we can
1828 * adjust it so that it's a diagonal.
1829 */
1830 if (tc != bc && (tc == c || bc == c)) {
1831 if ((lc == tc && rc == bc) ||
1832 (lc == bc && rc == tc)) {
1833 state->map->map[TE * wh + y*w+x] = tc;
1834 state->map->map[BE * wh + y*w+x] = bc;
1835 state->map->map[LE * wh + y*w+x] = lc;
1836 state->map->map[RE * wh + y*w+x] = rc;
1837 done_something = TRUE;
1838 }
1839 }
1840 }
1841 } while (done_something);
1842 sfree(squares);
1843 random_free(rs);
1844 }
1845
1846 /*
1847 * Analyse the map to find a canonical line segment
1848 * corresponding to each edge, and a canonical point
1849 * corresponding to each region. The former are where we'll
1850 * eventually put error markers; the latter are where we'll put
1851 * per-region flags such as numbers (when in diagnostic mode).
1852 */
1853 {
1854 int *bestx, *besty, *an, pass;
1855 float *ax, *ay, *best;
1856
1857 ax = snewn(state->map->ngraph + n, float);
1858 ay = snewn(state->map->ngraph + n, float);
1859 an = snewn(state->map->ngraph + n, int);
1860 bestx = snewn(state->map->ngraph + n, int);
1861 besty = snewn(state->map->ngraph + n, int);
1862 best = snewn(state->map->ngraph + n, float);
1863
1864 for (i = 0; i < state->map->ngraph + n; i++) {
1865 bestx[i] = besty[i] = -1;
1866 best[i] = 2*(w+h)+1;
1867 ax[i] = ay[i] = 0.0F;
1868 an[i] = 0;
1869 }
1870
1871 /*
1872 * We make two passes over the map, finding all the line
1873 * segments separating regions and all the suitable points
1874 * within regions. In the first pass, we compute the
1875 * _average_ x and y coordinate of all the points in a
1876 * given class; in the second pass, for each such average
1877 * point, we find the candidate closest to it and call that
1878 * canonical.
1879 *
1880 * Line segments are considered to have coordinates in
1881 * their centre. Thus, at least one coordinate for any line
1882 * segment is always something-and-a-half; so we store our
1883 * coordinates as twice their normal value.
1884 */
1885 for (pass = 0; pass < 2; pass++) {
1886 int x, y;
1887
1888 for (y = 0; y < h; y++)
1889 for (x = 0; x < w; x++) {
1890 int ex[4], ey[4], ea[4], eb[4], en = 0;
1891
1892 /*
1893 * Look for an edge to the right of this
1894 * square, an edge below it, and an edge in the
1895 * middle of it. Also look to see if the point
1896 * at the bottom right of this square is on an
1897 * edge (and isn't a place where more than two
1898 * regions meet).
1899 */
1900 if (x+1 < w) {
1901 /* right edge */
1902 ea[en] = state->map->map[RE * wh + y*w+x];
1903 eb[en] = state->map->map[LE * wh + y*w+(x+1)];
1904 ex[en] = (x+1)*2;
1905 ey[en] = y*2+1;
1906 en++;
1907 }
1908 if (y+1 < h) {
1909 /* bottom edge */
1910 ea[en] = state->map->map[BE * wh + y*w+x];
1911 eb[en] = state->map->map[TE * wh + (y+1)*w+x];
1912 ex[en] = x*2+1;
1913 ey[en] = (y+1)*2;
1914 en++;
1915 }
1916 /* diagonal edge */
1917 ea[en] = state->map->map[TE * wh + y*w+x];
1918 eb[en] = state->map->map[BE * wh + y*w+x];
1919 ex[en] = x*2+1;
1920 ey[en] = y*2+1;
1921 en++;
1922
1923 if (x+1 < w && y+1 < h) {
1924 /* bottom right corner */
1925 int oct[8], othercol, nchanges;
1926 oct[0] = state->map->map[RE * wh + y*w+x];
1927 oct[1] = state->map->map[LE * wh + y*w+(x+1)];
1928 oct[2] = state->map->map[BE * wh + y*w+(x+1)];
1929 oct[3] = state->map->map[TE * wh + (y+1)*w+(x+1)];
1930 oct[4] = state->map->map[LE * wh + (y+1)*w+(x+1)];
1931 oct[5] = state->map->map[RE * wh + (y+1)*w+x];
1932 oct[6] = state->map->map[TE * wh + (y+1)*w+x];
1933 oct[7] = state->map->map[BE * wh + y*w+x];
1934
1935 othercol = -1;
1936 nchanges = 0;
1937 for (i = 0; i < 8; i++) {
1938 if (oct[i] != oct[0]) {
1939 if (othercol < 0)
1940 othercol = oct[i];
1941 else if (othercol != oct[i])
1942 break; /* three colours at this point */
1943 }
1944 if (oct[i] != oct[(i+1) & 7])
1945 nchanges++;
1946 }
1947
1948 /*
1949 * Now if there are exactly two regions at
1950 * this point (not one, and not three or
1951 * more), and only two changes around the
1952 * loop, then this is a valid place to put
1953 * an error marker.
1954 */
1955 if (i == 8 && othercol >= 0 && nchanges == 2) {
1956 ea[en] = oct[0];
1957 eb[en] = othercol;
1958 ex[en] = (x+1)*2;
1959 ey[en] = (y+1)*2;
1960 en++;
1961 }
1962
1963 /*
1964 * If there's exactly _one_ region at this
1965 * point, on the other hand, it's a valid
1966 * place to put a region centre.
1967 */
1968 if (othercol < 0) {
1969 ea[en] = eb[en] = oct[0];
1970 ex[en] = (x+1)*2;
1971 ey[en] = (y+1)*2;
1972 en++;
1973 }
1974 }
1975
1976 /*
1977 * Now process the points we've found, one by
1978 * one.
1979 */
1980 for (i = 0; i < en; i++) {
1981 int emin = min(ea[i], eb[i]);
1982 int emax = max(ea[i], eb[i]);
1983 int gindex;
1984
1985 if (emin != emax) {
1986 /* Graph edge */
1987 gindex =
1988 graph_edge_index(state->map->graph, n,
1989 state->map->ngraph, emin,
1990 emax);
1991 } else {
1992 /* Region number */
1993 gindex = state->map->ngraph + emin;
1994 }
1995
1996 assert(gindex >= 0);
1997
1998 if (pass == 0) {
1999 /*
2000 * In pass 0, accumulate the values
2001 * we'll use to compute the average
2002 * positions.
2003 */
2004 ax[gindex] += ex[i];
2005 ay[gindex] += ey[i];
2006 an[gindex] += 1.0F;
2007 } else {
2008 /*
2009 * In pass 1, work out whether this
2010 * point is closer to the average than
2011 * the last one we've seen.
2012 */
2013 float dx, dy, d;
2014
2015 assert(an[gindex] > 0);
2016 dx = ex[i] - ax[gindex];
2017 dy = ey[i] - ay[gindex];
2018 d = sqrt(dx*dx + dy*dy);
2019 if (d < best[gindex]) {
2020 best[gindex] = d;
2021 bestx[gindex] = ex[i];
2022 besty[gindex] = ey[i];
2023 }
2024 }
2025 }
2026 }
2027
2028 if (pass == 0) {
2029 for (i = 0; i < state->map->ngraph + n; i++)
2030 if (an[i] > 0) {
2031 ax[i] /= an[i];
2032 ay[i] /= an[i];
2033 }
2034 }
2035 }
2036
2037 state->map->edgex = snewn(state->map->ngraph, int);
2038 state->map->edgey = snewn(state->map->ngraph, int);
2039 memcpy(state->map->edgex, bestx, state->map->ngraph * sizeof(int));
2040 memcpy(state->map->edgey, besty, state->map->ngraph * sizeof(int));
2041
2042 state->map->regionx = snewn(n, int);
2043 state->map->regiony = snewn(n, int);
2044 memcpy(state->map->regionx, bestx + state->map->ngraph, n*sizeof(int));
2045 memcpy(state->map->regiony, besty + state->map->ngraph, n*sizeof(int));
2046
2047 for (i = 0; i < state->map->ngraph; i++)
2048 if (state->map->edgex[i] < 0) {
2049 /* Find the other representation of this edge. */
2050 int e = state->map->graph[i];
2051 int iprime = graph_edge_index(state->map->graph, n,
2052 state->map->ngraph, e%n, e/n);
2053 assert(state->map->edgex[iprime] >= 0);
2054 state->map->edgex[i] = state->map->edgex[iprime];
2055 state->map->edgey[i] = state->map->edgey[iprime];
2056 }
2057
2058 sfree(ax);
2059 sfree(ay);
2060 sfree(an);
2061 sfree(best);
2062 sfree(bestx);
2063 sfree(besty);
2064 }
2065
2066 return state;
2067 }
2068
2069 static game_state *dup_game(game_state *state)
2070 {
2071 game_state *ret = snew(game_state);
2072
2073 ret->p = state->p;
2074 ret->colouring = snewn(state->p.n, int);
2075 memcpy(ret->colouring, state->colouring, state->p.n * sizeof(int));
2076 ret->pencil = snewn(state->p.n, int);
2077 memcpy(ret->pencil, state->pencil, state->p.n * sizeof(int));
2078 ret->map = state->map;
2079 ret->map->refcount++;
2080 ret->completed = state->completed;
2081 ret->cheated = state->cheated;
2082
2083 return ret;
2084 }
2085
2086 static void free_game(game_state *state)
2087 {
2088 if (--state->map->refcount <= 0) {
2089 sfree(state->map->map);
2090 sfree(state->map->graph);
2091 sfree(state->map->immutable);
2092 sfree(state->map->edgex);
2093 sfree(state->map->edgey);
2094 sfree(state->map->regionx);
2095 sfree(state->map->regiony);
2096 sfree(state->map);
2097 }
2098 sfree(state->colouring);
2099 sfree(state);
2100 }
2101
2102 static char *solve_game(game_state *state, game_state *currstate,
2103 char *aux, char **error)
2104 {
2105 if (!aux) {
2106 /*
2107 * Use the solver.
2108 */
2109 int *colouring;
2110 struct solver_scratch *sc;
2111 int sret;
2112 int i;
2113 char *ret, buf[80];
2114 int retlen, retsize;
2115
2116 colouring = snewn(state->map->n, int);
2117 memcpy(colouring, state->colouring, state->map->n * sizeof(int));
2118
2119 sc = new_scratch(state->map->graph, state->map->n, state->map->ngraph);
2120 sret = map_solver(sc, state->map->graph, state->map->n,
2121 state->map->ngraph, colouring, DIFFCOUNT-1);
2122 free_scratch(sc);
2123
2124 if (sret != 1) {
2125 sfree(colouring);
2126 if (sret == 0)
2127 *error = "Puzzle is inconsistent";
2128 else
2129 *error = "Unable to find a unique solution for this puzzle";
2130 return NULL;
2131 }
2132
2133 retsize = 64;
2134 ret = snewn(retsize, char);
2135 strcpy(ret, "S");
2136 retlen = 1;
2137
2138 for (i = 0; i < state->map->n; i++) {
2139 int len;
2140
2141 assert(colouring[i] >= 0);
2142 if (colouring[i] == currstate->colouring[i])
2143 continue;
2144 assert(!state->map->immutable[i]);
2145
2146 len = sprintf(buf, ";%d:%d", colouring[i], i);
2147 if (retlen + len >= retsize) {
2148 retsize = retlen + len + 256;
2149 ret = sresize(ret, retsize, char);
2150 }
2151 strcpy(ret + retlen, buf);
2152 retlen += len;
2153 }
2154
2155 sfree(colouring);
2156
2157 return ret;
2158 }
2159 return dupstr(aux);
2160 }
2161
2162 static char *game_text_format(game_state *state)
2163 {
2164 return NULL;
2165 }
2166
2167 struct game_ui {
2168 int drag_colour; /* -1 means no drag active */
2169 int dragx, dragy;
2170 int show_numbers;
2171 };
2172
2173 static game_ui *new_ui(game_state *state)
2174 {
2175 game_ui *ui = snew(game_ui);
2176 ui->dragx = ui->dragy = -1;
2177 ui->drag_colour = -2;
2178 ui->show_numbers = FALSE;
2179 return ui;
2180 }
2181
2182 static void free_ui(game_ui *ui)
2183 {
2184 sfree(ui);
2185 }
2186
2187 static char *encode_ui(game_ui *ui)
2188 {
2189 return NULL;
2190 }
2191
2192 static void decode_ui(game_ui *ui, char *encoding)
2193 {
2194 }
2195
2196 static void game_changed_state(game_ui *ui, game_state *oldstate,
2197 game_state *newstate)
2198 {
2199 }
2200
2201 struct game_drawstate {
2202 int tilesize;
2203 unsigned long *drawn, *todraw;
2204 int started;
2205 int dragx, dragy, drag_visible;
2206 blitter *bl;
2207 };
2208
2209 /* Flags in `drawn'. */
2210 #define ERR_BASE 0x00800000L
2211 #define ERR_MASK 0xFF800000L
2212 #define PENCIL_T_BASE 0x00080000L
2213 #define PENCIL_T_MASK 0x00780000L
2214 #define PENCIL_B_BASE 0x00008000L
2215 #define PENCIL_B_MASK 0x00078000L
2216 #define PENCIL_MASK 0x007F8000L
2217 #define SHOW_NUMBERS 0x00004000L
2218
2219 #define TILESIZE (ds->tilesize)
2220 #define BORDER (TILESIZE)
2221 #define COORD(x) ( (x) * TILESIZE + BORDER )
2222 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
2223
2224 static int region_from_coords(game_state *state, game_drawstate *ds,
2225 int x, int y)
2226 {
2227 int w = state->p.w, h = state->p.h, wh = w*h /*, n = state->p.n */;
2228 int tx = FROMCOORD(x), ty = FROMCOORD(y);
2229 int dx = x - COORD(tx), dy = y - COORD(ty);
2230 int quadrant;
2231
2232 if (tx < 0 || tx >= w || ty < 0 || ty >= h)
2233 return -1; /* border */
2234
2235 quadrant = 2 * (dx > dy) + (TILESIZE - dx > dy);
2236 quadrant = (quadrant == 0 ? BE :
2237 quadrant == 1 ? LE :
2238 quadrant == 2 ? RE : TE);
2239
2240 return state->map->map[quadrant * wh + ty*w+tx];
2241 }
2242
2243 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
2244 int x, int y, int button)
2245 {
2246 char buf[80];
2247
2248 /*
2249 * Enable or disable numeric labels on regions.
2250 */
2251 if (button == 'l' || button == 'L') {
2252 ui->show_numbers = !ui->show_numbers;
2253 return "";
2254 }
2255
2256 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
2257 int r = region_from_coords(state, ds, x, y);
2258
2259 if (r >= 0)
2260 ui->drag_colour = state->colouring[r];
2261 else
2262 ui->drag_colour = -1;
2263 ui->dragx = x;
2264 ui->dragy = y;
2265 return "";
2266 }
2267
2268 if ((button == LEFT_DRAG || button == RIGHT_DRAG) &&
2269 ui->drag_colour > -2) {
2270 ui->dragx = x;
2271 ui->dragy = y;
2272 return "";
2273 }
2274
2275 if ((button == LEFT_RELEASE || button == RIGHT_RELEASE) &&
2276 ui->drag_colour > -2) {
2277 int r = region_from_coords(state, ds, x, y);
2278 int c = ui->drag_colour;
2279
2280 /*
2281 * Cancel the drag, whatever happens.
2282 */
2283 ui->drag_colour = -2;
2284 ui->dragx = ui->dragy = -1;
2285
2286 if (r < 0)
2287 return ""; /* drag into border; do nothing else */
2288
2289 if (state->map->immutable[r])
2290 return ""; /* can't change this region */
2291
2292 if (state->colouring[r] == c)
2293 return ""; /* don't _need_ to change this region */
2294
2295 if (button == RIGHT_RELEASE && state->colouring[r] >= 0)
2296 return ""; /* can't pencil on a coloured region */
2297
2298 sprintf(buf, "%s%c:%d", (button == RIGHT_RELEASE ? "p" : ""),
2299 (int)(c < 0 ? 'C' : '0' + c), r);
2300 return dupstr(buf);
2301 }
2302
2303 return NULL;
2304 }
2305
2306 static game_state *execute_move(game_state *state, char *move)
2307 {
2308 int n = state->p.n;
2309 game_state *ret = dup_game(state);
2310 int c, k, adv, i;
2311
2312 while (*move) {
2313 int pencil = FALSE;
2314
2315 c = *move;
2316 if (c == 'p') {
2317 pencil = TRUE;
2318 c = *++move;
2319 }
2320 if ((c == 'C' || (c >= '0' && c < '0'+FOUR)) &&
2321 sscanf(move+1, ":%d%n", &k, &adv) == 1 &&
2322 k >= 0 && k < state->p.n) {
2323 move += 1 + adv;
2324 if (pencil) {
2325 if (ret->colouring[k] >= 0) {
2326 free_game(ret);
2327 return NULL;
2328 }
2329 if (c == 'C')
2330 ret->pencil[k] = 0;
2331 else
2332 ret->pencil[k] ^= 1 << (c - '0');
2333 } else {
2334 ret->colouring[k] = (c == 'C' ? -1 : c - '0');
2335 ret->pencil[k] = 0;
2336 }
2337 } else if (*move == 'S') {
2338 move++;
2339 ret->cheated = TRUE;
2340 } else {
2341 free_game(ret);
2342 return NULL;
2343 }
2344
2345 if (*move && *move != ';') {
2346 free_game(ret);
2347 return NULL;
2348 }
2349 if (*move)
2350 move++;
2351 }
2352
2353 /*
2354 * Check for completion.
2355 */
2356 if (!ret->completed) {
2357 int ok = TRUE;
2358
2359 for (i = 0; i < n; i++)
2360 if (ret->colouring[i] < 0) {
2361 ok = FALSE;
2362 break;
2363 }
2364
2365 if (ok) {
2366 for (i = 0; i < ret->map->ngraph; i++) {
2367 int j = ret->map->graph[i] / n;
2368 int k = ret->map->graph[i] % n;
2369 if (ret->colouring[j] == ret->colouring[k]) {
2370 ok = FALSE;
2371 break;
2372 }
2373 }
2374 }
2375
2376 if (ok)
2377 ret->completed = TRUE;
2378 }
2379
2380 return ret;
2381 }
2382
2383 /* ----------------------------------------------------------------------
2384 * Drawing routines.
2385 */
2386
2387 static void game_compute_size(game_params *params, int tilesize,
2388 int *x, int *y)
2389 {
2390 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2391 struct { int tilesize; } ads, *ds = &ads;
2392 ads.tilesize = tilesize;
2393
2394 *x = params->w * TILESIZE + 2 * BORDER + 1;
2395 *y = params->h * TILESIZE + 2 * BORDER + 1;
2396 }
2397
2398 static void game_set_size(drawing *dr, game_drawstate *ds,
2399 game_params *params, int tilesize)
2400 {
2401 ds->tilesize = tilesize;
2402
2403 if (ds->bl)
2404 blitter_free(dr, ds->bl);
2405 ds->bl = blitter_new(dr, TILESIZE+3, TILESIZE+3);
2406 }
2407
2408 const float map_colours[FOUR][3] = {
2409 {0.7F, 0.5F, 0.4F},
2410 {0.8F, 0.7F, 0.4F},
2411 {0.5F, 0.6F, 0.4F},
2412 {0.55F, 0.45F, 0.35F},
2413 };
2414 const int map_hatching[FOUR] = {
2415 HATCH_VERT, HATCH_SLASH, HATCH_HORIZ, HATCH_BACKSLASH
2416 };
2417
2418 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
2419 {
2420 float *ret = snewn(3 * NCOLOURS, float);
2421
2422 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2423
2424 ret[COL_GRID * 3 + 0] = 0.0F;
2425 ret[COL_GRID * 3 + 1] = 0.0F;
2426 ret[COL_GRID * 3 + 2] = 0.0F;
2427
2428 memcpy(ret + COL_0 * 3, map_colours[0], 3 * sizeof(float));
2429 memcpy(ret + COL_1 * 3, map_colours[1], 3 * sizeof(float));
2430 memcpy(ret + COL_2 * 3, map_colours[2], 3 * sizeof(float));
2431 memcpy(ret + COL_3 * 3, map_colours[3], 3 * sizeof(float));
2432
2433 ret[COL_ERROR * 3 + 0] = 1.0F;
2434 ret[COL_ERROR * 3 + 1] = 0.0F;
2435 ret[COL_ERROR * 3 + 2] = 0.0F;
2436
2437 ret[COL_ERRTEXT * 3 + 0] = 1.0F;
2438 ret[COL_ERRTEXT * 3 + 1] = 1.0F;
2439 ret[COL_ERRTEXT * 3 + 2] = 1.0F;
2440
2441 *ncolours = NCOLOURS;
2442 return ret;
2443 }
2444
2445 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2446 {
2447 struct game_drawstate *ds = snew(struct game_drawstate);
2448 int i;
2449
2450 ds->tilesize = 0;
2451 ds->drawn = snewn(state->p.w * state->p.h, unsigned long);
2452 for (i = 0; i < state->p.w * state->p.h; i++)
2453 ds->drawn[i] = 0xFFFFL;
2454 ds->todraw = snewn(state->p.w * state->p.h, unsigned long);
2455 ds->started = FALSE;
2456 ds->bl = NULL;
2457 ds->drag_visible = FALSE;
2458 ds->dragx = ds->dragy = -1;
2459
2460 return ds;
2461 }
2462
2463 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2464 {
2465 sfree(ds->drawn);
2466 sfree(ds->todraw);
2467 if (ds->bl)
2468 blitter_free(dr, ds->bl);
2469 sfree(ds);
2470 }
2471
2472 static void draw_error(drawing *dr, game_drawstate *ds, int x, int y)
2473 {
2474 int coords[8];
2475 int yext, xext;
2476
2477 /*
2478 * Draw a diamond.
2479 */
2480 coords[0] = x - TILESIZE*2/5;
2481 coords[1] = y;
2482 coords[2] = x;
2483 coords[3] = y - TILESIZE*2/5;
2484 coords[4] = x + TILESIZE*2/5;
2485 coords[5] = y;
2486 coords[6] = x;
2487 coords[7] = y + TILESIZE*2/5;
2488 draw_polygon(dr, coords, 4, COL_ERROR, COL_GRID);
2489
2490 /*
2491 * Draw an exclamation mark in the diamond. This turns out to
2492 * look unpleasantly off-centre if done via draw_text, so I do
2493 * it by hand on the basis that exclamation marks aren't that
2494 * difficult to draw...
2495 */
2496 xext = TILESIZE/16;
2497 yext = TILESIZE*2/5 - (xext*2+2);
2498 draw_rect(dr, x-xext, y-yext, xext*2+1, yext*2+1 - (xext*3),
2499 COL_ERRTEXT);
2500 draw_rect(dr, x-xext, y+yext-xext*2+1, xext*2+1, xext*2, COL_ERRTEXT);
2501 }
2502
2503 static void draw_square(drawing *dr, game_drawstate *ds,
2504 game_params *params, struct map *map,
2505 int x, int y, int v)
2506 {
2507 int w = params->w, h = params->h, wh = w*h;
2508 int tv, bv, xo, yo, errs, pencil, i, j, oldj;
2509 int show_numbers;
2510
2511 errs = v & ERR_MASK;
2512 v &= ~ERR_MASK;
2513 pencil = v & PENCIL_MASK;
2514 v &= ~PENCIL_MASK;
2515 show_numbers = v & SHOW_NUMBERS;
2516 v &= ~SHOW_NUMBERS;
2517 tv = v / FIVE;
2518 bv = v % FIVE;
2519
2520 clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
2521
2522 /*
2523 * Draw the region colour.
2524 */
2525 draw_rect(dr, COORD(x), COORD(y), TILESIZE, TILESIZE,
2526 (tv == FOUR ? COL_BACKGROUND : COL_0 + tv));
2527 /*
2528 * Draw the second region colour, if this is a diagonally
2529 * divided square.
2530 */
2531 if (map->map[TE * wh + y*w+x] != map->map[BE * wh + y*w+x]) {
2532 int coords[6];
2533 coords[0] = COORD(x)-1;
2534 coords[1] = COORD(y+1)+1;
2535 if (map->map[LE * wh + y*w+x] == map->map[TE * wh + y*w+x])
2536 coords[2] = COORD(x+1)+1;
2537 else
2538 coords[2] = COORD(x)-1;
2539 coords[3] = COORD(y)-1;
2540 coords[4] = COORD(x+1)+1;
2541 coords[5] = COORD(y+1)+1;
2542 draw_polygon(dr, coords, 3,
2543 (bv == FOUR ? COL_BACKGROUND : COL_0 + bv), COL_GRID);
2544 }
2545
2546 /*
2547 * Draw `pencil marks'. Currently we arrange these in a square
2548 * formation, which means we may be in trouble if the value of
2549 * FOUR changes later...
2550 */
2551 assert(FOUR == 4);
2552 for (yo = 0; yo < 4; yo++)
2553 for (xo = 0; xo < 4; xo++) {
2554 int te = map->map[TE * wh + y*w+x];
2555 int e, ee, c;
2556
2557 e = (yo < xo && yo < 3-xo ? TE :
2558 yo > xo && yo > 3-xo ? BE :
2559 xo < 2 ? LE : RE);
2560 ee = map->map[e * wh + y*w+x];
2561
2562 c = (yo & 1) * 2 + (xo & 1);
2563
2564 if (!(pencil & ((ee == te ? PENCIL_T_BASE : PENCIL_B_BASE) << c)))
2565 continue;
2566
2567 if (yo == xo &&
2568 (map->map[TE * wh + y*w+x] != map->map[LE * wh + y*w+x]))
2569 continue; /* avoid TL-BR diagonal line */
2570 if (yo == 3-xo &&
2571 (map->map[TE * wh + y*w+x] != map->map[RE * wh + y*w+x]))
2572 continue; /* avoid BL-TR diagonal line */
2573
2574 draw_rect(dr, COORD(x) + (5*xo+1)*TILESIZE/20,
2575 COORD(y) + (5*yo+1)*TILESIZE/20,
2576 4*TILESIZE/20, 4*TILESIZE/20, COL_0 + c);
2577 }
2578
2579 /*
2580 * Draw the grid lines, if required.
2581 */
2582 if (x <= 0 || map->map[RE*wh+y*w+(x-1)] != map->map[LE*wh+y*w+x])
2583 draw_rect(dr, COORD(x), COORD(y), 1, TILESIZE, COL_GRID);
2584 if (y <= 0 || map->map[BE*wh+(y-1)*w+x] != map->map[TE*wh+y*w+x])
2585 draw_rect(dr, COORD(x), COORD(y), TILESIZE, 1, COL_GRID);
2586 if (x <= 0 || y <= 0 ||
2587 map->map[RE*wh+(y-1)*w+(x-1)] != map->map[TE*wh+y*w+x] ||
2588 map->map[BE*wh+(y-1)*w+(x-1)] != map->map[LE*wh+y*w+x])
2589 draw_rect(dr, COORD(x), COORD(y), 1, 1, COL_GRID);
2590
2591 /*
2592 * Draw error markers.
2593 */
2594 for (yo = 0; yo < 3; yo++)
2595 for (xo = 0; xo < 3; xo++)
2596 if (errs & (ERR_BASE << (yo*3+xo)))
2597 draw_error(dr, ds,
2598 (COORD(x)*2+TILESIZE*xo)/2,
2599 (COORD(y)*2+TILESIZE*yo)/2);
2600
2601 /*
2602 * Draw region numbers, if desired.
2603 */
2604 if (show_numbers) {
2605 oldj = -1;
2606 for (i = 0; i < 2; i++) {
2607 j = map->map[(i?BE:TE)*wh+y*w+x];
2608 if (oldj == j)
2609 continue;
2610 oldj = j;
2611
2612 xo = map->regionx[j] - 2*x;
2613 yo = map->regiony[j] - 2*y;
2614 if (xo >= 0 && xo <= 2 && yo >= 0 && yo <= 2) {
2615 char buf[80];
2616 sprintf(buf, "%d", j);
2617 draw_text(dr, (COORD(x)*2+TILESIZE*xo)/2,
2618 (COORD(y)*2+TILESIZE*yo)/2,
2619 FONT_VARIABLE, 3*TILESIZE/5,
2620 ALIGN_HCENTRE|ALIGN_VCENTRE,
2621 COL_GRID, buf);
2622 }
2623 }
2624 }
2625
2626 unclip(dr);
2627
2628 draw_update(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
2629 }
2630
2631 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2632 game_state *state, int dir, game_ui *ui,
2633 float animtime, float flashtime)
2634 {
2635 int w = state->p.w, h = state->p.h, wh = w*h, n = state->p.n;
2636 int x, y, i;
2637 int flash;
2638
2639 if (ds->drag_visible) {
2640 blitter_load(dr, ds->bl, ds->dragx, ds->dragy);
2641 draw_update(dr, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
2642 ds->drag_visible = FALSE;
2643 }
2644
2645 /*
2646 * The initial contents of the window are not guaranteed and
2647 * can vary with front ends. To be on the safe side, all games
2648 * should start by drawing a big background-colour rectangle
2649 * covering the whole window.
2650 */
2651 if (!ds->started) {
2652 int ww, wh;
2653
2654 game_compute_size(&state->p, TILESIZE, &ww, &wh);
2655 draw_rect(dr, 0, 0, ww, wh, COL_BACKGROUND);
2656 draw_rect(dr, COORD(0), COORD(0), w*TILESIZE+1, h*TILESIZE+1,
2657 COL_GRID);
2658
2659 draw_update(dr, 0, 0, ww, wh);
2660 ds->started = TRUE;
2661 }
2662
2663 if (flashtime) {
2664 if (flash_type == 1)
2665 flash = (int)(flashtime * FOUR / flash_length);
2666 else
2667 flash = 1 + (int)(flashtime * THREE / flash_length);
2668 } else
2669 flash = -1;
2670
2671 /*
2672 * Set up the `todraw' array.
2673 */
2674 for (y = 0; y < h; y++)
2675 for (x = 0; x < w; x++) {
2676 int tv = state->colouring[state->map->map[TE * wh + y*w+x]];
2677 int bv = state->colouring[state->map->map[BE * wh + y*w+x]];
2678 int v;
2679
2680 if (tv < 0)
2681 tv = FOUR;
2682 if (bv < 0)
2683 bv = FOUR;
2684
2685 if (flash >= 0) {
2686 if (flash_type == 1) {
2687 if (tv == flash)
2688 tv = FOUR;
2689 if (bv == flash)
2690 bv = FOUR;
2691 } else if (flash_type == 2) {
2692 if (flash % 2)
2693 tv = bv = FOUR;
2694 } else {
2695 if (tv != FOUR)
2696 tv = (tv + flash) % FOUR;
2697 if (bv != FOUR)
2698 bv = (bv + flash) % FOUR;
2699 }
2700 }
2701
2702 v = tv * FIVE + bv;
2703
2704 /*
2705 * Add pencil marks.
2706 */
2707 for (i = 0; i < FOUR; i++) {
2708 if (state->colouring[state->map->map[TE * wh + y*w+x]] < 0 &&
2709 (state->pencil[state->map->map[TE * wh + y*w+x]] & (1<<i)))
2710 v |= PENCIL_T_BASE << i;
2711 if (state->colouring[state->map->map[BE * wh + y*w+x]] < 0 &&
2712 (state->pencil[state->map->map[BE * wh + y*w+x]] & (1<<i)))
2713 v |= PENCIL_B_BASE << i;
2714 }
2715
2716 if (ui->show_numbers)
2717 v |= SHOW_NUMBERS;
2718
2719 ds->todraw[y*w+x] = v;
2720 }
2721
2722 /*
2723 * Add error markers to the `todraw' array.
2724 */
2725 for (i = 0; i < state->map->ngraph; i++) {
2726 int v1 = state->map->graph[i] / n;
2727 int v2 = state->map->graph[i] % n;
2728 int xo, yo;
2729
2730 if (state->colouring[v1] < 0 || state->colouring[v2] < 0)
2731 continue;
2732 if (state->colouring[v1] != state->colouring[v2])
2733 continue;
2734
2735 x = state->map->edgex[i];
2736 y = state->map->edgey[i];
2737
2738 xo = x % 2; x /= 2;
2739 yo = y % 2; y /= 2;
2740
2741 ds->todraw[y*w+x] |= ERR_BASE << (yo*3+xo);
2742 if (xo == 0) {
2743 assert(x > 0);
2744 ds->todraw[y*w+(x-1)] |= ERR_BASE << (yo*3+2);
2745 }
2746 if (yo == 0) {
2747 assert(y > 0);
2748 ds->todraw[(y-1)*w+x] |= ERR_BASE << (2*3+xo);
2749 }
2750 if (xo == 0 && yo == 0) {
2751 assert(x > 0 && y > 0);
2752 ds->todraw[(y-1)*w+(x-1)] |= ERR_BASE << (2*3+2);
2753 }
2754 }
2755
2756 /*
2757 * Now actually draw everything.
2758 */
2759 for (y = 0; y < h; y++)
2760 for (x = 0; x < w; x++) {
2761 int v = ds->todraw[y*w+x];
2762 if (ds->drawn[y*w+x] != v) {
2763 draw_square(dr, ds, &state->p, state->map, x, y, v);
2764 ds->drawn[y*w+x] = v;
2765 }
2766 }
2767
2768 /*
2769 * Draw the dragged colour blob if any.
2770 */
2771 if (ui->drag_colour > -2) {
2772 ds->dragx = ui->dragx - TILESIZE/2 - 2;
2773 ds->dragy = ui->dragy - TILESIZE/2 - 2;
2774 blitter_save(dr, ds->bl, ds->dragx, ds->dragy);
2775 draw_circle(dr, ui->dragx, ui->dragy, TILESIZE/2,
2776 (ui->drag_colour < 0 ? COL_BACKGROUND :
2777 COL_0 + ui->drag_colour), COL_GRID);
2778 draw_update(dr, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
2779 ds->drag_visible = TRUE;
2780 }
2781 }
2782
2783 static float game_anim_length(game_state *oldstate, game_state *newstate,
2784 int dir, game_ui *ui)
2785 {
2786 return 0.0F;
2787 }
2788
2789 static float game_flash_length(game_state *oldstate, game_state *newstate,
2790 int dir, game_ui *ui)
2791 {
2792 if (!oldstate->completed && newstate->completed &&
2793 !oldstate->cheated && !newstate->cheated) {
2794 if (flash_type < 0) {
2795 char *env = getenv("MAP_ALTERNATIVE_FLASH");
2796 if (env)
2797 flash_type = atoi(env);
2798 else
2799 flash_type = 0;
2800 flash_length = (flash_type == 1 ? 0.50 : 0.30);
2801 }
2802 return flash_length;
2803 } else
2804 return 0.0F;
2805 }
2806
2807 static int game_wants_statusbar(void)
2808 {
2809 return FALSE;
2810 }
2811
2812 static int game_timing_state(game_state *state, game_ui *ui)
2813 {
2814 return TRUE;
2815 }
2816
2817 static void game_print_size(game_params *params, float *x, float *y)
2818 {
2819 int pw, ph;
2820
2821 /*
2822 * I'll use 4mm squares by default, I think. Simplest way to
2823 * compute this size is to compute the pixel puzzle size at a
2824 * given tile size and then scale.
2825 */
2826 game_compute_size(params, 400, &pw, &ph);
2827 *x = pw / 100.0;
2828 *y = ph / 100.0;
2829 }
2830
2831 static void game_print(drawing *dr, game_state *state, int tilesize)
2832 {
2833 int w = state->p.w, h = state->p.h, wh = w*h, n = state->p.n;
2834 int ink, c[FOUR], i;
2835 int x, y, r;
2836 int *coords, ncoords, coordsize;
2837
2838 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2839 struct { int tilesize; } ads, *ds = &ads;
2840 ads.tilesize = tilesize;
2841
2842 ink = print_mono_colour(dr, 0);
2843 for (i = 0; i < FOUR; i++)
2844 c[i] = print_rgb_colour(dr, map_hatching[i], map_colours[i][0],
2845 map_colours[i][1], map_colours[i][2]);
2846
2847 coordsize = 0;
2848 coords = NULL;
2849
2850 print_line_width(dr, TILESIZE / 16);
2851
2852 /*
2853 * Draw a single filled polygon around each region.
2854 */
2855 for (r = 0; r < n; r++) {
2856 int octants[8], lastdir, d1, d2, ox, oy;
2857
2858 /*
2859 * Start by finding a point on the region boundary. Any
2860 * point will do. To do this, we'll search for a square
2861 * containing the region and then decide which corner of it
2862 * to use.
2863 */
2864 x = w;
2865 for (y = 0; y < h; y++) {
2866 for (x = 0; x < w; x++) {
2867 if (state->map->map[wh*0+y*w+x] == r ||
2868 state->map->map[wh*1+y*w+x] == r ||
2869 state->map->map[wh*2+y*w+x] == r ||
2870 state->map->map[wh*3+y*w+x] == r)
2871 break;
2872 }
2873 if (x < w)
2874 break;
2875 }
2876 assert(y < h && x < w); /* we must have found one somewhere */
2877 /*
2878 * This is the first square in lexicographic order which
2879 * contains part of this region. Therefore, one of the top
2880 * two corners of the square must be what we're after. The
2881 * only case in which it isn't the top left one is if the
2882 * square is diagonally divided and the region is in the
2883 * bottom right half.
2884 */
2885 if (state->map->map[wh*TE+y*w+x] != r &&
2886 state->map->map[wh*LE+y*w+x] != r)
2887 x++; /* could just as well have done y++ */
2888
2889 /*
2890 * Now we have a point on the region boundary. Trace around
2891 * the region until we come back to this point,
2892 * accumulating coordinates for a polygon draw operation as
2893 * we go.
2894 */
2895 lastdir = -1;
2896 ox = x;
2897 oy = y;
2898 ncoords = 0;
2899
2900 do {
2901 /*
2902 * There are eight possible directions we could head in
2903 * from here. We identify them by octant numbers, and
2904 * we also use octant numbers to identify the spaces
2905 * between them:
2906 *
2907 * 6 7 0
2908 * \ 7|0 /
2909 * \ | /
2910 * 6 \|/ 1
2911 * 5-----+-----1
2912 * 5 /|\ 2
2913 * / | \
2914 * / 4|3 \
2915 * 4 3 2
2916 */
2917 octants[0] = x<w && y>0 ? state->map->map[wh*LE+(y-1)*w+x] : -1;
2918 octants[1] = x<w && y>0 ? state->map->map[wh*BE+(y-1)*w+x] : -1;
2919 octants[2] = x<w && y<h ? state->map->map[wh*TE+y*w+x] : -1;
2920 octants[3] = x<w && y<h ? state->map->map[wh*LE+y*w+x] : -1;
2921 octants[4] = x>0 && y<h ? state->map->map[wh*RE+y*w+(x-1)] : -1;
2922 octants[5] = x>0 && y<h ? state->map->map[wh*TE+y*w+(x-1)] : -1;
2923 octants[6] = x>0 && y>0 ? state->map->map[wh*BE+(y-1)*w+(x-1)] :-1;
2924 octants[7] = x>0 && y>0 ? state->map->map[wh*RE+(y-1)*w+(x-1)] :-1;
2925
2926 d1 = d2 = -1;
2927 for (i = 0; i < 8; i++)
2928 if ((octants[i] == r) ^ (octants[(i+1)%8] == r)) {
2929 assert(d2 == -1);
2930 if (d1 == -1)
2931 d1 = i;
2932 else
2933 d2 = i;
2934 }
2935
2936 assert(d1 != -1 && d2 != -1);
2937 if (d1 == lastdir)
2938 d1 = d2;
2939
2940 /*
2941 * Now we're heading in direction d1. Save the current
2942 * coordinates.
2943 */
2944 if (ncoords + 2 > coordsize) {
2945 coordsize += 128;
2946 coords = sresize(coords, coordsize, int);
2947 }
2948 coords[ncoords++] = COORD(x);
2949 coords[ncoords++] = COORD(y);
2950
2951 /*
2952 * Compute the new coordinates.
2953 */
2954 x += (d1 % 4 == 3 ? 0 : d1 < 4 ? +1 : -1);
2955 y += (d1 % 4 == 1 ? 0 : d1 > 1 && d1 < 5 ? +1 : -1);
2956 assert(x >= 0 && x <= w && y >= 0 && y <= h);
2957
2958 lastdir = d1 ^ 4;
2959 } while (x != ox || y != oy);
2960
2961 draw_polygon(dr, coords, ncoords/2,
2962 state->colouring[r] >= 0 ?
2963 c[state->colouring[r]] : -1, ink);
2964 }
2965 sfree(coords);
2966 }
2967
2968 #ifdef COMBINED
2969 #define thegame map
2970 #endif
2971
2972 const struct game thegame = {
2973 "Map", "games.map",
2974 default_params,
2975 game_fetch_preset,
2976 decode_params,
2977 encode_params,
2978 free_params,
2979 dup_params,
2980 TRUE, game_configure, custom_params,
2981 validate_params,
2982 new_game_desc,
2983 validate_desc,
2984 new_game,
2985 dup_game,
2986 free_game,
2987 TRUE, solve_game,
2988 FALSE, game_text_format,
2989 new_ui,
2990 free_ui,
2991 encode_ui,
2992 decode_ui,
2993 game_changed_state,
2994 interpret_move,
2995 execute_move,
2996 20, game_compute_size, game_set_size,
2997 game_colours,
2998 game_new_drawstate,
2999 game_free_drawstate,
3000 game_redraw,
3001 game_anim_length,
3002 game_flash_length,
3003 TRUE, TRUE, game_print_size, game_print,
3004 game_wants_statusbar,
3005 FALSE, game_timing_state,
3006 0, /* mouse_priorities */
3007 };
3008
3009 #ifdef STANDALONE_SOLVER
3010
3011 #include <stdarg.h>
3012
3013 void frontend_default_colour(frontend *fe, float *output) {}
3014 void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
3015 int align, int colour, char *text) {}
3016 void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
3017 void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
3018 void draw_polygon(drawing *dr, int *coords, int npoints,
3019 int fillcolour, int outlinecolour) {}
3020 void draw_circle(drawing *dr, int cx, int cy, int radius,
3021 int fillcolour, int outlinecolour) {}
3022 void clip(drawing *dr, int x, int y, int w, int h) {}
3023 void unclip(drawing *dr) {}
3024 void start_draw(drawing *dr) {}
3025 void draw_update(drawing *dr, int x, int y, int w, int h) {}
3026 void end_draw(drawing *dr) {}
3027 blitter *blitter_new(drawing *dr, int w, int h) {return NULL;}
3028 void blitter_free(drawing *dr, blitter *bl) {}
3029 void blitter_save(drawing *dr, blitter *bl, int x, int y) {}
3030 void blitter_load(drawing *dr, blitter *bl, int x, int y) {}
3031 int print_mono_colour(drawing *dr, int grey) { return 0; }
3032 int print_rgb_colour(drawing *dr, int hatch, float r, float g, float b)
3033 { return 0; }
3034 void print_line_width(drawing *dr, int width) {}
3035
3036 void fatal(char *fmt, ...)
3037 {
3038 va_list ap;
3039
3040 fprintf(stderr, "fatal error: ");
3041
3042 va_start(ap, fmt);
3043 vfprintf(stderr, fmt, ap);
3044 va_end(ap);
3045
3046 fprintf(stderr, "\n");
3047 exit(1);
3048 }
3049
3050 int main(int argc, char **argv)
3051 {
3052 game_params *p;
3053 game_state *s;
3054 char *id = NULL, *desc, *err;
3055 int grade = FALSE;
3056 int ret, diff, really_verbose = FALSE;
3057 struct solver_scratch *sc;
3058 int i;
3059
3060 while (--argc > 0) {
3061 char *p = *++argv;
3062 if (!strcmp(p, "-v")) {
3063 really_verbose = TRUE;
3064 } else if (!strcmp(p, "-g")) {
3065 grade = TRUE;
3066 } else if (*p == '-') {
3067 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
3068 return 1;
3069 } else {
3070 id = p;
3071 }
3072 }
3073
3074 if (!id) {
3075 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
3076 return 1;
3077 }
3078
3079 desc = strchr(id, ':');
3080 if (!desc) {
3081 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
3082 return 1;
3083 }
3084 *desc++ = '\0';
3085
3086 p = default_params();
3087 decode_params(p, id);
3088 err = validate_desc(p, desc);
3089 if (err) {
3090 fprintf(stderr, "%s: %s\n", argv[0], err);
3091 return 1;
3092 }
3093 s = new_game(NULL, p, desc);
3094
3095 sc = new_scratch(s->map->graph, s->map->n, s->map->ngraph);
3096
3097 /*
3098 * When solving an Easy puzzle, we don't want to bother the
3099 * user with Hard-level deductions. For this reason, we grade
3100 * the puzzle internally before doing anything else.
3101 */
3102 ret = -1; /* placate optimiser */
3103 for (diff = 0; diff < DIFFCOUNT; diff++) {
3104 for (i = 0; i < s->map->n; i++)
3105 if (!s->map->immutable[i])
3106 s->colouring[i] = -1;
3107 ret = map_solver(sc, s->map->graph, s->map->n, s->map->ngraph,
3108 s->colouring, diff);
3109 if (ret < 2)
3110 break;
3111 }
3112
3113 if (diff == DIFFCOUNT) {
3114 if (grade)
3115 printf("Difficulty rating: harder than Hard, or ambiguous\n");
3116 else
3117 printf("Unable to find a unique solution\n");
3118 } else {
3119 if (grade) {
3120 if (ret == 0)
3121 printf("Difficulty rating: impossible (no solution exists)\n");
3122 else if (ret == 1)
3123 printf("Difficulty rating: %s\n", map_diffnames[diff]);
3124 } else {
3125 verbose = really_verbose;
3126 for (i = 0; i < s->map->n; i++)
3127 if (!s->map->immutable[i])
3128 s->colouring[i] = -1;
3129 ret = map_solver(sc, s->map->graph, s->map->n, s->map->ngraph,
3130 s->colouring, diff);
3131 if (ret == 0)
3132 printf("Puzzle is inconsistent\n");
3133 else {
3134 int col = 0;
3135
3136 for (i = 0; i < s->map->n; i++) {
3137 printf("%5d <- %c%c", i, colnames[s->colouring[i]],
3138 (col < 6 && i+1 < s->map->n ? ' ' : '\n'));
3139 if (++col == 7)
3140 col = 0;
3141 }
3142 }
3143 }
3144 }
3145
3146 return 0;
3147 }
3148
3149 #endif