Move most of face_text_pos() into grid.c, leaving in loopy.c only the
[sgt/puzzles] / magnets.c
1 /*
2 * magnets.c: implementation of janko.at 'magnets puzzle' game.
3 *
4 * http://64.233.179.104/translate_c?hl=en&u=http://www.janko.at/Raetsel/Magnete/Beispiel.htm
5 *
6 * Puzzle definition is just the size, and then the list of + (across then
7 * down) and - (across then down) present, then domino edges.
8 *
9 * An example:
10 *
11 * + 2 0 1
12 * +-----+
13 * 1|+ -| |1
14 * |-+-+ |
15 * 0|-|#| |1
16 * | +-+-|
17 * 2|+|- +|1
18 * +-----+
19 * 1 2 0 -
20 *
21 * 3x3:201,102,120,111,LRTT*BBLR
22 *
23 * 'Zotmeister' examples:
24 * 5x5:.2..1,3..1.,.2..2,2..2.,LRLRTTLRTBBT*BTTBLRBBLRLR
25 * 9x9:3.51...33,.2..23.13,..33.33.2,12...5.3.,**TLRTLR*,*TBLRBTLR,TBLRLRBTT,BLRTLRTBB,LRTB*TBLR,LRBLRBLRT,TTTLRLRTB,BBBTLRTB*,*LRBLRB**
26 *
27 * Janko 6x6 with solution:
28 * 6x6:322223,323132,232223,232223,LRTLRTTTBLRBBBTTLRLRBBLRTTLRTTBBLRBB
29 *
30 * janko 8x8:
31 * 8x8:34131323,23131334,43122323,21332243,LRTLRLRT,LRBTTTTB,LRTBBBBT,TTBTLRTB,BBTBTTBT,TTBTBBTB,BBTBLRBT,LRBLRLRB
32 */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <assert.h>
38 #include <ctype.h>
39 #include <math.h>
40
41 #include "puzzles.h"
42
43 #ifdef STANDALONE_SOLVER
44 int verbose = 0;
45 #endif
46
47 enum {
48 COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT,
49 COL_TEXT, COL_ERROR, COL_CURSOR,
50 COL_NEUTRAL, COL_NEGATIVE, COL_POSITIVE, COL_NOT,
51 NCOLOURS
52 };
53
54 /* Cell states. */
55 enum { EMPTY = 0, NEUTRAL = EMPTY, POSITIVE = 1, NEGATIVE = 2 };
56
57 #if defined DEBUGGING || defined STANDALONE_SOLVER
58 static const char *cellnames[3] = { "neutral", "positive", "negative" };
59 #define NAME(w) ( ((w) < 0 || (w) > 2) ? "(out of range)" : cellnames[(w)] )
60 #endif
61
62 #define GRID2CHAR(g) ( ((g) >= 0 && (g) <= 2) ? ".+-"[(g)] : '?' )
63 #define CHAR2GRID(c) ( (c) == '+' ? POSITIVE : (c) == '-' ? NEGATIVE : NEUTRAL )
64
65 #define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h)
66
67 #define OPPOSITE(x) ( ((x)*2) % 3 ) /* 0 --> 0,
68 1 --> 2,
69 2 --> 4 --> 1 */
70
71 #define FLASH_TIME 0.7F
72
73 /* Macro ickery copied from slant.c */
74 #define DIFFLIST(A) \
75 A(EASY,Easy,e) \
76 A(TRICKY,Tricky,t)
77 #define ENUM(upper,title,lower) DIFF_ ## upper,
78 #define TITLE(upper,title,lower) #title,
79 #define ENCODE(upper,title,lower) #lower
80 #define CONFIG(upper,title,lower) ":" #title
81 enum { DIFFLIST(ENUM) DIFFCOUNT };
82 static char const *const magnets_diffnames[] = { DIFFLIST(TITLE) "(count)" };
83 static char const magnets_diffchars[] = DIFFLIST(ENCODE);
84 #define DIFFCONFIG DIFFLIST(CONFIG)
85
86
87 /* --------------------------------------------------------------- */
88 /* Game parameter functions. */
89
90 struct game_params {
91 int w, h, diff, stripclues;
92 };
93
94 #define DEFAULT_PRESET 2
95
96 static const struct game_params magnets_presets[] = {
97 {6, 5, DIFF_EASY, 0},
98 {6, 5, DIFF_TRICKY, 0},
99 {6, 5, DIFF_TRICKY, 1},
100 {8, 7, DIFF_EASY, 0},
101 {8, 7, DIFF_TRICKY, 0},
102 {8, 7, DIFF_TRICKY, 1},
103 {10, 9, DIFF_TRICKY, 0},
104 {10, 9, DIFF_TRICKY, 1}
105 };
106
107 static game_params *default_params(void)
108 {
109 game_params *ret = snew(game_params);
110
111 *ret = magnets_presets[DEFAULT_PRESET];
112
113 return ret;
114 }
115
116 static int game_fetch_preset(int i, char **name, game_params **params)
117 {
118 game_params *ret;
119 char buf[64];
120
121 if (i < 0 || i >= lenof(magnets_presets)) return FALSE;
122
123 ret = default_params();
124 *ret = magnets_presets[i]; /* struct copy */
125 *params = ret;
126
127 sprintf(buf, "%dx%d %s%s",
128 magnets_presets[i].w, magnets_presets[i].h,
129 magnets_diffnames[magnets_presets[i].diff],
130 magnets_presets[i].stripclues ? ", strip clues" : "");
131 *name = dupstr(buf);
132
133 return TRUE;
134 }
135
136 static void free_params(game_params *params)
137 {
138 sfree(params);
139 }
140
141 static game_params *dup_params(game_params *params)
142 {
143 game_params *ret = snew(game_params);
144 *ret = *params; /* structure copy */
145 return ret;
146 }
147
148 static void decode_params(game_params *ret, char const *string)
149 {
150 ret->w = ret->h = atoi(string);
151 while (*string && isdigit((unsigned char) *string)) ++string;
152 if (*string == 'x') {
153 string++;
154 ret->h = atoi(string);
155 while (*string && isdigit((unsigned char)*string)) string++;
156 }
157
158 ret->diff = DIFF_EASY;
159 if (*string == 'd') {
160 int i;
161 string++;
162 for (i = 0; i < DIFFCOUNT; i++)
163 if (*string == magnets_diffchars[i])
164 ret->diff = i;
165 if (*string) string++;
166 }
167
168 ret->stripclues = 0;
169 if (*string == 'S') {
170 string++;
171 ret->stripclues = 1;
172 }
173 }
174
175 static char *encode_params(game_params *params, int full)
176 {
177 char buf[256];
178 sprintf(buf, "%dx%d", params->w, params->h);
179 if (full)
180 sprintf(buf + strlen(buf), "d%c%s",
181 magnets_diffchars[params->diff],
182 params->stripclues ? "S" : "");
183 return dupstr(buf);
184 }
185
186 static config_item *game_configure(game_params *params)
187 {
188 config_item *ret;
189 char buf[64];
190
191 ret = snewn(5, config_item);
192
193 ret[0].name = "Width";
194 ret[0].type = C_STRING;
195 sprintf(buf, "%d", params->w);
196 ret[0].sval = dupstr(buf);
197 ret[0].ival = 0;
198
199 ret[1].name = "Height";
200 ret[1].type = C_STRING;
201 sprintf(buf, "%d", params->h);
202 ret[1].sval = dupstr(buf);
203 ret[1].ival = 0;
204
205 ret[2].name = "Difficulty";
206 ret[2].type = C_CHOICES;
207 ret[2].sval = DIFFCONFIG;
208 ret[2].ival = params->diff;
209
210 ret[3].name = "Strip clues";
211 ret[3].type = C_BOOLEAN;
212 ret[3].sval = NULL;
213 ret[3].ival = params->stripclues;
214
215 ret[4].name = NULL;
216 ret[4].type = C_END;
217 ret[4].sval = NULL;
218 ret[4].ival = 0;
219
220 return ret;
221 }
222
223 static game_params *custom_params(config_item *cfg)
224 {
225 game_params *ret = snew(game_params);
226
227 ret->w = atoi(cfg[0].sval);
228 ret->h = atoi(cfg[1].sval);
229 ret->diff = cfg[2].ival;
230 ret->stripclues = cfg[3].ival;
231
232 return ret;
233 }
234
235 static char *validate_params(game_params *params, int full)
236 {
237 if (params->w < 2) return "Width must be at least one";
238 if (params->h < 2) return "Height must be at least one";
239 if (params->diff < 0 || params->diff >= DIFFCOUNT)
240 return "Unknown difficulty level";
241
242 return NULL;
243 }
244
245 /* --------------------------------------------------------------- */
246 /* Game state allocation, deallocation. */
247
248 struct game_common {
249 int *dominoes; /* size w*h, dominoes[i] points to other end of domino. */
250 int *rowcount; /* size 3*h, array of [plus, minus, neutral] counts */
251 int *colcount; /* size 3*w, ditto */
252 int refcount;
253 };
254
255 #define GS_ERROR 1
256 #define GS_SET 2
257 #define GS_NOTPOSITIVE 4
258 #define GS_NOTNEGATIVE 8
259 #define GS_NOTNEUTRAL 16
260 #define GS_MARK 32
261
262 #define GS_NOTMASK (GS_NOTPOSITIVE|GS_NOTNEGATIVE|GS_NOTNEUTRAL)
263
264 #define NOTFLAG(w) ( (w) == NEUTRAL ? GS_NOTNEUTRAL : \
265 (w) == POSITIVE ? GS_NOTPOSITIVE : \
266 (w) == NEGATIVE ? GS_NOTNEGATIVE : \
267 0 )
268
269 #define POSSIBLE(f,w) (!(state->flags[(f)] & NOTFLAG(w)))
270
271 struct game_state {
272 int w, h, wh;
273 int *grid; /* size w*h, for cell state (pos/neg) */
274 unsigned int *flags; /* size w*h */
275 int solved, completed, numbered;
276
277 struct game_common *common; /* domino layout never changes. */
278 };
279
280 static void clear_state(game_state *ret)
281 {
282 int i;
283
284 ret->solved = ret->completed = ret->numbered = 0;
285
286 memset(ret->common->rowcount, 0, ret->h*3*sizeof(int));
287 memset(ret->common->colcount, 0, ret->w*3*sizeof(int));
288
289 for (i = 0; i < ret->wh; i++) {
290 ret->grid[i] = EMPTY;
291 ret->flags[i] = 0;
292 ret->common->dominoes[i] = i;
293 }
294 }
295
296 static game_state *new_state(int w, int h)
297 {
298 game_state *ret = snew(game_state);
299
300 memset(ret, 0, sizeof(game_state));
301 ret->w = w;
302 ret->h = h;
303 ret->wh = w*h;
304
305 ret->grid = snewn(ret->wh, int);
306 ret->flags = snewn(ret->wh, unsigned int);
307
308 ret->common = snew(struct game_common);
309 ret->common->refcount = 1;
310
311 ret->common->dominoes = snewn(ret->wh, int);
312 ret->common->rowcount = snewn(ret->h*3, int);
313 ret->common->colcount = snewn(ret->w*3, int);
314
315 clear_state(ret);
316
317 return ret;
318 }
319
320 static game_state *dup_game(game_state *src)
321 {
322 game_state *dest = snew(game_state);
323
324 dest->w = src->w;
325 dest->h = src->h;
326 dest->wh = src->wh;
327
328 dest->solved = src->solved;
329 dest->completed = src->completed;
330 dest->numbered = src->numbered;
331
332 dest->common = src->common;
333 dest->common->refcount++;
334
335 dest->grid = snewn(dest->wh, int);
336 memcpy(dest->grid, src->grid, dest->wh*sizeof(int));
337
338 dest->flags = snewn(dest->wh, unsigned int);
339 memcpy(dest->flags, src->flags, dest->wh*sizeof(unsigned int));
340
341 return dest;
342 }
343
344 static void free_game(game_state *state)
345 {
346 state->common->refcount--;
347 if (state->common->refcount == 0) {
348 sfree(state->common->dominoes);
349 sfree(state->common->rowcount);
350 sfree(state->common->colcount);
351 sfree(state->common);
352 }
353 sfree(state->flags);
354 sfree(state->grid);
355 sfree(state);
356 }
357
358 /* --------------------------------------------------------------- */
359 /* Game generation and reading. */
360
361 /* For a game of size w*h the game description is:
362 * w-sized string of column + numbers (L-R), or '.' for none
363 * semicolon
364 * h-sized string of row + numbers (T-B), or '.'
365 * semicolon
366 * w-sized string of column - numbers (L-R), or '.'
367 * semicolon
368 * h-sized string of row - numbers (T-B), or '.'
369 * semicolon
370 * w*h-sized string of 'L', 'R', 'U', 'D' for domino associations,
371 * or '*' for a black singleton square.
372 *
373 * for a total length of 2w + 2h + wh + 4.
374 */
375
376 static char n2c(int num) { /* XXX cloned from singles.c */
377 if (num == -1)
378 return '.';
379 if (num < 10)
380 return '0' + num;
381 else if (num < 10+26)
382 return 'a' + num - 10;
383 else
384 return 'A' + num - 10 - 26;
385 return '?';
386 }
387
388 static int c2n(char c) { /* XXX cloned from singles.c */
389 if (isdigit((unsigned char)c))
390 return (int)(c - '0');
391 else if (c >= 'a' && c <= 'z')
392 return (int)(c - 'a' + 10);
393 else if (c >= 'A' && c <= 'Z')
394 return (int)(c - 'A' + 10 + 26);
395 return -1;
396 }
397
398 static char *readrow(char *desc, int n, int *array, int off, const char **prob)
399 {
400 int i, num;
401 char c;
402
403 for (i = 0; i < n; i++) {
404 c = *desc++;
405 if (c == 0) goto badchar;
406 if (c == '.')
407 num = -1;
408 else {
409 num = c2n(c);
410 if (num < 0) goto badchar;
411 }
412 array[i*3+off] = num;
413 }
414 c = *desc++;
415 if (c != ',') goto badchar;
416 return desc;
417
418 badchar:
419 *prob = (c == 0) ?
420 "Game description too short" :
421 "Game description contained unexpected characters";
422 return NULL;
423 }
424
425 static game_state *new_game_int(game_params *params, char *desc, const char **prob)
426 {
427 game_state *state = new_state(params->w, params->h);
428 int x, y, idx, *count;
429 char c;
430
431 *prob = NULL;
432
433 /* top row, left-to-right */
434 desc = readrow(desc, state->w, state->common->colcount, POSITIVE, prob);
435 if (*prob) goto done;
436
437 /* left column, top-to-bottom */
438 desc = readrow(desc, state->h, state->common->rowcount, POSITIVE, prob);
439 if (*prob) goto done;
440
441 /* bottom row, left-to-right */
442 desc = readrow(desc, state->w, state->common->colcount, NEGATIVE, prob);
443 if (*prob) goto done;
444
445 /* right column, top-to-bottom */
446 desc = readrow(desc, state->h, state->common->rowcount, NEGATIVE, prob);
447 if (*prob) goto done;
448
449 /* Add neutral counts (== size - pos - neg) to columns and rows.
450 * Any singleton cells will just be treated as permanently neutral. */
451 count = state->common->colcount;
452 for (x = 0; x < state->w; x++) {
453 if (count[x*3+POSITIVE] < 0 || count[x*3+NEGATIVE] < 0)
454 count[x*3+NEUTRAL] = -1;
455 else {
456 count[x*3+NEUTRAL] =
457 state->h - count[x*3+POSITIVE] - count[x*3+NEGATIVE];
458 if (count[x*3+NEUTRAL] < 0) {
459 *prob = "Column counts inconsistent";
460 goto done;
461 }
462 }
463 }
464 count = state->common->rowcount;
465 for (y = 0; y < state->h; y++) {
466 if (count[y*3+POSITIVE] < 0 || count[y*3+NEGATIVE] < 0)
467 count[y*3+NEUTRAL] = -1;
468 else {
469 count[y*3+NEUTRAL] =
470 state->w - count[y*3+POSITIVE] - count[y*3+NEGATIVE];
471 if (count[y*3+NEUTRAL] < 0) {
472 *prob = "Row counts inconsistent";
473 goto done;
474 }
475 }
476 }
477
478
479 for (y = 0; y < state->h; y++) {
480 for (x = 0; x < state->w; x++) {
481 idx = y*state->w + x;
482 nextchar:
483 c = *desc++;
484
485 if (c == 'L') /* this square is LHS of a domino */
486 state->common->dominoes[idx] = idx+1;
487 else if (c == 'R') /* ... RHS of a domino */
488 state->common->dominoes[idx] = idx-1;
489 else if (c == 'T') /* ... top of a domino */
490 state->common->dominoes[idx] = idx+state->w;
491 else if (c == 'B') /* ... bottom of a domino */
492 state->common->dominoes[idx] = idx-state->w;
493 else if (c == '*') /* singleton */
494 state->common->dominoes[idx] = idx;
495 else if (c == ',') /* spacer, ignore */
496 goto nextchar;
497 else goto badchar;
498 }
499 }
500
501 /* Check dominoes as input are sensibly consistent
502 * (i.e. each end points to the other) */
503 for (idx = 0; idx < state->wh; idx++) {
504 if (state->common->dominoes[idx] < 0 ||
505 state->common->dominoes[idx] > state->wh ||
506 state->common->dominoes[state->common->dominoes[idx]] != idx) {
507 *prob = "Domino descriptions inconsistent";
508 goto done;
509 }
510 if (state->common->dominoes[idx] == idx) {
511 state->grid[idx] = NEUTRAL;
512 state->flags[idx] |= GS_SET;
513 }
514 }
515 /* Success. */
516 state->numbered = 1;
517 goto done;
518
519 badchar:
520 *prob = (c == 0) ?
521 "Game description too short" :
522 "Game description contained unexpected characters";
523
524 done:
525 if (*prob) {
526 free_game(state);
527 return NULL;
528 }
529 return state;
530 }
531
532 static char *validate_desc(game_params *params, char *desc)
533 {
534 const char *prob;
535 game_state *st = new_game_int(params, desc, &prob);
536 if (!st) return (char*)prob;
537 free_game(st);
538 return NULL;
539 }
540
541 static game_state *new_game(midend *me, game_params *params, char *desc)
542 {
543 const char *prob;
544 game_state *st = new_game_int(params, desc, &prob);
545 assert(st);
546 return st;
547 }
548
549 static char *generate_desc(game_state *new)
550 {
551 int x, y, idx, other, w = new->w, h = new->h;
552 char *desc = snewn(new->wh + 2*(w + h) + 5, char), *p = desc;
553
554 for (x = 0; x < w; x++) *p++ = n2c(new->common->colcount[x*3+POSITIVE]);
555 *p++ = ',';
556 for (y = 0; y < h; y++) *p++ = n2c(new->common->rowcount[y*3+POSITIVE]);
557 *p++ = ',';
558
559 for (x = 0; x < w; x++) *p++ = n2c(new->common->colcount[x*3+NEGATIVE]);
560 *p++ = ',';
561 for (y = 0; y < h; y++) *p++ = n2c(new->common->rowcount[y*3+NEGATIVE]);
562 *p++ = ',';
563
564 for (y = 0; y < h; y++) {
565 for (x = 0; x < w; x++) {
566 idx = y*w + x;
567 other = new->common->dominoes[idx];
568
569 if (other == idx) *p++ = '*';
570 else if (other == idx+1) *p++ = 'L';
571 else if (other == idx-1) *p++ = 'R';
572 else if (other == idx+w) *p++ = 'T';
573 else if (other == idx-w) *p++ = 'B';
574 else assert(!"mad domino orientation");
575 }
576 }
577 *p = '\0';
578
579 return desc;
580 }
581
582 static void game_text_hborder(game_state *state, char **p_r)
583 {
584 char *p = *p_r;
585 int x;
586
587 *p++ = ' ';
588 *p++ = '+';
589 for (x = 0; x < state->w*2-1; x++) *p++ = '-';
590 *p++ = '+';
591 *p++ = '\n';
592
593 *p_r = p;
594 }
595
596 static int game_can_format_as_text_now(game_params *params)
597 {
598 return TRUE;
599 }
600
601 static char *game_text_format(game_state *state)
602 {
603 int len, x, y, i;
604 char *ret, *p;
605
606 len = ((state->w*2)+4) * ((state->h*2)+4) + 2;
607 p = ret = snewn(len, char);
608
609 /* top row: '+' then column totals for plus. */
610 *p++ = '+';
611 for (x = 0; x < state->w; x++) {
612 *p++ = ' ';
613 *p++ = n2c(state->common->colcount[x*3+POSITIVE]);
614 }
615 *p++ = '\n';
616
617 /* top border. */
618 game_text_hborder(state, &p);
619
620 for (y = 0; y < state->h; y++) {
621 *p++ = n2c(state->common->rowcount[y*3+POSITIVE]);
622 *p++ = '|';
623 for (x = 0; x < state->w; x++) {
624 i = y*state->w+x;
625 *p++ = state->common->dominoes[i] == i ? '#' :
626 state->grid[i] == POSITIVE ? '+' :
627 state->grid[i] == NEGATIVE ? '-' :
628 state->flags[i] & GS_SET ? '*' : ' ';
629 if (x < (state->w-1))
630 *p++ = state->common->dominoes[i] == i+1 ? ' ' : '|';
631 }
632 *p++ = '|';
633 *p++ = n2c(state->common->rowcount[y*3+NEGATIVE]);
634 *p++ = '\n';
635
636 if (y < (state->h-1)) {
637 *p++ = ' ';
638 *p++ = '|';
639 for (x = 0; x < state->w; x++) {
640 i = y*state->w+x;
641 *p++ = state->common->dominoes[i] == i+state->w ? ' ' : '-';
642 if (x < (state->w-1))
643 *p++ = '+';
644 }
645 *p++ = '|';
646 *p++ = '\n';
647 }
648 }
649
650 /* bottom border. */
651 game_text_hborder(state, &p);
652
653 /* bottom row: column totals for minus then '-'. */
654 *p++ = ' ';
655 for (x = 0; x < state->w; x++) {
656 *p++ = ' ';
657 *p++ = n2c(state->common->colcount[x*3+NEGATIVE]);
658 }
659 *p++ = ' ';
660 *p++ = '-';
661 *p++ = '\n';
662 *p++ = '\0';
663
664 return ret;
665 }
666
667 static void game_debug(game_state *state, const char *desc)
668 {
669 char *fmt = game_text_format(state);
670 debug(("%s:\n%s\n", desc, fmt));
671 sfree(fmt);
672 }
673
674 enum { ROW, COLUMN };
675
676 typedef struct rowcol {
677 int i, di, n, roworcol, num;
678 int *targets;
679 const char *name;
680 } rowcol;
681
682 static rowcol mkrowcol(game_state *state, int num, int roworcol)
683 {
684 rowcol rc;
685
686 rc.roworcol = roworcol;
687 rc.num = num;
688
689 if (roworcol == ROW) {
690 rc.i = num * state->w;
691 rc.di = 1;
692 rc.n = state->w;
693 rc.targets = &(state->common->rowcount[num*3]);
694 rc.name = "row";
695 } else if (roworcol == COLUMN) {
696 rc.i = num;
697 rc.di = state->w;
698 rc.n = state->h;
699 rc.targets = &(state->common->colcount[num*3]);
700 rc.name = "column";
701 } else {
702 assert(!"unknown roworcol");
703 }
704 return rc;
705 }
706
707 static int count_rowcol(game_state *state, int num, int roworcol, int which)
708 {
709 int i, count = 0;
710 rowcol rc = mkrowcol(state, num, roworcol);
711
712 for (i = 0; i < rc.n; i++, rc.i += rc.di) {
713 if (which < 0) {
714 if (state->grid[rc.i] == EMPTY &&
715 !(state->flags[rc.i] & GS_SET))
716 count++;
717 } else if (state->grid[rc.i] == which)
718 count++;
719 }
720 return count;
721 }
722
723 static void check_rowcol(game_state *state, int num, int roworcol, int which,
724 int *wrong, int *incomplete)
725 {
726 int count, target = mkrowcol(state, num, roworcol).targets[which];
727
728 if (target == -1) return; /* no number to check against. */
729
730 count = count_rowcol(state, num, roworcol, which);
731 if (count < target) *incomplete = 1;
732 if (count > target) *wrong = 1;
733 }
734
735 static int check_completion(game_state *state)
736 {
737 int i, j, x, y, idx, w = state->w, h = state->h;
738 int which = POSITIVE, wrong = 0, incomplete = 0;
739
740 /* Check row and column counts for magnets. */
741 for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) {
742 for (i = 0; i < w; i++)
743 check_rowcol(state, i, COLUMN, which, &wrong, &incomplete);
744
745 for (i = 0; i < h; i++)
746 check_rowcol(state, i, ROW, which, &wrong, &incomplete);
747 }
748 /* Check each domino has been filled, and that we don't have
749 * touching identical terminals. */
750 for (i = 0; i < state->wh; i++) state->flags[i] &= ~GS_ERROR;
751 for (x = 0; x < w; x++) {
752 for (y = 0; y < h; y++) {
753 idx = y*w + x;
754 if (state->common->dominoes[idx] == idx)
755 continue; /* no domino here */
756
757 if (!(state->flags[idx] & GS_SET))
758 incomplete = 1;
759
760 which = state->grid[idx];
761 if (which != NEUTRAL) {
762 #define CHECK(xx,yy) do { \
763 if (INGRID(state,xx,yy) && \
764 (state->grid[(yy)*w+(xx)] == which)) { \
765 wrong = 1; \
766 state->flags[(yy)*w+(xx)] |= GS_ERROR; \
767 state->flags[y*w+x] |= GS_ERROR; \
768 } \
769 } while(0)
770 CHECK(x,y-1);
771 CHECK(x,y+1);
772 CHECK(x-1,y);
773 CHECK(x+1,y);
774 #undef CHECK
775 }
776 }
777 }
778 return wrong ? -1 : incomplete ? 0 : 1;
779 }
780
781 static const int dx[4] = {-1, 1, 0, 0};
782 static const int dy[4] = {0, 0, -1, 1};
783
784 static void solve_clearflags(game_state *state)
785 {
786 int i;
787
788 for (i = 0; i < state->wh; i++) {
789 state->flags[i] &= ~GS_NOTMASK;
790 if (state->common->dominoes[i] != i)
791 state->flags[i] &= ~GS_SET;
792 }
793 }
794
795 /* Knowing a given cell cannot be a certain colour also tells us
796 * something about the other cell in that domino. */
797 static int solve_unflag(game_state *state, int i, int which,
798 const char *why, rowcol *rc)
799 {
800 int ii, ret = 0;
801 #if defined DEBUGGING || defined STANDALONE_SOLVER
802 int w = state->w;
803 #endif
804
805 assert(i >= 0 && i < state->wh);
806 ii = state->common->dominoes[i];
807 if (ii == i) return 0;
808
809 if (rc)
810 debug(("solve_unflag: (%d,%d) for %s %d", i%w, i/w, rc->name, rc->num));
811
812 if ((state->flags[i] & GS_SET) && (state->grid[i] == which)) {
813 debug(("solve_unflag: (%d,%d) already %s, cannot unflag (for %s).",
814 i%w, i/w, NAME(which), why));
815 return -1;
816 }
817 if ((state->flags[ii] & GS_SET) && (state->grid[ii] == OPPOSITE(which))) {
818 debug(("solve_unflag: (%d,%d) opposite already %s, cannot unflag (for %s).",
819 ii%w, ii/w, NAME(OPPOSITE(which)), why));
820 return -1;
821 }
822 if (POSSIBLE(i, which)) {
823 state->flags[i] |= NOTFLAG(which);
824 ret++;
825 debug(("solve_unflag: (%d,%d) CANNOT be %s (%s)",
826 i%w, i/w, NAME(which), why));
827 }
828 if (POSSIBLE(ii, OPPOSITE(which))) {
829 state->flags[ii] |= NOTFLAG(OPPOSITE(which));
830 ret++;
831 debug(("solve_unflag: (%d,%d) CANNOT be %s (%s, other half)",
832 ii%w, ii/w, NAME(OPPOSITE(which)), why));
833 }
834 #ifdef STANDALONE_SOLVER
835 if (verbose && ret) {
836 printf("(%d,%d)", i%w, i/w);
837 if (rc) printf(" in %s %d", rc->name, rc->num);
838 printf(" cannot be %s (%s); opposite (%d,%d) not %s.\n",
839 NAME(which), why, ii%w, ii/w, NAME(OPPOSITE(which)));
840 }
841 #endif
842 return ret;
843 }
844
845 static int solve_unflag_surrounds(game_state *state, int i, int which)
846 {
847 int x = i%state->w, y = i/state->w, xx, yy, j, ii;
848
849 assert(INGRID(state, x, y));
850
851 for (j = 0; j < 4; j++) {
852 xx = x+dx[j]; yy = y+dy[j];
853 if (!INGRID(state, xx, yy)) continue;
854
855 ii = yy*state->w+xx;
856 if (solve_unflag(state, ii, which, "adjacent to set cell", NULL) < 0)
857 return -1;
858 }
859 return 0;
860 }
861
862 /* Sets a cell to a particular colour, and also perform other
863 * housekeeping around that. */
864 static int solve_set(game_state *state, int i, int which,
865 const char *why, rowcol *rc)
866 {
867 int ii;
868 #if defined DEBUGGING || defined STANDALONE_SOLVER
869 int w = state->w;
870 #endif
871
872 ii = state->common->dominoes[i];
873
874 if (state->flags[i] & GS_SET) {
875 if (state->grid[i] == which) {
876 return 0; /* was already set and held, do nothing. */
877 } else {
878 debug(("solve_set: (%d,%d) is held and %s, cannot set to %s",
879 i%w, i/w, NAME(state->grid[i]), NAME(which)));
880 return -1;
881 }
882 }
883 if ((state->flags[ii] & GS_SET) && state->grid[ii] != OPPOSITE(which)) {
884 debug(("solve_set: (%d,%d) opposite is held and %s, cannot set to %s",
885 ii%w, ii/w, NAME(state->grid[ii]), NAME(OPPOSITE(which))));
886 return -1;
887 }
888 if (!POSSIBLE(i, which)) {
889 debug(("solve_set: (%d,%d) NOT %s, cannot set.", i%w, i/w, NAME(which)));
890 return -1;
891 }
892 if (!POSSIBLE(ii, OPPOSITE(which))) {
893 debug(("solve_set: (%d,%d) NOT %s, cannot set (%d,%d).",
894 ii%w, ii/w, NAME(OPPOSITE(which)), i%w, i/w));
895 return -1;
896 }
897
898 #ifdef STANDALONE_SOLVER
899 if (verbose) {
900 printf("(%d,%d)", i%w, i/w);
901 if (rc) printf(" in %s %d", rc->name, rc->num);
902 printf(" set to %s (%s), opposite (%d,%d) set to %s.\n",
903 NAME(which), why, ii%w, ii/w, NAME(OPPOSITE(which)));
904 }
905 #endif
906 if (rc)
907 debug(("solve_set: (%d,%d) for %s %d", i%w, i/w, rc->name, rc->num));
908 debug(("solve_set: (%d,%d) setting to %s (%s), surrounds first:",
909 i%w, i/w, NAME(which), why));
910
911 if (which != NEUTRAL) {
912 if (solve_unflag_surrounds(state, i, which) < 0)
913 return -1;
914 if (solve_unflag_surrounds(state, ii, OPPOSITE(which)) < 0)
915 return -1;
916 }
917
918 state->grid[i] = which;
919 state->grid[ii] = OPPOSITE(which);
920
921 state->flags[i] |= GS_SET;
922 state->flags[ii] |= GS_SET;
923
924 debug(("solve_set: (%d,%d) set to %s (%s)", i%w, i/w, NAME(which), why));
925
926 return 1;
927 }
928
929 /* counts should be int[4]. */
930 static void solve_counts(game_state *state, rowcol rc, int *counts, int *unset)
931 {
932 int i, j, which;
933
934 assert(counts);
935 for (i = 0; i < 4; i++) {
936 counts[i] = 0;
937 if (unset) unset[i] = 0;
938 }
939
940 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
941 if (state->flags[i] & GS_SET) {
942 assert(state->grid[i] < 3);
943 counts[state->grid[i]]++;
944 } else if (unset) {
945 for (which = 0; which <= 2; which++) {
946 if (POSSIBLE(i, which))
947 unset[which]++;
948 }
949 }
950 }
951 }
952
953 static int solve_checkfull(game_state *state, rowcol rc, int *counts)
954 {
955 int starti = rc.i, j, which, didsth = 0, target;
956 int unset[4];
957
958 assert(state->numbered); /* only useful (should only be called) if numbered. */
959
960 solve_counts(state, rc, counts, unset);
961
962 for (which = 0; which <= 2; which++) {
963 target = rc.targets[which];
964 if (target == -1) continue;
965
966 /*debug(("%s %d for %s: target %d, count %d, unset %d",
967 rc.name, rc.num, NAME(which),
968 target, counts[which], unset[which]));*/
969
970 if (target < counts[which]) {
971 debug(("%s %d has too many (%d) %s squares (target %d), impossible!",
972 rc.name, rc.num, counts[which], NAME(which), target));
973 return -1;
974 }
975 if (target == counts[which]) {
976 /* We have the correct no. of the colour in this row/column
977 * already; unflag all the rest. */
978 for (rc.i = starti, j = 0; j < rc.n; rc.i += rc.di, j++) {
979 if (state->flags[rc.i] & GS_SET) continue;
980 if (!POSSIBLE(rc.i, which)) continue;
981
982 if (solve_unflag(state, rc.i, which, "row/col full", &rc) < 0)
983 return -1;
984 didsth = 1;
985 }
986 } else if ((target - counts[which]) == unset[which]) {
987 /* We need all the remaining unset squares for this colour;
988 * set them all. */
989 for (rc.i = starti, j = 0; j < rc.n; rc.i += rc.di, j++) {
990 if (state->flags[rc.i] & GS_SET) continue;
991 if (!POSSIBLE(rc.i, which)) continue;
992
993 if (solve_set(state, rc.i, which, "row/col needs all unset", &rc) < 0)
994 return -1;
995 didsth = 1;
996 }
997 }
998 }
999 return didsth;
1000 }
1001
1002 static int solve_startflags(game_state *state)
1003 {
1004 int x, y, i;
1005
1006 for (x = 0; x < state->w; x++) {
1007 for (y = 0; y < state->h; y++) {
1008 i = y*state->w+x;
1009 if (state->common->dominoes[i] == i) continue;
1010 if (state->grid[i] != NEUTRAL ||
1011 state->flags[i] & GS_SET) {
1012 if (solve_set(state, i, state->grid[i], "initial set-and-hold", NULL) < 0)
1013 return -1;
1014 }
1015 }
1016 }
1017 return 0;
1018 }
1019
1020 typedef int (*rowcolfn)(game_state *state, rowcol rc, int *counts);
1021
1022 static int solve_rowcols(game_state *state, rowcolfn fn)
1023 {
1024 int x, y, didsth = 0, ret;
1025 rowcol rc;
1026 int counts[4];
1027
1028 for (x = 0; x < state->w; x++) {
1029 rc = mkrowcol(state, x, COLUMN);
1030 solve_counts(state, rc, counts, NULL);
1031
1032 ret = fn(state, rc, counts);
1033 if (ret < 0) return ret;
1034 didsth += ret;
1035 }
1036 for (y = 0; y < state->h; y++) {
1037 rc = mkrowcol(state, y, ROW);
1038 solve_counts(state, rc, counts, NULL);
1039
1040 ret = fn(state, rc, counts);
1041 if (ret < 0) return ret;
1042 didsth += ret;
1043 }
1044 return didsth;
1045 }
1046
1047 static int solve_force(game_state *state)
1048 {
1049 int x, y, i, which, didsth = 0;
1050 unsigned long f;
1051
1052 for (i = 0; i < state->wh; i++) {
1053 if (state->flags[i] & GS_SET) continue;
1054 if (state->common->dominoes[i] == i) continue;
1055
1056 f = state->flags[i] & GS_NOTMASK;
1057 which = -1;
1058 if (f == (GS_NOTPOSITIVE|GS_NOTNEGATIVE))
1059 which = NEUTRAL;
1060 if (f == (GS_NOTPOSITIVE|GS_NOTNEUTRAL))
1061 which = NEGATIVE;
1062 if (f == (GS_NOTNEGATIVE|GS_NOTNEUTRAL))
1063 which = POSITIVE;
1064 if (which != -1) {
1065 x = i%state->w; y = i/state->w;
1066 if (solve_set(state, i, which, "forced by flags", NULL) < 0)
1067 return -1;
1068 didsth = 1;
1069 }
1070 }
1071 return didsth;
1072 }
1073
1074 static int solve_neither(game_state *state)
1075 {
1076 int x, y, i, j, didsth = 0;
1077
1078 for (i = 0; i < state->wh; i++) {
1079 if (state->flags[i] & GS_SET) continue;
1080 j = state->common->dominoes[i];
1081 if (i == j) continue;
1082
1083 if (((state->flags[i] & GS_NOTPOSITIVE) &&
1084 (state->flags[j] & GS_NOTPOSITIVE)) ||
1085 ((state->flags[i] & GS_NOTNEGATIVE) &&
1086 (state->flags[j] & GS_NOTNEGATIVE))) {
1087 x = i%state->w; y = i/state->w;
1088 if (solve_set(state, i, NEUTRAL, "neither tile magnet", NULL) < 0)
1089 return -1;
1090 didsth = 1;
1091 }
1092 }
1093 return didsth;
1094 }
1095
1096 static int solve_advancedfull(game_state *state, rowcol rc, int *counts)
1097 {
1098 int i, j, nfound = 0, clearpos = 0, clearneg = 0, ret = 0;
1099
1100 /* For this row/col, look for a domino entirely within the row where
1101 * both ends can only be + or - (but isn't held).
1102 * The +/- counts can thus be decremented by 1 each, and the 'unset'
1103 * count by 2.
1104 *
1105 * Once that's done for all such dominoes (and they're marked), try
1106 * and made usual deductions about rest of the row based on new totals. */
1107
1108 if (rc.targets[POSITIVE] == -1 && rc.targets[NEGATIVE] == -1)
1109 return 0; /* don't have a target for either colour, nothing to do. */
1110 if ((rc.targets[POSITIVE] >= 0 && counts[POSITIVE] == rc.targets[POSITIVE]) &&
1111 (rc.targets[NEGATIVE] >= 0 && counts[NEGATIVE] == rc.targets[NEGATIVE]))
1112 return 0; /* both colours are full up already, nothing to do. */
1113
1114 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++)
1115 state->flags[i] &= ~GS_MARK;
1116
1117 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1118 if (state->flags[i] & GS_SET) continue;
1119
1120 /* We're looking for a domino in our row/col, thus if
1121 * dominoes[i] -> i+di we've found one. */
1122 if (state->common->dominoes[i] != i+rc.di) continue;
1123
1124 /* We need both squares of this domino to be either + or -
1125 * (i.e. both NOTNEUTRAL only). */
1126 if (((state->flags[i] & GS_NOTMASK) != GS_NOTNEUTRAL) ||
1127 ((state->flags[i+rc.di] & GS_NOTMASK) != GS_NOTNEUTRAL))
1128 continue;
1129
1130 debug(("Domino in %s %d at (%d,%d) must be polarised.",
1131 rc.name, rc.num, i%state->w, i/state->w));
1132 state->flags[i] |= GS_MARK;
1133 state->flags[i+rc.di] |= GS_MARK;
1134 nfound++;
1135 }
1136 if (nfound == 0) return 0;
1137
1138 /* nfound is #dominoes we matched, which will all be marked. */
1139 counts[POSITIVE] += nfound;
1140 counts[NEGATIVE] += nfound;
1141
1142 if (rc.targets[POSITIVE] >= 0 && counts[POSITIVE] == rc.targets[POSITIVE]) {
1143 debug(("%s %d has now filled POSITIVE:", rc.name, rc.num));
1144 clearpos = 1;
1145 }
1146 if (rc.targets[NEGATIVE] >= 0 && counts[NEGATIVE] == rc.targets[NEGATIVE]) {
1147 debug(("%s %d has now filled NEGATIVE:", rc.name, rc.num));
1148 clearneg = 1;
1149 }
1150
1151 if (!clearpos && !clearneg) return 0;
1152
1153 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1154 if (state->flags[i] & GS_SET) continue;
1155 if (state->flags[i] & GS_MARK) continue;
1156
1157 if (clearpos && !(state->flags[i] & GS_NOTPOSITIVE)) {
1158 if (solve_unflag(state, i, POSITIVE, "row/col full (+ve) [tricky]", &rc) < 0)
1159 return -1;
1160 ret++;
1161 }
1162 if (clearneg && !(state->flags[i] & GS_NOTNEGATIVE)) {
1163 if (solve_unflag(state, i, NEGATIVE, "row/col full (-ve) [tricky]", &rc) < 0)
1164 return -1;
1165 ret++;
1166 }
1167 }
1168
1169 return ret;
1170 }
1171
1172 /* If we only have one neutral still to place on a row/column then no
1173 dominoes entirely in that row/column can be neutral. */
1174 static int solve_nonneutral(game_state *state, rowcol rc, int *counts)
1175 {
1176 int i, j, ret = 0;
1177
1178 if (rc.targets[NEUTRAL] != counts[NEUTRAL]+1)
1179 return 0;
1180
1181 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1182 if (state->flags[i] & GS_SET) continue;
1183 if (state->common->dominoes[i] != i+rc.di) continue;
1184
1185 if (!(state->flags[i] & GS_NOTNEUTRAL)) {
1186 if (solve_unflag(state, i, NEUTRAL, "single neutral in row/col [tricky]", &rc) < 0)
1187 return -1;
1188 ret++;
1189 }
1190 }
1191 return ret;
1192 }
1193
1194 /* If we need to fill all unfilled cells with +-, and we need 1 more of
1195 * one than the other, and we have a single odd-numbered region of unfilled
1196 * cells, that odd-numbered region must start and end with the extra number. */
1197 static int solve_oddlength(game_state *state, rowcol rc, int *counts)
1198 {
1199 int i, j, ret = 0, extra, tpos, tneg;
1200 int start = -1, length = 0, inempty = 0, startodd = -1;
1201
1202 /* need zero neutral cells still to find... */
1203 if (rc.targets[NEUTRAL] != counts[NEUTRAL])
1204 return 0;
1205
1206 /* ...and #positive and #negative to differ by one. */
1207 tpos = rc.targets[POSITIVE] - counts[POSITIVE];
1208 tneg = rc.targets[NEGATIVE] - counts[NEGATIVE];
1209 if (tpos == tneg+1)
1210 extra = POSITIVE;
1211 else if (tneg == tpos+1)
1212 extra = NEGATIVE;
1213 else return 0;
1214
1215 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1216 if (state->flags[i] & GS_SET) {
1217 if (inempty) {
1218 if (length % 2) {
1219 /* we've just finished an odd-length section. */
1220 if (startodd != -1) goto twoodd;
1221 startodd = start;
1222 }
1223 inempty = 0;
1224 }
1225 } else {
1226 if (inempty)
1227 length++;
1228 else {
1229 start = i;
1230 length = 1;
1231 inempty = 1;
1232 }
1233 }
1234 }
1235 if (inempty && (length % 2)) {
1236 if (startodd != -1) goto twoodd;
1237 startodd = start;
1238 }
1239 if (startodd != -1)
1240 ret = solve_set(state, startodd, extra, "odd-length section start", &rc);
1241
1242 return ret;
1243
1244 twoodd:
1245 debug(("%s %d has >1 odd-length sections, starting at %d,%d and %d,%d.",
1246 rc.name, rc.num,
1247 startodd%state->w, startodd/state->w,
1248 start%state->w, start/state->w));
1249 return 0;
1250 }
1251
1252 /* Count the number of remaining empty dominoes in any row/col.
1253 * If that number is equal to the #remaining positive,
1254 * or to the #remaining negative, no empty cells can be neutral. */
1255 static int solve_countdominoes_neutral(game_state *state, rowcol rc, int *counts)
1256 {
1257 int i, j, ndom = 0, nonn = 0, ret = 0;
1258
1259 if ((rc.targets[POSITIVE] == -1) && (rc.targets[NEGATIVE] == -1))
1260 return 0; /* need at least one target to compare. */
1261
1262 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1263 if (state->flags[i] & GS_SET) continue;
1264 assert(state->grid[i] == EMPTY);
1265
1266 /* Skip solo cells, or second cell in domino. */
1267 if ((state->common->dominoes[i] == i) ||
1268 (state->common->dominoes[i] == i-rc.di))
1269 continue;
1270
1271 ndom++;
1272 }
1273
1274 if ((rc.targets[POSITIVE] != -1) &&
1275 (rc.targets[POSITIVE]-counts[POSITIVE] == ndom))
1276 nonn = 1;
1277 if ((rc.targets[NEGATIVE] != -1) &&
1278 (rc.targets[NEGATIVE]-counts[NEGATIVE] == ndom))
1279 nonn = 1;
1280
1281 if (!nonn) return 0;
1282
1283 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1284 if (state->flags[i] & GS_SET) continue;
1285
1286 if (!(state->flags[i] & GS_NOTNEUTRAL)) {
1287 if (solve_unflag(state, i, NEUTRAL, "all dominoes +/- [tricky]", &rc) < 0)
1288 return -1;
1289 ret++;
1290 }
1291 }
1292 return ret;
1293 }
1294
1295 static int solve_domino_count(game_state *state, rowcol rc, int i, int which)
1296 {
1297 int nposs = 0;
1298
1299 /* Skip solo cells or 2nd in domino. */
1300 if ((state->common->dominoes[i] == i) ||
1301 (state->common->dominoes[i] == i-rc.di))
1302 return 0;
1303
1304 if (state->flags[i] & GS_SET)
1305 return 0;
1306
1307 if (POSSIBLE(i, which))
1308 nposs++;
1309
1310 if (state->common->dominoes[i] == i+rc.di) {
1311 /* second cell of domino is on our row: test that too. */
1312 if (POSSIBLE(i+rc.di, which))
1313 nposs++;
1314 }
1315 return nposs;
1316 }
1317
1318 /* Count number of dominoes we could put each of + and - into. If it is equal
1319 * to the #left, any domino we can only put + or - in one cell of must have it. */
1320 static int solve_countdominoes_nonneutral(game_state *state, rowcol rc, int *counts)
1321 {
1322 int which, w, i, j, ndom = 0, didsth = 0, toset;
1323
1324 for (which = POSITIVE, w = 0; w < 2; which = OPPOSITE(which), w++) {
1325 if (rc.targets[which] == -1) continue;
1326
1327 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1328 if (solve_domino_count(state, rc, i, which) > 0)
1329 ndom++;
1330 }
1331
1332 if ((rc.targets[which] - counts[which]) != ndom)
1333 continue;
1334
1335 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1336 if (solve_domino_count(state, rc, i, which) == 1) {
1337 if (POSSIBLE(i, which))
1338 toset = i;
1339 else {
1340 /* paranoia, should have been checked by solve_domino_count. */
1341 assert(state->common->dominoes[i] == i+rc.di);
1342 assert(POSSIBLE(i+rc.di, which));
1343 toset = i+rc.di;
1344 }
1345 if (solve_set(state, toset, which, "all empty dominoes need +/- [tricky]", &rc) < 0)
1346 return -1;
1347 didsth++;
1348 }
1349 }
1350 }
1351 return didsth;
1352 }
1353
1354 /* danger, evil macro. can't use the do { ... } while(0) trick because
1355 * the continue breaks. */
1356 #define SOLVE_FOR_ROWCOLS(fn) \
1357 ret = solve_rowcols(state, fn); \
1358 if (ret < 0) { debug(("%s said impossible, cannot solve", #fn)); return -1; } \
1359 if (ret > 0) continue
1360
1361 static int solve_state(game_state *state, int diff)
1362 {
1363 int ret;
1364
1365 debug(("solve_state, difficulty %s", magnets_diffnames[diff]));
1366
1367 solve_clearflags(state);
1368 if (solve_startflags(state) < 0) return -1;
1369
1370 while (1) {
1371 ret = solve_force(state);
1372 if (ret > 0) continue;
1373 if (ret < 0) return -1;
1374
1375 ret = solve_neither(state);
1376 if (ret > 0) continue;
1377 if (ret < 0) return -1;
1378
1379 SOLVE_FOR_ROWCOLS(solve_checkfull);
1380 SOLVE_FOR_ROWCOLS(solve_oddlength);
1381
1382 if (diff < DIFF_TRICKY) break;
1383
1384 SOLVE_FOR_ROWCOLS(solve_advancedfull);
1385 SOLVE_FOR_ROWCOLS(solve_nonneutral);
1386 SOLVE_FOR_ROWCOLS(solve_countdominoes_neutral);
1387 SOLVE_FOR_ROWCOLS(solve_countdominoes_nonneutral);
1388
1389 /* more ... */
1390
1391 break;
1392 }
1393 return check_completion(state);
1394 }
1395
1396
1397 static char *game_state_diff(game_state *src, game_state *dst, int issolve)
1398 {
1399 char *ret = NULL, buf[80], c;
1400 int retlen = 0, x, y, i, k;
1401
1402 assert(src->w == dst->w && src->h == dst->h);
1403
1404 if (issolve) {
1405 ret = sresize(ret, 3, char);
1406 ret[0] = 'S'; ret[1] = ';'; ret[2] = '\0';
1407 retlen += 2;
1408 }
1409 for (x = 0; x < dst->w; x++) {
1410 for (y = 0; y < dst->h; y++) {
1411 i = y*dst->w+x;
1412
1413 if (src->common->dominoes[i] == i) continue;
1414
1415 #define APPEND do { \
1416 ret = sresize(ret, retlen + k + 1, char); \
1417 strcpy(ret + retlen, buf); \
1418 retlen += k; \
1419 } while(0)
1420
1421 if ((src->grid[i] != dst->grid[i]) ||
1422 ((src->flags[i] & GS_SET) != (dst->flags[i] & GS_SET))) {
1423 if (dst->grid[i] == EMPTY && !(dst->flags[i] & GS_SET))
1424 c = ' ';
1425 else
1426 c = GRID2CHAR(dst->grid[i]);
1427 k = sprintf(buf, "%c%d,%d;", (int)c, x, y);
1428 APPEND;
1429 }
1430 }
1431 }
1432 debug(("game_state_diff returns %s", ret));
1433 return ret;
1434 }
1435
1436 static void solve_from_aux(game_state *state, char *aux)
1437 {
1438 int i;
1439 assert(strlen(aux) == state->wh);
1440 for (i = 0; i < state->wh; i++) {
1441 state->grid[i] = CHAR2GRID(aux[i]);
1442 state->flags[i] |= GS_SET;
1443 }
1444 }
1445
1446 static char *solve_game(game_state *state, game_state *currstate,
1447 char *aux, char **error)
1448 {
1449 game_state *solved = dup_game(currstate);
1450 char *move = NULL;
1451 int ret;
1452
1453 if (aux && strlen(aux) == state->wh) {
1454 solve_from_aux(solved, aux);
1455 goto solved;
1456 }
1457
1458 if (solve_state(solved, DIFFCOUNT) > 0) goto solved;
1459 free_game(solved);
1460
1461 solved = dup_game(state);
1462 ret = solve_state(solved, DIFFCOUNT);
1463 if (ret > 0) goto solved;
1464 free_game(solved);
1465
1466 *error = (ret < 0) ? "Puzzle is impossible." : "Unable to solve puzzle.";
1467 return NULL;
1468
1469 solved:
1470 move = game_state_diff(currstate, solved, 1);
1471 free_game(solved);
1472 return move;
1473 }
1474
1475 static int solve_unnumbered(game_state *state)
1476 {
1477 int i, ret;
1478 while (1) {
1479 ret = solve_force(state);
1480 if (ret > 0) continue;
1481 if (ret < 0) return -1;
1482
1483 ret = solve_neither(state);
1484 if (ret > 0) continue;
1485 if (ret < 0) return -1;
1486
1487 break;
1488 }
1489 for (i = 0; i < state->wh; i++) {
1490 if (!(state->flags[i] & GS_SET)) return 0;
1491 }
1492 return 1;
1493 }
1494
1495 static int lay_dominoes(game_state *state, random_state *rs, int *scratch)
1496 {
1497 int n, i, ret = 0, x, y, nlaid = 0, n_initial_neutral;
1498
1499 for (i = 0; i < state->wh; i++) {
1500 scratch[i] = i;
1501 state->grid[i] = EMPTY;
1502 state->flags[i] = (state->common->dominoes[i] == i) ? GS_SET : 0;
1503 }
1504 shuffle(scratch, state->wh, sizeof(int), rs);
1505
1506 n_initial_neutral = (state->wh > 100) ? 5 : (state->wh / 10);
1507
1508 for (n = 0; n < state->wh; n++) {
1509 /* Find a space ... */
1510
1511 i = scratch[n];
1512 if (state->flags[i] & GS_SET) continue; /* already laid here. */
1513
1514 /* ...and lay a domino if we can. */
1515
1516 x = i%state->w; y = i/state->w;
1517 debug(("Laying domino at i:%d, (%d,%d)\n", i, x, y));
1518
1519 /* The choice of which type of domino to lay here leads to subtle differences
1520 * in the sorts of boards that get produced. Too much bias towards magnets
1521 * leads to games that are too easy.
1522 *
1523 * Currently, it lays a small set of dominoes at random as neutral, and
1524 * then lays the rest preferring to be magnets -- however, if the
1525 * current layout is such that a magnet won't go there, then it lays
1526 * another neutral.
1527 *
1528 * The number of initially neutral dominoes is limited as grids get bigger:
1529 * too many neutral dominoes invariably ends up with insoluble puzzle at
1530 * this size, and the positioning process means it'll always end up laying
1531 * more than the initial 5 anyway.
1532 */
1533
1534 /* We should always be able to lay a neutral anywhere. */
1535 assert(!(state->flags[i] & GS_NOTNEUTRAL));
1536
1537 if (n < n_initial_neutral) {
1538 debug((" ...laying neutral\n"));
1539 ret = solve_set(state, i, NEUTRAL, "layout initial neutral", NULL);
1540 } else {
1541 debug((" ... preferring magnet\n"));
1542 if (!(state->flags[i] & GS_NOTPOSITIVE))
1543 ret = solve_set(state, i, POSITIVE, "layout", NULL);
1544 else if (!(state->flags[i] & GS_NOTNEGATIVE))
1545 ret = solve_set(state, i, NEGATIVE, "layout", NULL);
1546 else
1547 ret = solve_set(state, i, NEUTRAL, "layout", NULL);
1548 }
1549 if (!ret) {
1550 debug(("Unable to lay anything at (%d,%d), giving up.", x, y));
1551 ret = -1;
1552 break;
1553 }
1554
1555 nlaid++;
1556 ret = solve_unnumbered(state);
1557 if (ret == -1)
1558 debug(("solve_unnumbered decided impossible.\n"));
1559 if (ret != 0)
1560 break;
1561 }
1562
1563 debug(("Laid %d dominoes, total %d dominoes.\n", nlaid, state->wh/2));
1564 game_debug(state, "Final layout");
1565 return ret;
1566 }
1567
1568 static void gen_game(game_state *new, random_state *rs)
1569 {
1570 int ret, x, y, val;
1571 int *scratch = snewn(new->wh, int);
1572
1573 #ifdef STANDALONE_SOLVER
1574 if (verbose) printf("Generating new game...\n");
1575 #endif
1576
1577 clear_state(new);
1578 sfree(new->common->dominoes); /* bit grotty. */
1579 new->common->dominoes = domino_layout(new->w, new->h, rs);
1580
1581 do {
1582 ret = lay_dominoes(new, rs, scratch);
1583 } while(ret == -1);
1584
1585 /* for each cell, update colcount/rowcount as appropriate. */
1586 memset(new->common->colcount, 0, new->w*3*sizeof(int));
1587 memset(new->common->rowcount, 0, new->h*3*sizeof(int));
1588 for (x = 0; x < new->w; x++) {
1589 for (y = 0; y < new->h; y++) {
1590 val = new->grid[y*new->w+x];
1591 new->common->colcount[x*3+val]++;
1592 new->common->rowcount[y*3+val]++;
1593 }
1594 }
1595 new->numbered = 1;
1596
1597 sfree(scratch);
1598 }
1599
1600 static void generate_aux(game_state *new, char *aux)
1601 {
1602 int i;
1603 for (i = 0; i < new->wh; i++)
1604 aux[i] = GRID2CHAR(new->grid[i]);
1605 aux[new->wh] = '\0';
1606 }
1607
1608 static int check_difficulty(game_params *params, game_state *new,
1609 random_state *rs)
1610 {
1611 int *scratch, *grid_correct, slen, i;
1612
1613 memset(new->grid, EMPTY, new->wh*sizeof(int));
1614
1615 if (params->diff > DIFF_EASY) {
1616 /* If this is too easy, return. */
1617 if (solve_state(new, params->diff-1) > 0) {
1618 debug(("Puzzle is too easy."));
1619 return -1;
1620 }
1621 }
1622 if (solve_state(new, params->diff) <= 0) {
1623 debug(("Puzzle is not soluble at requested difficulty."));
1624 return -1;
1625 }
1626 if (!params->stripclues) return 0;
1627
1628 /* Copy the correct grid away. */
1629 grid_correct = snewn(new->wh, int);
1630 memcpy(grid_correct, new->grid, new->wh*sizeof(int));
1631
1632 /* Create shuffled array of side-clue locations. */
1633 slen = new->w*2 + new->h*2;
1634 scratch = snewn(slen, int);
1635 for (i = 0; i < slen; i++) scratch[i] = i;
1636 shuffle(scratch, slen, sizeof(int), rs);
1637
1638 /* For each clue, check whether removing it makes the puzzle unsoluble;
1639 * put it back if so. */
1640 for (i = 0; i < slen; i++) {
1641 int num = scratch[i], which, roworcol, target, targetn, ret;
1642 rowcol rc;
1643
1644 /* work out which clue we meant. */
1645 if (num < new->w+new->h) { which = POSITIVE; }
1646 else { which = NEGATIVE; num -= new->w+new->h; }
1647
1648 if (num < new->w) { roworcol = COLUMN; }
1649 else { roworcol = ROW; num -= new->w; }
1650
1651 /* num is now the row/column index in question. */
1652 rc = mkrowcol(new, num, roworcol);
1653
1654 /* Remove clue, storing original... */
1655 target = rc.targets[which];
1656 targetn = rc.targets[NEUTRAL];
1657 rc.targets[which] = -1;
1658 rc.targets[NEUTRAL] = -1;
1659
1660 /* ...and see if we can still solve it. */
1661 game_debug(new, "removed clue, new board:");
1662 memset(new->grid, EMPTY, new->wh * sizeof(int));
1663 ret = solve_state(new, params->diff);
1664 assert(ret != -1);
1665
1666 if (ret == 0 ||
1667 memcmp(new->grid, grid_correct, new->wh*sizeof(int)) != 0) {
1668 /* We made it ambiguous: put clue back. */
1669 debug(("...now impossible/different, put clue back."));
1670 rc.targets[which] = target;
1671 rc.targets[NEUTRAL] = targetn;
1672 }
1673 }
1674 sfree(scratch);
1675 sfree(grid_correct);
1676
1677 return 0;
1678 }
1679
1680 static char *new_game_desc(game_params *params, random_state *rs,
1681 char **aux_r, int interactive)
1682 {
1683 game_state *new = new_state(params->w, params->h);
1684 char *desc, *aux = snewn(new->wh+1, char);
1685
1686 do {
1687 gen_game(new, rs);
1688 generate_aux(new, aux);
1689 } while (check_difficulty(params, new, rs) < 0);
1690
1691 /* now we're complete, generate the description string
1692 * and an aux_info for the completed game. */
1693 desc = generate_desc(new);
1694
1695 free_game(new);
1696
1697 *aux_r = aux;
1698 return desc;
1699 }
1700
1701 struct game_ui {
1702 int cur_x, cur_y, cur_visible;
1703 };
1704
1705 static game_ui *new_ui(game_state *state)
1706 {
1707 game_ui *ui = snew(game_ui);
1708 ui->cur_x = ui->cur_y = 0;
1709 ui->cur_visible = 0;
1710 return ui;
1711 }
1712
1713 static void free_ui(game_ui *ui)
1714 {
1715 sfree(ui);
1716 }
1717
1718 static char *encode_ui(game_ui *ui)
1719 {
1720 return NULL;
1721 }
1722
1723 static void decode_ui(game_ui *ui, char *encoding)
1724 {
1725 }
1726
1727 static void game_changed_state(game_ui *ui, game_state *oldstate,
1728 game_state *newstate)
1729 {
1730 if (!oldstate->completed && newstate->completed)
1731 ui->cur_visible = 0;
1732 }
1733
1734 struct game_drawstate {
1735 int tilesize, started, solved;
1736 int w, h;
1737 unsigned long *what; /* size w*h */
1738 unsigned long *colwhat, *rowwhat; /* size 3*w, 3*h */
1739 };
1740
1741 #define DS_WHICH_MASK 0xf
1742
1743 #define DS_ERROR 0x10
1744 #define DS_CURSOR 0x20
1745 #define DS_SET 0x40
1746 #define DS_FULL 0x80
1747 #define DS_NOTPOS 0x100
1748 #define DS_NOTNEG 0x200
1749 #define DS_NOTNEU 0x400
1750 #define DS_FLASH 0x800
1751
1752 #define PREFERRED_TILE_SIZE 32
1753 #define TILE_SIZE (ds->tilesize)
1754 #define BORDER (TILE_SIZE / 8)
1755
1756 #define COORD(x) ( (x+1) * TILE_SIZE + BORDER )
1757 #define FROMCOORD(x) ( (x - BORDER) / TILE_SIZE - 1 )
1758
1759 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1760 int x, int y, int button)
1761 {
1762 int gx = FROMCOORD(x), gy = FROMCOORD(y), idx, curr;
1763 char *nullret = NULL, buf[80], movech;
1764 enum { CYCLE_MAGNET, CYCLE_NEUTRAL } action;
1765
1766 if (IS_CURSOR_MOVE(button)) {
1767 move_cursor(button, &ui->cur_x, &ui->cur_y, state->w, state->h, 0);
1768 ui->cur_visible = 1;
1769 return "";
1770 } else if (IS_CURSOR_SELECT(button)) {
1771 if (!ui->cur_visible) {
1772 ui->cur_visible = 1;
1773 return "";
1774 }
1775 action = (button == CURSOR_SELECT) ? CYCLE_MAGNET : CYCLE_NEUTRAL;
1776 gx = ui->cur_x;
1777 gy = ui->cur_y;
1778 } else if (INGRID(state, gx, gy) &&
1779 (button == LEFT_BUTTON || button == RIGHT_BUTTON)) {
1780 if (ui->cur_visible) {
1781 ui->cur_visible = 0;
1782 nullret = "";
1783 }
1784 action = (button == LEFT_BUTTON) ? CYCLE_MAGNET : CYCLE_NEUTRAL;
1785 } else
1786 return NULL;
1787
1788 idx = gy * state->w + gx;
1789 if (state->common->dominoes[idx] == idx) return nullret;
1790 curr = state->grid[idx];
1791
1792 if (action == CYCLE_MAGNET) {
1793 /* ... empty --> positive --> negative --> empty ... */
1794
1795 if (state->grid[idx] == NEUTRAL && state->flags[idx] & GS_SET)
1796 return nullret; /* can't cycle a magnet from a neutral. */
1797 movech = (curr == EMPTY) ? '+' : (curr == POSITIVE) ? '-' : ' ';
1798 } else if (action == CYCLE_NEUTRAL) {
1799 /* ... empty -> neutral -> !neutral --> empty ... */
1800
1801 if (state->grid[idx] != NEUTRAL)
1802 return nullret; /* can't cycle through neutral from a magnet. */
1803
1804 /* All of these are grid == EMPTY == NEUTRAL; it twiddles
1805 * combinations of flags. */
1806 if (state->flags[idx] & GS_SET) /* neutral */
1807 movech = '?';
1808 else if (state->flags[idx] & GS_NOTNEUTRAL) /* !neutral */
1809 movech = ' ';
1810 else
1811 movech = '.';
1812 } else {
1813 assert(!"unknown action");
1814 movech = 0; /* placate optimiser */
1815 }
1816
1817 sprintf(buf, "%c%d,%d", movech, gx, gy);
1818
1819 return dupstr(buf);
1820 }
1821
1822 static game_state *execute_move(game_state *state, char *move)
1823 {
1824 game_state *ret = dup_game(state);
1825 int x, y, n, idx, idx2;
1826 char c;
1827
1828 if (!*move) goto badmove;
1829 while (*move) {
1830 c = *move++;
1831 if (c == 'S') {
1832 ret->solved = TRUE;
1833 n = 0;
1834 } else if (c == '+' || c == '-' ||
1835 c == '.' || c == ' ' || c == '?') {
1836 if ((sscanf(move, "%d,%d%n", &x, &y, &n) != 2) ||
1837 !INGRID(state, x, y)) goto badmove;
1838
1839 idx = y*state->w + x;
1840 idx2 = state->common->dominoes[idx];
1841 if (idx == idx2) goto badmove;
1842
1843 ret->flags[idx] &= ~GS_NOTMASK;
1844 ret->flags[idx2] &= ~GS_NOTMASK;
1845
1846 if (c == ' ' || c == '?') {
1847 ret->grid[idx] = EMPTY;
1848 ret->grid[idx2] = EMPTY;
1849 ret->flags[idx] &= ~GS_SET;
1850 ret->flags[idx2] &= ~GS_SET;
1851 if (c == '?') {
1852 ret->flags[idx] |= GS_NOTNEUTRAL;
1853 ret->flags[idx2] |= GS_NOTNEUTRAL;
1854 }
1855 } else {
1856 ret->grid[idx] = CHAR2GRID(c);
1857 ret->grid[idx2] = OPPOSITE(CHAR2GRID(c));
1858 ret->flags[idx] |= GS_SET;
1859 ret->flags[idx2] |= GS_SET;
1860 }
1861 } else
1862 goto badmove;
1863
1864 move += n;
1865 if (*move == ';') move++;
1866 else if (*move) goto badmove;
1867 }
1868 if (check_completion(ret) == 1)
1869 ret->completed = 1;
1870
1871 return ret;
1872
1873 badmove:
1874 free_game(ret);
1875 return NULL;
1876 }
1877
1878 /* ----------------------------------------------------------------------
1879 * Drawing routines.
1880 */
1881
1882 static void game_compute_size(game_params *params, int tilesize,
1883 int *x, int *y)
1884 {
1885 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1886 struct { int tilesize; } ads, *ds = &ads;
1887 ads.tilesize = tilesize;
1888
1889 *x = TILE_SIZE * (params->w+2) + 2 * BORDER;
1890 *y = TILE_SIZE * (params->h+2) + 2 * BORDER;
1891 }
1892
1893 static void game_set_size(drawing *dr, game_drawstate *ds,
1894 game_params *params, int tilesize)
1895 {
1896 ds->tilesize = tilesize;
1897 }
1898
1899 static float *game_colours(frontend *fe, int *ncolours)
1900 {
1901 float *ret = snewn(3 * NCOLOURS, float);
1902 int i;
1903
1904 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
1905
1906 for (i = 0; i < 3; i++) {
1907 ret[COL_TEXT * 3 + i] = 0.0F;
1908 ret[COL_NEGATIVE * 3 + i] = 0.0F;
1909 ret[COL_CURSOR * 3 + i] = 0.9F;
1910 }
1911
1912 ret[COL_POSITIVE * 3 + 0] = 0.8F;
1913 ret[COL_POSITIVE * 3 + 1] = 0.0F;
1914 ret[COL_POSITIVE * 3 + 2] = 0.0F;
1915
1916 ret[COL_NEUTRAL * 3 + 0] = 0.10F;
1917 ret[COL_NEUTRAL * 3 + 1] = 0.60F;
1918 ret[COL_NEUTRAL * 3 + 2] = 0.10F;
1919
1920 ret[COL_ERROR * 3 + 0] = 1.0F;
1921 ret[COL_ERROR * 3 + 1] = 0.0F;
1922 ret[COL_ERROR * 3 + 2] = 0.0F;
1923
1924 ret[COL_NOT * 3 + 0] = 0.2F;
1925 ret[COL_NOT * 3 + 1] = 0.2F;
1926 ret[COL_NOT * 3 + 2] = 1.0F;
1927
1928 *ncolours = NCOLOURS;
1929 return ret;
1930 }
1931
1932 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1933 {
1934 struct game_drawstate *ds = snew(struct game_drawstate);
1935
1936 ds->tilesize = ds->started = ds->solved = 0;
1937 ds->w = state->w;
1938 ds->h = state->h;
1939
1940 ds->what = snewn(state->wh, unsigned long);
1941 memset(ds->what, 0, state->wh*sizeof(unsigned long));
1942
1943 ds->colwhat = snewn(state->w*3, unsigned long);
1944 memset(ds->colwhat, 0, state->w*3*sizeof(unsigned long));
1945 ds->rowwhat = snewn(state->h*3, unsigned long);
1946 memset(ds->rowwhat, 0, state->h*3*sizeof(unsigned long));
1947
1948 return ds;
1949 }
1950
1951 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1952 {
1953 sfree(ds->colwhat);
1954 sfree(ds->rowwhat);
1955 sfree(ds->what);
1956 sfree(ds);
1957 }
1958
1959 static void draw_num_col(drawing *dr, game_drawstate *ds, int rowcol, int which,
1960 int idx, int colbg, int col, int num)
1961 {
1962 char buf[32];
1963 int cx, cy, tsz;
1964
1965 if (num < 0) return;
1966
1967 sprintf(buf, "%d", num);
1968 tsz = (strlen(buf) == 1) ? (7*TILE_SIZE/10) : (9*TILE_SIZE/10)/strlen(buf);
1969
1970 if (rowcol == ROW) {
1971 cx = BORDER;
1972 if (which == NEGATIVE) cx += TILE_SIZE * (ds->w+1);
1973 cy = BORDER + TILE_SIZE * (idx+1);
1974 } else {
1975 cx = BORDER + TILE_SIZE * (idx+1);
1976 cy = BORDER;
1977 if (which == NEGATIVE) cy += TILE_SIZE * (ds->h+1);
1978 }
1979
1980 draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, colbg);
1981 draw_text(dr, cx + TILE_SIZE/2, cy + TILE_SIZE/2, FONT_VARIABLE, tsz,
1982 ALIGN_VCENTRE | ALIGN_HCENTRE, col, buf);
1983
1984 draw_update(dr, cx, cy, TILE_SIZE, TILE_SIZE);
1985 }
1986
1987 static void draw_num(drawing *dr, game_drawstate *ds, int rowcol, int which,
1988 int idx, unsigned long c, int num)
1989 {
1990 draw_num_col(dr, ds, rowcol, which, idx, COL_BACKGROUND,
1991 (c & DS_ERROR) ? COL_ERROR : COL_TEXT, num);
1992 }
1993
1994 static void draw_sym(drawing *dr, game_drawstate *ds, int x, int y, int which, int col)
1995 {
1996 int cx = COORD(x), cy = COORD(y);
1997 int ccx = cx + TILE_SIZE/2, ccy = cy + TILE_SIZE/2;
1998 int roff = TILE_SIZE/4, rsz = 2*roff+1;
1999 int soff = TILE_SIZE/16, ssz = 2*soff+1;
2000
2001 if (which == POSITIVE || which == NEGATIVE) {
2002 draw_rect(dr, ccx - roff, ccy - soff, rsz, ssz, col);
2003 if (which == POSITIVE)
2004 draw_rect(dr, ccx - soff, ccy - roff, ssz, rsz, col);
2005 } else if (col == COL_NOT) {
2006 /* not-a-neutral is a blue question mark. */
2007 char qu[2] = { '?', 0 };
2008 draw_text(dr, ccx, ccy, FONT_VARIABLE, 7*TILE_SIZE/10,
2009 ALIGN_VCENTRE | ALIGN_HCENTRE, col, qu);
2010 } else {
2011 draw_line(dr, ccx - roff, ccy - roff, ccx + roff, ccy + roff, col);
2012 draw_line(dr, ccx + roff, ccy - roff, ccx - roff, ccy + roff, col);
2013 }
2014 }
2015
2016 enum {
2017 TYPE_L,
2018 TYPE_R,
2019 TYPE_T,
2020 TYPE_B,
2021 TYPE_BLANK
2022 };
2023
2024 /* NOT responsible for redrawing background or updating. */
2025 static void draw_tile_col(drawing *dr, game_drawstate *ds, int *dominoes,
2026 int x, int y, int which, int bg, int fg, int perc)
2027 {
2028 int cx = COORD(x), cy = COORD(y), i, other, type = TYPE_BLANK;
2029 int gutter, radius, coffset;
2030
2031 /* gutter is TSZ/16 for 100%, 8*TSZ/16 (TSZ/2) for 0% */
2032 gutter = (TILE_SIZE / 16) + ((100 - perc) * (7*TILE_SIZE / 16))/100;
2033 radius = (perc * (TILE_SIZE / 8)) / 100;
2034 coffset = gutter + radius;
2035
2036 i = y*ds->w + x;
2037 other = dominoes[i];
2038
2039 if (other == i) return;
2040 else if (other == i+1) type = TYPE_L;
2041 else if (other == i-1) type = TYPE_R;
2042 else if (other == i+ds->w) type = TYPE_T;
2043 else if (other == i-ds->w) type = TYPE_B;
2044 else assert(!"mad domino orientation");
2045
2046 /* domino drawing shamelessly stolen from dominosa.c. */
2047 if (type == TYPE_L || type == TYPE_T)
2048 draw_circle(dr, cx+coffset, cy+coffset,
2049 radius, bg, bg);
2050 if (type == TYPE_R || type == TYPE_T)
2051 draw_circle(dr, cx+TILE_SIZE-1-coffset, cy+coffset,
2052 radius, bg, bg);
2053 if (type == TYPE_L || type == TYPE_B)
2054 draw_circle(dr, cx+coffset, cy+TILE_SIZE-1-coffset,
2055 radius, bg, bg);
2056 if (type == TYPE_R || type == TYPE_B)
2057 draw_circle(dr, cx+TILE_SIZE-1-coffset,
2058 cy+TILE_SIZE-1-coffset,
2059 radius, bg, bg);
2060
2061 for (i = 0; i < 2; i++) {
2062 int x1, y1, x2, y2;
2063
2064 x1 = cx + (i ? gutter : coffset);
2065 y1 = cy + (i ? coffset : gutter);
2066 x2 = cx + TILE_SIZE-1 - (i ? gutter : coffset);
2067 y2 = cy + TILE_SIZE-1 - (i ? coffset : gutter);
2068 if (type == TYPE_L)
2069 x2 = cx + TILE_SIZE;
2070 else if (type == TYPE_R)
2071 x1 = cx;
2072 else if (type == TYPE_T)
2073 y2 = cy + TILE_SIZE ;
2074 else if (type == TYPE_B)
2075 y1 = cy;
2076
2077 draw_rect(dr, x1, y1, x2-x1+1, y2-y1+1, bg);
2078 }
2079
2080 if (fg != -1) draw_sym(dr, ds, x, y, which, fg);
2081 }
2082
2083 static void draw_tile(drawing *dr, game_drawstate *ds, int *dominoes,
2084 int x, int y, unsigned long flags)
2085 {
2086 int cx = COORD(x), cy = COORD(y), bg, fg, perc = 100;
2087 int which = flags & DS_WHICH_MASK;
2088
2089 flags &= ~DS_WHICH_MASK;
2090
2091 draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND);
2092
2093 if (flags & DS_CURSOR)
2094 bg = COL_CURSOR; /* off-white white for cursor */
2095 else if (which == POSITIVE)
2096 bg = COL_POSITIVE;
2097 else if (which == NEGATIVE)
2098 bg = COL_NEGATIVE;
2099 else if (flags & DS_SET)
2100 bg = COL_NEUTRAL; /* green inner for neutral cells */
2101 else
2102 bg = COL_LOWLIGHT; /* light grey for empty cells. */
2103
2104 if (which == EMPTY && !(flags & DS_SET)) {
2105 int notwhich = -1;
2106 fg = -1; /* don't draw cross unless actually set as neutral. */
2107
2108 if (flags & DS_NOTPOS) notwhich = POSITIVE;
2109 if (flags & DS_NOTNEG) notwhich = NEGATIVE;
2110 if (flags & DS_NOTNEU) notwhich = NEUTRAL;
2111 if (notwhich != -1) {
2112 which = notwhich;
2113 fg = COL_NOT;
2114 }
2115 } else
2116 fg = (flags & DS_ERROR) ? COL_ERROR :
2117 (flags & DS_CURSOR) ? COL_TEXT : COL_BACKGROUND;
2118
2119 draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND);
2120
2121 if (flags & DS_FLASH) {
2122 int bordercol = COL_HIGHLIGHT;
2123 draw_tile_col(dr, ds, dominoes, x, y, which, bordercol, -1, perc);
2124 perc = 3*perc/4;
2125 }
2126 draw_tile_col(dr, ds, dominoes, x, y, which, bg, fg, perc);
2127
2128 draw_update(dr, cx, cy, TILE_SIZE, TILE_SIZE);
2129 }
2130
2131
2132 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2133 game_state *state, int dir, game_ui *ui,
2134 float animtime, float flashtime)
2135 {
2136 int x, y, w = state->w, h = state->h, which, i, j, flash;
2137 unsigned long c = 0;
2138
2139 flash = (int)(flashtime * 5 / FLASH_TIME) % 2;
2140
2141 if (!ds->started) {
2142 /* draw background, corner +-. */
2143 draw_rect(dr, 0, 0,
2144 TILE_SIZE * (w+2) + 2 * BORDER,
2145 TILE_SIZE * (h+2) + 2 * BORDER,
2146 COL_BACKGROUND);
2147
2148 draw_sym(dr, ds, -1, -1, POSITIVE, COL_TEXT);
2149 draw_sym(dr, ds, state->w, state->h, NEGATIVE, COL_TEXT);
2150
2151 draw_update(dr, 0, 0,
2152 TILE_SIZE * (ds->w+2) + 2 * BORDER,
2153 TILE_SIZE * (ds->h+2) + 2 * BORDER);
2154 }
2155
2156 /* Draw grid */
2157 for (y = 0; y < h; y++) {
2158 for (x = 0; x < w; x++) {
2159 int idx = y*w+x;
2160
2161 c = state->grid[idx];
2162
2163 if (state->flags[idx] & GS_ERROR)
2164 c |= DS_ERROR;
2165 if (state->flags[idx] & GS_SET)
2166 c |= DS_SET;
2167
2168 if (x == ui->cur_x && y == ui->cur_y && ui->cur_visible)
2169 c |= DS_CURSOR;
2170
2171 if (flash)
2172 c |= DS_FLASH;
2173
2174 if (state->flags[idx] & GS_NOTPOSITIVE)
2175 c |= DS_NOTPOS;
2176 if (state->flags[idx] & GS_NOTNEGATIVE)
2177 c |= DS_NOTNEG;
2178 if (state->flags[idx] & GS_NOTNEUTRAL)
2179 c |= DS_NOTNEU;
2180
2181 if (ds->what[idx] != c || !ds->started) {
2182 draw_tile(dr, ds, state->common->dominoes, x, y, c);
2183 ds->what[idx] = c;
2184 }
2185 }
2186 }
2187 /* Draw counts around side */
2188 for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) {
2189 int target, count;
2190 for (i = 0; i < w; i++) {
2191 target = state->common->colcount[i*3+which];
2192 count = count_rowcol(state, i, COLUMN, which);
2193 c = 0;
2194 if ((count > target) ||
2195 (count < target && !count_rowcol(state, i, COLUMN, -1)))
2196 c |= DS_ERROR;
2197 if (count == target) c |= DS_FULL;
2198 if (c != ds->colwhat[i*3+which] || !ds->started) {
2199 draw_num(dr, ds, COLUMN, which, i, c,
2200 state->common->colcount[i*3+which]);
2201 ds->colwhat[i*3+which] = c;
2202 }
2203 }
2204 for (i = 0; i < h; i++) {
2205 target = state->common->rowcount[i*3+which];
2206 count = count_rowcol(state, i, ROW, which);
2207 c = 0;
2208 if ((count > target) ||
2209 (count < target && !count_rowcol(state, i, ROW, -1)))
2210 c |= DS_ERROR;
2211 if (count == target) c |= DS_FULL;
2212 if (c != ds->rowwhat[i*3+which] || !ds->started) {
2213 draw_num(dr, ds, ROW, which, i, c,
2214 state->common->rowcount[i*3+which]);
2215 ds->rowwhat[i*3+which] = c;
2216 }
2217 }
2218 }
2219
2220 ds->started = 1;
2221 }
2222
2223 static float game_anim_length(game_state *oldstate, game_state *newstate,
2224 int dir, game_ui *ui)
2225 {
2226 return 0.0F;
2227 }
2228
2229 static float game_flash_length(game_state *oldstate, game_state *newstate,
2230 int dir, game_ui *ui)
2231 {
2232 if (!oldstate->completed && newstate->completed &&
2233 !oldstate->solved && !newstate->solved)
2234 return FLASH_TIME;
2235 return 0.0F;
2236 }
2237
2238 static int game_is_solved(game_state *state)
2239 {
2240 return state->completed;
2241 }
2242
2243 static int game_timing_state(game_state *state, game_ui *ui)
2244 {
2245 return TRUE;
2246 }
2247
2248 static void game_print_size(game_params *params, float *x, float *y)
2249 {
2250 int pw, ph;
2251
2252 /*
2253 * I'll use 6mm squares by default.
2254 */
2255 game_compute_size(params, 600, &pw, &ph);
2256 *x = pw / 100.0F;
2257 *y = ph / 100.0F;
2258 }
2259
2260 static void game_print(drawing *dr, game_state *state, int tilesize)
2261 {
2262 int w = state->w, h = state->h;
2263 int ink = print_mono_colour(dr, 0);
2264 int paper = print_mono_colour(dr, 1);
2265 int x, y, target, count, which, i, j;
2266
2267 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2268 game_drawstate ads, *ds = &ads;
2269 game_set_size(dr, ds, NULL, tilesize);
2270 ds->w = w; ds->h = h;
2271
2272 /* Border. */
2273 print_line_width(dr, TILE_SIZE/12);
2274
2275 /* Numbers and +/- for corners. */
2276 draw_sym(dr, ds, -1, -1, POSITIVE, ink);
2277 draw_sym(dr, ds, state->w, state->h, NEGATIVE, ink);
2278 for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) {
2279 for (i = 0; i < w; i++) {
2280 target = state->common->colcount[i*3+which];
2281 count = count_rowcol(state, i, COLUMN, which);
2282 draw_num_col(dr, ds, COLUMN, which, i, paper, ink,
2283 state->common->colcount[i*3+which]);
2284 }
2285 for (i = 0; i < h; i++) {
2286 target = state->common->rowcount[i*3+which];
2287 count = count_rowcol(state, i, ROW, which);
2288 draw_num_col(dr, ds, ROW, which, i, paper, ink,
2289 state->common->rowcount[i*3+which]);
2290 }
2291 }
2292
2293 /* Dominoes. */
2294 for (x = 0; x < w; x++) {
2295 for (y = 0; y < h; y++) {
2296 i = y*state->w + x;
2297 if (state->common->dominoes[i] == i+1 ||
2298 state->common->dominoes[i] == i+w) {
2299 int dx = state->common->dominoes[i] == i+1 ? 2 : 1;
2300 int dy = 3 - dx;
2301 int xx, yy;
2302 int cx = COORD(x), cy = COORD(y);
2303
2304 print_line_width(dr, 0);
2305
2306 /* Ink the domino */
2307 for (yy = 0; yy < 2; yy++)
2308 for (xx = 0; xx < 2; xx++)
2309 draw_circle(dr,
2310 cx+xx*dx*TILE_SIZE+(1-2*xx)*3*TILE_SIZE/16,
2311 cy+yy*dy*TILE_SIZE+(1-2*yy)*3*TILE_SIZE/16,
2312 TILE_SIZE/8, ink, ink);
2313 draw_rect(dr, cx + TILE_SIZE/16, cy + 3*TILE_SIZE/16,
2314 dx*TILE_SIZE - 2*(TILE_SIZE/16),
2315 dy*TILE_SIZE - 6*(TILE_SIZE/16), ink);
2316 draw_rect(dr, cx + 3*TILE_SIZE/16, cy + TILE_SIZE/16,
2317 dx*TILE_SIZE - 6*(TILE_SIZE/16),
2318 dy*TILE_SIZE - 2*(TILE_SIZE/16), ink);
2319
2320 /* Un-ink the domino interior */
2321 for (yy = 0; yy < 2; yy++)
2322 for (xx = 0; xx < 2; xx++)
2323 draw_circle(dr,
2324 cx+xx*dx*TILE_SIZE+(1-2*xx)*3*TILE_SIZE/16,
2325 cy+yy*dy*TILE_SIZE+(1-2*yy)*3*TILE_SIZE/16,
2326 3*TILE_SIZE/32, paper, paper);
2327 draw_rect(dr, cx + 3*TILE_SIZE/32, cy + 3*TILE_SIZE/16,
2328 dx*TILE_SIZE - 2*(3*TILE_SIZE/32),
2329 dy*TILE_SIZE - 6*(TILE_SIZE/16), paper);
2330 draw_rect(dr, cx + 3*TILE_SIZE/16, cy + 3*TILE_SIZE/32,
2331 dx*TILE_SIZE - 6*(TILE_SIZE/16),
2332 dy*TILE_SIZE - 2*(3*TILE_SIZE/32), paper);
2333 }
2334 }
2335 }
2336
2337 /* Grid symbols (solution). */
2338 for (x = 0; x < w; x++) {
2339 for (y = 0; y < h; y++) {
2340 i = y*state->w + x;
2341 if ((state->grid[i] != NEUTRAL) || (state->flags[i] & GS_SET))
2342 draw_sym(dr, ds, x, y, state->grid[i], ink);
2343 }
2344 }
2345 }
2346
2347 #ifdef COMBINED
2348 #define thegame magnets
2349 #endif
2350
2351 const struct game thegame = {
2352 "Magnets", "games.magnets", "magnets",
2353 default_params,
2354 game_fetch_preset,
2355 decode_params,
2356 encode_params,
2357 free_params,
2358 dup_params,
2359 TRUE, game_configure, custom_params,
2360 validate_params,
2361 new_game_desc,
2362 validate_desc,
2363 new_game,
2364 dup_game,
2365 free_game,
2366 TRUE, solve_game,
2367 TRUE, game_can_format_as_text_now, game_text_format,
2368 new_ui,
2369 free_ui,
2370 encode_ui,
2371 decode_ui,
2372 game_changed_state,
2373 interpret_move,
2374 execute_move,
2375 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
2376 game_colours,
2377 game_new_drawstate,
2378 game_free_drawstate,
2379 game_redraw,
2380 game_anim_length,
2381 game_flash_length,
2382 game_is_solved,
2383 TRUE, FALSE, game_print_size, game_print,
2384 FALSE, /* wants_statusbar */
2385 FALSE, game_timing_state,
2386 REQUIRE_RBUTTON, /* flags */
2387 };
2388
2389 #ifdef STANDALONE_SOLVER
2390
2391 #include <time.h>
2392 #include <stdarg.h>
2393
2394 const char *quis = NULL;
2395 int csv = 0;
2396
2397 void usage(FILE *out) {
2398 fprintf(out, "usage: %s [-v] [--print] <params>|<game id>\n", quis);
2399 }
2400
2401 void doprint(game_state *state)
2402 {
2403 char *fmt = game_text_format(state);
2404 printf("%s", fmt);
2405 sfree(fmt);
2406 }
2407
2408 static void pnum(int n, int ntot, const char *desc)
2409 {
2410 printf("%2.1f%% (%d) %s", (double)n*100.0 / (double)ntot, n, desc);
2411 }
2412
2413 static void start_soak(game_params *p, random_state *rs)
2414 {
2415 time_t tt_start, tt_now, tt_last;
2416 char *aux;
2417 game_state *s, *s2;
2418 int n = 0, nsolved = 0, nimpossible = 0, ntricky = 0, ret, i;
2419 long nn, nn_total = 0, nn_solved = 0, nn_tricky = 0;
2420
2421 tt_start = tt_now = time(NULL);
2422
2423 if (csv)
2424 printf("time, w, h, #generated, #solved, #tricky, #impossible, "
2425 "#neutral, #neutral/solved, #neutral/tricky\n");
2426 else
2427 printf("Soak-testing a %dx%d grid.\n", p->w, p->h);
2428
2429 s = new_state(p->w, p->h);
2430 aux = snewn(s->wh+1, char);
2431
2432 while (1) {
2433 gen_game(s, rs);
2434
2435 nn = 0;
2436 for (i = 0; i < s->wh; i++) {
2437 if (s->grid[i] == NEUTRAL) nn++;
2438 }
2439
2440 generate_aux(s, aux);
2441 memset(s->grid, EMPTY, s->wh * sizeof(int));
2442 s2 = dup_game(s);
2443
2444 ret = solve_state(s, DIFFCOUNT);
2445
2446 n++;
2447 nn_total += nn;
2448 if (ret > 0) {
2449 nsolved++;
2450 nn_solved += nn;
2451 if (solve_state(s2, DIFF_EASY) <= 0) {
2452 ntricky++;
2453 nn_tricky += nn;
2454 }
2455 } else if (ret < 0) {
2456 char *desc = generate_desc(s);
2457 solve_from_aux(s, aux);
2458 printf("Game considered impossible:\n %dx%d:%s\n",
2459 p->w, p->h, desc);
2460 sfree(desc);
2461 doprint(s);
2462 nimpossible++;
2463 }
2464
2465 free_game(s2);
2466
2467 tt_last = time(NULL);
2468 if (tt_last > tt_now) {
2469 tt_now = tt_last;
2470 if (csv) {
2471 printf("%d,%d,%d, %d,%d,%d,%d, %ld,%ld,%ld\n",
2472 (int)(tt_now - tt_start), p->w, p->h,
2473 n, nsolved, ntricky, nimpossible,
2474 nn_total, nn_solved, nn_tricky);
2475 } else {
2476 printf("%d total, %3.1f/s, ",
2477 n, (double)n / ((double)tt_now - tt_start));
2478 pnum(nsolved, n, "solved"); printf(", ");
2479 pnum(ntricky, n, "tricky");
2480 if (nimpossible > 0)
2481 pnum(nimpossible, n, "impossible");
2482 printf("\n");
2483
2484 printf(" overall %3.1f%% neutral (%3.1f%% for solved, %3.1f%% for tricky)\n",
2485 (double)(nn_total * 100) / (double)(p->w * p->h * n),
2486 (double)(nn_solved * 100) / (double)(p->w * p->h * nsolved),
2487 (double)(nn_tricky * 100) / (double)(p->w * p->h * ntricky));
2488 }
2489 }
2490 }
2491 free_game(s);
2492 sfree(aux);
2493 }
2494
2495 int main(int argc, const char *argv[])
2496 {
2497 int print = 0, soak = 0, solved = 0, ret;
2498 char *id = NULL, *desc, *desc_gen = NULL, *err, *aux = NULL;
2499 game_state *s = NULL;
2500 game_params *p = NULL;
2501 random_state *rs = NULL;
2502 time_t seed = time(NULL);
2503
2504 setvbuf(stdout, NULL, _IONBF, 0);
2505
2506 quis = argv[0];
2507 while (--argc > 0) {
2508 char *p = (char*)(*++argv);
2509 if (!strcmp(p, "-v") || !strcmp(p, "--verbose")) {
2510 verbose = 1;
2511 } else if (!strcmp(p, "--csv")) {
2512 csv = 1;
2513 } else if (!strcmp(p, "-e") || !strcmp(p, "--seed")) {
2514 seed = atoi(*++argv);
2515 argc--;
2516 } else if (!strcmp(p, "-p") || !strcmp(p, "--print")) {
2517 print = 1;
2518 } else if (!strcmp(p, "-s") || !strcmp(p, "--soak")) {
2519 soak = 1;
2520 } else if (*p == '-') {
2521 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
2522 usage(stderr);
2523 exit(1);
2524 } else {
2525 id = p;
2526 }
2527 }
2528
2529 rs = random_new((void*)&seed, sizeof(time_t));
2530
2531 if (!id) {
2532 fprintf(stderr, "usage: %s [-v] [--soak] <params> | <game_id>\n", argv[0]);
2533 goto done;
2534 }
2535 desc = strchr(id, ':');
2536 if (desc) *desc++ = '\0';
2537
2538 p = default_params();
2539 decode_params(p, id);
2540 err = validate_params(p, 1);
2541 if (err) {
2542 fprintf(stderr, "%s: %s", argv[0], err);
2543 goto done;
2544 }
2545
2546 if (soak) {
2547 if (desc) {
2548 fprintf(stderr, "%s: --soak needs parameters, not description.\n", quis);
2549 goto done;
2550 }
2551 start_soak(p, rs);
2552 goto done;
2553 }
2554
2555 if (!desc)
2556 desc = desc_gen = new_game_desc(p, rs, &aux, 0);
2557
2558 err = validate_desc(p, desc);
2559 if (err) {
2560 fprintf(stderr, "%s: %s\nDescription: %s\n", quis, err, desc);
2561 goto done;
2562 }
2563 s = new_game(NULL, p, desc);
2564 printf("%s:%s (seed %ld)\n", id, desc, seed);
2565 if (aux) {
2566 /* We just generated this ourself. */
2567 if (verbose || print) {
2568 doprint(s);
2569 solve_from_aux(s, aux);
2570 solved = 1;
2571 }
2572 } else {
2573 doprint(s);
2574 verbose = 1;
2575 ret = solve_state(s, DIFFCOUNT);
2576 if (ret < 0) printf("Puzzle is impossible.\n");
2577 else if (ret == 0) printf("Puzzle is ambiguous.\n");
2578 else printf("Puzzle was solved.\n");
2579 verbose = 0;
2580 solved = 1;
2581 }
2582 if (solved) doprint(s);
2583
2584 done:
2585 if (desc_gen) sfree(desc_gen);
2586 if (p) free_params(p);
2587 if (s) free_game(s);
2588 if (rs) random_free(rs);
2589 if (aux) sfree(aux);
2590
2591 return 0;
2592 }
2593
2594 #endif
2595
2596 /* vim: set shiftwidth=4 tabstop=8: */