Patch from Chris Moore to implement an extra grid type, the 'floret'
[sgt/puzzles] / loopy.c
1 /*
2 * loopy.c:
3 *
4 * An implementation of the Nikoli game 'Loop the loop'.
5 * (c) Mike Pinna, 2005, 2006
6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
8 *
9 * vim: set shiftwidth=4 :set textwidth=80:
10 */
11
12 /*
13 * Possible future solver enhancements:
14 *
15 * - There's an interesting deductive technique which makes use
16 * of topology rather than just graph theory. Each _face_ in
17 * the grid is either inside or outside the loop; you can tell
18 * that two faces are on the same side of the loop if they're
19 * separated by a LINE_NO (or, more generally, by a path
20 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes),
21 * and on the opposite side of the loop if they're separated by
22 * a LINE_YES (or an odd number of LINE_YESes and no
23 * LINE_UNKNOWNs). Oh, and any face separated from the outside
24 * of the grid by a LINE_YES or a LINE_NO is on the inside or
25 * outside respectively. So if you can track this for all
26 * faces, you figure out the state of the line between a pair
27 * once their relative insideness is known.
28 * + The way I envisage this working is simply to keep an edsf
29 * of all _faces_, which indicates whether they're on
30 * opposite sides of the loop from one another. We also
31 * include a special entry in the edsf for the infinite
32 * exterior "face".
33 * + So, the simple way to do this is to just go through the
34 * edges: every time we see an edge in a state other than
35 * LINE_UNKNOWN which separates two faces that aren't in the
36 * same edsf class, we can rectify that by merging the
37 * classes. Then, conversely, an edge in LINE_UNKNOWN state
38 * which separates two faces that _are_ in the same edsf
39 * class can immediately have its state determined.
40 * + But you can go one better, if you're prepared to loop
41 * over all _pairs_ of edges. Suppose we have edges A and B,
42 * which respectively separate faces A1,A2 and B1,B2.
43 * Suppose that A,B are in the same edge-edsf class and that
44 * A1,B1 (wlog) are in the same face-edsf class; then we can
45 * immediately place A2,B2 into the same face-edsf class (as
46 * each other, not as A1 and A2) one way round or the other.
47 * And conversely again, if A1,B1 are in the same face-edsf
48 * class and so are A2,B2, then we can put A,B into the same
49 * face-edsf class.
50 * * Of course, this deduction requires a quadratic-time
51 * loop over all pairs of edges in the grid, so it should
52 * be reserved until there's nothing easier left to be
53 * done.
54 *
55 * - The generalised grid support has made me (SGT) notice a
56 * possible extension to the loop-avoidance code. When you have
57 * a path of connected edges such that no other edges at all
58 * are incident on any vertex in the middle of the path - or,
59 * alternatively, such that any such edges are already known to
60 * be LINE_NO - then you know those edges are either all
61 * LINE_YES or all LINE_NO. Hence you can mentally merge the
62 * entire path into a single long curly edge for the purposes
63 * of loop avoidance, and look directly at whether or not the
64 * extreme endpoints of the path are connected by some other
65 * route. I find this coming up fairly often when I play on the
66 * octagonal grid setting, so it might be worth implementing in
67 * the solver.
68 *
69 * - (Just a speed optimisation.) Consider some todo list queue where every
70 * time we modify something we mark it for consideration by other bits of
71 * the solver, to save iteration over things that have already been done.
72 */
73
74 #include <stdio.h>
75 #include <stdlib.h>
76 #include <stddef.h>
77 #include <string.h>
78 #include <assert.h>
79 #include <ctype.h>
80 #include <math.h>
81
82 #include "puzzles.h"
83 #include "tree234.h"
84 #include "grid.h"
85
86 /* Debugging options */
87
88 /*
89 #define DEBUG_CACHES
90 #define SHOW_WORKING
91 #define DEBUG_DLINES
92 */
93
94 /* ----------------------------------------------------------------------
95 * Struct, enum and function declarations
96 */
97
98 enum {
99 COL_BACKGROUND,
100 COL_FOREGROUND,
101 COL_LINEUNKNOWN,
102 COL_HIGHLIGHT,
103 COL_MISTAKE,
104 COL_SATISFIED,
105 COL_FAINT,
106 NCOLOURS
107 };
108
109 struct game_state {
110 grid *game_grid;
111
112 /* Put -1 in a face that doesn't get a clue */
113 signed char *clues;
114
115 /* Array of line states, to store whether each line is
116 * YES, NO or UNKNOWN */
117 char *lines;
118
119 unsigned char *line_errors;
120
121 int solved;
122 int cheated;
123
124 /* Used in game_text_format(), so that it knows what type of
125 * grid it's trying to render as ASCII text. */
126 int grid_type;
127 };
128
129 enum solver_status {
130 SOLVER_SOLVED, /* This is the only solution the solver could find */
131 SOLVER_MISTAKE, /* This is definitely not a solution */
132 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
133 SOLVER_INCOMPLETE /* This may be a partial solution */
134 };
135
136 /* ------ Solver state ------ */
137 typedef struct solver_state {
138 game_state *state;
139 enum solver_status solver_status;
140 /* NB looplen is the number of dots that are joined together at a point, ie a
141 * looplen of 1 means there are no lines to a particular dot */
142 int *looplen;
143
144 /* Difficulty level of solver. Used by solver functions that want to
145 * vary their behaviour depending on the requested difficulty level. */
146 int diff;
147
148 /* caches */
149 char *dot_yes_count;
150 char *dot_no_count;
151 char *face_yes_count;
152 char *face_no_count;
153 char *dot_solved, *face_solved;
154 int *dotdsf;
155
156 /* Information for Normal level deductions:
157 * For each dline, store a bitmask for whether we know:
158 * (bit 0) at least one is YES
159 * (bit 1) at most one is YES */
160 char *dlines;
161
162 /* Hard level information */
163 int *linedsf;
164 } solver_state;
165
166 /*
167 * Difficulty levels. I do some macro ickery here to ensure that my
168 * enum and the various forms of my name list always match up.
169 */
170
171 #define DIFFLIST(A) \
172 A(EASY,Easy,e) \
173 A(NORMAL,Normal,n) \
174 A(TRICKY,Tricky,t) \
175 A(HARD,Hard,h)
176 #define ENUM(upper,title,lower) DIFF_ ## upper,
177 #define TITLE(upper,title,lower) #title,
178 #define ENCODE(upper,title,lower) #lower
179 #define CONFIG(upper,title,lower) ":" #title
180 enum { DIFFLIST(ENUM) DIFF_MAX };
181 static char const *const diffnames[] = { DIFFLIST(TITLE) };
182 static char const diffchars[] = DIFFLIST(ENCODE);
183 #define DIFFCONFIG DIFFLIST(CONFIG)
184
185 /*
186 * Solver routines, sorted roughly in order of computational cost.
187 * The solver will run the faster deductions first, and slower deductions are
188 * only invoked when the faster deductions are unable to make progress.
189 * Each function is associated with a difficulty level, so that the generated
190 * puzzles are solvable by applying only the functions with the chosen
191 * difficulty level or lower.
192 */
193 #define SOLVERLIST(A) \
194 A(trivial_deductions, DIFF_EASY) \
195 A(dline_deductions, DIFF_NORMAL) \
196 A(linedsf_deductions, DIFF_HARD) \
197 A(loop_deductions, DIFF_EASY)
198 #define SOLVER_FN_DECL(fn,diff) static int fn(solver_state *);
199 #define SOLVER_FN(fn,diff) &fn,
200 #define SOLVER_DIFF(fn,diff) diff,
201 SOLVERLIST(SOLVER_FN_DECL)
202 static int (*(solver_fns[]))(solver_state *) = { SOLVERLIST(SOLVER_FN) };
203 static int const solver_diffs[] = { SOLVERLIST(SOLVER_DIFF) };
204 const int NUM_SOLVERS = sizeof(solver_diffs)/sizeof(*solver_diffs);
205
206 struct game_params {
207 int w, h;
208 int diff;
209 int type;
210
211 /* Grid generation is expensive, so keep a (ref-counted) reference to the
212 * grid for these parameters, and only generate when required. */
213 grid *game_grid;
214 };
215
216 /* line_drawstate is the same as line_state, but with the extra ERROR
217 * possibility. The drawing code copies line_state to line_drawstate,
218 * except in the case that the line is an error. */
219 enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
220 enum line_drawstate { DS_LINE_YES, DS_LINE_UNKNOWN,
221 DS_LINE_NO, DS_LINE_ERROR };
222
223 #define OPP(line_state) \
224 (2 - line_state)
225
226
227 struct game_drawstate {
228 int started;
229 int tilesize;
230 int flashing;
231 char *lines;
232 char *clue_error;
233 char *clue_satisfied;
234 };
235
236 static char *validate_desc(game_params *params, char *desc);
237 static int dot_order(const game_state* state, int i, char line_type);
238 static int face_order(const game_state* state, int i, char line_type);
239 static solver_state *solve_game_rec(const solver_state *sstate);
240
241 #ifdef DEBUG_CACHES
242 static void check_caches(const solver_state* sstate);
243 #else
244 #define check_caches(s)
245 #endif
246
247 /* ------- List of grid generators ------- */
248 #define GRIDLIST(A) \
249 A(Squares,grid_new_square,3,3) \
250 A(Triangular,grid_new_triangular,3,3) \
251 A(Honeycomb,grid_new_honeycomb,3,3) \
252 A(Snub-Square,grid_new_snubsquare,3,3) \
253 A(Cairo,grid_new_cairo,3,4) \
254 A(Great-Hexagonal,grid_new_greathexagonal,3,3) \
255 A(Octagonal,grid_new_octagonal,3,3) \
256 A(Kites,grid_new_kites,3,3) \
257 A(Floret,grid_new_floret,1,2)
258
259 #define GRID_NAME(title,fn,amin,omin) #title,
260 #define GRID_CONFIG(title,fn,amin,omin) ":" #title
261 #define GRID_FN(title,fn,amin,omin) &fn,
262 #define GRID_SIZES(title,fn,amin,omin) \
263 {amin, omin, \
264 "Width and height for this grid type must both be at least " #amin, \
265 "At least one of width and height for this grid type must be at least " #omin,},
266 static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
267 #define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
268 static grid * (*(grid_fns[]))(int w, int h) = { GRIDLIST(GRID_FN) };
269 #define NUM_GRID_TYPES (sizeof(grid_fns) / sizeof(grid_fns[0]))
270 static const struct {
271 int amin, omin;
272 char *aerr, *oerr;
273 } grid_size_limits[] = { GRIDLIST(GRID_SIZES) };
274
275 /* Generates a (dynamically allocated) new grid, according to the
276 * type and size requested in params. Does nothing if the grid is already
277 * generated. The allocated grid is owned by the params object, and will be
278 * freed in free_params(). */
279 static void params_generate_grid(game_params *params)
280 {
281 if (!params->game_grid) {
282 params->game_grid = grid_fns[params->type](params->w, params->h);
283 }
284 }
285
286 /* ----------------------------------------------------------------------
287 * Preprocessor magic
288 */
289
290 /* General constants */
291 #define PREFERRED_TILE_SIZE 32
292 #define BORDER(tilesize) ((tilesize) / 2)
293 #define FLASH_TIME 0.5F
294
295 #define BIT_SET(field, bit) ((field) & (1<<(bit)))
296
297 #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
298 ((field) |= (1<<(bit)), TRUE))
299
300 #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
301 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
302
303 #define CLUE2CHAR(c) \
304 ((c < 0) ? ' ' : c + '0')
305
306 /* ----------------------------------------------------------------------
307 * General struct manipulation and other straightforward code
308 */
309
310 static game_state *dup_game(game_state *state)
311 {
312 game_state *ret = snew(game_state);
313
314 ret->game_grid = state->game_grid;
315 ret->game_grid->refcount++;
316
317 ret->solved = state->solved;
318 ret->cheated = state->cheated;
319
320 ret->clues = snewn(state->game_grid->num_faces, signed char);
321 memcpy(ret->clues, state->clues, state->game_grid->num_faces);
322
323 ret->lines = snewn(state->game_grid->num_edges, char);
324 memcpy(ret->lines, state->lines, state->game_grid->num_edges);
325
326 ret->line_errors = snewn(state->game_grid->num_edges, unsigned char);
327 memcpy(ret->line_errors, state->line_errors, state->game_grid->num_edges);
328
329 ret->grid_type = state->grid_type;
330 return ret;
331 }
332
333 static void free_game(game_state *state)
334 {
335 if (state) {
336 grid_free(state->game_grid);
337 sfree(state->clues);
338 sfree(state->lines);
339 sfree(state->line_errors);
340 sfree(state);
341 }
342 }
343
344 static solver_state *new_solver_state(game_state *state, int diff) {
345 int i;
346 int num_dots = state->game_grid->num_dots;
347 int num_faces = state->game_grid->num_faces;
348 int num_edges = state->game_grid->num_edges;
349 solver_state *ret = snew(solver_state);
350
351 ret->state = dup_game(state);
352
353 ret->solver_status = SOLVER_INCOMPLETE;
354 ret->diff = diff;
355
356 ret->dotdsf = snew_dsf(num_dots);
357 ret->looplen = snewn(num_dots, int);
358
359 for (i = 0; i < num_dots; i++) {
360 ret->looplen[i] = 1;
361 }
362
363 ret->dot_solved = snewn(num_dots, char);
364 ret->face_solved = snewn(num_faces, char);
365 memset(ret->dot_solved, FALSE, num_dots);
366 memset(ret->face_solved, FALSE, num_faces);
367
368 ret->dot_yes_count = snewn(num_dots, char);
369 memset(ret->dot_yes_count, 0, num_dots);
370 ret->dot_no_count = snewn(num_dots, char);
371 memset(ret->dot_no_count, 0, num_dots);
372 ret->face_yes_count = snewn(num_faces, char);
373 memset(ret->face_yes_count, 0, num_faces);
374 ret->face_no_count = snewn(num_faces, char);
375 memset(ret->face_no_count, 0, num_faces);
376
377 if (diff < DIFF_NORMAL) {
378 ret->dlines = NULL;
379 } else {
380 ret->dlines = snewn(2*num_edges, char);
381 memset(ret->dlines, 0, 2*num_edges);
382 }
383
384 if (diff < DIFF_HARD) {
385 ret->linedsf = NULL;
386 } else {
387 ret->linedsf = snew_dsf(state->game_grid->num_edges);
388 }
389
390 return ret;
391 }
392
393 static void free_solver_state(solver_state *sstate) {
394 if (sstate) {
395 free_game(sstate->state);
396 sfree(sstate->dotdsf);
397 sfree(sstate->looplen);
398 sfree(sstate->dot_solved);
399 sfree(sstate->face_solved);
400 sfree(sstate->dot_yes_count);
401 sfree(sstate->dot_no_count);
402 sfree(sstate->face_yes_count);
403 sfree(sstate->face_no_count);
404
405 /* OK, because sfree(NULL) is a no-op */
406 sfree(sstate->dlines);
407 sfree(sstate->linedsf);
408
409 sfree(sstate);
410 }
411 }
412
413 static solver_state *dup_solver_state(const solver_state *sstate) {
414 game_state *state = sstate->state;
415 int num_dots = state->game_grid->num_dots;
416 int num_faces = state->game_grid->num_faces;
417 int num_edges = state->game_grid->num_edges;
418 solver_state *ret = snew(solver_state);
419
420 ret->state = state = dup_game(sstate->state);
421
422 ret->solver_status = sstate->solver_status;
423 ret->diff = sstate->diff;
424
425 ret->dotdsf = snewn(num_dots, int);
426 ret->looplen = snewn(num_dots, int);
427 memcpy(ret->dotdsf, sstate->dotdsf,
428 num_dots * sizeof(int));
429 memcpy(ret->looplen, sstate->looplen,
430 num_dots * sizeof(int));
431
432 ret->dot_solved = snewn(num_dots, char);
433 ret->face_solved = snewn(num_faces, char);
434 memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
435 memcpy(ret->face_solved, sstate->face_solved, num_faces);
436
437 ret->dot_yes_count = snewn(num_dots, char);
438 memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
439 ret->dot_no_count = snewn(num_dots, char);
440 memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
441
442 ret->face_yes_count = snewn(num_faces, char);
443 memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
444 ret->face_no_count = snewn(num_faces, char);
445 memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
446
447 if (sstate->dlines) {
448 ret->dlines = snewn(2*num_edges, char);
449 memcpy(ret->dlines, sstate->dlines,
450 2*num_edges);
451 } else {
452 ret->dlines = NULL;
453 }
454
455 if (sstate->linedsf) {
456 ret->linedsf = snewn(num_edges, int);
457 memcpy(ret->linedsf, sstate->linedsf,
458 num_edges * sizeof(int));
459 } else {
460 ret->linedsf = NULL;
461 }
462
463 return ret;
464 }
465
466 static game_params *default_params(void)
467 {
468 game_params *ret = snew(game_params);
469
470 #ifdef SLOW_SYSTEM
471 ret->h = 7;
472 ret->w = 7;
473 #else
474 ret->h = 10;
475 ret->w = 10;
476 #endif
477 ret->diff = DIFF_EASY;
478 ret->type = 0;
479
480 ret->game_grid = NULL;
481
482 return ret;
483 }
484
485 static game_params *dup_params(game_params *params)
486 {
487 game_params *ret = snew(game_params);
488
489 *ret = *params; /* structure copy */
490 if (ret->game_grid) {
491 ret->game_grid->refcount++;
492 }
493 return ret;
494 }
495
496 static const game_params presets[] = {
497 #ifdef SMALL_SCREEN
498 { 7, 7, DIFF_EASY, 0, NULL },
499 { 7, 7, DIFF_NORMAL, 0, NULL },
500 { 7, 7, DIFF_HARD, 0, NULL },
501 { 7, 7, DIFF_HARD, 1, NULL },
502 { 7, 7, DIFF_HARD, 2, NULL },
503 { 5, 5, DIFF_HARD, 3, NULL },
504 { 7, 7, DIFF_HARD, 4, NULL },
505 { 5, 4, DIFF_HARD, 5, NULL },
506 { 5, 5, DIFF_HARD, 6, NULL },
507 { 5, 5, DIFF_HARD, 7, NULL },
508 { 3, 3, DIFF_HARD, 8, NULL },
509 #else
510 { 7, 7, DIFF_EASY, 0, NULL },
511 { 10, 10, DIFF_EASY, 0, NULL },
512 { 7, 7, DIFF_NORMAL, 0, NULL },
513 { 10, 10, DIFF_NORMAL, 0, NULL },
514 { 7, 7, DIFF_HARD, 0, NULL },
515 { 10, 10, DIFF_HARD, 0, NULL },
516 { 10, 10, DIFF_HARD, 1, NULL },
517 { 12, 10, DIFF_HARD, 2, NULL },
518 { 7, 7, DIFF_HARD, 3, NULL },
519 { 9, 9, DIFF_HARD, 4, NULL },
520 { 5, 4, DIFF_HARD, 5, NULL },
521 { 7, 7, DIFF_HARD, 6, NULL },
522 { 5, 5, DIFF_HARD, 7, NULL },
523 { 5, 5, DIFF_HARD, 8, NULL },
524 #endif
525 };
526
527 static int game_fetch_preset(int i, char **name, game_params **params)
528 {
529 game_params *tmppar;
530 char buf[80];
531
532 if (i < 0 || i >= lenof(presets))
533 return FALSE;
534
535 tmppar = snew(game_params);
536 *tmppar = presets[i];
537 *params = tmppar;
538 sprintf(buf, "%dx%d %s - %s", tmppar->h, tmppar->w,
539 gridnames[tmppar->type], diffnames[tmppar->diff]);
540 *name = dupstr(buf);
541
542 return TRUE;
543 }
544
545 static void free_params(game_params *params)
546 {
547 if (params->game_grid) {
548 grid_free(params->game_grid);
549 }
550 sfree(params);
551 }
552
553 static void decode_params(game_params *params, char const *string)
554 {
555 if (params->game_grid) {
556 grid_free(params->game_grid);
557 params->game_grid = NULL;
558 }
559 params->h = params->w = atoi(string);
560 params->diff = DIFF_EASY;
561 while (*string && isdigit((unsigned char)*string)) string++;
562 if (*string == 'x') {
563 string++;
564 params->h = atoi(string);
565 while (*string && isdigit((unsigned char)*string)) string++;
566 }
567 if (*string == 't') {
568 string++;
569 params->type = atoi(string);
570 while (*string && isdigit((unsigned char)*string)) string++;
571 }
572 if (*string == 'd') {
573 int i;
574 string++;
575 for (i = 0; i < DIFF_MAX; i++)
576 if (*string == diffchars[i])
577 params->diff = i;
578 if (*string) string++;
579 }
580 }
581
582 static char *encode_params(game_params *params, int full)
583 {
584 char str[80];
585 sprintf(str, "%dx%dt%d", params->w, params->h, params->type);
586 if (full)
587 sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
588 return dupstr(str);
589 }
590
591 static config_item *game_configure(game_params *params)
592 {
593 config_item *ret;
594 char buf[80];
595
596 ret = snewn(5, config_item);
597
598 ret[0].name = "Width";
599 ret[0].type = C_STRING;
600 sprintf(buf, "%d", params->w);
601 ret[0].sval = dupstr(buf);
602 ret[0].ival = 0;
603
604 ret[1].name = "Height";
605 ret[1].type = C_STRING;
606 sprintf(buf, "%d", params->h);
607 ret[1].sval = dupstr(buf);
608 ret[1].ival = 0;
609
610 ret[2].name = "Grid type";
611 ret[2].type = C_CHOICES;
612 ret[2].sval = GRID_CONFIGS;
613 ret[2].ival = params->type;
614
615 ret[3].name = "Difficulty";
616 ret[3].type = C_CHOICES;
617 ret[3].sval = DIFFCONFIG;
618 ret[3].ival = params->diff;
619
620 ret[4].name = NULL;
621 ret[4].type = C_END;
622 ret[4].sval = NULL;
623 ret[4].ival = 0;
624
625 return ret;
626 }
627
628 static game_params *custom_params(config_item *cfg)
629 {
630 game_params *ret = snew(game_params);
631
632 ret->w = atoi(cfg[0].sval);
633 ret->h = atoi(cfg[1].sval);
634 ret->type = cfg[2].ival;
635 ret->diff = cfg[3].ival;
636
637 ret->game_grid = NULL;
638 return ret;
639 }
640
641 static char *validate_params(game_params *params, int full)
642 {
643 if (params->type < 0 || params->type >= NUM_GRID_TYPES)
644 return "Illegal grid type";
645 if (params->w < grid_size_limits[params->type].amin ||
646 params->h < grid_size_limits[params->type].amin)
647 return grid_size_limits[params->type].aerr;
648 if (params->w < grid_size_limits[params->type].omin &&
649 params->h < grid_size_limits[params->type].omin)
650 return grid_size_limits[params->type].oerr;
651
652 /*
653 * This shouldn't be able to happen at all, since decode_params
654 * and custom_params will never generate anything that isn't
655 * within range.
656 */
657 assert(params->diff < DIFF_MAX);
658
659 return NULL;
660 }
661
662 /* Returns a newly allocated string describing the current puzzle */
663 static char *state_to_text(const game_state *state)
664 {
665 grid *g = state->game_grid;
666 char *retval;
667 int num_faces = g->num_faces;
668 char *description = snewn(num_faces + 1, char);
669 char *dp = description;
670 int empty_count = 0;
671 int i;
672
673 for (i = 0; i < num_faces; i++) {
674 if (state->clues[i] < 0) {
675 if (empty_count > 25) {
676 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
677 empty_count = 0;
678 }
679 empty_count++;
680 } else {
681 if (empty_count) {
682 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
683 empty_count = 0;
684 }
685 dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
686 }
687 }
688
689 if (empty_count)
690 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
691
692 retval = dupstr(description);
693 sfree(description);
694
695 return retval;
696 }
697
698 /* We require that the params pass the test in validate_params and that the
699 * description fills the entire game area */
700 static char *validate_desc(game_params *params, char *desc)
701 {
702 int count = 0;
703 grid *g;
704 params_generate_grid(params);
705 g = params->game_grid;
706
707 for (; *desc; ++desc) {
708 if (*desc >= '0' && *desc <= '9') {
709 count++;
710 continue;
711 }
712 if (*desc >= 'a') {
713 count += *desc - 'a' + 1;
714 continue;
715 }
716 return "Unknown character in description";
717 }
718
719 if (count < g->num_faces)
720 return "Description too short for board size";
721 if (count > g->num_faces)
722 return "Description too long for board size";
723
724 return NULL;
725 }
726
727 /* Sums the lengths of the numbers in range [0,n) */
728 /* See equivalent function in solo.c for justification of this. */
729 static int len_0_to_n(int n)
730 {
731 int len = 1; /* Counting 0 as a bit of a special case */
732 int i;
733
734 for (i = 1; i < n; i *= 10) {
735 len += max(n - i, 0);
736 }
737
738 return len;
739 }
740
741 static char *encode_solve_move(const game_state *state)
742 {
743 int len;
744 char *ret, *p;
745 int i;
746 int num_edges = state->game_grid->num_edges;
747
748 /* This is going to return a string representing the moves needed to set
749 * every line in a grid to be the same as the ones in 'state'. The exact
750 * length of this string is predictable. */
751
752 len = 1; /* Count the 'S' prefix */
753 /* Numbers in all lines */
754 len += len_0_to_n(num_edges);
755 /* For each line we also have a letter */
756 len += num_edges;
757
758 ret = snewn(len + 1, char);
759 p = ret;
760
761 p += sprintf(p, "S");
762
763 for (i = 0; i < num_edges; i++) {
764 switch (state->lines[i]) {
765 case LINE_YES:
766 p += sprintf(p, "%dy", i);
767 break;
768 case LINE_NO:
769 p += sprintf(p, "%dn", i);
770 break;
771 }
772 }
773
774 /* No point in doing sums like that if they're going to be wrong */
775 assert(strlen(ret) <= (size_t)len);
776 return ret;
777 }
778
779 static game_ui *new_ui(game_state *state)
780 {
781 return NULL;
782 }
783
784 static void free_ui(game_ui *ui)
785 {
786 }
787
788 static char *encode_ui(game_ui *ui)
789 {
790 return NULL;
791 }
792
793 static void decode_ui(game_ui *ui, char *encoding)
794 {
795 }
796
797 static void game_changed_state(game_ui *ui, game_state *oldstate,
798 game_state *newstate)
799 {
800 }
801
802 static void game_compute_size(game_params *params, int tilesize,
803 int *x, int *y)
804 {
805 grid *g;
806 int grid_width, grid_height, rendered_width, rendered_height;
807
808 params_generate_grid(params);
809 g = params->game_grid;
810 grid_width = g->highest_x - g->lowest_x;
811 grid_height = g->highest_y - g->lowest_y;
812 /* multiply first to minimise rounding error on integer division */
813 rendered_width = grid_width * tilesize / g->tilesize;
814 rendered_height = grid_height * tilesize / g->tilesize;
815 *x = rendered_width + 2 * BORDER(tilesize) + 1;
816 *y = rendered_height + 2 * BORDER(tilesize) + 1;
817 }
818
819 static void game_set_size(drawing *dr, game_drawstate *ds,
820 game_params *params, int tilesize)
821 {
822 ds->tilesize = tilesize;
823 }
824
825 static float *game_colours(frontend *fe, int *ncolours)
826 {
827 float *ret = snewn(4 * NCOLOURS, float);
828
829 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
830
831 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
832 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
833 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
834
835 ret[COL_LINEUNKNOWN * 3 + 0] = 0.8F;
836 ret[COL_LINEUNKNOWN * 3 + 1] = 0.8F;
837 ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
838
839 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
840 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
841 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
842
843 ret[COL_MISTAKE * 3 + 0] = 1.0F;
844 ret[COL_MISTAKE * 3 + 1] = 0.0F;
845 ret[COL_MISTAKE * 3 + 2] = 0.0F;
846
847 ret[COL_SATISFIED * 3 + 0] = 0.0F;
848 ret[COL_SATISFIED * 3 + 1] = 0.0F;
849 ret[COL_SATISFIED * 3 + 2] = 0.0F;
850
851 /* We want the faint lines to be a bit darker than the background.
852 * Except if the background is pretty dark already; then it ought to be a
853 * bit lighter. Oy vey.
854 */
855 ret[COL_FAINT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
856 ret[COL_FAINT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
857 ret[COL_FAINT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.9F;
858
859 *ncolours = NCOLOURS;
860 return ret;
861 }
862
863 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
864 {
865 struct game_drawstate *ds = snew(struct game_drawstate);
866 int num_faces = state->game_grid->num_faces;
867 int num_edges = state->game_grid->num_edges;
868
869 ds->tilesize = 0;
870 ds->started = 0;
871 ds->lines = snewn(num_edges, char);
872 ds->clue_error = snewn(num_faces, char);
873 ds->clue_satisfied = snewn(num_faces, char);
874 ds->flashing = 0;
875
876 memset(ds->lines, LINE_UNKNOWN, num_edges);
877 memset(ds->clue_error, 0, num_faces);
878 memset(ds->clue_satisfied, 0, num_faces);
879
880 return ds;
881 }
882
883 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
884 {
885 sfree(ds->clue_error);
886 sfree(ds->clue_satisfied);
887 sfree(ds->lines);
888 sfree(ds);
889 }
890
891 static int game_timing_state(game_state *state, game_ui *ui)
892 {
893 return TRUE;
894 }
895
896 static float game_anim_length(game_state *oldstate, game_state *newstate,
897 int dir, game_ui *ui)
898 {
899 return 0.0F;
900 }
901
902 static int game_can_format_as_text_now(game_params *params)
903 {
904 if (params->type != 0)
905 return FALSE;
906 return TRUE;
907 }
908
909 static char *game_text_format(game_state *state)
910 {
911 int w, h, W, H;
912 int x, y, i;
913 int cell_size;
914 char *ret;
915 grid *g = state->game_grid;
916 grid_face *f;
917
918 assert(state->grid_type == 0);
919
920 /* Work out the basic size unit */
921 f = g->faces; /* first face */
922 assert(f->order == 4);
923 /* The dots are ordered clockwise, so the two opposite
924 * corners are guaranteed to span the square */
925 cell_size = abs(f->dots[0]->x - f->dots[2]->x);
926
927 w = (g->highest_x - g->lowest_x) / cell_size;
928 h = (g->highest_y - g->lowest_y) / cell_size;
929
930 /* Create a blank "canvas" to "draw" on */
931 W = 2 * w + 2;
932 H = 2 * h + 1;
933 ret = snewn(W * H + 1, char);
934 for (y = 0; y < H; y++) {
935 for (x = 0; x < W-1; x++) {
936 ret[y*W + x] = ' ';
937 }
938 ret[y*W + W-1] = '\n';
939 }
940 ret[H*W] = '\0';
941
942 /* Fill in edge info */
943 for (i = 0; i < g->num_edges; i++) {
944 grid_edge *e = g->edges + i;
945 /* Cell coordinates, from (0,0) to (w-1,h-1) */
946 int x1 = (e->dot1->x - g->lowest_x) / cell_size;
947 int x2 = (e->dot2->x - g->lowest_x) / cell_size;
948 int y1 = (e->dot1->y - g->lowest_y) / cell_size;
949 int y2 = (e->dot2->y - g->lowest_y) / cell_size;
950 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
951 * cell coordinates) */
952 x = x1 + x2;
953 y = y1 + y2;
954 switch (state->lines[i]) {
955 case LINE_YES:
956 ret[y*W + x] = (y1 == y2) ? '-' : '|';
957 break;
958 case LINE_NO:
959 ret[y*W + x] = 'x';
960 break;
961 case LINE_UNKNOWN:
962 break; /* already a space */
963 default:
964 assert(!"Illegal line state");
965 }
966 }
967
968 /* Fill in clues */
969 for (i = 0; i < g->num_faces; i++) {
970 int x1, x2, y1, y2;
971
972 f = g->faces + i;
973 assert(f->order == 4);
974 /* Cell coordinates, from (0,0) to (w-1,h-1) */
975 x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
976 x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
977 y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
978 y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
979 /* Midpoint, in canvas coordinates */
980 x = x1 + x2;
981 y = y1 + y2;
982 ret[y*W + x] = CLUE2CHAR(state->clues[i]);
983 }
984 return ret;
985 }
986
987 /* ----------------------------------------------------------------------
988 * Debug code
989 */
990
991 #ifdef DEBUG_CACHES
992 static void check_caches(const solver_state* sstate)
993 {
994 int i;
995 const game_state *state = sstate->state;
996 const grid *g = state->game_grid;
997
998 for (i = 0; i < g->num_dots; i++) {
999 assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
1000 assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
1001 }
1002
1003 for (i = 0; i < g->num_faces; i++) {
1004 assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
1005 assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
1006 }
1007 }
1008
1009 #if 0
1010 #define check_caches(s) \
1011 do { \
1012 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
1013 check_caches(s); \
1014 } while (0)
1015 #endif
1016 #endif /* DEBUG_CACHES */
1017
1018 /* ----------------------------------------------------------------------
1019 * Solver utility functions
1020 */
1021
1022 /* Sets the line (with index i) to the new state 'line_new', and updates
1023 * the cached counts of any affected faces and dots.
1024 * Returns TRUE if this actually changed the line's state. */
1025 static int solver_set_line(solver_state *sstate, int i,
1026 enum line_state line_new
1027 #ifdef SHOW_WORKING
1028 , const char *reason
1029 #endif
1030 )
1031 {
1032 game_state *state = sstate->state;
1033 grid *g;
1034 grid_edge *e;
1035
1036 assert(line_new != LINE_UNKNOWN);
1037
1038 check_caches(sstate);
1039
1040 if (state->lines[i] == line_new) {
1041 return FALSE; /* nothing changed */
1042 }
1043 state->lines[i] = line_new;
1044
1045 #ifdef SHOW_WORKING
1046 fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
1047 i, line_new == LINE_YES ? "YES" : "NO",
1048 reason);
1049 #endif
1050
1051 g = state->game_grid;
1052 e = g->edges + i;
1053
1054 /* Update the cache for both dots and both faces affected by this. */
1055 if (line_new == LINE_YES) {
1056 sstate->dot_yes_count[e->dot1 - g->dots]++;
1057 sstate->dot_yes_count[e->dot2 - g->dots]++;
1058 if (e->face1) {
1059 sstate->face_yes_count[e->face1 - g->faces]++;
1060 }
1061 if (e->face2) {
1062 sstate->face_yes_count[e->face2 - g->faces]++;
1063 }
1064 } else {
1065 sstate->dot_no_count[e->dot1 - g->dots]++;
1066 sstate->dot_no_count[e->dot2 - g->dots]++;
1067 if (e->face1) {
1068 sstate->face_no_count[e->face1 - g->faces]++;
1069 }
1070 if (e->face2) {
1071 sstate->face_no_count[e->face2 - g->faces]++;
1072 }
1073 }
1074
1075 check_caches(sstate);
1076 return TRUE;
1077 }
1078
1079 #ifdef SHOW_WORKING
1080 #define solver_set_line(a, b, c) \
1081 solver_set_line(a, b, c, __FUNCTION__)
1082 #endif
1083
1084 /*
1085 * Merge two dots due to the existence of an edge between them.
1086 * Updates the dsf tracking equivalence classes, and keeps track of
1087 * the length of path each dot is currently a part of.
1088 * Returns TRUE if the dots were already linked, ie if they are part of a
1089 * closed loop, and false otherwise.
1090 */
1091 static int merge_dots(solver_state *sstate, int edge_index)
1092 {
1093 int i, j, len;
1094 grid *g = sstate->state->game_grid;
1095 grid_edge *e = g->edges + edge_index;
1096
1097 i = e->dot1 - g->dots;
1098 j = e->dot2 - g->dots;
1099
1100 i = dsf_canonify(sstate->dotdsf, i);
1101 j = dsf_canonify(sstate->dotdsf, j);
1102
1103 if (i == j) {
1104 return TRUE;
1105 } else {
1106 len = sstate->looplen[i] + sstate->looplen[j];
1107 dsf_merge(sstate->dotdsf, i, j);
1108 i = dsf_canonify(sstate->dotdsf, i);
1109 sstate->looplen[i] = len;
1110 return FALSE;
1111 }
1112 }
1113
1114 /* Merge two lines because the solver has deduced that they must be either
1115 * identical or opposite. Returns TRUE if this is new information, otherwise
1116 * FALSE. */
1117 static int merge_lines(solver_state *sstate, int i, int j, int inverse
1118 #ifdef SHOW_WORKING
1119 , const char *reason
1120 #endif
1121 )
1122 {
1123 int inv_tmp;
1124
1125 assert(i < sstate->state->game_grid->num_edges);
1126 assert(j < sstate->state->game_grid->num_edges);
1127
1128 i = edsf_canonify(sstate->linedsf, i, &inv_tmp);
1129 inverse ^= inv_tmp;
1130 j = edsf_canonify(sstate->linedsf, j, &inv_tmp);
1131 inverse ^= inv_tmp;
1132
1133 edsf_merge(sstate->linedsf, i, j, inverse);
1134
1135 #ifdef SHOW_WORKING
1136 if (i != j) {
1137 fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
1138 __FUNCTION__, i, j,
1139 inverse ? "inverse " : "", reason);
1140 }
1141 #endif
1142 return (i != j);
1143 }
1144
1145 #ifdef SHOW_WORKING
1146 #define merge_lines(a, b, c, d) \
1147 merge_lines(a, b, c, d, __FUNCTION__)
1148 #endif
1149
1150 /* Count the number of lines of a particular type currently going into the
1151 * given dot. */
1152 static int dot_order(const game_state* state, int dot, char line_type)
1153 {
1154 int n = 0;
1155 grid *g = state->game_grid;
1156 grid_dot *d = g->dots + dot;
1157 int i;
1158
1159 for (i = 0; i < d->order; i++) {
1160 grid_edge *e = d->edges[i];
1161 if (state->lines[e - g->edges] == line_type)
1162 ++n;
1163 }
1164 return n;
1165 }
1166
1167 /* Count the number of lines of a particular type currently surrounding the
1168 * given face */
1169 static int face_order(const game_state* state, int face, char line_type)
1170 {
1171 int n = 0;
1172 grid *g = state->game_grid;
1173 grid_face *f = g->faces + face;
1174 int i;
1175
1176 for (i = 0; i < f->order; i++) {
1177 grid_edge *e = f->edges[i];
1178 if (state->lines[e - g->edges] == line_type)
1179 ++n;
1180 }
1181 return n;
1182 }
1183
1184 /* Set all lines bordering a dot of type old_type to type new_type
1185 * Return value tells caller whether this function actually did anything */
1186 static int dot_setall(solver_state *sstate, int dot,
1187 char old_type, char new_type)
1188 {
1189 int retval = FALSE, r;
1190 game_state *state = sstate->state;
1191 grid *g;
1192 grid_dot *d;
1193 int i;
1194
1195 if (old_type == new_type)
1196 return FALSE;
1197
1198 g = state->game_grid;
1199 d = g->dots + dot;
1200
1201 for (i = 0; i < d->order; i++) {
1202 int line_index = d->edges[i] - g->edges;
1203 if (state->lines[line_index] == old_type) {
1204 r = solver_set_line(sstate, line_index, new_type);
1205 assert(r == TRUE);
1206 retval = TRUE;
1207 }
1208 }
1209 return retval;
1210 }
1211
1212 /* Set all lines bordering a face of type old_type to type new_type */
1213 static int face_setall(solver_state *sstate, int face,
1214 char old_type, char new_type)
1215 {
1216 int retval = FALSE, r;
1217 game_state *state = sstate->state;
1218 grid *g;
1219 grid_face *f;
1220 int i;
1221
1222 if (old_type == new_type)
1223 return FALSE;
1224
1225 g = state->game_grid;
1226 f = g->faces + face;
1227
1228 for (i = 0; i < f->order; i++) {
1229 int line_index = f->edges[i] - g->edges;
1230 if (state->lines[line_index] == old_type) {
1231 r = solver_set_line(sstate, line_index, new_type);
1232 assert(r == TRUE);
1233 retval = TRUE;
1234 }
1235 }
1236 return retval;
1237 }
1238
1239 /* ----------------------------------------------------------------------
1240 * Loop generation and clue removal
1241 */
1242
1243 /* We're going to store lists of current candidate faces for colouring black
1244 * or white.
1245 * Each face gets a 'score', which tells us how adding that face right
1246 * now would affect the curliness of the solution loop. We're trying to
1247 * maximise that quantity so will bias our random selection of faces to
1248 * colour those with high scores */
1249 struct face_score {
1250 int white_score;
1251 int black_score;
1252 unsigned long random;
1253 /* No need to store a grid_face* here. The 'face_scores' array will
1254 * be a list of 'face_score' objects, one for each face of the grid, so
1255 * the position (index) within the 'face_scores' array will determine
1256 * which face corresponds to a particular face_score.
1257 * Having a single 'face_scores' array for all faces simplifies memory
1258 * management, and probably improves performance, because we don't have to
1259 * malloc/free each individual face_score, and we don't have to maintain
1260 * a mapping from grid_face* pointers to face_score* pointers.
1261 */
1262 };
1263
1264 static int generic_sort_cmpfn(void *v1, void *v2, size_t offset)
1265 {
1266 struct face_score *f1 = v1;
1267 struct face_score *f2 = v2;
1268 int r;
1269
1270 r = *(int *)((char *)f2 + offset) - *(int *)((char *)f1 + offset);
1271 if (r) {
1272 return r;
1273 }
1274
1275 if (f1->random < f2->random)
1276 return -1;
1277 else if (f1->random > f2->random)
1278 return 1;
1279
1280 /*
1281 * It's _just_ possible that two faces might have been given
1282 * the same random value. In that situation, fall back to
1283 * comparing based on the positions within the face_scores list.
1284 * This introduces a tiny directional bias, but not a significant one.
1285 */
1286 return f1 - f2;
1287 }
1288
1289 static int white_sort_cmpfn(void *v1, void *v2)
1290 {
1291 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,white_score));
1292 }
1293
1294 static int black_sort_cmpfn(void *v1, void *v2)
1295 {
1296 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,black_score));
1297 }
1298
1299 enum face_colour { FACE_WHITE, FACE_GREY, FACE_BLACK };
1300
1301 /* face should be of type grid_face* here. */
1302 #define FACE_COLOUR(face) \
1303 ( (face) == NULL ? FACE_BLACK : \
1304 board[(face) - g->faces] )
1305
1306 /* 'board' is an array of these enums, indicating which faces are
1307 * currently black/white/grey. 'colour' is FACE_WHITE or FACE_BLACK.
1308 * Returns whether it's legal to colour the given face with this colour. */
1309 static int can_colour_face(grid *g, char* board, int face_index,
1310 enum face_colour colour)
1311 {
1312 int i, j;
1313 grid_face *test_face = g->faces + face_index;
1314 grid_face *starting_face, *current_face;
1315 grid_dot *starting_dot;
1316 int transitions;
1317 int current_state, s; /* booleans: equal or not-equal to 'colour' */
1318 int found_same_coloured_neighbour = FALSE;
1319 assert(board[face_index] != colour);
1320
1321 /* Can only consider a face for colouring if it's adjacent to a face
1322 * with the same colour. */
1323 for (i = 0; i < test_face->order; i++) {
1324 grid_edge *e = test_face->edges[i];
1325 grid_face *f = (e->face1 == test_face) ? e->face2 : e->face1;
1326 if (FACE_COLOUR(f) == colour) {
1327 found_same_coloured_neighbour = TRUE;
1328 break;
1329 }
1330 }
1331 if (!found_same_coloured_neighbour)
1332 return FALSE;
1333
1334 /* Need to avoid creating a loop of faces of this colour around some
1335 * differently-coloured faces.
1336 * Also need to avoid meeting a same-coloured face at a corner, with
1337 * other-coloured faces in between. Here's a simple test that (I believe)
1338 * takes care of both these conditions:
1339 *
1340 * Take the circular path formed by this face's edges, and inflate it
1341 * slightly outwards. Imagine walking around this path and consider
1342 * the faces that you visit in sequence. This will include all faces
1343 * touching the given face, either along an edge or just at a corner.
1344 * Count the number of 'colour'/not-'colour' transitions you encounter, as
1345 * you walk along the complete loop. This will obviously turn out to be
1346 * an even number.
1347 * If 0, we're either in the middle of an "island" of this colour (should
1348 * be impossible as we're not supposed to create black or white loops),
1349 * or we're about to start a new island - also not allowed.
1350 * If 4 or greater, there are too many separate coloured regions touching
1351 * this face, and colouring it would create a loop or a corner-violation.
1352 * The only allowed case is when the count is exactly 2. */
1353
1354 /* i points to a dot around the test face.
1355 * j points to a face around the i^th dot.
1356 * The current face will always be:
1357 * test_face->dots[i]->faces[j]
1358 * We assume dots go clockwise around the test face,
1359 * and faces go clockwise around dots. */
1360
1361 /*
1362 * The end condition is slightly fiddly. In sufficiently strange
1363 * degenerate grids, our test face may be adjacent to the same
1364 * other face multiple times (typically if it's the exterior
1365 * face). Consider this, in particular:
1366 *
1367 * +--+
1368 * | |
1369 * +--+--+
1370 * | | |
1371 * +--+--+
1372 *
1373 * The bottom left face there is adjacent to the exterior face
1374 * twice, so we can't just terminate our iteration when we reach
1375 * the same _face_ we started at. Furthermore, we can't
1376 * condition on having the same (i,j) pair either, because
1377 * several (i,j) pairs identify the bottom left contiguity with
1378 * the exterior face! We canonicalise the (i,j) pair by taking
1379 * one step around before we set the termination tracking.
1380 */
1381
1382 i = j = 0;
1383 current_face = test_face->dots[0]->faces[0];
1384 if (current_face == test_face) {
1385 j = 1;
1386 current_face = test_face->dots[0]->faces[1];
1387 }
1388 transitions = 0;
1389 current_state = (FACE_COLOUR(current_face) == colour);
1390 starting_dot = NULL;
1391 starting_face = NULL;
1392 while (TRUE) {
1393 /* Advance to next face.
1394 * Need to loop here because it might take several goes to
1395 * find it. */
1396 while (TRUE) {
1397 j++;
1398 if (j == test_face->dots[i]->order)
1399 j = 0;
1400
1401 if (test_face->dots[i]->faces[j] == test_face) {
1402 /* Advance to next dot round test_face, then
1403 * find current_face around new dot
1404 * and advance to the next face clockwise */
1405 i++;
1406 if (i == test_face->order)
1407 i = 0;
1408 for (j = 0; j < test_face->dots[i]->order; j++) {
1409 if (test_face->dots[i]->faces[j] == current_face)
1410 break;
1411 }
1412 /* Must actually find current_face around new dot,
1413 * or else something's wrong with the grid. */
1414 assert(j != test_face->dots[i]->order);
1415 /* Found, so advance to next face and try again */
1416 } else {
1417 break;
1418 }
1419 }
1420 /* (i,j) are now advanced to next face */
1421 current_face = test_face->dots[i]->faces[j];
1422 s = (FACE_COLOUR(current_face) == colour);
1423 if (!starting_dot) {
1424 starting_dot = test_face->dots[i];
1425 starting_face = current_face;
1426 current_state = s;
1427 } else {
1428 if (s != current_state) {
1429 ++transitions;
1430 current_state = s;
1431 if (transitions > 2)
1432 break;
1433 }
1434 if (test_face->dots[i] == starting_dot &&
1435 current_face == starting_face)
1436 break;
1437 }
1438 }
1439
1440 return (transitions == 2) ? TRUE : FALSE;
1441 }
1442
1443 /* Count the number of neighbours of 'face', having colour 'colour' */
1444 static int face_num_neighbours(grid *g, char *board, grid_face *face,
1445 enum face_colour colour)
1446 {
1447 int colour_count = 0;
1448 int i;
1449 grid_face *f;
1450 grid_edge *e;
1451 for (i = 0; i < face->order; i++) {
1452 e = face->edges[i];
1453 f = (e->face1 == face) ? e->face2 : e->face1;
1454 if (FACE_COLOUR(f) == colour)
1455 ++colour_count;
1456 }
1457 return colour_count;
1458 }
1459
1460 /* The 'score' of a face reflects its current desirability for selection
1461 * as the next face to colour white or black. We want to encourage moving
1462 * into grey areas and increasing loopiness, so we give scores according to
1463 * how many of the face's neighbours are currently coloured the same as the
1464 * proposed colour. */
1465 static int face_score(grid *g, char *board, grid_face *face,
1466 enum face_colour colour)
1467 {
1468 /* Simple formula: score = 0 - num. same-coloured neighbours,
1469 * so a higher score means fewer same-coloured neighbours. */
1470 return -face_num_neighbours(g, board, face, colour);
1471 }
1472
1473 /* Generate a new complete set of clues for the given game_state.
1474 * The method is to generate a WHITE/BLACK colouring of all the faces,
1475 * such that the WHITE faces will define the inside of the path, and the
1476 * BLACK faces define the outside.
1477 * To do this, we initially colour all faces GREY. The infinite space outside
1478 * the grid is coloured BLACK, and we choose a random face to colour WHITE.
1479 * Then we gradually grow the BLACK and the WHITE regions, eliminating GREY
1480 * faces, until the grid is filled with BLACK/WHITE. As we grow the regions,
1481 * we avoid creating loops of a single colour, to preserve the topological
1482 * shape of the WHITE and BLACK regions.
1483 * We also try to make the boundary as loopy and twisty as possible, to avoid
1484 * generating paths that are uninteresting.
1485 * The algorithm works by choosing a BLACK/WHITE colour, then choosing a GREY
1486 * face that can be coloured with that colour (without violating the
1487 * topological shape of that region). It's not obvious, but I think this
1488 * algorithm is guaranteed to terminate without leaving any GREY faces behind.
1489 * Indeed, if there are any GREY faces at all, both the WHITE and BLACK
1490 * regions can be grown.
1491 * This is checked using assert()ions, and I haven't seen any failures yet.
1492 *
1493 * Hand-wavy proof: imagine what can go wrong...
1494 *
1495 * Could the white faces get completely cut off by the black faces, and still
1496 * leave some grey faces remaining?
1497 * No, because then the black faces would form a loop around both the white
1498 * faces and the grey faces, which is disallowed because we continually
1499 * maintain the correct topological shape of the black region.
1500 * Similarly, the black faces can never get cut off by the white faces. That
1501 * means both the WHITE and BLACK regions always have some room to grow into
1502 * the GREY regions.
1503 * Could it be that we can't colour some GREY face, because there are too many
1504 * WHITE/BLACK transitions as we walk round the face? (see the
1505 * can_colour_face() function for details)
1506 * No. Imagine otherwise, and we see WHITE/BLACK/WHITE/BLACK as we walk
1507 * around the face. The two WHITE faces would be connected by a WHITE path,
1508 * and the BLACK faces would be connected by a BLACK path. These paths would
1509 * have to cross, which is impossible.
1510 * Another thing that could go wrong: perhaps we can't find any GREY face to
1511 * colour WHITE, because it would create a loop-violation or a corner-violation
1512 * with the other WHITE faces?
1513 * This is a little bit tricky to prove impossible. Imagine you have such a
1514 * GREY face (that is, if you coloured it WHITE, you would create a WHITE loop
1515 * or corner violation).
1516 * That would cut all the non-white area into two blobs. One of those blobs
1517 * must be free of BLACK faces (because the BLACK stuff is a connected blob).
1518 * So we have a connected GREY area, completely surrounded by WHITE
1519 * (including the GREY face we've tentatively coloured WHITE).
1520 * A well-known result in graph theory says that you can always find a GREY
1521 * face whose removal leaves the remaining GREY area connected. And it says
1522 * there are at least two such faces, so we can always choose the one that
1523 * isn't the "tentative" GREY face. Colouring that face WHITE leaves
1524 * everything nice and connected, including that "tentative" GREY face which
1525 * acts as a gateway to the rest of the non-WHITE grid.
1526 */
1527 static void add_full_clues(game_state *state, random_state *rs)
1528 {
1529 signed char *clues = state->clues;
1530 char *board;
1531 grid *g = state->game_grid;
1532 int i, j;
1533 int num_faces = g->num_faces;
1534 struct face_score *face_scores; /* Array of face_score objects */
1535 struct face_score *fs; /* Points somewhere in the above list */
1536 struct grid_face *cur_face;
1537 tree234 *lightable_faces_sorted;
1538 tree234 *darkable_faces_sorted;
1539 int *face_list;
1540 int do_random_pass;
1541
1542 board = snewn(num_faces, char);
1543
1544 /* Make a board */
1545 memset(board, FACE_GREY, num_faces);
1546
1547 /* Create and initialise the list of face_scores */
1548 face_scores = snewn(num_faces, struct face_score);
1549 for (i = 0; i < num_faces; i++) {
1550 face_scores[i].random = random_bits(rs, 31);
1551 face_scores[i].black_score = face_scores[i].white_score = 0;
1552 }
1553
1554 /* Colour a random, finite face white. The infinite face is implicitly
1555 * coloured black. Together, they will seed the random growth process
1556 * for the black and white areas. */
1557 i = random_upto(rs, num_faces);
1558 board[i] = FACE_WHITE;
1559
1560 /* We need a way of favouring faces that will increase our loopiness.
1561 * We do this by maintaining a list of all candidate faces sorted by
1562 * their score and choose randomly from that with appropriate skew.
1563 * In order to avoid consistently biasing towards particular faces, we
1564 * need the sort order _within_ each group of scores to be completely
1565 * random. But it would be abusing the hospitality of the tree234 data
1566 * structure if our comparison function were nondeterministic :-). So with
1567 * each face we associate a random number that does not change during a
1568 * particular run of the generator, and use that as a secondary sort key.
1569 * Yes, this means we will be biased towards particular random faces in
1570 * any one run but that doesn't actually matter. */
1571
1572 lightable_faces_sorted = newtree234(white_sort_cmpfn);
1573 darkable_faces_sorted = newtree234(black_sort_cmpfn);
1574
1575 /* Initialise the lists of lightable and darkable faces. This is
1576 * slightly different from the code inside the while-loop, because we need
1577 * to check every face of the board (the grid structure does not keep a
1578 * list of the infinite face's neighbours). */
1579 for (i = 0; i < num_faces; i++) {
1580 grid_face *f = g->faces + i;
1581 struct face_score *fs = face_scores + i;
1582 if (board[i] != FACE_GREY) continue;
1583 /* We need the full colourability check here, it's not enough simply
1584 * to check neighbourhood. On some grids, a neighbour of the infinite
1585 * face is not necessarily darkable. */
1586 if (can_colour_face(g, board, i, FACE_BLACK)) {
1587 fs->black_score = face_score(g, board, f, FACE_BLACK);
1588 add234(darkable_faces_sorted, fs);
1589 }
1590 if (can_colour_face(g, board, i, FACE_WHITE)) {
1591 fs->white_score = face_score(g, board, f, FACE_WHITE);
1592 add234(lightable_faces_sorted, fs);
1593 }
1594 }
1595
1596 /* Colour faces one at a time until no more faces are colourable. */
1597 while (TRUE)
1598 {
1599 enum face_colour colour;
1600 struct face_score *fs_white, *fs_black;
1601 int c_lightable = count234(lightable_faces_sorted);
1602 int c_darkable = count234(darkable_faces_sorted);
1603 if (c_lightable == 0 && c_darkable == 0) {
1604 /* No more faces we can use at all. */
1605 break;
1606 }
1607 assert(c_lightable != 0 && c_darkable != 0);
1608
1609 fs_white = (struct face_score *)index234(lightable_faces_sorted, 0);
1610 fs_black = (struct face_score *)index234(darkable_faces_sorted, 0);
1611
1612 /* Choose a colour, and colour the best available face
1613 * with that colour. */
1614 colour = random_upto(rs, 2) ? FACE_WHITE : FACE_BLACK;
1615
1616 if (colour == FACE_WHITE)
1617 fs = fs_white;
1618 else
1619 fs = fs_black;
1620 assert(fs);
1621 i = fs - face_scores;
1622 assert(board[i] == FACE_GREY);
1623 board[i] = colour;
1624
1625 /* Remove this newly-coloured face from the lists. These lists should
1626 * only contain grey faces. */
1627 del234(lightable_faces_sorted, fs);
1628 del234(darkable_faces_sorted, fs);
1629
1630 /* Remember which face we've just coloured */
1631 cur_face = g->faces + i;
1632
1633 /* The face we've just coloured potentially affects the colourability
1634 * and the scores of any neighbouring faces (touching at a corner or
1635 * edge). So the search needs to be conducted around all faces
1636 * touching the one we've just lit. Iterate over its corners, then
1637 * over each corner's faces. For each such face, we remove it from
1638 * the lists, recalculate any scores, then add it back to the lists
1639 * (depending on whether it is lightable, darkable or both). */
1640 for (i = 0; i < cur_face->order; i++) {
1641 grid_dot *d = cur_face->dots[i];
1642 for (j = 0; j < d->order; j++) {
1643 grid_face *f = d->faces[j];
1644 int fi; /* face index of f */
1645
1646 if (f == NULL)
1647 continue;
1648 if (f == cur_face)
1649 continue;
1650
1651 /* If the face is already coloured, it won't be on our
1652 * lightable/darkable lists anyway, so we can skip it without
1653 * bothering with the removal step. */
1654 if (FACE_COLOUR(f) != FACE_GREY) continue;
1655
1656 /* Find the face index and face_score* corresponding to f */
1657 fi = f - g->faces;
1658 fs = face_scores + fi;
1659
1660 /* Remove from lightable list if it's in there. We do this,
1661 * even if it is still lightable, because the score might
1662 * be different, and we need to remove-then-add to maintain
1663 * correct sort order. */
1664 del234(lightable_faces_sorted, fs);
1665 if (can_colour_face(g, board, fi, FACE_WHITE)) {
1666 fs->white_score = face_score(g, board, f, FACE_WHITE);
1667 add234(lightable_faces_sorted, fs);
1668 }
1669 /* Do the same for darkable list. */
1670 del234(darkable_faces_sorted, fs);
1671 if (can_colour_face(g, board, fi, FACE_BLACK)) {
1672 fs->black_score = face_score(g, board, f, FACE_BLACK);
1673 add234(darkable_faces_sorted, fs);
1674 }
1675 }
1676 }
1677 }
1678
1679 /* Clean up */
1680 freetree234(lightable_faces_sorted);
1681 freetree234(darkable_faces_sorted);
1682 sfree(face_scores);
1683
1684 /* The next step requires a shuffled list of all faces */
1685 face_list = snewn(num_faces, int);
1686 for (i = 0; i < num_faces; ++i) {
1687 face_list[i] = i;
1688 }
1689 shuffle(face_list, num_faces, sizeof(int), rs);
1690
1691 /* The above loop-generation algorithm can often leave large clumps
1692 * of faces of one colour. In extreme cases, the resulting path can be
1693 * degenerate and not very satisfying to solve.
1694 * This next step alleviates this problem:
1695 * Go through the shuffled list, and flip the colour of any face we can
1696 * legally flip, and which is adjacent to only one face of the opposite
1697 * colour - this tends to grow 'tendrils' into any clumps.
1698 * Repeat until we can find no more faces to flip. This will
1699 * eventually terminate, because each flip increases the loop's
1700 * perimeter, which cannot increase for ever.
1701 * The resulting path will have maximal loopiness (in the sense that it
1702 * cannot be improved "locally". Unfortunately, this allows a player to
1703 * make some illicit deductions. To combat this (and make the path more
1704 * interesting), we do one final pass making random flips. */
1705
1706 /* Set to TRUE for final pass */
1707 do_random_pass = FALSE;
1708
1709 while (TRUE) {
1710 /* Remember whether a flip occurred during this pass */
1711 int flipped = FALSE;
1712
1713 for (i = 0; i < num_faces; ++i) {
1714 int j = face_list[i];
1715 enum face_colour opp =
1716 (board[j] == FACE_WHITE) ? FACE_BLACK : FACE_WHITE;
1717 if (can_colour_face(g, board, j, opp)) {
1718 grid_face *face = g->faces +j;
1719 if (do_random_pass) {
1720 /* final random pass */
1721 if (!random_upto(rs, 10))
1722 board[j] = opp;
1723 } else {
1724 /* normal pass - flip when neighbour count is 1 */
1725 if (face_num_neighbours(g, board, face, opp) == 1) {
1726 board[j] = opp;
1727 flipped = TRUE;
1728 }
1729 }
1730 }
1731 }
1732
1733 if (do_random_pass) break;
1734 if (!flipped) do_random_pass = TRUE;
1735 }
1736
1737 sfree(face_list);
1738
1739 /* Fill out all the clues by initialising to 0, then iterating over
1740 * all edges and incrementing each clue as we find edges that border
1741 * between BLACK/WHITE faces. While we're at it, we verify that the
1742 * algorithm does work, and there aren't any GREY faces still there. */
1743 memset(clues, 0, num_faces);
1744 for (i = 0; i < g->num_edges; i++) {
1745 grid_edge *e = g->edges + i;
1746 grid_face *f1 = e->face1;
1747 grid_face *f2 = e->face2;
1748 enum face_colour c1 = FACE_COLOUR(f1);
1749 enum face_colour c2 = FACE_COLOUR(f2);
1750 assert(c1 != FACE_GREY);
1751 assert(c2 != FACE_GREY);
1752 if (c1 != c2) {
1753 if (f1) clues[f1 - g->faces]++;
1754 if (f2) clues[f2 - g->faces]++;
1755 }
1756 }
1757
1758 sfree(board);
1759 }
1760
1761
1762 static int game_has_unique_soln(const game_state *state, int diff)
1763 {
1764 int ret;
1765 solver_state *sstate_new;
1766 solver_state *sstate = new_solver_state((game_state *)state, diff);
1767
1768 sstate_new = solve_game_rec(sstate);
1769
1770 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1771 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1772
1773 free_solver_state(sstate_new);
1774 free_solver_state(sstate);
1775
1776 return ret;
1777 }
1778
1779
1780 /* Remove clues one at a time at random. */
1781 static game_state *remove_clues(game_state *state, random_state *rs,
1782 int diff)
1783 {
1784 int *face_list;
1785 int num_faces = state->game_grid->num_faces;
1786 game_state *ret = dup_game(state), *saved_ret;
1787 int n;
1788
1789 /* We need to remove some clues. We'll do this by forming a list of all
1790 * available clues, shuffling it, then going along one at a
1791 * time clearing each clue in turn for which doing so doesn't render the
1792 * board unsolvable. */
1793 face_list = snewn(num_faces, int);
1794 for (n = 0; n < num_faces; ++n) {
1795 face_list[n] = n;
1796 }
1797
1798 shuffle(face_list, num_faces, sizeof(int), rs);
1799
1800 for (n = 0; n < num_faces; ++n) {
1801 saved_ret = dup_game(ret);
1802 ret->clues[face_list[n]] = -1;
1803
1804 if (game_has_unique_soln(ret, diff)) {
1805 free_game(saved_ret);
1806 } else {
1807 free_game(ret);
1808 ret = saved_ret;
1809 }
1810 }
1811 sfree(face_list);
1812
1813 return ret;
1814 }
1815
1816
1817 static char *new_game_desc(game_params *params, random_state *rs,
1818 char **aux, int interactive)
1819 {
1820 /* solution and description both use run-length encoding in obvious ways */
1821 char *retval;
1822 grid *g;
1823 game_state *state = snew(game_state);
1824 game_state *state_new;
1825 params_generate_grid(params);
1826 state->game_grid = g = params->game_grid;
1827 g->refcount++;
1828 state->clues = snewn(g->num_faces, signed char);
1829 state->lines = snewn(g->num_edges, char);
1830 state->line_errors = snewn(g->num_edges, unsigned char);
1831
1832 state->grid_type = params->type;
1833
1834 newboard_please:
1835
1836 memset(state->lines, LINE_UNKNOWN, g->num_edges);
1837 memset(state->line_errors, 0, g->num_edges);
1838
1839 state->solved = state->cheated = FALSE;
1840
1841 /* Get a new random solvable board with all its clues filled in. Yes, this
1842 * can loop for ever if the params are suitably unfavourable, but
1843 * preventing games smaller than 4x4 seems to stop this happening */
1844 do {
1845 add_full_clues(state, rs);
1846 } while (!game_has_unique_soln(state, params->diff));
1847
1848 state_new = remove_clues(state, rs, params->diff);
1849 free_game(state);
1850 state = state_new;
1851
1852
1853 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1854 #ifdef SHOW_WORKING
1855 fprintf(stderr, "Rejecting board, it is too easy\n");
1856 #endif
1857 goto newboard_please;
1858 }
1859
1860 retval = state_to_text(state);
1861
1862 free_game(state);
1863
1864 assert(!validate_desc(params, retval));
1865
1866 return retval;
1867 }
1868
1869 static game_state *new_game(midend *me, game_params *params, char *desc)
1870 {
1871 int i;
1872 game_state *state = snew(game_state);
1873 int empties_to_make = 0;
1874 int n;
1875 const char *dp = desc;
1876 grid *g;
1877 int num_faces, num_edges;
1878
1879 params_generate_grid(params);
1880 state->game_grid = g = params->game_grid;
1881 g->refcount++;
1882 num_faces = g->num_faces;
1883 num_edges = g->num_edges;
1884
1885 state->clues = snewn(num_faces, signed char);
1886 state->lines = snewn(num_edges, char);
1887 state->line_errors = snewn(num_edges, unsigned char);
1888
1889 state->solved = state->cheated = FALSE;
1890
1891 state->grid_type = params->type;
1892
1893 for (i = 0; i < num_faces; i++) {
1894 if (empties_to_make) {
1895 empties_to_make--;
1896 state->clues[i] = -1;
1897 continue;
1898 }
1899
1900 assert(*dp);
1901 n = *dp - '0';
1902 if (n >= 0 && n < 10) {
1903 state->clues[i] = n;
1904 } else {
1905 n = *dp - 'a' + 1;
1906 assert(n > 0);
1907 state->clues[i] = -1;
1908 empties_to_make = n - 1;
1909 }
1910 ++dp;
1911 }
1912
1913 memset(state->lines, LINE_UNKNOWN, num_edges);
1914 memset(state->line_errors, 0, num_edges);
1915 return state;
1916 }
1917
1918 /* Calculates the line_errors data, and checks if the current state is a
1919 * solution */
1920 static int check_completion(game_state *state)
1921 {
1922 grid *g = state->game_grid;
1923 int *dsf;
1924 int num_faces = g->num_faces;
1925 int i;
1926 int infinite_area, finite_area;
1927 int loops_found = 0;
1928 int found_edge_not_in_loop = FALSE;
1929
1930 memset(state->line_errors, 0, g->num_edges);
1931
1932 /* LL implementation of SGT's idea:
1933 * A loop will partition the grid into an inside and an outside.
1934 * If there is more than one loop, the grid will be partitioned into
1935 * even more distinct regions. We can therefore track equivalence of
1936 * faces, by saying that two faces are equivalent when there is a non-YES
1937 * edge between them.
1938 * We could keep track of the number of connected components, by counting
1939 * the number of dsf-merges that aren't no-ops.
1940 * But we're only interested in 3 separate cases:
1941 * no loops, one loop, more than one loop.
1942 *
1943 * No loops: all faces are equivalent to the infinite face.
1944 * One loop: only two equivalence classes - finite and infinite.
1945 * >= 2 loops: there are 2 distinct finite regions.
1946 *
1947 * So we simply make two passes through all the edges.
1948 * In the first pass, we dsf-merge the two faces bordering each non-YES
1949 * edge.
1950 * In the second pass, we look for YES-edges bordering:
1951 * a) two non-equivalent faces.
1952 * b) two non-equivalent faces, and one of them is part of a different
1953 * finite area from the first finite area we've seen.
1954 *
1955 * An occurrence of a) means there is at least one loop.
1956 * An occurrence of b) means there is more than one loop.
1957 * Edges satisfying a) are marked as errors.
1958 *
1959 * While we're at it, we set a flag if we find a YES edge that is not
1960 * part of a loop.
1961 * This information will help decide, if there's a single loop, whether it
1962 * is a candidate for being a solution (that is, all YES edges are part of
1963 * this loop).
1964 *
1965 * If there is a candidate loop, we then go through all clues and check
1966 * they are all satisfied. If so, we have found a solution and we can
1967 * unmark all line_errors.
1968 */
1969
1970 /* Infinite face is at the end - its index is num_faces.
1971 * This macro is just to make this obvious! */
1972 #define INF_FACE num_faces
1973 dsf = snewn(num_faces + 1, int);
1974 dsf_init(dsf, num_faces + 1);
1975
1976 /* First pass */
1977 for (i = 0; i < g->num_edges; i++) {
1978 grid_edge *e = g->edges + i;
1979 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
1980 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
1981 if (state->lines[i] != LINE_YES)
1982 dsf_merge(dsf, f1, f2);
1983 }
1984
1985 /* Second pass */
1986 infinite_area = dsf_canonify(dsf, INF_FACE);
1987 finite_area = -1;
1988 for (i = 0; i < g->num_edges; i++) {
1989 grid_edge *e = g->edges + i;
1990 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
1991 int can1 = dsf_canonify(dsf, f1);
1992 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
1993 int can2 = dsf_canonify(dsf, f2);
1994 if (state->lines[i] != LINE_YES) continue;
1995
1996 if (can1 == can2) {
1997 /* Faces are equivalent, so this edge not part of a loop */
1998 found_edge_not_in_loop = TRUE;
1999 continue;
2000 }
2001 state->line_errors[i] = TRUE;
2002 if (loops_found == 0) loops_found = 1;
2003
2004 /* Don't bother with further checks if we've already found 2 loops */
2005 if (loops_found == 2) continue;
2006
2007 if (finite_area == -1) {
2008 /* Found our first finite area */
2009 if (can1 != infinite_area)
2010 finite_area = can1;
2011 else
2012 finite_area = can2;
2013 }
2014
2015 /* Have we found a second area? */
2016 if (finite_area != -1) {
2017 if (can1 != infinite_area && can1 != finite_area) {
2018 loops_found = 2;
2019 continue;
2020 }
2021 if (can2 != infinite_area && can2 != finite_area) {
2022 loops_found = 2;
2023 }
2024 }
2025 }
2026
2027 /*
2028 printf("loops_found = %d\n", loops_found);
2029 printf("found_edge_not_in_loop = %s\n",
2030 found_edge_not_in_loop ? "TRUE" : "FALSE");
2031 */
2032
2033 sfree(dsf); /* No longer need the dsf */
2034
2035 /* Have we found a candidate loop? */
2036 if (loops_found == 1 && !found_edge_not_in_loop) {
2037 /* Yes, so check all clues are satisfied */
2038 int found_clue_violation = FALSE;
2039 for (i = 0; i < num_faces; i++) {
2040 int c = state->clues[i];
2041 if (c >= 0) {
2042 if (face_order(state, i, LINE_YES) != c) {
2043 found_clue_violation = TRUE;
2044 break;
2045 }
2046 }
2047 }
2048
2049 if (!found_clue_violation) {
2050 /* The loop is good */
2051 memset(state->line_errors, 0, g->num_edges);
2052 return TRUE; /* No need to bother checking for dot violations */
2053 }
2054 }
2055
2056 /* Check for dot violations */
2057 for (i = 0; i < g->num_dots; i++) {
2058 int yes = dot_order(state, i, LINE_YES);
2059 int unknown = dot_order(state, i, LINE_UNKNOWN);
2060 if ((yes == 1 && unknown == 0) || (yes >= 3)) {
2061 /* violation, so mark all YES edges as errors */
2062 grid_dot *d = g->dots + i;
2063 int j;
2064 for (j = 0; j < d->order; j++) {
2065 int e = d->edges[j] - g->edges;
2066 if (state->lines[e] == LINE_YES)
2067 state->line_errors[e] = TRUE;
2068 }
2069 }
2070 }
2071 return FALSE;
2072 }
2073
2074 /* ----------------------------------------------------------------------
2075 * Solver logic
2076 *
2077 * Our solver modes operate as follows. Each mode also uses the modes above it.
2078 *
2079 * Easy Mode
2080 * Just implement the rules of the game.
2081 *
2082 * Normal and Tricky Modes
2083 * For each (adjacent) pair of lines through each dot we store a bit for
2084 * whether at least one of them is on and whether at most one is on. (If we
2085 * know both or neither is on that's already stored more directly.)
2086 *
2087 * Advanced Mode
2088 * Use edsf data structure to make equivalence classes of lines that are
2089 * known identical to or opposite to one another.
2090 */
2091
2092
2093 /* DLines:
2094 * For general grids, we consider "dlines" to be pairs of lines joined
2095 * at a dot. The lines must be adjacent around the dot, so we can think of
2096 * a dline as being a dot+face combination. Or, a dot+edge combination where
2097 * the second edge is taken to be the next clockwise edge from the dot.
2098 * Original loopy code didn't have this extra restriction of the lines being
2099 * adjacent. From my tests with square grids, this extra restriction seems to
2100 * take little, if anything, away from the quality of the puzzles.
2101 * A dline can be uniquely identified by an edge/dot combination, given that
2102 * a dline-pair always goes clockwise around its common dot. The edge/dot
2103 * combination can be represented by an edge/bool combination - if bool is
2104 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
2105 * exactly twice the number of edges in the grid - although the dlines
2106 * spanning the infinite face are not all that useful to the solver.
2107 * Note that, by convention, a dline goes clockwise around its common dot,
2108 * which means the dline goes anti-clockwise around its common face.
2109 */
2110
2111 /* Helper functions for obtaining an index into an array of dlines, given
2112 * various information. We assume the grid layout conventions about how
2113 * the various lists are interleaved - see grid_make_consistent() for
2114 * details. */
2115
2116 /* i points to the first edge of the dline pair, reading clockwise around
2117 * the dot. */
2118 static int dline_index_from_dot(grid *g, grid_dot *d, int i)
2119 {
2120 grid_edge *e = d->edges[i];
2121 int ret;
2122 #ifdef DEBUG_DLINES
2123 grid_edge *e2;
2124 int i2 = i+1;
2125 if (i2 == d->order) i2 = 0;
2126 e2 = d->edges[i2];
2127 #endif
2128 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2129 #ifdef DEBUG_DLINES
2130 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
2131 (int)(d - g->dots), i, (int)(e - g->edges),
2132 (int)(e2 - g->edges), ret);
2133 #endif
2134 return ret;
2135 }
2136 /* i points to the second edge of the dline pair, reading clockwise around
2137 * the face. That is, the edges of the dline, starting at edge{i}, read
2138 * anti-clockwise around the face. By layout conventions, the common dot
2139 * of the dline will be f->dots[i] */
2140 static int dline_index_from_face(grid *g, grid_face *f, int i)
2141 {
2142 grid_edge *e = f->edges[i];
2143 grid_dot *d = f->dots[i];
2144 int ret;
2145 #ifdef DEBUG_DLINES
2146 grid_edge *e2;
2147 int i2 = i - 1;
2148 if (i2 < 0) i2 += f->order;
2149 e2 = f->edges[i2];
2150 #endif
2151 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2152 #ifdef DEBUG_DLINES
2153 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
2154 (int)(f - g->faces), i, (int)(e - g->edges),
2155 (int)(e2 - g->edges), ret);
2156 #endif
2157 return ret;
2158 }
2159 static int is_atleastone(const char *dline_array, int index)
2160 {
2161 return BIT_SET(dline_array[index], 0);
2162 }
2163 static int set_atleastone(char *dline_array, int index)
2164 {
2165 return SET_BIT(dline_array[index], 0);
2166 }
2167 static int is_atmostone(const char *dline_array, int index)
2168 {
2169 return BIT_SET(dline_array[index], 1);
2170 }
2171 static int set_atmostone(char *dline_array, int index)
2172 {
2173 return SET_BIT(dline_array[index], 1);
2174 }
2175
2176 static void array_setall(char *array, char from, char to, int len)
2177 {
2178 char *p = array, *p_old = p;
2179 int len_remaining = len;
2180
2181 while ((p = memchr(p, from, len_remaining))) {
2182 *p = to;
2183 len_remaining -= p - p_old;
2184 p_old = p;
2185 }
2186 }
2187
2188 /* Helper, called when doing dline dot deductions, in the case where we
2189 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
2190 * them (because of dline atmostone/atleastone).
2191 * On entry, edge points to the first of these two UNKNOWNs. This function
2192 * will find the opposite UNKNOWNS (if they are adjacent to one another)
2193 * and set their corresponding dline to atleastone. (Setting atmostone
2194 * already happens in earlier dline deductions) */
2195 static int dline_set_opp_atleastone(solver_state *sstate,
2196 grid_dot *d, int edge)
2197 {
2198 game_state *state = sstate->state;
2199 grid *g = state->game_grid;
2200 int N = d->order;
2201 int opp, opp2;
2202 for (opp = 0; opp < N; opp++) {
2203 int opp_dline_index;
2204 if (opp == edge || opp == edge+1 || opp == edge-1)
2205 continue;
2206 if (opp == 0 && edge == N-1)
2207 continue;
2208 if (opp == N-1 && edge == 0)
2209 continue;
2210 opp2 = opp + 1;
2211 if (opp2 == N) opp2 = 0;
2212 /* Check if opp, opp2 point to LINE_UNKNOWNs */
2213 if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
2214 continue;
2215 if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
2216 continue;
2217 /* Found opposite UNKNOWNS and they're next to each other */
2218 opp_dline_index = dline_index_from_dot(g, d, opp);
2219 return set_atleastone(sstate->dlines, opp_dline_index);
2220 }
2221 return FALSE;
2222 }
2223
2224
2225 /* Set pairs of lines around this face which are known to be identical, to
2226 * the given line_state */
2227 static int face_setall_identical(solver_state *sstate, int face_index,
2228 enum line_state line_new)
2229 {
2230 /* can[dir] contains the canonical line associated with the line in
2231 * direction dir from the square in question. Similarly inv[dir] is
2232 * whether or not the line in question is inverse to its canonical
2233 * element. */
2234 int retval = FALSE;
2235 game_state *state = sstate->state;
2236 grid *g = state->game_grid;
2237 grid_face *f = g->faces + face_index;
2238 int N = f->order;
2239 int i, j;
2240 int can1, can2, inv1, inv2;
2241
2242 for (i = 0; i < N; i++) {
2243 int line1_index = f->edges[i] - g->edges;
2244 if (state->lines[line1_index] != LINE_UNKNOWN)
2245 continue;
2246 for (j = i + 1; j < N; j++) {
2247 int line2_index = f->edges[j] - g->edges;
2248 if (state->lines[line2_index] != LINE_UNKNOWN)
2249 continue;
2250
2251 /* Found two UNKNOWNS */
2252 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2253 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
2254 if (can1 == can2 && inv1 == inv2) {
2255 solver_set_line(sstate, line1_index, line_new);
2256 solver_set_line(sstate, line2_index, line_new);
2257 }
2258 }
2259 }
2260 return retval;
2261 }
2262
2263 /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
2264 * return the edge indices into e. */
2265 static void find_unknowns(game_state *state,
2266 grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
2267 int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
2268 int *e /* Returned edge indices */)
2269 {
2270 int c = 0;
2271 grid *g = state->game_grid;
2272 while (c < expected_count) {
2273 int line_index = *edge_list - g->edges;
2274 if (state->lines[line_index] == LINE_UNKNOWN) {
2275 e[c] = line_index;
2276 c++;
2277 }
2278 ++edge_list;
2279 }
2280 }
2281
2282 /* If we have a list of edges, and we know whether the number of YESs should
2283 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
2284 * linedsf deductions. This can be used for both face and dot deductions.
2285 * Returns the difficulty level of the next solver that should be used,
2286 * or DIFF_MAX if no progress was made. */
2287 static int parity_deductions(solver_state *sstate,
2288 grid_edge **edge_list, /* Edge list (from a face or a dot) */
2289 int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
2290 int unknown_count)
2291 {
2292 game_state *state = sstate->state;
2293 int diff = DIFF_MAX;
2294 int *linedsf = sstate->linedsf;
2295
2296 if (unknown_count == 2) {
2297 /* Lines are known alike/opposite, depending on inv. */
2298 int e[2];
2299 find_unknowns(state, edge_list, 2, e);
2300 if (merge_lines(sstate, e[0], e[1], total_parity))
2301 diff = min(diff, DIFF_HARD);
2302 } else if (unknown_count == 3) {
2303 int e[3];
2304 int can[3]; /* canonical edges */
2305 int inv[3]; /* whether can[x] is inverse to e[x] */
2306 find_unknowns(state, edge_list, 3, e);
2307 can[0] = edsf_canonify(linedsf, e[0], inv);
2308 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2309 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2310 if (can[0] == can[1]) {
2311 if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
2312 LINE_YES : LINE_NO))
2313 diff = min(diff, DIFF_EASY);
2314 }
2315 if (can[0] == can[2]) {
2316 if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
2317 LINE_YES : LINE_NO))
2318 diff = min(diff, DIFF_EASY);
2319 }
2320 if (can[1] == can[2]) {
2321 if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
2322 LINE_YES : LINE_NO))
2323 diff = min(diff, DIFF_EASY);
2324 }
2325 } else if (unknown_count == 4) {
2326 int e[4];
2327 int can[4]; /* canonical edges */
2328 int inv[4]; /* whether can[x] is inverse to e[x] */
2329 find_unknowns(state, edge_list, 4, e);
2330 can[0] = edsf_canonify(linedsf, e[0], inv);
2331 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2332 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2333 can[3] = edsf_canonify(linedsf, e[3], inv+3);
2334 if (can[0] == can[1]) {
2335 if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
2336 diff = min(diff, DIFF_HARD);
2337 } else if (can[0] == can[2]) {
2338 if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
2339 diff = min(diff, DIFF_HARD);
2340 } else if (can[0] == can[3]) {
2341 if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
2342 diff = min(diff, DIFF_HARD);
2343 } else if (can[1] == can[2]) {
2344 if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
2345 diff = min(diff, DIFF_HARD);
2346 } else if (can[1] == can[3]) {
2347 if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
2348 diff = min(diff, DIFF_HARD);
2349 } else if (can[2] == can[3]) {
2350 if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
2351 diff = min(diff, DIFF_HARD);
2352 }
2353 }
2354 return diff;
2355 }
2356
2357
2358 /*
2359 * These are the main solver functions.
2360 *
2361 * Their return values are diff values corresponding to the lowest mode solver
2362 * that would notice the work that they have done. For example if the normal
2363 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
2364 * easy mode solver might be able to make progress using that. It doesn't make
2365 * sense for one of them to return a diff value higher than that of the
2366 * function itself.
2367 *
2368 * Each function returns the lowest value it can, as early as possible, in
2369 * order to try and pass as much work as possible back to the lower level
2370 * solvers which progress more quickly.
2371 */
2372
2373 /* PROPOSED NEW DESIGN:
2374 * We have a work queue consisting of 'events' notifying us that something has
2375 * happened that a particular solver mode might be interested in. For example
2376 * the hard mode solver might do something that helps the normal mode solver at
2377 * dot [x,y] in which case it will enqueue an event recording this fact. Then
2378 * we pull events off the work queue, and hand each in turn to the solver that
2379 * is interested in them. If a solver reports that it failed we pass the same
2380 * event on to progressively more advanced solvers and the loop detector. Once
2381 * we've exhausted an event, or it has helped us progress, we drop it and
2382 * continue to the next one. The events are sorted first in order of solver
2383 * complexity (easy first) then order of insertion (oldest first).
2384 * Once we run out of events we loop over each permitted solver in turn
2385 * (easiest first) until either a deduction is made (and an event therefore
2386 * emerges) or no further deductions can be made (in which case we've failed).
2387 *
2388 * QUESTIONS:
2389 * * How do we 'loop over' a solver when both dots and squares are concerned.
2390 * Answer: first all squares then all dots.
2391 */
2392
2393 static int trivial_deductions(solver_state *sstate)
2394 {
2395 int i, current_yes, current_no;
2396 game_state *state = sstate->state;
2397 grid *g = state->game_grid;
2398 int diff = DIFF_MAX;
2399
2400 /* Per-face deductions */
2401 for (i = 0; i < g->num_faces; i++) {
2402 grid_face *f = g->faces + i;
2403
2404 if (sstate->face_solved[i])
2405 continue;
2406
2407 current_yes = sstate->face_yes_count[i];
2408 current_no = sstate->face_no_count[i];
2409
2410 if (current_yes + current_no == f->order) {
2411 sstate->face_solved[i] = TRUE;
2412 continue;
2413 }
2414
2415 if (state->clues[i] < 0)
2416 continue;
2417
2418 if (state->clues[i] < current_yes) {
2419 sstate->solver_status = SOLVER_MISTAKE;
2420 return DIFF_EASY;
2421 }
2422 if (state->clues[i] == current_yes) {
2423 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
2424 diff = min(diff, DIFF_EASY);
2425 sstate->face_solved[i] = TRUE;
2426 continue;
2427 }
2428
2429 if (f->order - state->clues[i] < current_no) {
2430 sstate->solver_status = SOLVER_MISTAKE;
2431 return DIFF_EASY;
2432 }
2433 if (f->order - state->clues[i] == current_no) {
2434 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
2435 diff = min(diff, DIFF_EASY);
2436 sstate->face_solved[i] = TRUE;
2437 continue;
2438 }
2439 }
2440
2441 check_caches(sstate);
2442
2443 /* Per-dot deductions */
2444 for (i = 0; i < g->num_dots; i++) {
2445 grid_dot *d = g->dots + i;
2446 int yes, no, unknown;
2447
2448 if (sstate->dot_solved[i])
2449 continue;
2450
2451 yes = sstate->dot_yes_count[i];
2452 no = sstate->dot_no_count[i];
2453 unknown = d->order - yes - no;
2454
2455 if (yes == 0) {
2456 if (unknown == 0) {
2457 sstate->dot_solved[i] = TRUE;
2458 } else if (unknown == 1) {
2459 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2460 diff = min(diff, DIFF_EASY);
2461 sstate->dot_solved[i] = TRUE;
2462 }
2463 } else if (yes == 1) {
2464 if (unknown == 0) {
2465 sstate->solver_status = SOLVER_MISTAKE;
2466 return DIFF_EASY;
2467 } else if (unknown == 1) {
2468 dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
2469 diff = min(diff, DIFF_EASY);
2470 }
2471 } else if (yes == 2) {
2472 if (unknown > 0) {
2473 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2474 diff = min(diff, DIFF_EASY);
2475 }
2476 sstate->dot_solved[i] = TRUE;
2477 } else {
2478 sstate->solver_status = SOLVER_MISTAKE;
2479 return DIFF_EASY;
2480 }
2481 }
2482
2483 check_caches(sstate);
2484
2485 return diff;
2486 }
2487
2488 static int dline_deductions(solver_state *sstate)
2489 {
2490 game_state *state = sstate->state;
2491 grid *g = state->game_grid;
2492 char *dlines = sstate->dlines;
2493 int i;
2494 int diff = DIFF_MAX;
2495
2496 /* ------ Face deductions ------ */
2497
2498 /* Given a set of dline atmostone/atleastone constraints, need to figure
2499 * out if we can deduce any further info. For more general faces than
2500 * squares, this turns out to be a tricky problem.
2501 * The approach taken here is to define (per face) NxN matrices:
2502 * "maxs" and "mins".
2503 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2504 * for the possible number of edges that are YES between positions j and k
2505 * going clockwise around the face. Can think of j and k as marking dots
2506 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2507 * edge1 joins dot1 to dot2 etc).
2508 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2509 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2510 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2511 * the dline atmostone/atleastone status for edges j and j+1.
2512 *
2513 * Then we calculate the remaining entries recursively. We definitely
2514 * know that
2515 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2516 * This is because any valid placement of YESs between j and k must give
2517 * a valid placement between j and u, and also between u and k.
2518 * I believe it's sufficient to use just the two values of u:
2519 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2520 * are rigorous, even if they might not be best-possible.
2521 *
2522 * Once we have maxs and mins calculated, we can make inferences about
2523 * each dline{j,j+1} by looking at the possible complementary edge-counts
2524 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2525 * As well as dlines, we can make similar inferences about single edges.
2526 * For example, consider a pentagon with clue 3, and we know at most one
2527 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2528 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2529 * that final edge would have to be YES to make the count up to 3.
2530 */
2531
2532 /* Much quicker to allocate arrays on the stack than the heap, so
2533 * define the largest possible face size, and base our array allocations
2534 * on that. We check this with an assertion, in case someone decides to
2535 * make a grid which has larger faces than this. Note, this algorithm
2536 * could get quite expensive if there are many large faces. */
2537 #define MAX_FACE_SIZE 8
2538
2539 for (i = 0; i < g->num_faces; i++) {
2540 int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
2541 int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
2542 grid_face *f = g->faces + i;
2543 int N = f->order;
2544 int j,m;
2545 int clue = state->clues[i];
2546 assert(N <= MAX_FACE_SIZE);
2547 if (sstate->face_solved[i])
2548 continue;
2549 if (clue < 0) continue;
2550
2551 /* Calculate the (j,j+1) entries */
2552 for (j = 0; j < N; j++) {
2553 int edge_index = f->edges[j] - g->edges;
2554 int dline_index;
2555 enum line_state line1 = state->lines[edge_index];
2556 enum line_state line2;
2557 int tmp;
2558 int k = j + 1;
2559 if (k >= N) k = 0;
2560 maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
2561 mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
2562 /* Calculate the (j,j+2) entries */
2563 dline_index = dline_index_from_face(g, f, k);
2564 edge_index = f->edges[k] - g->edges;
2565 line2 = state->lines[edge_index];
2566 k++;
2567 if (k >= N) k = 0;
2568
2569 /* max */
2570 tmp = 2;
2571 if (line1 == LINE_NO) tmp--;
2572 if (line2 == LINE_NO) tmp--;
2573 if (tmp == 2 && is_atmostone(dlines, dline_index))
2574 tmp = 1;
2575 maxs[j][k] = tmp;
2576
2577 /* min */
2578 tmp = 0;
2579 if (line1 == LINE_YES) tmp++;
2580 if (line2 == LINE_YES) tmp++;
2581 if (tmp == 0 && is_atleastone(dlines, dline_index))
2582 tmp = 1;
2583 mins[j][k] = tmp;
2584 }
2585
2586 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2587 for (m = 3; m < N; m++) {
2588 for (j = 0; j < N; j++) {
2589 int k = j + m;
2590 int u = j + 1;
2591 int v = j + 2;
2592 int tmp;
2593 if (k >= N) k -= N;
2594 if (u >= N) u -= N;
2595 if (v >= N) v -= N;
2596 maxs[j][k] = maxs[j][u] + maxs[u][k];
2597 mins[j][k] = mins[j][u] + mins[u][k];
2598 tmp = maxs[j][v] + maxs[v][k];
2599 maxs[j][k] = min(maxs[j][k], tmp);
2600 tmp = mins[j][v] + mins[v][k];
2601 mins[j][k] = max(mins[j][k], tmp);
2602 }
2603 }
2604
2605 /* See if we can make any deductions */
2606 for (j = 0; j < N; j++) {
2607 int k;
2608 grid_edge *e = f->edges[j];
2609 int line_index = e - g->edges;
2610 int dline_index;
2611
2612 if (state->lines[line_index] != LINE_UNKNOWN)
2613 continue;
2614 k = j + 1;
2615 if (k >= N) k = 0;
2616
2617 /* minimum YESs in the complement of this edge */
2618 if (mins[k][j] > clue) {
2619 sstate->solver_status = SOLVER_MISTAKE;
2620 return DIFF_EASY;
2621 }
2622 if (mins[k][j] == clue) {
2623 /* setting this edge to YES would make at least
2624 * (clue+1) edges - contradiction */
2625 solver_set_line(sstate, line_index, LINE_NO);
2626 diff = min(diff, DIFF_EASY);
2627 }
2628 if (maxs[k][j] < clue - 1) {
2629 sstate->solver_status = SOLVER_MISTAKE;
2630 return DIFF_EASY;
2631 }
2632 if (maxs[k][j] == clue - 1) {
2633 /* Only way to satisfy the clue is to set edge{j} as YES */
2634 solver_set_line(sstate, line_index, LINE_YES);
2635 diff = min(diff, DIFF_EASY);
2636 }
2637
2638 /* More advanced deduction that allows propagation along diagonal
2639 * chains of faces connected by dots, for example, 3-2-...-2-3
2640 * in square grids. */
2641 if (sstate->diff >= DIFF_TRICKY) {
2642 /* Now see if we can make dline deduction for edges{j,j+1} */
2643 e = f->edges[k];
2644 if (state->lines[e - g->edges] != LINE_UNKNOWN)
2645 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2646 * Dlines where one of the edges is known, are handled in the
2647 * dot-deductions */
2648 continue;
2649
2650 dline_index = dline_index_from_face(g, f, k);
2651 k++;
2652 if (k >= N) k = 0;
2653
2654 /* minimum YESs in the complement of this dline */
2655 if (mins[k][j] > clue - 2) {
2656 /* Adding 2 YESs would break the clue */
2657 if (set_atmostone(dlines, dline_index))
2658 diff = min(diff, DIFF_NORMAL);
2659 }
2660 /* maximum YESs in the complement of this dline */
2661 if (maxs[k][j] < clue) {
2662 /* Adding 2 NOs would mean not enough YESs */
2663 if (set_atleastone(dlines, dline_index))
2664 diff = min(diff, DIFF_NORMAL);
2665 }
2666 }
2667 }
2668 }
2669
2670 if (diff < DIFF_NORMAL)
2671 return diff;
2672
2673 /* ------ Dot deductions ------ */
2674
2675 for (i = 0; i < g->num_dots; i++) {
2676 grid_dot *d = g->dots + i;
2677 int N = d->order;
2678 int yes, no, unknown;
2679 int j;
2680 if (sstate->dot_solved[i])
2681 continue;
2682 yes = sstate->dot_yes_count[i];
2683 no = sstate->dot_no_count[i];
2684 unknown = N - yes - no;
2685
2686 for (j = 0; j < N; j++) {
2687 int k;
2688 int dline_index;
2689 int line1_index, line2_index;
2690 enum line_state line1, line2;
2691 k = j + 1;
2692 if (k >= N) k = 0;
2693 dline_index = dline_index_from_dot(g, d, j);
2694 line1_index = d->edges[j] - g->edges;
2695 line2_index = d->edges[k] - g->edges;
2696 line1 = state->lines[line1_index];
2697 line2 = state->lines[line2_index];
2698
2699 /* Infer dline state from line state */
2700 if (line1 == LINE_NO || line2 == LINE_NO) {
2701 if (set_atmostone(dlines, dline_index))
2702 diff = min(diff, DIFF_NORMAL);
2703 }
2704 if (line1 == LINE_YES || line2 == LINE_YES) {
2705 if (set_atleastone(dlines, dline_index))
2706 diff = min(diff, DIFF_NORMAL);
2707 }
2708 /* Infer line state from dline state */
2709 if (is_atmostone(dlines, dline_index)) {
2710 if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
2711 solver_set_line(sstate, line2_index, LINE_NO);
2712 diff = min(diff, DIFF_EASY);
2713 }
2714 if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
2715 solver_set_line(sstate, line1_index, LINE_NO);
2716 diff = min(diff, DIFF_EASY);
2717 }
2718 }
2719 if (is_atleastone(dlines, dline_index)) {
2720 if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
2721 solver_set_line(sstate, line2_index, LINE_YES);
2722 diff = min(diff, DIFF_EASY);
2723 }
2724 if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
2725 solver_set_line(sstate, line1_index, LINE_YES);
2726 diff = min(diff, DIFF_EASY);
2727 }
2728 }
2729 /* Deductions that depend on the numbers of lines.
2730 * Only bother if both lines are UNKNOWN, otherwise the
2731 * easy-mode solver (or deductions above) would have taken
2732 * care of it. */
2733 if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
2734 continue;
2735
2736 if (yes == 0 && unknown == 2) {
2737 /* Both these unknowns must be identical. If we know
2738 * atmostone or atleastone, we can make progress. */
2739 if (is_atmostone(dlines, dline_index)) {
2740 solver_set_line(sstate, line1_index, LINE_NO);
2741 solver_set_line(sstate, line2_index, LINE_NO);
2742 diff = min(diff, DIFF_EASY);
2743 }
2744 if (is_atleastone(dlines, dline_index)) {
2745 solver_set_line(sstate, line1_index, LINE_YES);
2746 solver_set_line(sstate, line2_index, LINE_YES);
2747 diff = min(diff, DIFF_EASY);
2748 }
2749 }
2750 if (yes == 1) {
2751 if (set_atmostone(dlines, dline_index))
2752 diff = min(diff, DIFF_NORMAL);
2753 if (unknown == 2) {
2754 if (set_atleastone(dlines, dline_index))
2755 diff = min(diff, DIFF_NORMAL);
2756 }
2757 }
2758
2759 /* More advanced deduction that allows propagation along diagonal
2760 * chains of faces connected by dots, for example: 3-2-...-2-3
2761 * in square grids. */
2762 if (sstate->diff >= DIFF_TRICKY) {
2763 /* If we have atleastone set for this dline, infer
2764 * atmostone for each "opposite" dline (that is, each
2765 * dline without edges in common with this one).
2766 * Again, this test is only worth doing if both these
2767 * lines are UNKNOWN. For if one of these lines were YES,
2768 * the (yes == 1) test above would kick in instead. */
2769 if (is_atleastone(dlines, dline_index)) {
2770 int opp;
2771 for (opp = 0; opp < N; opp++) {
2772 int opp_dline_index;
2773 if (opp == j || opp == j+1 || opp == j-1)
2774 continue;
2775 if (j == 0 && opp == N-1)
2776 continue;
2777 if (j == N-1 && opp == 0)
2778 continue;
2779 opp_dline_index = dline_index_from_dot(g, d, opp);
2780 if (set_atmostone(dlines, opp_dline_index))
2781 diff = min(diff, DIFF_NORMAL);
2782 }
2783 if (yes == 0 && is_atmostone(dlines, dline_index)) {
2784 /* This dline has *exactly* one YES and there are no
2785 * other YESs. This allows more deductions. */
2786 if (unknown == 3) {
2787 /* Third unknown must be YES */
2788 for (opp = 0; opp < N; opp++) {
2789 int opp_index;
2790 if (opp == j || opp == k)
2791 continue;
2792 opp_index = d->edges[opp] - g->edges;
2793 if (state->lines[opp_index] == LINE_UNKNOWN) {
2794 solver_set_line(sstate, opp_index,
2795 LINE_YES);
2796 diff = min(diff, DIFF_EASY);
2797 }
2798 }
2799 } else if (unknown == 4) {
2800 /* Exactly one of opposite UNKNOWNS is YES. We've
2801 * already set atmostone, so set atleastone as
2802 * well.
2803 */
2804 if (dline_set_opp_atleastone(sstate, d, j))
2805 diff = min(diff, DIFF_NORMAL);
2806 }
2807 }
2808 }
2809 }
2810 }
2811 }
2812 return diff;
2813 }
2814
2815 static int linedsf_deductions(solver_state *sstate)
2816 {
2817 game_state *state = sstate->state;
2818 grid *g = state->game_grid;
2819 char *dlines = sstate->dlines;
2820 int i;
2821 int diff = DIFF_MAX;
2822 int diff_tmp;
2823
2824 /* ------ Face deductions ------ */
2825
2826 /* A fully-general linedsf deduction seems overly complicated
2827 * (I suspect the problem is NP-complete, though in practice it might just
2828 * be doable because faces are limited in size).
2829 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2830 * known to be identical. If setting them both to YES (or NO) would break
2831 * the clue, set them to NO (or YES). */
2832
2833 for (i = 0; i < g->num_faces; i++) {
2834 int N, yes, no, unknown;
2835 int clue;
2836
2837 if (sstate->face_solved[i])
2838 continue;
2839 clue = state->clues[i];
2840 if (clue < 0)
2841 continue;
2842
2843 N = g->faces[i].order;
2844 yes = sstate->face_yes_count[i];
2845 if (yes + 1 == clue) {
2846 if (face_setall_identical(sstate, i, LINE_NO))
2847 diff = min(diff, DIFF_EASY);
2848 }
2849 no = sstate->face_no_count[i];
2850 if (no + 1 == N - clue) {
2851 if (face_setall_identical(sstate, i, LINE_YES))
2852 diff = min(diff, DIFF_EASY);
2853 }
2854
2855 /* Reload YES count, it might have changed */
2856 yes = sstate->face_yes_count[i];
2857 unknown = N - no - yes;
2858
2859 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2860 * parity of lines. */
2861 diff_tmp = parity_deductions(sstate, g->faces[i].edges,
2862 (clue - yes) % 2, unknown);
2863 diff = min(diff, diff_tmp);
2864 }
2865
2866 /* ------ Dot deductions ------ */
2867 for (i = 0; i < g->num_dots; i++) {
2868 grid_dot *d = g->dots + i;
2869 int N = d->order;
2870 int j;
2871 int yes, no, unknown;
2872 /* Go through dlines, and do any dline<->linedsf deductions wherever
2873 * we find two UNKNOWNS. */
2874 for (j = 0; j < N; j++) {
2875 int dline_index = dline_index_from_dot(g, d, j);
2876 int line1_index;
2877 int line2_index;
2878 int can1, can2, inv1, inv2;
2879 int j2;
2880 line1_index = d->edges[j] - g->edges;
2881 if (state->lines[line1_index] != LINE_UNKNOWN)
2882 continue;
2883 j2 = j + 1;
2884 if (j2 == N) j2 = 0;
2885 line2_index = d->edges[j2] - g->edges;
2886 if (state->lines[line2_index] != LINE_UNKNOWN)
2887 continue;
2888 /* Infer dline flags from linedsf */
2889 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2890 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
2891 if (can1 == can2 && inv1 != inv2) {
2892 /* These are opposites, so set dline atmostone/atleastone */
2893 if (set_atmostone(dlines, dline_index))
2894 diff = min(diff, DIFF_NORMAL);
2895 if (set_atleastone(dlines, dline_index))
2896 diff = min(diff, DIFF_NORMAL);
2897 continue;
2898 }
2899 /* Infer linedsf from dline flags */
2900 if (is_atmostone(dlines, dline_index)
2901 && is_atleastone(dlines, dline_index)) {
2902 if (merge_lines(sstate, line1_index, line2_index, 1))
2903 diff = min(diff, DIFF_HARD);
2904 }
2905 }
2906
2907 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2908 * parity of lines. */
2909 yes = sstate->dot_yes_count[i];
2910 no = sstate->dot_no_count[i];
2911 unknown = N - yes - no;
2912 diff_tmp = parity_deductions(sstate, d->edges,
2913 yes % 2, unknown);
2914 diff = min(diff, diff_tmp);
2915 }
2916
2917 /* ------ Edge dsf deductions ------ */
2918
2919 /* If the state of a line is known, deduce the state of its canonical line
2920 * too, and vice versa. */
2921 for (i = 0; i < g->num_edges; i++) {
2922 int can, inv;
2923 enum line_state s;
2924 can = edsf_canonify(sstate->linedsf, i, &inv);
2925 if (can == i)
2926 continue;
2927 s = sstate->state->lines[can];
2928 if (s != LINE_UNKNOWN) {
2929 if (solver_set_line(sstate, i, inv ? OPP(s) : s))
2930 diff = min(diff, DIFF_EASY);
2931 } else {
2932 s = sstate->state->lines[i];
2933 if (s != LINE_UNKNOWN) {
2934 if (solver_set_line(sstate, can, inv ? OPP(s) : s))
2935 diff = min(diff, DIFF_EASY);
2936 }
2937 }
2938 }
2939
2940 return diff;
2941 }
2942
2943 static int loop_deductions(solver_state *sstate)
2944 {
2945 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
2946 game_state *state = sstate->state;
2947 grid *g = state->game_grid;
2948 int shortest_chainlen = g->num_dots;
2949 int loop_found = FALSE;
2950 int dots_connected;
2951 int progress = FALSE;
2952 int i;
2953
2954 /*
2955 * Go through the grid and update for all the new edges.
2956 * Since merge_dots() is idempotent, the simplest way to
2957 * do this is just to update for _all_ the edges.
2958 * Also, while we're here, we count the edges.
2959 */
2960 for (i = 0; i < g->num_edges; i++) {
2961 if (state->lines[i] == LINE_YES) {
2962 loop_found |= merge_dots(sstate, i);
2963 edgecount++;
2964 }
2965 }
2966
2967 /*
2968 * Count the clues, count the satisfied clues, and count the
2969 * satisfied-minus-one clues.
2970 */
2971 for (i = 0; i < g->num_faces; i++) {
2972 int c = state->clues[i];
2973 if (c >= 0) {
2974 int o = sstate->face_yes_count[i];
2975 if (o == c)
2976 satclues++;
2977 else if (o == c-1)
2978 sm1clues++;
2979 clues++;
2980 }
2981 }
2982
2983 for (i = 0; i < g->num_dots; ++i) {
2984 dots_connected =
2985 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
2986 if (dots_connected > 1)
2987 shortest_chainlen = min(shortest_chainlen, dots_connected);
2988 }
2989
2990 assert(sstate->solver_status == SOLVER_INCOMPLETE);
2991
2992 if (satclues == clues && shortest_chainlen == edgecount) {
2993 sstate->solver_status = SOLVER_SOLVED;
2994 /* This discovery clearly counts as progress, even if we haven't
2995 * just added any lines or anything */
2996 progress = TRUE;
2997 goto finished_loop_deductionsing;
2998 }
2999
3000 /*
3001 * Now go through looking for LINE_UNKNOWN edges which
3002 * connect two dots that are already in the same
3003 * equivalence class. If we find one, test to see if the
3004 * loop it would create is a solution.
3005 */
3006 for (i = 0; i < g->num_edges; i++) {
3007 grid_edge *e = g->edges + i;
3008 int d1 = e->dot1 - g->dots;
3009 int d2 = e->dot2 - g->dots;
3010 int eqclass, val;
3011 if (state->lines[i] != LINE_UNKNOWN)
3012 continue;
3013
3014 eqclass = dsf_canonify(sstate->dotdsf, d1);
3015 if (eqclass != dsf_canonify(sstate->dotdsf, d2))
3016 continue;
3017
3018 val = LINE_NO; /* loop is bad until proven otherwise */
3019
3020 /*
3021 * This edge would form a loop. Next
3022 * question: how long would the loop be?
3023 * Would it equal the total number of edges
3024 * (plus the one we'd be adding if we added
3025 * it)?
3026 */
3027 if (sstate->looplen[eqclass] == edgecount + 1) {
3028 int sm1_nearby;
3029
3030 /*
3031 * This edge would form a loop which
3032 * took in all the edges in the entire
3033 * grid. So now we need to work out
3034 * whether it would be a valid solution
3035 * to the puzzle, which means we have to
3036 * check if it satisfies all the clues.
3037 * This means that every clue must be
3038 * either satisfied or satisfied-minus-
3039 * 1, and also that the number of
3040 * satisfied-minus-1 clues must be at
3041 * most two and they must lie on either
3042 * side of this edge.
3043 */
3044 sm1_nearby = 0;
3045 if (e->face1) {
3046 int f = e->face1 - g->faces;
3047 int c = state->clues[f];
3048 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
3049 sm1_nearby++;
3050 }
3051 if (e->face2) {
3052 int f = e->face2 - g->faces;
3053 int c = state->clues[f];
3054 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
3055 sm1_nearby++;
3056 }
3057 if (sm1clues == sm1_nearby &&
3058 sm1clues + satclues == clues) {
3059 val = LINE_YES; /* loop is good! */
3060 }
3061 }
3062
3063 /*
3064 * Right. Now we know that adding this edge
3065 * would form a loop, and we know whether
3066 * that loop would be a viable solution or
3067 * not.
3068 *
3069 * If adding this edge produces a solution,
3070 * then we know we've found _a_ solution but
3071 * we don't know that it's _the_ solution -
3072 * if it were provably the solution then
3073 * we'd have deduced this edge some time ago
3074 * without the need to do loop detection. So
3075 * in this state we return SOLVER_AMBIGUOUS,
3076 * which has the effect that hitting Solve
3077 * on a user-provided puzzle will fill in a
3078 * solution but using the solver to
3079 * construct new puzzles won't consider this
3080 * a reasonable deduction for the user to
3081 * make.
3082 */
3083 progress = solver_set_line(sstate, i, val);
3084 assert(progress == TRUE);
3085 if (val == LINE_YES) {
3086 sstate->solver_status = SOLVER_AMBIGUOUS;
3087 goto finished_loop_deductionsing;
3088 }
3089 }
3090
3091 finished_loop_deductionsing:
3092 return progress ? DIFF_EASY : DIFF_MAX;
3093 }
3094
3095 /* This will return a dynamically allocated solver_state containing the (more)
3096 * solved grid */
3097 static solver_state *solve_game_rec(const solver_state *sstate_start)
3098 {
3099 solver_state *sstate;
3100
3101 /* Index of the solver we should call next. */
3102 int i = 0;
3103
3104 /* As a speed-optimisation, we avoid re-running solvers that we know
3105 * won't make any progress. This happens when a high-difficulty
3106 * solver makes a deduction that can only help other high-difficulty
3107 * solvers.
3108 * For example: if a new 'dline' flag is set by dline_deductions, the
3109 * trivial_deductions solver cannot do anything with this information.
3110 * If we've already run the trivial_deductions solver (because it's
3111 * earlier in the list), there's no point running it again.
3112 *
3113 * Therefore: if a solver is earlier in the list than "threshold_index",
3114 * we don't bother running it if it's difficulty level is less than
3115 * "threshold_diff".
3116 */
3117 int threshold_diff = 0;
3118 int threshold_index = 0;
3119
3120 sstate = dup_solver_state(sstate_start);
3121
3122 check_caches(sstate);
3123
3124 while (i < NUM_SOLVERS) {
3125 if (sstate->solver_status == SOLVER_MISTAKE)
3126 return sstate;
3127 if (sstate->solver_status == SOLVER_SOLVED ||
3128 sstate->solver_status == SOLVER_AMBIGUOUS) {
3129 /* solver finished */
3130 break;
3131 }
3132
3133 if ((solver_diffs[i] >= threshold_diff || i >= threshold_index)
3134 && solver_diffs[i] <= sstate->diff) {
3135 /* current_solver is eligible, so use it */
3136 int next_diff = solver_fns[i](sstate);
3137 if (next_diff != DIFF_MAX) {
3138 /* solver made progress, so use new thresholds and
3139 * start again at top of list. */
3140 threshold_diff = next_diff;
3141 threshold_index = i;
3142 i = 0;
3143 continue;
3144 }
3145 }
3146 /* current_solver is ineligible, or failed to make progress, so
3147 * go to the next solver in the list */
3148 i++;
3149 }
3150
3151 if (sstate->solver_status == SOLVER_SOLVED ||
3152 sstate->solver_status == SOLVER_AMBIGUOUS) {
3153 /* s/LINE_UNKNOWN/LINE_NO/g */
3154 array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
3155 sstate->state->game_grid->num_edges);
3156 return sstate;
3157 }
3158
3159 return sstate;
3160 }
3161
3162 static char *solve_game(game_state *state, game_state *currstate,
3163 char *aux, char **error)
3164 {
3165 char *soln = NULL;
3166 solver_state *sstate, *new_sstate;
3167
3168 sstate = new_solver_state(state, DIFF_MAX);
3169 new_sstate = solve_game_rec(sstate);
3170
3171 if (new_sstate->solver_status == SOLVER_SOLVED) {
3172 soln = encode_solve_move(new_sstate->state);
3173 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
3174 soln = encode_solve_move(new_sstate->state);
3175 /**error = "Solver found ambiguous solutions"; */
3176 } else {
3177 soln = encode_solve_move(new_sstate->state);
3178 /**error = "Solver failed"; */
3179 }
3180
3181 free_solver_state(new_sstate);
3182 free_solver_state(sstate);
3183
3184 return soln;
3185 }
3186
3187 /* ----------------------------------------------------------------------
3188 * Drawing and mouse-handling
3189 */
3190
3191 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
3192 int x, int y, int button)
3193 {
3194 grid *g = state->game_grid;
3195 grid_edge *e;
3196 int i;
3197 char *ret, buf[80];
3198 char button_char = ' ';
3199 enum line_state old_state;
3200
3201 button &= ~MOD_MASK;
3202
3203 /* Convert mouse-click (x,y) to grid coordinates */
3204 x -= BORDER(ds->tilesize);
3205 y -= BORDER(ds->tilesize);
3206 x = x * g->tilesize / ds->tilesize;
3207 y = y * g->tilesize / ds->tilesize;
3208 x += g->lowest_x;
3209 y += g->lowest_y;
3210
3211 e = grid_nearest_edge(g, x, y);
3212 if (e == NULL)
3213 return NULL;
3214
3215 i = e - g->edges;
3216
3217 /* I think it's only possible to play this game with mouse clicks, sorry */
3218 /* Maybe will add mouse drag support some time */
3219 old_state = state->lines[i];
3220
3221 switch (button) {
3222 case LEFT_BUTTON:
3223 switch (old_state) {
3224 case LINE_UNKNOWN:
3225 button_char = 'y';
3226 break;
3227 case LINE_YES:
3228 #ifdef STYLUS_BASED
3229 button_char = 'n';
3230 break;
3231 #endif
3232 case LINE_NO:
3233 button_char = 'u';
3234 break;
3235 }
3236 break;
3237 case MIDDLE_BUTTON:
3238 button_char = 'u';
3239 break;
3240 case RIGHT_BUTTON:
3241 switch (old_state) {
3242 case LINE_UNKNOWN:
3243 button_char = 'n';
3244 break;
3245 case LINE_NO:
3246 #ifdef STYLUS_BASED
3247 button_char = 'y';
3248 break;
3249 #endif
3250 case LINE_YES:
3251 button_char = 'u';
3252 break;
3253 }
3254 break;
3255 default:
3256 return NULL;
3257 }
3258
3259
3260 sprintf(buf, "%d%c", i, (int)button_char);
3261 ret = dupstr(buf);
3262
3263 return ret;
3264 }
3265
3266 static game_state *execute_move(game_state *state, char *move)
3267 {
3268 int i;
3269 game_state *newstate = dup_game(state);
3270
3271 if (move[0] == 'S') {
3272 move++;
3273 newstate->cheated = TRUE;
3274 }
3275
3276 while (*move) {
3277 i = atoi(move);
3278 if (i < 0 || i >= newstate->game_grid->num_edges)
3279 goto fail;
3280 move += strspn(move, "1234567890");
3281 switch (*(move++)) {
3282 case 'y':
3283 newstate->lines[i] = LINE_YES;
3284 break;
3285 case 'n':
3286 newstate->lines[i] = LINE_NO;
3287 break;
3288 case 'u':
3289 newstate->lines[i] = LINE_UNKNOWN;
3290 break;
3291 default:
3292 goto fail;
3293 }
3294 }
3295
3296 /*
3297 * Check for completion.
3298 */
3299 if (check_completion(newstate))
3300 newstate->solved = TRUE;
3301
3302 return newstate;
3303
3304 fail:
3305 free_game(newstate);
3306 return NULL;
3307 }
3308
3309 /* ----------------------------------------------------------------------
3310 * Drawing routines.
3311 */
3312
3313 /* Convert from grid coordinates to screen coordinates */
3314 static void grid_to_screen(const game_drawstate *ds, const grid *g,
3315 int grid_x, int grid_y, int *x, int *y)
3316 {
3317 *x = grid_x - g->lowest_x;
3318 *y = grid_y - g->lowest_y;
3319 *x = *x * ds->tilesize / g->tilesize;
3320 *y = *y * ds->tilesize / g->tilesize;
3321 *x += BORDER(ds->tilesize);
3322 *y += BORDER(ds->tilesize);
3323 }
3324
3325 /* Returns (into x,y) position of centre of face for rendering the text clue.
3326 */
3327 static void face_text_pos(const game_drawstate *ds, const grid *g,
3328 const grid_face *f, int *x, int *y)
3329 {
3330 int i;
3331
3332 /* Simplest solution is the centroid. Might not work in some cases. */
3333
3334 /* Another algorithm to look into:
3335 * Find the midpoints of the sides, find the bounding-box,
3336 * then take the centre of that. */
3337
3338 /* Best solution probably involves incentres (inscribed circles) */
3339
3340 int sx = 0, sy = 0; /* sums */
3341 for (i = 0; i < f->order; i++) {
3342 grid_dot *d = f->dots[i];
3343 sx += d->x;
3344 sy += d->y;
3345 }
3346 sx /= f->order;
3347 sy /= f->order;
3348
3349 /* convert to screen coordinates */
3350 grid_to_screen(ds, g, sx, sy, x, y);
3351 }
3352
3353 static void game_redraw_clue(drawing *dr, game_drawstate *ds,
3354 game_state *state, int i)
3355 {
3356 grid *g = state->game_grid;
3357 grid_face *f = g->faces + i;
3358 int x, y;
3359 char c[2];
3360
3361 c[0] = CLUE2CHAR(state->clues[i]);
3362 c[1] = '\0';
3363
3364 face_text_pos(ds, g, f, &x, &y);
3365 draw_text(dr, x, y,
3366 FONT_VARIABLE, ds->tilesize/2,
3367 ALIGN_VCENTRE | ALIGN_HCENTRE,
3368 ds->clue_error[i] ? COL_MISTAKE :
3369 ds->clue_satisfied[i] ? COL_SATISFIED : COL_FOREGROUND, c);
3370 }
3371
3372 static void game_redraw_line(drawing *dr, game_drawstate *ds,
3373 game_state *state, int i)
3374 {
3375 grid *g = state->game_grid;
3376 grid_edge *e = g->edges + i;
3377 int x1, x2, y1, y2;
3378 int xmin, ymin, xmax, ymax;
3379 int line_colour;
3380
3381 if (state->line_errors[i])
3382 line_colour = COL_MISTAKE;
3383 else if (state->lines[i] == LINE_UNKNOWN)
3384 line_colour = COL_LINEUNKNOWN;
3385 else if (state->lines[i] == LINE_NO)
3386 line_colour = COL_FAINT;
3387 else if (ds->flashing)
3388 line_colour = COL_HIGHLIGHT;
3389 else
3390 line_colour = COL_FOREGROUND;
3391
3392 /* Convert from grid to screen coordinates */
3393 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3394 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3395
3396 xmin = min(x1, x2);
3397 xmax = max(x1, x2);
3398 ymin = min(y1, y2);
3399 ymax = max(y1, y2);
3400
3401 if (line_colour == COL_FAINT) {
3402 static int draw_faint_lines = -1;
3403 if (draw_faint_lines < 0) {
3404 char *env = getenv("LOOPY_FAINT_LINES");
3405 draw_faint_lines = (!env || (env[0] == 'y' ||
3406 env[0] == 'Y'));
3407 }
3408 if (draw_faint_lines)
3409 draw_line(dr, x1, y1, x2, y2, line_colour);
3410 } else {
3411 draw_thick_line(dr, 3.0,
3412 x1 + 0.5, y1 + 0.5,
3413 x2 + 0.5, y2 + 0.5,
3414 line_colour);
3415 }
3416 }
3417
3418 static void game_redraw_dot(drawing *dr, game_drawstate *ds,
3419 game_state *state, int i)
3420 {
3421 grid *g = state->game_grid;
3422 grid_dot *d = g->dots + i;
3423 int x, y;
3424
3425 grid_to_screen(ds, g, d->x, d->y, &x, &y);
3426 draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
3427 }
3428
3429 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3430 game_state *state, int dir, game_ui *ui,
3431 float animtime, float flashtime)
3432 {
3433 #define REDRAW_OBJECTS_LIMIT 16 /* Somewhat arbitrary tradeoff */
3434
3435 grid *g = state->game_grid;
3436 int border = BORDER(ds->tilesize);
3437 int i;
3438 int flash_changed;
3439 int redraw_everything = FALSE;
3440
3441 int edges[REDRAW_OBJECTS_LIMIT], nedges = 0;
3442 int faces[REDRAW_OBJECTS_LIMIT], nfaces = 0;
3443
3444 /* Redrawing is somewhat involved.
3445 *
3446 * An update can theoretically affect an arbitrary number of edges
3447 * (consider, for example, completing or breaking a cycle which doesn't
3448 * satisfy all the clues -- we'll switch many edges between error and
3449 * normal states). On the other hand, redrawing the whole grid takes a
3450 * while, making the game feel sluggish, and many updates are actually
3451 * quite well localized.
3452 *
3453 * This redraw algorithm attempts to cope with both situations gracefully
3454 * and correctly. For localized changes, we set a clip rectangle, fill
3455 * it with background, and then redraw (a plausible but conservative
3456 * guess at) the objects which intersect the rectangle; if several
3457 * objects need redrawing, we'll do them individually. However, if lots
3458 * of objects are affected, we'll just redraw everything.
3459 *
3460 * The reason for all of this is that it's just not safe to do the redraw
3461 * piecemeal. If you try to draw an antialiased diagonal line over
3462 * itself, you get a slightly thicker antialiased diagonal line, which
3463 * looks rather ugly after a while.
3464 *
3465 * So, we take two passes over the grid. The first attempts to work out
3466 * what needs doing, and the second actually does it.
3467 */
3468
3469 if (!ds->started)
3470 redraw_everything = TRUE;
3471 else {
3472
3473 /* First, trundle through the faces. */
3474 for (i = 0; i < g->num_faces; i++) {
3475 grid_face *f = g->faces + i;
3476 int sides = f->order;
3477 int clue_mistake;
3478 int clue_satisfied;
3479 int n = state->clues[i];
3480 if (n < 0)
3481 continue;
3482
3483 clue_mistake = (face_order(state, i, LINE_YES) > n ||
3484 face_order(state, i, LINE_NO ) > (sides-n));
3485 clue_satisfied = (face_order(state, i, LINE_YES) == n &&
3486 face_order(state, i, LINE_NO ) == (sides-n));
3487
3488 if (clue_mistake != ds->clue_error[i] ||
3489 clue_satisfied != ds->clue_satisfied[i]) {
3490 ds->clue_error[i] = clue_mistake;
3491 ds->clue_satisfied[i] = clue_satisfied;
3492 if (nfaces == REDRAW_OBJECTS_LIMIT)
3493 redraw_everything = TRUE;
3494 else
3495 faces[nfaces++] = i;
3496 }
3497 }
3498
3499 /* Work out what the flash state needs to be. */
3500 if (flashtime > 0 &&
3501 (flashtime <= FLASH_TIME/3 ||
3502 flashtime >= FLASH_TIME*2/3)) {
3503 flash_changed = !ds->flashing;
3504 ds->flashing = TRUE;
3505 } else {
3506 flash_changed = ds->flashing;
3507 ds->flashing = FALSE;
3508 }
3509
3510 /* Now, trundle through the edges. */
3511 for (i = 0; i < g->num_edges; i++) {
3512 char new_ds =
3513 state->line_errors[i] ? DS_LINE_ERROR : state->lines[i];
3514 if (new_ds != ds->lines[i] ||
3515 (flash_changed && state->lines[i] == LINE_YES)) {
3516 ds->lines[i] = new_ds;
3517 if (nedges == REDRAW_OBJECTS_LIMIT)
3518 redraw_everything = TRUE;
3519 else
3520 edges[nedges++] = i;
3521 }
3522 }
3523 }
3524
3525 /* Pass one is now done. Now we do the actual drawing. */
3526 if (redraw_everything) {
3527
3528 /* This is the unsubtle version. */
3529
3530 int grid_width = g->highest_x - g->lowest_x;
3531 int grid_height = g->highest_y - g->lowest_y;
3532 int w = grid_width * ds->tilesize / g->tilesize;
3533 int h = grid_height * ds->tilesize / g->tilesize;
3534
3535 draw_rect(dr, 0, 0, w + 2*border + 1, h + 2*border + 1,
3536 COL_BACKGROUND);
3537
3538 for (i = 0; i < g->num_faces; i++)
3539 game_redraw_clue(dr, ds, state, i);
3540 for (i = 0; i < g->num_edges; i++)
3541 game_redraw_line(dr, ds, state, i);
3542 for (i = 0; i < g->num_dots; i++)
3543 game_redraw_dot(dr, ds, state, i);
3544
3545 draw_update(dr, 0, 0, w + 2*border + 1, h + 2*border + 1);
3546 } else {
3547
3548 /* Right. Now we roll up our sleeves. */
3549
3550 for (i = 0; i < nfaces; i++) {
3551 grid_face *f = g->faces + faces[i];
3552 int xx, yy;
3553 int x, y, w, h;
3554 int j;
3555
3556 /* There seems to be a certain amount of trial-and-error
3557 * involved in working out the correct bounding-box for
3558 * the text. */
3559 face_text_pos(ds, g, f, &xx, &yy);
3560
3561 x = xx - ds->tilesize/4 - 1; w = ds->tilesize/2 + 2;
3562 y = yy - ds->tilesize/4 - 3; h = ds->tilesize/2 + 5;
3563 clip(dr, x, y, w, h);
3564 draw_rect(dr, x, y, w, h, COL_BACKGROUND);
3565
3566 game_redraw_clue(dr, ds, state, faces[i]);
3567 for (j = 0; j < f->order; j++)
3568 game_redraw_line(dr, ds, state, f->edges[j] - g->edges);
3569 for (j = 0; j < f->order; j++)
3570 game_redraw_dot(dr, ds, state, f->dots[j] - g->dots);
3571 unclip(dr);
3572 draw_update(dr, x, y, w, h);
3573 }
3574
3575 for (i = 0; i < nedges; i++) {
3576 grid_edge *e = g->edges + edges[i], *ee;
3577 int x1 = e->dot1->x;
3578 int y1 = e->dot1->y;
3579 int x2 = e->dot2->x;
3580 int y2 = e->dot2->y;
3581 int xmin, xmax, ymin, ymax;
3582 int j;
3583
3584 grid_to_screen(ds, g, x1, y1, &x1, &y1);
3585 grid_to_screen(ds, g, x2, y2, &x2, &y2);
3586 /* Allow extra margin for dots, and thickness of lines */
3587 xmin = min(x1, x2) - 2;
3588 xmax = max(x1, x2) + 2;
3589 ymin = min(y1, y2) - 2;
3590 ymax = max(y1, y2) + 2;
3591 /* For testing, I find it helpful to change COL_BACKGROUND
3592 * to COL_SATISFIED here. */
3593 clip(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
3594 draw_rect(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1,
3595 COL_BACKGROUND);
3596
3597 if (e->face1)
3598 game_redraw_clue(dr, ds, state, e->face1 - g->faces);
3599 if (e->face2)
3600 game_redraw_clue(dr, ds, state, e->face2 - g->faces);
3601
3602 game_redraw_line(dr, ds, state, edges[i]);
3603 for (j = 0; j < e->dot1->order; j++) {
3604 ee = e->dot1->edges[j];
3605 if (ee != e)
3606 game_redraw_line(dr, ds, state, ee - g->edges);
3607 }
3608 for (j = 0; j < e->dot2->order; j++) {
3609 ee = e->dot2->edges[j];
3610 if (ee != e)
3611 game_redraw_line(dr, ds, state, ee - g->edges);
3612 }
3613 game_redraw_dot(dr, ds, state, e->dot1 - g->dots);
3614 game_redraw_dot(dr, ds, state, e->dot2 - g->dots);
3615
3616 unclip(dr);
3617 draw_update(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
3618 }
3619 }
3620
3621 ds->started = TRUE;
3622 }
3623
3624 static float game_flash_length(game_state *oldstate, game_state *newstate,
3625 int dir, game_ui *ui)
3626 {
3627 if (!oldstate->solved && newstate->solved &&
3628 !oldstate->cheated && !newstate->cheated) {
3629 return FLASH_TIME;
3630 }
3631
3632 return 0.0F;
3633 }
3634
3635 static void game_print_size(game_params *params, float *x, float *y)
3636 {
3637 int pw, ph;
3638
3639 /*
3640 * I'll use 7mm "squares" by default.
3641 */
3642 game_compute_size(params, 700, &pw, &ph);
3643 *x = pw / 100.0F;
3644 *y = ph / 100.0F;
3645 }
3646
3647 static void game_print(drawing *dr, game_state *state, int tilesize)
3648 {
3649 int ink = print_mono_colour(dr, 0);
3650 int i;
3651 game_drawstate ads, *ds = &ads;
3652 grid *g = state->game_grid;
3653
3654 ds->tilesize = tilesize;
3655
3656 for (i = 0; i < g->num_dots; i++) {
3657 int x, y;
3658 grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
3659 draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
3660 }
3661
3662 /*
3663 * Clues.
3664 */
3665 for (i = 0; i < g->num_faces; i++) {
3666 grid_face *f = g->faces + i;
3667 int clue = state->clues[i];
3668 if (clue >= 0) {
3669 char c[2];
3670 int x, y;
3671 c[0] = CLUE2CHAR(clue);
3672 c[1] = '\0';
3673 face_text_pos(ds, g, f, &x, &y);
3674 draw_text(dr, x, y,
3675 FONT_VARIABLE, ds->tilesize / 2,
3676 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3677 }
3678 }
3679
3680 /*
3681 * Lines.
3682 */
3683 for (i = 0; i < g->num_edges; i++) {
3684 int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
3685 grid_edge *e = g->edges + i;
3686 int x1, y1, x2, y2;
3687 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3688 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3689 if (state->lines[i] == LINE_YES)
3690 {
3691 /* (dx, dy) points from (x1, y1) to (x2, y2).
3692 * The line is then "fattened" in a perpendicular
3693 * direction to create a thin rectangle. */
3694 double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
3695 double dx = (x2 - x1) / d;
3696 double dy = (y2 - y1) / d;
3697 int points[8];
3698
3699 dx = (dx * ds->tilesize) / thickness;
3700 dy = (dy * ds->tilesize) / thickness;
3701 points[0] = x1 + (int)dy;
3702 points[1] = y1 - (int)dx;
3703 points[2] = x1 - (int)dy;
3704 points[3] = y1 + (int)dx;
3705 points[4] = x2 - (int)dy;
3706 points[5] = y2 + (int)dx;
3707 points[6] = x2 + (int)dy;
3708 points[7] = y2 - (int)dx;
3709 draw_polygon(dr, points, 4, ink, ink);
3710 }
3711 else
3712 {
3713 /* Draw a dotted line */
3714 int divisions = 6;
3715 int j;
3716 for (j = 1; j < divisions; j++) {
3717 /* Weighted average */
3718 int x = (x1 * (divisions -j) + x2 * j) / divisions;
3719 int y = (y1 * (divisions -j) + y2 * j) / divisions;
3720 draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
3721 }
3722 }
3723 }
3724 }
3725
3726 #ifdef COMBINED
3727 #define thegame loopy
3728 #endif
3729
3730 const struct game thegame = {
3731 "Loopy", "games.loopy", "loopy",
3732 default_params,
3733 game_fetch_preset,
3734 decode_params,
3735 encode_params,
3736 free_params,
3737 dup_params,
3738 TRUE, game_configure, custom_params,
3739 validate_params,
3740 new_game_desc,
3741 validate_desc,
3742 new_game,
3743 dup_game,
3744 free_game,
3745 1, solve_game,
3746 TRUE, game_can_format_as_text_now, game_text_format,
3747 new_ui,
3748 free_ui,
3749 encode_ui,
3750 decode_ui,
3751 game_changed_state,
3752 interpret_move,
3753 execute_move,
3754 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3755 game_colours,
3756 game_new_drawstate,
3757 game_free_drawstate,
3758 game_redraw,
3759 game_anim_length,
3760 game_flash_length,
3761 TRUE, FALSE, game_print_size, game_print,
3762 FALSE /* wants_statusbar */,
3763 FALSE, game_timing_state,
3764 0, /* mouse_priorities */
3765 };
3766
3767 #ifdef STANDALONE_SOLVER
3768
3769 /*
3770 * Half-hearted standalone solver. It can't output the solution to
3771 * anything but a square puzzle, and it can't log the deductions
3772 * it makes either. But it can solve square puzzles, and more
3773 * importantly it can use its solver to grade the difficulty of
3774 * any puzzle you give it.
3775 */
3776
3777 #include <stdarg.h>
3778
3779 int main(int argc, char **argv)
3780 {
3781 game_params *p;
3782 game_state *s;
3783 char *id = NULL, *desc, *err;
3784 int grade = FALSE;
3785 int ret, diff;
3786 #if 0 /* verbose solver not supported here (yet) */
3787 int really_verbose = FALSE;
3788 #endif
3789
3790 while (--argc > 0) {
3791 char *p = *++argv;
3792 #if 0 /* verbose solver not supported here (yet) */
3793 if (!strcmp(p, "-v")) {
3794 really_verbose = TRUE;
3795 } else
3796 #endif
3797 if (!strcmp(p, "-g")) {
3798 grade = TRUE;
3799 } else if (*p == '-') {
3800 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
3801 return 1;
3802 } else {
3803 id = p;
3804 }
3805 }
3806
3807 if (!id) {
3808 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
3809 return 1;
3810 }
3811
3812 desc = strchr(id, ':');
3813 if (!desc) {
3814 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
3815 return 1;
3816 }
3817 *desc++ = '\0';
3818
3819 p = default_params();
3820 decode_params(p, id);
3821 err = validate_desc(p, desc);
3822 if (err) {
3823 fprintf(stderr, "%s: %s\n", argv[0], err);
3824 return 1;
3825 }
3826 s = new_game(NULL, p, desc);
3827
3828 /*
3829 * When solving an Easy puzzle, we don't want to bother the
3830 * user with Hard-level deductions. For this reason, we grade
3831 * the puzzle internally before doing anything else.
3832 */
3833 ret = -1; /* placate optimiser */
3834 for (diff = 0; diff < DIFF_MAX; diff++) {
3835 solver_state *sstate_new;
3836 solver_state *sstate = new_solver_state((game_state *)s, diff);
3837
3838 sstate_new = solve_game_rec(sstate);
3839
3840 if (sstate_new->solver_status == SOLVER_MISTAKE)
3841 ret = 0;
3842 else if (sstate_new->solver_status == SOLVER_SOLVED)
3843 ret = 1;
3844 else
3845 ret = 2;
3846
3847 free_solver_state(sstate_new);
3848 free_solver_state(sstate);
3849
3850 if (ret < 2)
3851 break;
3852 }
3853
3854 if (diff == DIFF_MAX) {
3855 if (grade)
3856 printf("Difficulty rating: harder than Hard, or ambiguous\n");
3857 else
3858 printf("Unable to find a unique solution\n");
3859 } else {
3860 if (grade) {
3861 if (ret == 0)
3862 printf("Difficulty rating: impossible (no solution exists)\n");
3863 else if (ret == 1)
3864 printf("Difficulty rating: %s\n", diffnames[diff]);
3865 } else {
3866 solver_state *sstate_new;
3867 solver_state *sstate = new_solver_state((game_state *)s, diff);
3868
3869 /* If we supported a verbose solver, we'd set verbosity here */
3870
3871 sstate_new = solve_game_rec(sstate);
3872
3873 if (sstate_new->solver_status == SOLVER_MISTAKE)
3874 printf("Puzzle is inconsistent\n");
3875 else {
3876 assert(sstate_new->solver_status == SOLVER_SOLVED);
3877 if (s->grid_type == 0) {
3878 fputs(game_text_format(sstate_new->state), stdout);
3879 } else {
3880 printf("Unable to output non-square grids\n");
3881 }
3882 }
3883
3884 free_solver_state(sstate_new);
3885 free_solver_state(sstate);
3886 }
3887 }
3888
3889 return 0;
3890 }
3891
3892 #endif