Substantial infrastructure upheaval. I've separated the drawing API
[sgt/puzzles] / mines.c
1 /*
2 * mines.c: Minesweeper clone with sophisticated grid generation.
3 *
4 * Still TODO:
5 *
6 * - think about configurably supporting question marks. Once,
7 * that is, we've thought about configurability in general!
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <assert.h>
14 #include <ctype.h>
15 #include <math.h>
16
17 #include "tree234.h"
18 #include "puzzles.h"
19
20 enum {
21 COL_BACKGROUND, COL_BACKGROUND2,
22 COL_1, COL_2, COL_3, COL_4, COL_5, COL_6, COL_7, COL_8,
23 COL_MINE, COL_BANG, COL_CROSS, COL_FLAG, COL_FLAGBASE, COL_QUERY,
24 COL_HIGHLIGHT, COL_LOWLIGHT,
25 NCOLOURS
26 };
27
28 #define PREFERRED_TILE_SIZE 20
29 #define TILE_SIZE (ds->tilesize)
30 #define BORDER (TILE_SIZE * 3 / 2)
31 #define HIGHLIGHT_WIDTH (TILE_SIZE / 10)
32 #define OUTER_HIGHLIGHT_WIDTH (BORDER / 10)
33 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
34 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
35
36 #define FLASH_FRAME 0.13F
37
38 struct game_params {
39 int w, h, n;
40 int unique;
41 };
42
43 struct mine_layout {
44 /*
45 * This structure is shared between all the game_states for a
46 * given instance of the puzzle, so we reference-count it.
47 */
48 int refcount;
49 char *mines;
50 /*
51 * If we haven't yet actually generated the mine layout, here's
52 * all the data we will need to do so.
53 */
54 int n, unique;
55 random_state *rs;
56 midend *me; /* to give back the new game desc */
57 };
58
59 struct game_state {
60 int w, h, n, dead, won;
61 int used_solve, just_used_solve;
62 struct mine_layout *layout; /* real mine positions */
63 signed char *grid; /* player knowledge */
64 /*
65 * Each item in the `grid' array is one of the following values:
66 *
67 * - 0 to 8 mean the square is open and has a surrounding mine
68 * count.
69 *
70 * - -1 means the square is marked as a mine.
71 *
72 * - -2 means the square is unknown.
73 *
74 * - -3 means the square is marked with a question mark
75 * (FIXME: do we even want to bother with this?).
76 *
77 * - 64 means the square has had a mine revealed when the game
78 * was lost.
79 *
80 * - 65 means the square had a mine revealed and this was the
81 * one the player hits.
82 *
83 * - 66 means the square has a crossed-out mine because the
84 * player had incorrectly marked it.
85 */
86 };
87
88 static game_params *default_params(void)
89 {
90 game_params *ret = snew(game_params);
91
92 ret->w = ret->h = 9;
93 ret->n = 10;
94 ret->unique = TRUE;
95
96 return ret;
97 }
98
99 static const struct game_params mines_presets[] = {
100 {9, 9, 10, TRUE},
101 {9, 9, 35, TRUE},
102 {16, 16, 40, TRUE},
103 {16, 16, 99, TRUE},
104 {30, 16, 99, TRUE},
105 {30, 16, 170, TRUE},
106 };
107
108 static int game_fetch_preset(int i, char **name, game_params **params)
109 {
110 game_params *ret;
111 char str[80];
112
113 if (i < 0 || i >= lenof(mines_presets))
114 return FALSE;
115
116 ret = snew(game_params);
117 *ret = mines_presets[i];
118
119 sprintf(str, "%dx%d, %d mines", ret->w, ret->h, ret->n);
120
121 *name = dupstr(str);
122 *params = ret;
123 return TRUE;
124 }
125
126 static void free_params(game_params *params)
127 {
128 sfree(params);
129 }
130
131 static game_params *dup_params(game_params *params)
132 {
133 game_params *ret = snew(game_params);
134 *ret = *params; /* structure copy */
135 return ret;
136 }
137
138 static void decode_params(game_params *params, char const *string)
139 {
140 char const *p = string;
141
142 params->w = atoi(p);
143 while (*p && isdigit((unsigned char)*p)) p++;
144 if (*p == 'x') {
145 p++;
146 params->h = atoi(p);
147 while (*p && isdigit((unsigned char)*p)) p++;
148 } else {
149 params->h = params->w;
150 }
151 if (*p == 'n') {
152 p++;
153 params->n = atoi(p);
154 while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
155 } else {
156 params->n = params->w * params->h / 10;
157 }
158
159 while (*p) {
160 if (*p == 'a') {
161 p++;
162 params->unique = FALSE;
163 } else
164 p++; /* skip any other gunk */
165 }
166 }
167
168 static char *encode_params(game_params *params, int full)
169 {
170 char ret[400];
171 int len;
172
173 len = sprintf(ret, "%dx%d", params->w, params->h);
174 /*
175 * Mine count is a generation-time parameter, since it can be
176 * deduced from the mine bitmap!
177 */
178 if (full)
179 len += sprintf(ret+len, "n%d", params->n);
180 if (full && !params->unique)
181 ret[len++] = 'a';
182 assert(len < lenof(ret));
183 ret[len] = '\0';
184
185 return dupstr(ret);
186 }
187
188 static config_item *game_configure(game_params *params)
189 {
190 config_item *ret;
191 char buf[80];
192
193 ret = snewn(5, config_item);
194
195 ret[0].name = "Width";
196 ret[0].type = C_STRING;
197 sprintf(buf, "%d", params->w);
198 ret[0].sval = dupstr(buf);
199 ret[0].ival = 0;
200
201 ret[1].name = "Height";
202 ret[1].type = C_STRING;
203 sprintf(buf, "%d", params->h);
204 ret[1].sval = dupstr(buf);
205 ret[1].ival = 0;
206
207 ret[2].name = "Mines";
208 ret[2].type = C_STRING;
209 sprintf(buf, "%d", params->n);
210 ret[2].sval = dupstr(buf);
211 ret[2].ival = 0;
212
213 ret[3].name = "Ensure solubility";
214 ret[3].type = C_BOOLEAN;
215 ret[3].sval = NULL;
216 ret[3].ival = params->unique;
217
218 ret[4].name = NULL;
219 ret[4].type = C_END;
220 ret[4].sval = NULL;
221 ret[4].ival = 0;
222
223 return ret;
224 }
225
226 static game_params *custom_params(config_item *cfg)
227 {
228 game_params *ret = snew(game_params);
229
230 ret->w = atoi(cfg[0].sval);
231 ret->h = atoi(cfg[1].sval);
232 ret->n = atoi(cfg[2].sval);
233 if (strchr(cfg[2].sval, '%'))
234 ret->n = ret->n * (ret->w * ret->h) / 100;
235 ret->unique = cfg[3].ival;
236
237 return ret;
238 }
239
240 static char *validate_params(game_params *params, int full)
241 {
242 /*
243 * Lower limit on grid size: each dimension must be at least 3.
244 * 1 is theoretically workable if rather boring, but 2 is a
245 * real problem: there is often _no_ way to generate a uniquely
246 * solvable 2xn Mines grid. You either run into two mines
247 * blocking the way and no idea what's behind them, or one mine
248 * and no way to know which of the two rows it's in. If the
249 * mine count is even you can create a soluble grid by packing
250 * all the mines at one end (so what when you hit a two-mine
251 * wall there are only as many covered squares left as there
252 * are mines); but if it's odd, you are doomed, because you
253 * _have_ to have a gap somewhere which you can't determine the
254 * position of.
255 */
256 if (full && params->unique && (params->w <= 2 || params->h <= 2))
257 return "Width and height must both be greater than two";
258 if (params->n > params->w * params->h - 9)
259 return "Too many mines for grid size";
260
261 /*
262 * FIXME: Need more constraints here. Not sure what the
263 * sensible limits for Minesweeper actually are. The limits
264 * probably ought to change, however, depending on uniqueness.
265 */
266
267 return NULL;
268 }
269
270 /* ----------------------------------------------------------------------
271 * Minesweeper solver, used to ensure the generated grids are
272 * solvable without having to take risks.
273 */
274
275 /*
276 * Count the bits in a word. Only needs to cope with 16 bits.
277 */
278 static int bitcount16(int word)
279 {
280 word = ((word & 0xAAAA) >> 1) + (word & 0x5555);
281 word = ((word & 0xCCCC) >> 2) + (word & 0x3333);
282 word = ((word & 0xF0F0) >> 4) + (word & 0x0F0F);
283 word = ((word & 0xFF00) >> 8) + (word & 0x00FF);
284
285 return word;
286 }
287
288 /*
289 * We use a tree234 to store a large number of small localised
290 * sets, each with a mine count. We also keep some of those sets
291 * linked together into a to-do list.
292 */
293 struct set {
294 short x, y, mask, mines;
295 int todo;
296 struct set *prev, *next;
297 };
298
299 static int setcmp(void *av, void *bv)
300 {
301 struct set *a = (struct set *)av;
302 struct set *b = (struct set *)bv;
303
304 if (a->y < b->y)
305 return -1;
306 else if (a->y > b->y)
307 return +1;
308 else if (a->x < b->x)
309 return -1;
310 else if (a->x > b->x)
311 return +1;
312 else if (a->mask < b->mask)
313 return -1;
314 else if (a->mask > b->mask)
315 return +1;
316 else
317 return 0;
318 }
319
320 struct setstore {
321 tree234 *sets;
322 struct set *todo_head, *todo_tail;
323 };
324
325 static struct setstore *ss_new(void)
326 {
327 struct setstore *ss = snew(struct setstore);
328 ss->sets = newtree234(setcmp);
329 ss->todo_head = ss->todo_tail = NULL;
330 return ss;
331 }
332
333 /*
334 * Take two input sets, in the form (x,y,mask). Munge the first by
335 * taking either its intersection with the second or its difference
336 * with the second. Return the new mask part of the first set.
337 */
338 static int setmunge(int x1, int y1, int mask1, int x2, int y2, int mask2,
339 int diff)
340 {
341 /*
342 * Adjust the second set so that it has the same x,y
343 * coordinates as the first.
344 */
345 if (abs(x2-x1) >= 3 || abs(y2-y1) >= 3) {
346 mask2 = 0;
347 } else {
348 while (x2 > x1) {
349 mask2 &= ~(4|32|256);
350 mask2 <<= 1;
351 x2--;
352 }
353 while (x2 < x1) {
354 mask2 &= ~(1|8|64);
355 mask2 >>= 1;
356 x2++;
357 }
358 while (y2 > y1) {
359 mask2 &= ~(64|128|256);
360 mask2 <<= 3;
361 y2--;
362 }
363 while (y2 < y1) {
364 mask2 &= ~(1|2|4);
365 mask2 >>= 3;
366 y2++;
367 }
368 }
369
370 /*
371 * Invert the second set if `diff' is set (we're after A &~ B
372 * rather than A & B).
373 */
374 if (diff)
375 mask2 ^= 511;
376
377 /*
378 * Now all that's left is a logical AND.
379 */
380 return mask1 & mask2;
381 }
382
383 static void ss_add_todo(struct setstore *ss, struct set *s)
384 {
385 if (s->todo)
386 return; /* already on it */
387
388 #ifdef SOLVER_DIAGNOSTICS
389 printf("adding set on todo list: %d,%d %03x %d\n",
390 s->x, s->y, s->mask, s->mines);
391 #endif
392
393 s->prev = ss->todo_tail;
394 if (s->prev)
395 s->prev->next = s;
396 else
397 ss->todo_head = s;
398 ss->todo_tail = s;
399 s->next = NULL;
400 s->todo = TRUE;
401 }
402
403 static void ss_add(struct setstore *ss, int x, int y, int mask, int mines)
404 {
405 struct set *s;
406
407 assert(mask != 0);
408
409 /*
410 * Normalise so that x and y are genuinely the bounding
411 * rectangle.
412 */
413 while (!(mask & (1|8|64)))
414 mask >>= 1, x++;
415 while (!(mask & (1|2|4)))
416 mask >>= 3, y++;
417
418 /*
419 * Create a set structure and add it to the tree.
420 */
421 s = snew(struct set);
422 s->x = x;
423 s->y = y;
424 s->mask = mask;
425 s->mines = mines;
426 s->todo = FALSE;
427 if (add234(ss->sets, s) != s) {
428 /*
429 * This set already existed! Free it and return.
430 */
431 sfree(s);
432 return;
433 }
434
435 /*
436 * We've added a new set to the tree, so put it on the todo
437 * list.
438 */
439 ss_add_todo(ss, s);
440 }
441
442 static void ss_remove(struct setstore *ss, struct set *s)
443 {
444 struct set *next = s->next, *prev = s->prev;
445
446 #ifdef SOLVER_DIAGNOSTICS
447 printf("removing set %d,%d %03x\n", s->x, s->y, s->mask);
448 #endif
449 /*
450 * Remove s from the todo list.
451 */
452 if (prev)
453 prev->next = next;
454 else if (s == ss->todo_head)
455 ss->todo_head = next;
456
457 if (next)
458 next->prev = prev;
459 else if (s == ss->todo_tail)
460 ss->todo_tail = prev;
461
462 s->todo = FALSE;
463
464 /*
465 * Remove s from the tree.
466 */
467 del234(ss->sets, s);
468
469 /*
470 * Destroy the actual set structure.
471 */
472 sfree(s);
473 }
474
475 /*
476 * Return a dynamically allocated list of all the sets which
477 * overlap a provided input set.
478 */
479 static struct set **ss_overlap(struct setstore *ss, int x, int y, int mask)
480 {
481 struct set **ret = NULL;
482 int nret = 0, retsize = 0;
483 int xx, yy;
484
485 for (xx = x-3; xx < x+3; xx++)
486 for (yy = y-3; yy < y+3; yy++) {
487 struct set stmp, *s;
488 int pos;
489
490 /*
491 * Find the first set with these top left coordinates.
492 */
493 stmp.x = xx;
494 stmp.y = yy;
495 stmp.mask = 0;
496
497 if (findrelpos234(ss->sets, &stmp, NULL, REL234_GE, &pos)) {
498 while ((s = index234(ss->sets, pos)) != NULL &&
499 s->x == xx && s->y == yy) {
500 /*
501 * This set potentially overlaps the input one.
502 * Compute the intersection to see if they
503 * really overlap, and add it to the list if
504 * so.
505 */
506 if (setmunge(x, y, mask, s->x, s->y, s->mask, FALSE)) {
507 /*
508 * There's an overlap.
509 */
510 if (nret >= retsize) {
511 retsize = nret + 32;
512 ret = sresize(ret, retsize, struct set *);
513 }
514 ret[nret++] = s;
515 }
516
517 pos++;
518 }
519 }
520 }
521
522 ret = sresize(ret, nret+1, struct set *);
523 ret[nret] = NULL;
524
525 return ret;
526 }
527
528 /*
529 * Get an element from the head of the set todo list.
530 */
531 static struct set *ss_todo(struct setstore *ss)
532 {
533 if (ss->todo_head) {
534 struct set *ret = ss->todo_head;
535 ss->todo_head = ret->next;
536 if (ss->todo_head)
537 ss->todo_head->prev = NULL;
538 else
539 ss->todo_tail = NULL;
540 ret->next = ret->prev = NULL;
541 ret->todo = FALSE;
542 return ret;
543 } else {
544 return NULL;
545 }
546 }
547
548 struct squaretodo {
549 int *next;
550 int head, tail;
551 };
552
553 static void std_add(struct squaretodo *std, int i)
554 {
555 if (std->tail >= 0)
556 std->next[std->tail] = i;
557 else
558 std->head = i;
559 std->tail = i;
560 std->next[i] = -1;
561 }
562
563 typedef int (*open_cb)(void *, int, int);
564
565 static void known_squares(int w, int h, struct squaretodo *std,
566 signed char *grid,
567 open_cb open, void *openctx,
568 int x, int y, int mask, int mine)
569 {
570 int xx, yy, bit;
571
572 bit = 1;
573
574 for (yy = 0; yy < 3; yy++)
575 for (xx = 0; xx < 3; xx++) {
576 if (mask & bit) {
577 int i = (y + yy) * w + (x + xx);
578
579 /*
580 * It's possible that this square is _already_
581 * known, in which case we don't try to add it to
582 * the list twice.
583 */
584 if (grid[i] == -2) {
585
586 if (mine) {
587 grid[i] = -1; /* and don't open it! */
588 } else {
589 grid[i] = open(openctx, x + xx, y + yy);
590 assert(grid[i] != -1); /* *bang* */
591 }
592 std_add(std, i);
593
594 }
595 }
596 bit <<= 1;
597 }
598 }
599
600 /*
601 * This is data returned from the `perturb' function. It details
602 * which squares have become mines and which have become clear. The
603 * solver is (of course) expected to honourably not use that
604 * knowledge directly, but to efficently adjust its internal data
605 * structures and proceed based on only the information it
606 * legitimately has.
607 */
608 struct perturbation {
609 int x, y;
610 int delta; /* +1 == become a mine; -1 == cleared */
611 };
612 struct perturbations {
613 int n;
614 struct perturbation *changes;
615 };
616
617 /*
618 * Main solver entry point. You give it a grid of existing
619 * knowledge (-1 for a square known to be a mine, 0-8 for empty
620 * squares with a given number of neighbours, -2 for completely
621 * unknown), plus a function which you can call to open new squares
622 * once you're confident of them. It fills in as much more of the
623 * grid as it can.
624 *
625 * Return value is:
626 *
627 * - -1 means deduction stalled and nothing could be done
628 * - 0 means deduction succeeded fully
629 * - >0 means deduction succeeded but some number of perturbation
630 * steps were required; the exact return value is the number of
631 * perturb calls.
632 */
633
634 typedef struct perturbations *(*perturb_cb) (void *, signed char *, int, int, int);
635
636 static int minesolve(int w, int h, int n, signed char *grid,
637 open_cb open,
638 perturb_cb perturb,
639 void *ctx, random_state *rs)
640 {
641 struct setstore *ss = ss_new();
642 struct set **list;
643 struct squaretodo astd, *std = &astd;
644 int x, y, i, j;
645 int nperturbs = 0;
646
647 /*
648 * Set up a linked list of squares with known contents, so that
649 * we can process them one by one.
650 */
651 std->next = snewn(w*h, int);
652 std->head = std->tail = -1;
653
654 /*
655 * Initialise that list with all known squares in the input
656 * grid.
657 */
658 for (y = 0; y < h; y++) {
659 for (x = 0; x < w; x++) {
660 i = y*w+x;
661 if (grid[i] != -2)
662 std_add(std, i);
663 }
664 }
665
666 /*
667 * Main deductive loop.
668 */
669 while (1) {
670 int done_something = FALSE;
671 struct set *s;
672
673 /*
674 * If there are any known squares on the todo list, process
675 * them and construct a set for each.
676 */
677 while (std->head != -1) {
678 i = std->head;
679 #ifdef SOLVER_DIAGNOSTICS
680 printf("known square at %d,%d [%d]\n", i%w, i/w, grid[i]);
681 #endif
682 std->head = std->next[i];
683 if (std->head == -1)
684 std->tail = -1;
685
686 x = i % w;
687 y = i / w;
688
689 if (grid[i] >= 0) {
690 int dx, dy, mines, bit, val;
691 #ifdef SOLVER_DIAGNOSTICS
692 printf("creating set around this square\n");
693 #endif
694 /*
695 * Empty square. Construct the set of non-known squares
696 * around this one, and determine its mine count.
697 */
698 mines = grid[i];
699 bit = 1;
700 val = 0;
701 for (dy = -1; dy <= +1; dy++) {
702 for (dx = -1; dx <= +1; dx++) {
703 #ifdef SOLVER_DIAGNOSTICS
704 printf("grid %d,%d = %d\n", x+dx, y+dy, grid[i+dy*w+dx]);
705 #endif
706 if (x+dx < 0 || x+dx >= w || y+dy < 0 || y+dy >= h)
707 /* ignore this one */;
708 else if (grid[i+dy*w+dx] == -1)
709 mines--;
710 else if (grid[i+dy*w+dx] == -2)
711 val |= bit;
712 bit <<= 1;
713 }
714 }
715 if (val)
716 ss_add(ss, x-1, y-1, val, mines);
717 }
718
719 /*
720 * Now, whether the square is empty or full, we must
721 * find any set which contains it and replace it with
722 * one which does not.
723 */
724 {
725 #ifdef SOLVER_DIAGNOSTICS
726 printf("finding sets containing known square %d,%d\n", x, y);
727 #endif
728 list = ss_overlap(ss, x, y, 1);
729
730 for (j = 0; list[j]; j++) {
731 int newmask, newmines;
732
733 s = list[j];
734
735 /*
736 * Compute the mask for this set minus the
737 * newly known square.
738 */
739 newmask = setmunge(s->x, s->y, s->mask, x, y, 1, TRUE);
740
741 /*
742 * Compute the new mine count.
743 */
744 newmines = s->mines - (grid[i] == -1);
745
746 /*
747 * Insert the new set into the collection,
748 * unless it's been whittled right down to
749 * nothing.
750 */
751 if (newmask)
752 ss_add(ss, s->x, s->y, newmask, newmines);
753
754 /*
755 * Destroy the old one; it is actually obsolete.
756 */
757 ss_remove(ss, s);
758 }
759
760 sfree(list);
761 }
762
763 /*
764 * Marking a fresh square as known certainly counts as
765 * doing something.
766 */
767 done_something = TRUE;
768 }
769
770 /*
771 * Now pick a set off the to-do list and attempt deductions
772 * based on it.
773 */
774 if ((s = ss_todo(ss)) != NULL) {
775
776 #ifdef SOLVER_DIAGNOSTICS
777 printf("set to do: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
778 #endif
779 /*
780 * Firstly, see if this set has a mine count of zero or
781 * of its own cardinality.
782 */
783 if (s->mines == 0 || s->mines == bitcount16(s->mask)) {
784 /*
785 * If so, we can immediately mark all the squares
786 * in the set as known.
787 */
788 #ifdef SOLVER_DIAGNOSTICS
789 printf("easy\n");
790 #endif
791 known_squares(w, h, std, grid, open, ctx,
792 s->x, s->y, s->mask, (s->mines != 0));
793
794 /*
795 * Having done that, we need do nothing further
796 * with this set; marking all the squares in it as
797 * known will eventually eliminate it, and will
798 * also permit further deductions about anything
799 * that overlaps it.
800 */
801 continue;
802 }
803
804 /*
805 * Failing that, we now search through all the sets
806 * which overlap this one.
807 */
808 list = ss_overlap(ss, s->x, s->y, s->mask);
809
810 for (j = 0; list[j]; j++) {
811 struct set *s2 = list[j];
812 int swing, s2wing, swc, s2wc;
813
814 /*
815 * Find the non-overlapping parts s2-s and s-s2,
816 * and their cardinalities.
817 *
818 * I'm going to refer to these parts as `wings'
819 * surrounding the central part common to both
820 * sets. The `s wing' is s-s2; the `s2 wing' is
821 * s2-s.
822 */
823 swing = setmunge(s->x, s->y, s->mask, s2->x, s2->y, s2->mask,
824 TRUE);
825 s2wing = setmunge(s2->x, s2->y, s2->mask, s->x, s->y, s->mask,
826 TRUE);
827 swc = bitcount16(swing);
828 s2wc = bitcount16(s2wing);
829
830 /*
831 * If one set has more mines than the other, and
832 * the number of extra mines is equal to the
833 * cardinality of that set's wing, then we can mark
834 * every square in the wing as a known mine, and
835 * every square in the other wing as known clear.
836 */
837 if (swc == s->mines - s2->mines ||
838 s2wc == s2->mines - s->mines) {
839 known_squares(w, h, std, grid, open, ctx,
840 s->x, s->y, swing,
841 (swc == s->mines - s2->mines));
842 known_squares(w, h, std, grid, open, ctx,
843 s2->x, s2->y, s2wing,
844 (s2wc == s2->mines - s->mines));
845 continue;
846 }
847
848 /*
849 * Failing that, see if one set is a subset of the
850 * other. If so, we can divide up the mine count of
851 * the larger set between the smaller set and its
852 * complement, even if neither smaller set ends up
853 * being immediately clearable.
854 */
855 if (swc == 0 && s2wc != 0) {
856 /* s is a subset of s2. */
857 assert(s2->mines > s->mines);
858 ss_add(ss, s2->x, s2->y, s2wing, s2->mines - s->mines);
859 } else if (s2wc == 0 && swc != 0) {
860 /* s2 is a subset of s. */
861 assert(s->mines > s2->mines);
862 ss_add(ss, s->x, s->y, swing, s->mines - s2->mines);
863 }
864 }
865
866 sfree(list);
867
868 /*
869 * In this situation we have definitely done
870 * _something_, even if it's only reducing the size of
871 * our to-do list.
872 */
873 done_something = TRUE;
874 } else if (n >= 0) {
875 /*
876 * We have nothing left on our todo list, which means
877 * all localised deductions have failed. Our next step
878 * is to resort to global deduction based on the total
879 * mine count. This is computationally expensive
880 * compared to any of the above deductions, which is
881 * why we only ever do it when all else fails, so that
882 * hopefully it won't have to happen too often.
883 *
884 * If you pass n<0 into this solver, that informs it
885 * that you do not know the total mine count, so it
886 * won't even attempt these deductions.
887 */
888
889 int minesleft, squaresleft;
890 int nsets, setused[10], cursor;
891
892 /*
893 * Start by scanning the current grid state to work out
894 * how many unknown squares we still have, and how many
895 * mines are to be placed in them.
896 */
897 squaresleft = 0;
898 minesleft = n;
899 for (i = 0; i < w*h; i++) {
900 if (grid[i] == -1)
901 minesleft--;
902 else if (grid[i] == -2)
903 squaresleft++;
904 }
905
906 #ifdef SOLVER_DIAGNOSTICS
907 printf("global deduction time: squaresleft=%d minesleft=%d\n",
908 squaresleft, minesleft);
909 for (y = 0; y < h; y++) {
910 for (x = 0; x < w; x++) {
911 int v = grid[y*w+x];
912 if (v == -1)
913 putchar('*');
914 else if (v == -2)
915 putchar('?');
916 else if (v == 0)
917 putchar('-');
918 else
919 putchar('0' + v);
920 }
921 putchar('\n');
922 }
923 #endif
924
925 /*
926 * If there _are_ no unknown squares, we have actually
927 * finished.
928 */
929 if (squaresleft == 0) {
930 assert(minesleft == 0);
931 break;
932 }
933
934 /*
935 * First really simple case: if there are no more mines
936 * left, or if there are exactly as many mines left as
937 * squares to play them in, then it's all easy.
938 */
939 if (minesleft == 0 || minesleft == squaresleft) {
940 for (i = 0; i < w*h; i++)
941 if (grid[i] == -2)
942 known_squares(w, h, std, grid, open, ctx,
943 i % w, i / w, 1, minesleft != 0);
944 continue; /* now go back to main deductive loop */
945 }
946
947 /*
948 * Failing that, we have to do some _real_ work.
949 * Ideally what we do here is to try every single
950 * combination of the currently available sets, in an
951 * attempt to find a disjoint union (i.e. a set of
952 * squares with a known mine count between them) such
953 * that the remaining unknown squares _not_ contained
954 * in that union either contain no mines or are all
955 * mines.
956 *
957 * Actually enumerating all 2^n possibilities will get
958 * a bit slow for large n, so I artificially cap this
959 * recursion at n=10 to avoid too much pain.
960 */
961 nsets = count234(ss->sets);
962 if (nsets <= lenof(setused)) {
963 /*
964 * Doing this with actual recursive function calls
965 * would get fiddly because a load of local
966 * variables from this function would have to be
967 * passed down through the recursion. So instead
968 * I'm going to use a virtual recursion within this
969 * function. The way this works is:
970 *
971 * - we have an array `setused', such that
972 * setused[n] is 0 or 1 depending on whether set
973 * n is currently in the union we are
974 * considering.
975 *
976 * - we have a value `cursor' which indicates how
977 * much of `setused' we have so far filled in.
978 * It's conceptually the recursion depth.
979 *
980 * We begin by setting `cursor' to zero. Then:
981 *
982 * - if cursor can advance, we advance it by one.
983 * We set the value in `setused' that it went
984 * past to 1 if that set is disjoint from
985 * anything else currently in `setused', or to 0
986 * otherwise.
987 *
988 * - If cursor cannot advance because it has
989 * reached the end of the setused list, then we
990 * have a maximal disjoint union. Check to see
991 * whether its mine count has any useful
992 * properties. If so, mark all the squares not
993 * in the union as known and terminate.
994 *
995 * - If cursor has reached the end of setused and
996 * the algorithm _hasn't_ terminated, back
997 * cursor up to the nearest 1, turn it into a 0
998 * and advance cursor just past it.
999 *
1000 * - If we attempt to back up to the nearest 1 and
1001 * there isn't one at all, then we have gone
1002 * through all disjoint unions of sets in the
1003 * list and none of them has been helpful, so we
1004 * give up.
1005 */
1006 struct set *sets[lenof(setused)];
1007 for (i = 0; i < nsets; i++)
1008 sets[i] = index234(ss->sets, i);
1009
1010 cursor = 0;
1011 while (1) {
1012
1013 if (cursor < nsets) {
1014 int ok = TRUE;
1015
1016 /* See if any existing set overlaps this one. */
1017 for (i = 0; i < cursor; i++)
1018 if (setused[i] &&
1019 setmunge(sets[cursor]->x,
1020 sets[cursor]->y,
1021 sets[cursor]->mask,
1022 sets[i]->x, sets[i]->y, sets[i]->mask,
1023 FALSE)) {
1024 ok = FALSE;
1025 break;
1026 }
1027
1028 if (ok) {
1029 /*
1030 * We're adding this set to our union,
1031 * so adjust minesleft and squaresleft
1032 * appropriately.
1033 */
1034 minesleft -= sets[cursor]->mines;
1035 squaresleft -= bitcount16(sets[cursor]->mask);
1036 }
1037
1038 setused[cursor++] = ok;
1039 } else {
1040 #ifdef SOLVER_DIAGNOSTICS
1041 printf("trying a set combination with %d %d\n",
1042 squaresleft, minesleft);
1043 #endif /* SOLVER_DIAGNOSTICS */
1044
1045 /*
1046 * We've reached the end. See if we've got
1047 * anything interesting.
1048 */
1049 if (squaresleft > 0 &&
1050 (minesleft == 0 || minesleft == squaresleft)) {
1051 /*
1052 * We have! There is at least one
1053 * square not contained within the set
1054 * union we've just found, and we can
1055 * deduce that either all such squares
1056 * are mines or all are not (depending
1057 * on whether minesleft==0). So now all
1058 * we have to do is actually go through
1059 * the grid, find those squares, and
1060 * mark them.
1061 */
1062 for (i = 0; i < w*h; i++)
1063 if (grid[i] == -2) {
1064 int outside = TRUE;
1065 y = i / w;
1066 x = i % w;
1067 for (j = 0; j < nsets; j++)
1068 if (setused[j] &&
1069 setmunge(sets[j]->x, sets[j]->y,
1070 sets[j]->mask, x, y, 1,
1071 FALSE)) {
1072 outside = FALSE;
1073 break;
1074 }
1075 if (outside)
1076 known_squares(w, h, std, grid,
1077 open, ctx,
1078 x, y, 1, minesleft != 0);
1079 }
1080
1081 done_something = TRUE;
1082 break; /* return to main deductive loop */
1083 }
1084
1085 /*
1086 * If we reach here, then this union hasn't
1087 * done us any good, so move on to the
1088 * next. Backtrack cursor to the nearest 1,
1089 * change it to a 0 and continue.
1090 */
1091 while (--cursor >= 0 && !setused[cursor]);
1092 if (cursor >= 0) {
1093 assert(setused[cursor]);
1094
1095 /*
1096 * We're removing this set from our
1097 * union, so re-increment minesleft and
1098 * squaresleft.
1099 */
1100 minesleft += sets[cursor]->mines;
1101 squaresleft += bitcount16(sets[cursor]->mask);
1102
1103 setused[cursor++] = 0;
1104 } else {
1105 /*
1106 * We've backtracked all the way to the
1107 * start without finding a single 1,
1108 * which means that our virtual
1109 * recursion is complete and nothing
1110 * helped.
1111 */
1112 break;
1113 }
1114 }
1115
1116 }
1117
1118 }
1119 }
1120
1121 if (done_something)
1122 continue;
1123
1124 #ifdef SOLVER_DIAGNOSTICS
1125 /*
1126 * Dump the current known state of the grid.
1127 */
1128 printf("solver ran out of steam, ret=%d, grid:\n", nperturbs);
1129 for (y = 0; y < h; y++) {
1130 for (x = 0; x < w; x++) {
1131 int v = grid[y*w+x];
1132 if (v == -1)
1133 putchar('*');
1134 else if (v == -2)
1135 putchar('?');
1136 else if (v == 0)
1137 putchar('-');
1138 else
1139 putchar('0' + v);
1140 }
1141 putchar('\n');
1142 }
1143
1144 {
1145 struct set *s;
1146
1147 for (i = 0; (s = index234(ss->sets, i)) != NULL; i++)
1148 printf("remaining set: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
1149 }
1150 #endif
1151
1152 /*
1153 * Now we really are at our wits' end as far as solving
1154 * this grid goes. Our only remaining option is to call
1155 * a perturb function and ask it to modify the grid to
1156 * make it easier.
1157 */
1158 if (perturb) {
1159 struct perturbations *ret;
1160 struct set *s;
1161
1162 nperturbs++;
1163
1164 /*
1165 * Choose a set at random from the current selection,
1166 * and ask the perturb function to either fill or empty
1167 * it.
1168 *
1169 * If we have no sets at all, we must give up.
1170 */
1171 if (count234(ss->sets) == 0) {
1172 #ifdef SOLVER_DIAGNOSTICS
1173 printf("perturbing on entire unknown set\n");
1174 #endif
1175 ret = perturb(ctx, grid, 0, 0, 0);
1176 } else {
1177 s = index234(ss->sets, random_upto(rs, count234(ss->sets)));
1178 #ifdef SOLVER_DIAGNOSTICS
1179 printf("perturbing on set %d,%d %03x\n", s->x, s->y, s->mask);
1180 #endif
1181 ret = perturb(ctx, grid, s->x, s->y, s->mask);
1182 }
1183
1184 if (ret) {
1185 assert(ret->n > 0); /* otherwise should have been NULL */
1186
1187 /*
1188 * A number of squares have been fiddled with, and
1189 * the returned structure tells us which. Adjust
1190 * the mine count in any set which overlaps one of
1191 * those squares, and put them back on the to-do
1192 * list. Also, if the square itself is marked as a
1193 * known non-mine, put it back on the squares-to-do
1194 * list.
1195 */
1196 for (i = 0; i < ret->n; i++) {
1197 #ifdef SOLVER_DIAGNOSTICS
1198 printf("perturbation %s mine at %d,%d\n",
1199 ret->changes[i].delta > 0 ? "added" : "removed",
1200 ret->changes[i].x, ret->changes[i].y);
1201 #endif
1202
1203 if (ret->changes[i].delta < 0 &&
1204 grid[ret->changes[i].y*w+ret->changes[i].x] != -2) {
1205 std_add(std, ret->changes[i].y*w+ret->changes[i].x);
1206 }
1207
1208 list = ss_overlap(ss,
1209 ret->changes[i].x, ret->changes[i].y, 1);
1210
1211 for (j = 0; list[j]; j++) {
1212 list[j]->mines += ret->changes[i].delta;
1213 ss_add_todo(ss, list[j]);
1214 }
1215
1216 sfree(list);
1217 }
1218
1219 /*
1220 * Now free the returned data.
1221 */
1222 sfree(ret->changes);
1223 sfree(ret);
1224
1225 #ifdef SOLVER_DIAGNOSTICS
1226 /*
1227 * Dump the current known state of the grid.
1228 */
1229 printf("state after perturbation:\n");
1230 for (y = 0; y < h; y++) {
1231 for (x = 0; x < w; x++) {
1232 int v = grid[y*w+x];
1233 if (v == -1)
1234 putchar('*');
1235 else if (v == -2)
1236 putchar('?');
1237 else if (v == 0)
1238 putchar('-');
1239 else
1240 putchar('0' + v);
1241 }
1242 putchar('\n');
1243 }
1244
1245 {
1246 struct set *s;
1247
1248 for (i = 0; (s = index234(ss->sets, i)) != NULL; i++)
1249 printf("remaining set: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
1250 }
1251 #endif
1252
1253 /*
1254 * And now we can go back round the deductive loop.
1255 */
1256 continue;
1257 }
1258 }
1259
1260 /*
1261 * If we get here, even that didn't work (either we didn't
1262 * have a perturb function or it returned failure), so we
1263 * give up entirely.
1264 */
1265 break;
1266 }
1267
1268 /*
1269 * See if we've got any unknown squares left.
1270 */
1271 for (y = 0; y < h; y++)
1272 for (x = 0; x < w; x++)
1273 if (grid[y*w+x] == -2) {
1274 nperturbs = -1; /* failed to complete */
1275 break;
1276 }
1277
1278 /*
1279 * Free the set list and square-todo list.
1280 */
1281 {
1282 struct set *s;
1283 while ((s = delpos234(ss->sets, 0)) != NULL)
1284 sfree(s);
1285 freetree234(ss->sets);
1286 sfree(ss);
1287 sfree(std->next);
1288 }
1289
1290 return nperturbs;
1291 }
1292
1293 /* ----------------------------------------------------------------------
1294 * Grid generator which uses the above solver.
1295 */
1296
1297 struct minectx {
1298 char *grid;
1299 int w, h;
1300 int sx, sy;
1301 int allow_big_perturbs;
1302 random_state *rs;
1303 };
1304
1305 static int mineopen(void *vctx, int x, int y)
1306 {
1307 struct minectx *ctx = (struct minectx *)vctx;
1308 int i, j, n;
1309
1310 assert(x >= 0 && x < ctx->w && y >= 0 && y < ctx->h);
1311 if (ctx->grid[y * ctx->w + x])
1312 return -1; /* *bang* */
1313
1314 n = 0;
1315 for (i = -1; i <= +1; i++) {
1316 if (x + i < 0 || x + i >= ctx->w)
1317 continue;
1318 for (j = -1; j <= +1; j++) {
1319 if (y + j < 0 || y + j >= ctx->h)
1320 continue;
1321 if (i == 0 && j == 0)
1322 continue;
1323 if (ctx->grid[(y+j) * ctx->w + (x+i)])
1324 n++;
1325 }
1326 }
1327
1328 return n;
1329 }
1330
1331 /* Structure used internally to mineperturb(). */
1332 struct square {
1333 int x, y, type, random;
1334 };
1335 static int squarecmp(const void *av, const void *bv)
1336 {
1337 const struct square *a = (const struct square *)av;
1338 const struct square *b = (const struct square *)bv;
1339 if (a->type < b->type)
1340 return -1;
1341 else if (a->type > b->type)
1342 return +1;
1343 else if (a->random < b->random)
1344 return -1;
1345 else if (a->random > b->random)
1346 return +1;
1347 else if (a->y < b->y)
1348 return -1;
1349 else if (a->y > b->y)
1350 return +1;
1351 else if (a->x < b->x)
1352 return -1;
1353 else if (a->x > b->x)
1354 return +1;
1355 return 0;
1356 }
1357
1358 /*
1359 * Normally this function is passed an (x,y,mask) set description.
1360 * On occasions, though, there is no _localised_ set being used,
1361 * and the set being perturbed is supposed to be the entirety of
1362 * the unreachable area. This is signified by the special case
1363 * mask==0: in this case, anything labelled -2 in the grid is part
1364 * of the set.
1365 *
1366 * Allowing perturbation in this special case appears to make it
1367 * guaranteeably possible to generate a workable grid for any mine
1368 * density, but they tend to be a bit boring, with mines packed
1369 * densely into far corners of the grid and the remainder being
1370 * less dense than one might like. Therefore, to improve overall
1371 * grid quality I disable this feature for the first few attempts,
1372 * and fall back to it after no useful grid has been generated.
1373 */
1374 static struct perturbations *mineperturb(void *vctx, signed char *grid,
1375 int setx, int sety, int mask)
1376 {
1377 struct minectx *ctx = (struct minectx *)vctx;
1378 struct square *sqlist;
1379 int x, y, dx, dy, i, n, nfull, nempty;
1380 struct square **tofill, **toempty, **todo;
1381 int ntofill, ntoempty, ntodo, dtodo, dset;
1382 struct perturbations *ret;
1383 int *setlist;
1384
1385 if (!mask && !ctx->allow_big_perturbs)
1386 return NULL;
1387
1388 /*
1389 * Make a list of all the squares in the grid which we can
1390 * possibly use. This list should be in preference order, which
1391 * means
1392 *
1393 * - first, unknown squares on the boundary of known space
1394 * - next, unknown squares beyond that boundary
1395 * - as a very last resort, known squares, but not within one
1396 * square of the starting position.
1397 *
1398 * Each of these sections needs to be shuffled independently.
1399 * We do this by preparing list of all squares and then sorting
1400 * it with a random secondary key.
1401 */
1402 sqlist = snewn(ctx->w * ctx->h, struct square);
1403 n = 0;
1404 for (y = 0; y < ctx->h; y++)
1405 for (x = 0; x < ctx->w; x++) {
1406 /*
1407 * If this square is too near the starting position,
1408 * don't put it on the list at all.
1409 */
1410 if (abs(y - ctx->sy) <= 1 && abs(x - ctx->sx) <= 1)
1411 continue;
1412
1413 /*
1414 * If this square is in the input set, also don't put
1415 * it on the list!
1416 */
1417 if ((mask == 0 && grid[y*ctx->w+x] == -2) ||
1418 (x >= setx && x < setx + 3 &&
1419 y >= sety && y < sety + 3 &&
1420 mask & (1 << ((y-sety)*3+(x-setx)))))
1421 continue;
1422
1423 sqlist[n].x = x;
1424 sqlist[n].y = y;
1425
1426 if (grid[y*ctx->w+x] != -2) {
1427 sqlist[n].type = 3; /* known square */
1428 } else {
1429 /*
1430 * Unknown square. Examine everything around it and
1431 * see if it borders on any known squares. If it
1432 * does, it's class 1, otherwise it's 2.
1433 */
1434
1435 sqlist[n].type = 2;
1436
1437 for (dy = -1; dy <= +1; dy++)
1438 for (dx = -1; dx <= +1; dx++)
1439 if (x+dx >= 0 && x+dx < ctx->w &&
1440 y+dy >= 0 && y+dy < ctx->h &&
1441 grid[(y+dy)*ctx->w+(x+dx)] != -2) {
1442 sqlist[n].type = 1;
1443 break;
1444 }
1445 }
1446
1447 /*
1448 * Finally, a random number to cause qsort to
1449 * shuffle within each group.
1450 */
1451 sqlist[n].random = random_bits(ctx->rs, 31);
1452
1453 n++;
1454 }
1455
1456 qsort(sqlist, n, sizeof(struct square), squarecmp);
1457
1458 /*
1459 * Now count up the number of full and empty squares in the set
1460 * we've been provided.
1461 */
1462 nfull = nempty = 0;
1463 if (mask) {
1464 for (dy = 0; dy < 3; dy++)
1465 for (dx = 0; dx < 3; dx++)
1466 if (mask & (1 << (dy*3+dx))) {
1467 assert(setx+dx <= ctx->w);
1468 assert(sety+dy <= ctx->h);
1469 if (ctx->grid[(sety+dy)*ctx->w+(setx+dx)])
1470 nfull++;
1471 else
1472 nempty++;
1473 }
1474 } else {
1475 for (y = 0; y < ctx->h; y++)
1476 for (x = 0; x < ctx->w; x++)
1477 if (grid[y*ctx->w+x] == -2) {
1478 if (ctx->grid[y*ctx->w+x])
1479 nfull++;
1480 else
1481 nempty++;
1482 }
1483 }
1484
1485 /*
1486 * Now go through our sorted list until we find either `nfull'
1487 * empty squares, or `nempty' full squares; these will be
1488 * swapped with the appropriate squares in the set to either
1489 * fill or empty the set while keeping the same number of mines
1490 * overall.
1491 */
1492 ntofill = ntoempty = 0;
1493 if (mask) {
1494 tofill = snewn(9, struct square *);
1495 toempty = snewn(9, struct square *);
1496 } else {
1497 tofill = snewn(ctx->w * ctx->h, struct square *);
1498 toempty = snewn(ctx->w * ctx->h, struct square *);
1499 }
1500 for (i = 0; i < n; i++) {
1501 struct square *sq = &sqlist[i];
1502 if (ctx->grid[sq->y * ctx->w + sq->x])
1503 toempty[ntoempty++] = sq;
1504 else
1505 tofill[ntofill++] = sq;
1506 if (ntofill == nfull || ntoempty == nempty)
1507 break;
1508 }
1509
1510 /*
1511 * If we haven't found enough empty squares outside the set to
1512 * empty it into _or_ enough full squares outside it to fill it
1513 * up with, we'll have to settle for doing only a partial job.
1514 * In this case we choose to always _fill_ the set (because
1515 * this case will tend to crop up when we're working with very
1516 * high mine densities and the only way to get a solvable grid
1517 * is going to be to pack most of the mines solidly around the
1518 * edges). So now our job is to make a list of the empty
1519 * squares in the set, and shuffle that list so that we fill a
1520 * random selection of them.
1521 */
1522 if (ntofill != nfull && ntoempty != nempty) {
1523 int k;
1524
1525 assert(ntoempty != 0);
1526
1527 setlist = snewn(ctx->w * ctx->h, int);
1528 i = 0;
1529 if (mask) {
1530 for (dy = 0; dy < 3; dy++)
1531 for (dx = 0; dx < 3; dx++)
1532 if (mask & (1 << (dy*3+dx))) {
1533 assert(setx+dx <= ctx->w);
1534 assert(sety+dy <= ctx->h);
1535 if (!ctx->grid[(sety+dy)*ctx->w+(setx+dx)])
1536 setlist[i++] = (sety+dy)*ctx->w+(setx+dx);
1537 }
1538 } else {
1539 for (y = 0; y < ctx->h; y++)
1540 for (x = 0; x < ctx->w; x++)
1541 if (grid[y*ctx->w+x] == -2) {
1542 if (!ctx->grid[y*ctx->w+x])
1543 setlist[i++] = y*ctx->w+x;
1544 }
1545 }
1546 assert(i > ntoempty);
1547 /*
1548 * Now pick `ntoempty' items at random from the list.
1549 */
1550 for (k = 0; k < ntoempty; k++) {
1551 int index = k + random_upto(ctx->rs, i - k);
1552 int tmp;
1553
1554 tmp = setlist[k];
1555 setlist[k] = setlist[index];
1556 setlist[index] = tmp;
1557 }
1558 } else
1559 setlist = NULL;
1560
1561 /*
1562 * Now we're pretty much there. We need to either
1563 * (a) put a mine in each of the empty squares in the set, and
1564 * take one out of each square in `toempty'
1565 * (b) take a mine out of each of the full squares in the set,
1566 * and put one in each square in `tofill'
1567 * depending on which one we've found enough squares to do.
1568 *
1569 * So we start by constructing our list of changes to return to
1570 * the solver, so that it can update its data structures
1571 * efficiently rather than having to rescan the whole grid.
1572 */
1573 ret = snew(struct perturbations);
1574 if (ntofill == nfull) {
1575 todo = tofill;
1576 ntodo = ntofill;
1577 dtodo = +1;
1578 dset = -1;
1579 sfree(toempty);
1580 } else {
1581 /*
1582 * (We also fall into this case if we've constructed a
1583 * setlist.)
1584 */
1585 todo = toempty;
1586 ntodo = ntoempty;
1587 dtodo = -1;
1588 dset = +1;
1589 sfree(tofill);
1590 }
1591 ret->n = 2 * ntodo;
1592 ret->changes = snewn(ret->n, struct perturbation);
1593 for (i = 0; i < ntodo; i++) {
1594 ret->changes[i].x = todo[i]->x;
1595 ret->changes[i].y = todo[i]->y;
1596 ret->changes[i].delta = dtodo;
1597 }
1598 /* now i == ntodo */
1599 if (setlist) {
1600 int j;
1601 assert(todo == toempty);
1602 for (j = 0; j < ntoempty; j++) {
1603 ret->changes[i].x = setlist[j] % ctx->w;
1604 ret->changes[i].y = setlist[j] / ctx->w;
1605 ret->changes[i].delta = dset;
1606 i++;
1607 }
1608 sfree(setlist);
1609 } else if (mask) {
1610 for (dy = 0; dy < 3; dy++)
1611 for (dx = 0; dx < 3; dx++)
1612 if (mask & (1 << (dy*3+dx))) {
1613 int currval = (ctx->grid[(sety+dy)*ctx->w+(setx+dx)] ? +1 : -1);
1614 if (dset == -currval) {
1615 ret->changes[i].x = setx + dx;
1616 ret->changes[i].y = sety + dy;
1617 ret->changes[i].delta = dset;
1618 i++;
1619 }
1620 }
1621 } else {
1622 for (y = 0; y < ctx->h; y++)
1623 for (x = 0; x < ctx->w; x++)
1624 if (grid[y*ctx->w+x] == -2) {
1625 int currval = (ctx->grid[y*ctx->w+x] ? +1 : -1);
1626 if (dset == -currval) {
1627 ret->changes[i].x = x;
1628 ret->changes[i].y = y;
1629 ret->changes[i].delta = dset;
1630 i++;
1631 }
1632 }
1633 }
1634 assert(i == ret->n);
1635
1636 sfree(sqlist);
1637 sfree(todo);
1638
1639 /*
1640 * Having set up the precise list of changes we're going to
1641 * make, we now simply make them and return.
1642 */
1643 for (i = 0; i < ret->n; i++) {
1644 int delta;
1645
1646 x = ret->changes[i].x;
1647 y = ret->changes[i].y;
1648 delta = ret->changes[i].delta;
1649
1650 /*
1651 * Check we're not trying to add an existing mine or remove
1652 * an absent one.
1653 */
1654 assert((delta < 0) ^ (ctx->grid[y*ctx->w+x] == 0));
1655
1656 /*
1657 * Actually make the change.
1658 */
1659 ctx->grid[y*ctx->w+x] = (delta > 0);
1660
1661 /*
1662 * Update any numbers already present in the grid.
1663 */
1664 for (dy = -1; dy <= +1; dy++)
1665 for (dx = -1; dx <= +1; dx++)
1666 if (x+dx >= 0 && x+dx < ctx->w &&
1667 y+dy >= 0 && y+dy < ctx->h &&
1668 grid[(y+dy)*ctx->w+(x+dx)] != -2) {
1669 if (dx == 0 && dy == 0) {
1670 /*
1671 * The square itself is marked as known in
1672 * the grid. Mark it as a mine if it's a
1673 * mine, or else work out its number.
1674 */
1675 if (delta > 0) {
1676 grid[y*ctx->w+x] = -1;
1677 } else {
1678 int dx2, dy2, minecount = 0;
1679 for (dy2 = -1; dy2 <= +1; dy2++)
1680 for (dx2 = -1; dx2 <= +1; dx2++)
1681 if (x+dx2 >= 0 && x+dx2 < ctx->w &&
1682 y+dy2 >= 0 && y+dy2 < ctx->h &&
1683 ctx->grid[(y+dy2)*ctx->w+(x+dx2)])
1684 minecount++;
1685 grid[y*ctx->w+x] = minecount;
1686 }
1687 } else {
1688 if (grid[(y+dy)*ctx->w+(x+dx)] >= 0)
1689 grid[(y+dy)*ctx->w+(x+dx)] += delta;
1690 }
1691 }
1692 }
1693
1694 #ifdef GENERATION_DIAGNOSTICS
1695 {
1696 int yy, xx;
1697 printf("grid after perturbing:\n");
1698 for (yy = 0; yy < ctx->h; yy++) {
1699 for (xx = 0; xx < ctx->w; xx++) {
1700 int v = ctx->grid[yy*ctx->w+xx];
1701 if (yy == ctx->sy && xx == ctx->sx) {
1702 assert(!v);
1703 putchar('S');
1704 } else if (v) {
1705 putchar('*');
1706 } else {
1707 putchar('-');
1708 }
1709 }
1710 putchar('\n');
1711 }
1712 printf("\n");
1713 }
1714 #endif
1715
1716 return ret;
1717 }
1718
1719 static char *minegen(int w, int h, int n, int x, int y, int unique,
1720 random_state *rs)
1721 {
1722 char *ret = snewn(w*h, char);
1723 int success;
1724 int ntries = 0;
1725
1726 do {
1727 success = FALSE;
1728 ntries++;
1729
1730 memset(ret, 0, w*h);
1731
1732 /*
1733 * Start by placing n mines, none of which is at x,y or within
1734 * one square of it.
1735 */
1736 {
1737 int *tmp = snewn(w*h, int);
1738 int i, j, k, nn;
1739
1740 /*
1741 * Write down the list of possible mine locations.
1742 */
1743 k = 0;
1744 for (i = 0; i < h; i++)
1745 for (j = 0; j < w; j++)
1746 if (abs(i - y) > 1 || abs(j - x) > 1)
1747 tmp[k++] = i*w+j;
1748
1749 /*
1750 * Now pick n off the list at random.
1751 */
1752 nn = n;
1753 while (nn-- > 0) {
1754 i = random_upto(rs, k);
1755 ret[tmp[i]] = 1;
1756 tmp[i] = tmp[--k];
1757 }
1758
1759 sfree(tmp);
1760 }
1761
1762 #ifdef GENERATION_DIAGNOSTICS
1763 {
1764 int yy, xx;
1765 printf("grid after initial generation:\n");
1766 for (yy = 0; yy < h; yy++) {
1767 for (xx = 0; xx < w; xx++) {
1768 int v = ret[yy*w+xx];
1769 if (yy == y && xx == x) {
1770 assert(!v);
1771 putchar('S');
1772 } else if (v) {
1773 putchar('*');
1774 } else {
1775 putchar('-');
1776 }
1777 }
1778 putchar('\n');
1779 }
1780 printf("\n");
1781 }
1782 #endif
1783
1784 /*
1785 * Now set up a results grid to run the solver in, and a
1786 * context for the solver to open squares. Then run the solver
1787 * repeatedly; if the number of perturb steps ever goes up or
1788 * it ever returns -1, give up completely.
1789 *
1790 * We bypass this bit if we're not after a unique grid.
1791 */
1792 if (unique) {
1793 signed char *solvegrid = snewn(w*h, signed char);
1794 struct minectx actx, *ctx = &actx;
1795 int solveret, prevret = -2;
1796
1797 ctx->grid = ret;
1798 ctx->w = w;
1799 ctx->h = h;
1800 ctx->sx = x;
1801 ctx->sy = y;
1802 ctx->rs = rs;
1803 ctx->allow_big_perturbs = (ntries > 100);
1804
1805 while (1) {
1806 memset(solvegrid, -2, w*h);
1807 solvegrid[y*w+x] = mineopen(ctx, x, y);
1808 assert(solvegrid[y*w+x] == 0); /* by deliberate arrangement */
1809
1810 solveret =
1811 minesolve(w, h, n, solvegrid, mineopen, mineperturb, ctx, rs);
1812 if (solveret < 0 || (prevret >= 0 && solveret >= prevret)) {
1813 success = FALSE;
1814 break;
1815 } else if (solveret == 0) {
1816 success = TRUE;
1817 break;
1818 }
1819 }
1820
1821 sfree(solvegrid);
1822 } else {
1823 success = TRUE;
1824 }
1825
1826 } while (!success);
1827
1828 return ret;
1829 }
1830
1831 static char *describe_layout(char *grid, int area, int x, int y,
1832 int obfuscate)
1833 {
1834 char *ret, *p;
1835 unsigned char *bmp;
1836 int i;
1837
1838 /*
1839 * Set up the mine bitmap and obfuscate it.
1840 */
1841 bmp = snewn((area + 7) / 8, unsigned char);
1842 memset(bmp, 0, (area + 7) / 8);
1843 for (i = 0; i < area; i++) {
1844 if (grid[i])
1845 bmp[i / 8] |= 0x80 >> (i % 8);
1846 }
1847 if (obfuscate)
1848 obfuscate_bitmap(bmp, area, FALSE);
1849
1850 /*
1851 * Now encode the resulting bitmap in hex. We can work to
1852 * nibble rather than byte granularity, since the obfuscation
1853 * function guarantees to return a bit string of the same
1854 * length as its input.
1855 */
1856 ret = snewn((area+3)/4 + 100, char);
1857 p = ret + sprintf(ret, "%d,%d,%s", x, y,
1858 obfuscate ? "m" : "u"); /* 'm' == masked */
1859 for (i = 0; i < (area+3)/4; i++) {
1860 int v = bmp[i/2];
1861 if (i % 2 == 0)
1862 v >>= 4;
1863 *p++ = "0123456789abcdef"[v & 0xF];
1864 }
1865 *p = '\0';
1866
1867 sfree(bmp);
1868
1869 return ret;
1870 }
1871
1872 static char *new_mine_layout(int w, int h, int n, int x, int y, int unique,
1873 random_state *rs, char **game_desc)
1874 {
1875 char *grid;
1876
1877 #ifdef TEST_OBFUSCATION
1878 static int tested_obfuscation = FALSE;
1879 if (!tested_obfuscation) {
1880 /*
1881 * A few simple test vectors for the obfuscator.
1882 *
1883 * First test: the 28-bit stream 1234567. This divides up
1884 * into 1234 and 567[0]. The SHA of 56 70 30 (appending
1885 * "0") is 15ce8ab946640340bbb99f3f48fd2c45d1a31d30. Thus,
1886 * we XOR the 16-bit string 15CE into the input 1234 to get
1887 * 07FA. Next, we SHA that with "0": the SHA of 07 FA 30 is
1888 * 3370135c5e3da4fed937adc004a79533962b6391. So we XOR the
1889 * 12-bit string 337 into the input 567 to get 650. Thus
1890 * our output is 07FA650.
1891 */
1892 {
1893 unsigned char bmp1[] = "\x12\x34\x56\x70";
1894 obfuscate_bitmap(bmp1, 28, FALSE);
1895 printf("test 1 encode: %s\n",
1896 memcmp(bmp1, "\x07\xfa\x65\x00", 4) ? "failed" : "passed");
1897 obfuscate_bitmap(bmp1, 28, TRUE);
1898 printf("test 1 decode: %s\n",
1899 memcmp(bmp1, "\x12\x34\x56\x70", 4) ? "failed" : "passed");
1900 }
1901 /*
1902 * Second test: a long string to make sure we switch from
1903 * one SHA to the next correctly. My input string this time
1904 * is simply fifty bytes of zeroes.
1905 */
1906 {
1907 unsigned char bmp2[50];
1908 unsigned char bmp2a[50];
1909 memset(bmp2, 0, 50);
1910 memset(bmp2a, 0, 50);
1911 obfuscate_bitmap(bmp2, 50 * 8, FALSE);
1912 /*
1913 * SHA of twenty-five zero bytes plus "0" is
1914 * b202c07b990c01f6ff2d544707f60e506019b671. SHA of
1915 * twenty-five zero bytes plus "1" is
1916 * fcb1d8b5a2f6b592fe6780b36aa9d65dd7aa6db9. Thus our
1917 * first half becomes
1918 * b202c07b990c01f6ff2d544707f60e506019b671fcb1d8b5a2.
1919 *
1920 * SHA of that lot plus "0" is
1921 * 10b0af913db85d37ca27f52a9f78bba3a80030db. SHA of the
1922 * same string plus "1" is
1923 * 3d01d8df78e76d382b8106f480135a1bc751d725. So the
1924 * second half becomes
1925 * 10b0af913db85d37ca27f52a9f78bba3a80030db3d01d8df78.
1926 */
1927 printf("test 2 encode: %s\n",
1928 memcmp(bmp2, "\xb2\x02\xc0\x7b\x99\x0c\x01\xf6\xff\x2d\x54"
1929 "\x47\x07\xf6\x0e\x50\x60\x19\xb6\x71\xfc\xb1\xd8"
1930 "\xb5\xa2\x10\xb0\xaf\x91\x3d\xb8\x5d\x37\xca\x27"
1931 "\xf5\x2a\x9f\x78\xbb\xa3\xa8\x00\x30\xdb\x3d\x01"
1932 "\xd8\xdf\x78", 50) ? "failed" : "passed");
1933 obfuscate_bitmap(bmp2, 50 * 8, TRUE);
1934 printf("test 2 decode: %s\n",
1935 memcmp(bmp2, bmp2a, 50) ? "failed" : "passed");
1936 }
1937 }
1938 #endif
1939
1940 grid = minegen(w, h, n, x, y, unique, rs);
1941
1942 if (game_desc)
1943 *game_desc = describe_layout(grid, w * h, x, y, TRUE);
1944
1945 return grid;
1946 }
1947
1948 static char *new_game_desc(game_params *params, random_state *rs,
1949 char **aux, int interactive)
1950 {
1951 /*
1952 * We generate the coordinates of an initial click even if they
1953 * aren't actually used. This has the effect of harmonising the
1954 * random number usage between interactive and batch use: if
1955 * you use `mines --generate' with an explicit random seed, you
1956 * should get exactly the same results as if you type the same
1957 * random seed into the interactive game and click in the same
1958 * initial location. (Of course you won't get the same grid if
1959 * you click in a _different_ initial location, but there's
1960 * nothing to be done about that.)
1961 */
1962 int x = random_upto(rs, params->w);
1963 int y = random_upto(rs, params->h);
1964
1965 if (!interactive) {
1966 /*
1967 * For batch-generated grids, pre-open one square.
1968 */
1969 char *grid;
1970 char *desc;
1971
1972 grid = new_mine_layout(params->w, params->h, params->n,
1973 x, y, params->unique, rs, &desc);
1974 sfree(grid);
1975 return desc;
1976 } else {
1977 char *rsdesc, *desc;
1978
1979 rsdesc = random_state_encode(rs);
1980 desc = snewn(strlen(rsdesc) + 100, char);
1981 sprintf(desc, "r%d,%c,%s", params->n, (char)(params->unique ? 'u' : 'a'), rsdesc);
1982 sfree(rsdesc);
1983 return desc;
1984 }
1985 }
1986
1987 static char *validate_desc(game_params *params, char *desc)
1988 {
1989 int wh = params->w * params->h;
1990 int x, y;
1991
1992 if (*desc == 'r') {
1993 desc++;
1994 if (!*desc || !isdigit((unsigned char)*desc))
1995 return "No initial mine count in game description";
1996 while (*desc && isdigit((unsigned char)*desc))
1997 desc++; /* skip over mine count */
1998 if (*desc != ',')
1999 return "No ',' after initial x-coordinate in game description";
2000 desc++;
2001 if (*desc != 'u' && *desc != 'a')
2002 return "No uniqueness specifier in game description";
2003 desc++;
2004 if (*desc != ',')
2005 return "No ',' after uniqueness specifier in game description";
2006 /* now ignore the rest */
2007 } else {
2008 if (*desc && isdigit((unsigned char)*desc)) {
2009 x = atoi(desc);
2010 if (x < 0 || x >= params->w)
2011 return "Initial x-coordinate was out of range";
2012 while (*desc && isdigit((unsigned char)*desc))
2013 desc++; /* skip over x coordinate */
2014 if (*desc != ',')
2015 return "No ',' after initial x-coordinate in game description";
2016 desc++; /* eat comma */
2017 if (!*desc || !isdigit((unsigned char)*desc))
2018 return "No initial y-coordinate in game description";
2019 y = atoi(desc);
2020 if (y < 0 || y >= params->h)
2021 return "Initial y-coordinate was out of range";
2022 while (*desc && isdigit((unsigned char)*desc))
2023 desc++; /* skip over y coordinate */
2024 if (*desc != ',')
2025 return "No ',' after initial y-coordinate in game description";
2026 desc++; /* eat comma */
2027 }
2028 /* eat `m' for `masked' or `u' for `unmasked', if present */
2029 if (*desc == 'm' || *desc == 'u')
2030 desc++;
2031 /* now just check length of remainder */
2032 if (strlen(desc) != (wh+3)/4)
2033 return "Game description is wrong length";
2034 }
2035
2036 return NULL;
2037 }
2038
2039 static int open_square(game_state *state, int x, int y)
2040 {
2041 int w = state->w, h = state->h;
2042 int xx, yy, nmines, ncovered;
2043
2044 if (!state->layout->mines) {
2045 /*
2046 * We have a preliminary game in which the mine layout
2047 * hasn't been generated yet. Generate it based on the
2048 * initial click location.
2049 */
2050 char *desc, *privdesc;
2051 state->layout->mines = new_mine_layout(w, h, state->layout->n,
2052 x, y, state->layout->unique,
2053 state->layout->rs,
2054 &desc);
2055 /*
2056 * Find the trailing substring of the game description
2057 * corresponding to just the mine layout; we will use this
2058 * as our second `private' game ID for serialisation.
2059 */
2060 privdesc = desc;
2061 while (*privdesc && isdigit((unsigned char)*privdesc)) privdesc++;
2062 if (*privdesc == ',') privdesc++;
2063 while (*privdesc && isdigit((unsigned char)*privdesc)) privdesc++;
2064 if (*privdesc == ',') privdesc++;
2065 assert(*privdesc == 'm');
2066 midend_supersede_game_desc(state->layout->me, desc, privdesc);
2067 sfree(desc);
2068 random_free(state->layout->rs);
2069 state->layout->rs = NULL;
2070 }
2071
2072 if (state->layout->mines[y*w+x]) {
2073 /*
2074 * The player has landed on a mine. Bad luck. Expose the
2075 * mine that killed them, but not the rest (in case they
2076 * want to Undo and carry on playing).
2077 */
2078 state->dead = TRUE;
2079 state->grid[y*w+x] = 65;
2080 return -1;
2081 }
2082
2083 /*
2084 * Otherwise, the player has opened a safe square. Mark it to-do.
2085 */
2086 state->grid[y*w+x] = -10; /* `todo' value internal to this func */
2087
2088 /*
2089 * Now go through the grid finding all `todo' values and
2090 * opening them. Every time one of them turns out to have no
2091 * neighbouring mines, we add all its unopened neighbours to
2092 * the list as well.
2093 *
2094 * FIXME: We really ought to be able to do this better than
2095 * using repeated N^2 scans of the grid.
2096 */
2097 while (1) {
2098 int done_something = FALSE;
2099
2100 for (yy = 0; yy < h; yy++)
2101 for (xx = 0; xx < w; xx++)
2102 if (state->grid[yy*w+xx] == -10) {
2103 int dx, dy, v;
2104
2105 assert(!state->layout->mines[yy*w+xx]);
2106
2107 v = 0;
2108
2109 for (dx = -1; dx <= +1; dx++)
2110 for (dy = -1; dy <= +1; dy++)
2111 if (xx+dx >= 0 && xx+dx < state->w &&
2112 yy+dy >= 0 && yy+dy < state->h &&
2113 state->layout->mines[(yy+dy)*w+(xx+dx)])
2114 v++;
2115
2116 state->grid[yy*w+xx] = v;
2117
2118 if (v == 0) {
2119 for (dx = -1; dx <= +1; dx++)
2120 for (dy = -1; dy <= +1; dy++)
2121 if (xx+dx >= 0 && xx+dx < state->w &&
2122 yy+dy >= 0 && yy+dy < state->h &&
2123 state->grid[(yy+dy)*w+(xx+dx)] == -2)
2124 state->grid[(yy+dy)*w+(xx+dx)] = -10;
2125 }
2126
2127 done_something = TRUE;
2128 }
2129
2130 if (!done_something)
2131 break;
2132 }
2133
2134 /*
2135 * Finally, scan the grid and see if exactly as many squares
2136 * are still covered as there are mines. If so, set the `won'
2137 * flag and fill in mine markers on all covered squares.
2138 */
2139 nmines = ncovered = 0;
2140 for (yy = 0; yy < h; yy++)
2141 for (xx = 0; xx < w; xx++) {
2142 if (state->grid[yy*w+xx] < 0)
2143 ncovered++;
2144 if (state->layout->mines[yy*w+xx])
2145 nmines++;
2146 }
2147 assert(ncovered >= nmines);
2148 if (ncovered == nmines) {
2149 for (yy = 0; yy < h; yy++)
2150 for (xx = 0; xx < w; xx++) {
2151 if (state->grid[yy*w+xx] < 0)
2152 state->grid[yy*w+xx] = -1;
2153 }
2154 state->won = TRUE;
2155 }
2156
2157 return 0;
2158 }
2159
2160 static game_state *new_game(midend *me, game_params *params, char *desc)
2161 {
2162 game_state *state = snew(game_state);
2163 int i, wh, x, y, ret, masked;
2164 unsigned char *bmp;
2165
2166 state->w = params->w;
2167 state->h = params->h;
2168 state->n = params->n;
2169 state->dead = state->won = FALSE;
2170 state->used_solve = state->just_used_solve = FALSE;
2171
2172 wh = state->w * state->h;
2173
2174 state->layout = snew(struct mine_layout);
2175 memset(state->layout, 0, sizeof(struct mine_layout));
2176 state->layout->refcount = 1;
2177
2178 state->grid = snewn(wh, signed char);
2179 memset(state->grid, -2, wh);
2180
2181 if (*desc == 'r') {
2182 desc++;
2183 state->layout->n = atoi(desc);
2184 while (*desc && isdigit((unsigned char)*desc))
2185 desc++; /* skip over mine count */
2186 if (*desc) desc++; /* eat comma */
2187 if (*desc == 'a')
2188 state->layout->unique = FALSE;
2189 else
2190 state->layout->unique = TRUE;
2191 desc++;
2192 if (*desc) desc++; /* eat comma */
2193
2194 state->layout->mines = NULL;
2195 state->layout->rs = random_state_decode(desc);
2196 state->layout->me = me;
2197
2198 } else {
2199 state->layout->rs = NULL;
2200 state->layout->me = NULL;
2201 state->layout->mines = snewn(wh, char);
2202
2203 if (*desc && isdigit((unsigned char)*desc)) {
2204 x = atoi(desc);
2205 while (*desc && isdigit((unsigned char)*desc))
2206 desc++; /* skip over x coordinate */
2207 if (*desc) desc++; /* eat comma */
2208 y = atoi(desc);
2209 while (*desc && isdigit((unsigned char)*desc))
2210 desc++; /* skip over y coordinate */
2211 if (*desc) desc++; /* eat comma */
2212 } else {
2213 x = y = -1;
2214 }
2215
2216 if (*desc == 'm') {
2217 masked = TRUE;
2218 desc++;
2219 } else {
2220 if (*desc == 'u')
2221 desc++;
2222 /*
2223 * We permit game IDs to be entered by hand without the
2224 * masking transformation.
2225 */
2226 masked = FALSE;
2227 }
2228
2229 bmp = snewn((wh + 7) / 8, unsigned char);
2230 memset(bmp, 0, (wh + 7) / 8);
2231 for (i = 0; i < (wh+3)/4; i++) {
2232 int c = desc[i];
2233 int v;
2234
2235 assert(c != 0); /* validate_desc should have caught */
2236 if (c >= '0' && c <= '9')
2237 v = c - '0';
2238 else if (c >= 'a' && c <= 'f')
2239 v = c - 'a' + 10;
2240 else if (c >= 'A' && c <= 'F')
2241 v = c - 'A' + 10;
2242 else
2243 v = 0;
2244
2245 bmp[i / 2] |= v << (4 * (1 - (i % 2)));
2246 }
2247
2248 if (masked)
2249 obfuscate_bitmap(bmp, wh, TRUE);
2250
2251 memset(state->layout->mines, 0, wh);
2252 for (i = 0; i < wh; i++) {
2253 if (bmp[i / 8] & (0x80 >> (i % 8)))
2254 state->layout->mines[i] = 1;
2255 }
2256
2257 if (x >= 0 && y >= 0)
2258 ret = open_square(state, x, y);
2259 sfree(bmp);
2260 }
2261
2262 return state;
2263 }
2264
2265 static game_state *dup_game(game_state *state)
2266 {
2267 game_state *ret = snew(game_state);
2268
2269 ret->w = state->w;
2270 ret->h = state->h;
2271 ret->n = state->n;
2272 ret->dead = state->dead;
2273 ret->won = state->won;
2274 ret->used_solve = state->used_solve;
2275 ret->just_used_solve = state->just_used_solve;
2276 ret->layout = state->layout;
2277 ret->layout->refcount++;
2278 ret->grid = snewn(ret->w * ret->h, signed char);
2279 memcpy(ret->grid, state->grid, ret->w * ret->h);
2280
2281 return ret;
2282 }
2283
2284 static void free_game(game_state *state)
2285 {
2286 if (--state->layout->refcount <= 0) {
2287 sfree(state->layout->mines);
2288 if (state->layout->rs)
2289 random_free(state->layout->rs);
2290 sfree(state->layout);
2291 }
2292 sfree(state->grid);
2293 sfree(state);
2294 }
2295
2296 static char *solve_game(game_state *state, game_state *currstate,
2297 char *aux, char **error)
2298 {
2299 if (!state->layout->mines) {
2300 *error = "Game has not been started yet";
2301 return NULL;
2302 }
2303
2304 return dupstr("S");
2305 }
2306
2307 static char *game_text_format(game_state *state)
2308 {
2309 char *ret;
2310 int x, y;
2311
2312 ret = snewn((state->w + 1) * state->h + 1, char);
2313 for (y = 0; y < state->h; y++) {
2314 for (x = 0; x < state->w; x++) {
2315 int v = state->grid[y*state->w+x];
2316 if (v == 0)
2317 v = '-';
2318 else if (v >= 1 && v <= 8)
2319 v = '0' + v;
2320 else if (v == -1)
2321 v = '*';
2322 else if (v == -2 || v == -3)
2323 v = '?';
2324 else if (v >= 64)
2325 v = '!';
2326 ret[y * (state->w+1) + x] = v;
2327 }
2328 ret[y * (state->w+1) + state->w] = '\n';
2329 }
2330 ret[(state->w + 1) * state->h] = '\0';
2331
2332 return ret;
2333 }
2334
2335 struct game_ui {
2336 int hx, hy, hradius; /* for mouse-down highlights */
2337 int validradius;
2338 int flash_is_death;
2339 int deaths, completed;
2340 };
2341
2342 static game_ui *new_ui(game_state *state)
2343 {
2344 game_ui *ui = snew(game_ui);
2345 ui->hx = ui->hy = -1;
2346 ui->hradius = ui->validradius = 0;
2347 ui->deaths = 0;
2348 ui->completed = FALSE;
2349 ui->flash_is_death = FALSE; /* *shrug* */
2350 return ui;
2351 }
2352
2353 static void free_ui(game_ui *ui)
2354 {
2355 sfree(ui);
2356 }
2357
2358 static char *encode_ui(game_ui *ui)
2359 {
2360 char buf[80];
2361 /*
2362 * The deaths counter and completion status need preserving
2363 * across a serialisation.
2364 */
2365 sprintf(buf, "D%d", ui->deaths);
2366 if (ui->completed)
2367 strcat(buf, "C");
2368 return dupstr(buf);
2369 }
2370
2371 static void decode_ui(game_ui *ui, char *encoding)
2372 {
2373 int p= 0;
2374 sscanf(encoding, "D%d%n", &ui->deaths, &p);
2375 if (encoding[p] == 'C')
2376 ui->completed = TRUE;
2377 }
2378
2379 static void game_changed_state(game_ui *ui, game_state *oldstate,
2380 game_state *newstate)
2381 {
2382 if (newstate->won)
2383 ui->completed = TRUE;
2384 }
2385
2386 struct game_drawstate {
2387 int w, h, started, tilesize, bg;
2388 signed char *grid;
2389 /*
2390 * Items in this `grid' array have all the same values as in
2391 * the game_state grid, and in addition:
2392 *
2393 * - -10 means the tile was drawn `specially' as a result of a
2394 * flash, so it will always need redrawing.
2395 *
2396 * - -22 and -23 mean the tile is highlighted for a possible
2397 * click.
2398 */
2399 };
2400
2401 static char *interpret_move(game_state *from, game_ui *ui, game_drawstate *ds,
2402 int x, int y, int button)
2403 {
2404 int cx, cy;
2405 char buf[256];
2406
2407 if (from->dead || from->won)
2408 return NULL; /* no further moves permitted */
2409
2410 if (!IS_MOUSE_DOWN(button) && !IS_MOUSE_DRAG(button) &&
2411 !IS_MOUSE_RELEASE(button))
2412 return NULL;
2413
2414 cx = FROMCOORD(x);
2415 cy = FROMCOORD(y);
2416
2417 if (button == LEFT_BUTTON || button == LEFT_DRAG ||
2418 button == MIDDLE_BUTTON || button == MIDDLE_DRAG) {
2419 if (cx < 0 || cx >= from->w || cy < 0 || cy >= from->h)
2420 return NULL;
2421
2422 /*
2423 * Mouse-downs and mouse-drags just cause highlighting
2424 * updates.
2425 */
2426 ui->hx = cx;
2427 ui->hy = cy;
2428 ui->hradius = (from->grid[cy*from->w+cx] >= 0 ? 1 : 0);
2429 if (button == LEFT_BUTTON)
2430 ui->validradius = ui->hradius;
2431 else if (button == MIDDLE_BUTTON)
2432 ui->validradius = 1;
2433 return "";
2434 }
2435
2436 if (button == RIGHT_BUTTON) {
2437 if (cx < 0 || cx >= from->w || cy < 0 || cy >= from->h)
2438 return NULL;
2439
2440 /*
2441 * Right-clicking only works on a covered square, and it
2442 * toggles between -1 (marked as mine) and -2 (not marked
2443 * as mine).
2444 *
2445 * FIXME: question marks.
2446 */
2447 if (from->grid[cy * from->w + cx] != -2 &&
2448 from->grid[cy * from->w + cx] != -1)
2449 return NULL;
2450
2451 sprintf(buf, "F%d,%d", cx, cy);
2452 return dupstr(buf);
2453 }
2454
2455 if (button == LEFT_RELEASE || button == MIDDLE_RELEASE) {
2456 ui->hx = ui->hy = -1;
2457 ui->hradius = 0;
2458
2459 /*
2460 * At this stage we must never return NULL: we have adjusted
2461 * the ui, so at worst we return "".
2462 */
2463 if (cx < 0 || cx >= from->w || cy < 0 || cy >= from->h)
2464 return "";
2465
2466 /*
2467 * Left-clicking on a covered square opens a tile. Not
2468 * permitted if the tile is marked as a mine, for safety.
2469 * (Unmark it and _then_ open it.)
2470 */
2471 if (button == LEFT_RELEASE &&
2472 (from->grid[cy * from->w + cx] == -2 ||
2473 from->grid[cy * from->w + cx] == -3) &&
2474 ui->validradius == 0) {
2475 /* Check if you've killed yourself. */
2476 if (from->layout->mines && from->layout->mines[cy * from->w + cx])
2477 ui->deaths++;
2478
2479 sprintf(buf, "O%d,%d", cx, cy);
2480 return dupstr(buf);
2481 }
2482
2483 /*
2484 * Left-clicking or middle-clicking on an uncovered tile:
2485 * first we check to see if the number of mine markers
2486 * surrounding the tile is equal to its mine count, and if
2487 * so then we open all other surrounding squares.
2488 */
2489 if (from->grid[cy * from->w + cx] > 0 && ui->validradius == 1) {
2490 int dy, dx, n;
2491
2492 /* Count mine markers. */
2493 n = 0;
2494 for (dy = -1; dy <= +1; dy++)
2495 for (dx = -1; dx <= +1; dx++)
2496 if (cx+dx >= 0 && cx+dx < from->w &&
2497 cy+dy >= 0 && cy+dy < from->h) {
2498 if (from->grid[(cy+dy)*from->w+(cx+dx)] == -1)
2499 n++;
2500 }
2501
2502 if (n == from->grid[cy * from->w + cx]) {
2503
2504 /*
2505 * Now see if any of the squares we're clearing
2506 * contains a mine (which will happen iff you've
2507 * incorrectly marked the mines around the clicked
2508 * square). If so, we open _just_ those squares, to
2509 * reveal as little additional information as we
2510 * can.
2511 */
2512 char *p = buf;
2513 char *sep = "";
2514
2515 for (dy = -1; dy <= +1; dy++)
2516 for (dx = -1; dx <= +1; dx++)
2517 if (cx+dx >= 0 && cx+dx < from->w &&
2518 cy+dy >= 0 && cy+dy < from->h) {
2519 if (from->grid[(cy+dy)*from->w+(cx+dx)] != -1 &&
2520 from->layout->mines &&
2521 from->layout->mines[(cy+dy)*from->w+(cx+dx)]) {
2522 p += sprintf(p, "%sO%d,%d", sep, cx+dx, cy+dy);
2523 sep = ";";
2524 }
2525 }
2526
2527 if (p > buf) {
2528 ui->deaths++;
2529 } else {
2530 sprintf(buf, "C%d,%d", cx, cy);
2531 }
2532
2533 return dupstr(buf);
2534 }
2535 }
2536
2537 return "";
2538 }
2539
2540 return NULL;
2541 }
2542
2543 static game_state *execute_move(game_state *from, char *move)
2544 {
2545 int cy, cx;
2546 game_state *ret;
2547
2548 if (!strcmp(move, "S")) {
2549 /*
2550 * Simply expose the entire grid as if it were a completed
2551 * solution.
2552 */
2553 int yy, xx;
2554
2555 ret = dup_game(from);
2556 for (yy = 0; yy < ret->h; yy++)
2557 for (xx = 0; xx < ret->w; xx++) {
2558
2559 if (ret->layout->mines[yy*ret->w+xx]) {
2560 ret->grid[yy*ret->w+xx] = -1;
2561 } else {
2562 int dx, dy, v;
2563
2564 v = 0;
2565
2566 for (dx = -1; dx <= +1; dx++)
2567 for (dy = -1; dy <= +1; dy++)
2568 if (xx+dx >= 0 && xx+dx < ret->w &&
2569 yy+dy >= 0 && yy+dy < ret->h &&
2570 ret->layout->mines[(yy+dy)*ret->w+(xx+dx)])
2571 v++;
2572
2573 ret->grid[yy*ret->w+xx] = v;
2574 }
2575 }
2576 ret->used_solve = ret->just_used_solve = TRUE;
2577 ret->won = TRUE;
2578
2579 return ret;
2580 } else {
2581 ret = dup_game(from);
2582 ret->just_used_solve = FALSE;
2583
2584 while (*move) {
2585 if (move[0] == 'F' &&
2586 sscanf(move+1, "%d,%d", &cx, &cy) == 2 &&
2587 cx >= 0 && cx < from->w && cy >= 0 && cy < from->h) {
2588 ret->grid[cy * from->w + cx] ^= (-2 ^ -1);
2589 } else if (move[0] == 'O' &&
2590 sscanf(move+1, "%d,%d", &cx, &cy) == 2 &&
2591 cx >= 0 && cx < from->w && cy >= 0 && cy < from->h) {
2592 open_square(ret, cx, cy);
2593 } else if (move[0] == 'C' &&
2594 sscanf(move+1, "%d,%d", &cx, &cy) == 2 &&
2595 cx >= 0 && cx < from->w && cy >= 0 && cy < from->h) {
2596 int dx, dy;
2597
2598 for (dy = -1; dy <= +1; dy++)
2599 for (dx = -1; dx <= +1; dx++)
2600 if (cx+dx >= 0 && cx+dx < ret->w &&
2601 cy+dy >= 0 && cy+dy < ret->h &&
2602 (ret->grid[(cy+dy)*ret->w+(cx+dx)] == -2 ||
2603 ret->grid[(cy+dy)*ret->w+(cx+dx)] == -3))
2604 open_square(ret, cx+dx, cy+dy);
2605 } else {
2606 free_game(ret);
2607 return NULL;
2608 }
2609
2610 while (*move && *move != ';') move++;
2611 if (*move) move++;
2612 }
2613
2614 return ret;
2615 }
2616 }
2617
2618 /* ----------------------------------------------------------------------
2619 * Drawing routines.
2620 */
2621
2622 static void game_compute_size(game_params *params, int tilesize,
2623 int *x, int *y)
2624 {
2625 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2626 struct { int tilesize; } ads, *ds = &ads;
2627 ads.tilesize = tilesize;
2628
2629 *x = BORDER * 2 + TILE_SIZE * params->w;
2630 *y = BORDER * 2 + TILE_SIZE * params->h;
2631 }
2632
2633 static void game_set_size(drawing *dr, game_drawstate *ds,
2634 game_params *params, int tilesize)
2635 {
2636 ds->tilesize = tilesize;
2637 }
2638
2639 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
2640 {
2641 float *ret = snewn(3 * NCOLOURS, float);
2642
2643 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2644
2645 ret[COL_BACKGROUND2 * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 19.0 / 20.0;
2646 ret[COL_BACKGROUND2 * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 19.0 / 20.0;
2647 ret[COL_BACKGROUND2 * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 19.0 / 20.0;
2648
2649 ret[COL_1 * 3 + 0] = 0.0F;
2650 ret[COL_1 * 3 + 1] = 0.0F;
2651 ret[COL_1 * 3 + 2] = 1.0F;
2652
2653 ret[COL_2 * 3 + 0] = 0.0F;
2654 ret[COL_2 * 3 + 1] = 0.5F;
2655 ret[COL_2 * 3 + 2] = 0.0F;
2656
2657 ret[COL_3 * 3 + 0] = 1.0F;
2658 ret[COL_3 * 3 + 1] = 0.0F;
2659 ret[COL_3 * 3 + 2] = 0.0F;
2660
2661 ret[COL_4 * 3 + 0] = 0.0F;
2662 ret[COL_4 * 3 + 1] = 0.0F;
2663 ret[COL_4 * 3 + 2] = 0.5F;
2664
2665 ret[COL_5 * 3 + 0] = 0.5F;
2666 ret[COL_5 * 3 + 1] = 0.0F;
2667 ret[COL_5 * 3 + 2] = 0.0F;
2668
2669 ret[COL_6 * 3 + 0] = 0.0F;
2670 ret[COL_6 * 3 + 1] = 0.5F;
2671 ret[COL_6 * 3 + 2] = 0.5F;
2672
2673 ret[COL_7 * 3 + 0] = 0.0F;
2674 ret[COL_7 * 3 + 1] = 0.0F;
2675 ret[COL_7 * 3 + 2] = 0.0F;
2676
2677 ret[COL_8 * 3 + 0] = 0.5F;
2678 ret[COL_8 * 3 + 1] = 0.5F;
2679 ret[COL_8 * 3 + 2] = 0.5F;
2680
2681 ret[COL_MINE * 3 + 0] = 0.0F;
2682 ret[COL_MINE * 3 + 1] = 0.0F;
2683 ret[COL_MINE * 3 + 2] = 0.0F;
2684
2685 ret[COL_BANG * 3 + 0] = 1.0F;
2686 ret[COL_BANG * 3 + 1] = 0.0F;
2687 ret[COL_BANG * 3 + 2] = 0.0F;
2688
2689 ret[COL_CROSS * 3 + 0] = 1.0F;
2690 ret[COL_CROSS * 3 + 1] = 0.0F;
2691 ret[COL_CROSS * 3 + 2] = 0.0F;
2692
2693 ret[COL_FLAG * 3 + 0] = 1.0F;
2694 ret[COL_FLAG * 3 + 1] = 0.0F;
2695 ret[COL_FLAG * 3 + 2] = 0.0F;
2696
2697 ret[COL_FLAGBASE * 3 + 0] = 0.0F;
2698 ret[COL_FLAGBASE * 3 + 1] = 0.0F;
2699 ret[COL_FLAGBASE * 3 + 2] = 0.0F;
2700
2701 ret[COL_QUERY * 3 + 0] = 0.0F;
2702 ret[COL_QUERY * 3 + 1] = 0.0F;
2703 ret[COL_QUERY * 3 + 2] = 0.0F;
2704
2705 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
2706 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
2707 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
2708
2709 ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2.0 / 3.0;
2710 ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2.0 / 3.0;
2711 ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2.0 / 3.0;
2712
2713 *ncolours = NCOLOURS;
2714 return ret;
2715 }
2716
2717 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2718 {
2719 struct game_drawstate *ds = snew(struct game_drawstate);
2720
2721 ds->w = state->w;
2722 ds->h = state->h;
2723 ds->started = FALSE;
2724 ds->tilesize = 0; /* not decided yet */
2725 ds->grid = snewn(ds->w * ds->h, signed char);
2726 ds->bg = -1;
2727
2728 memset(ds->grid, -99, ds->w * ds->h);
2729
2730 return ds;
2731 }
2732
2733 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2734 {
2735 sfree(ds->grid);
2736 sfree(ds);
2737 }
2738
2739 static void draw_tile(drawing *dr, game_drawstate *ds,
2740 int x, int y, int v, int bg)
2741 {
2742 if (v < 0) {
2743 int coords[12];
2744 int hl = 0;
2745
2746 if (v == -22 || v == -23) {
2747 v += 20;
2748
2749 /*
2750 * Omit the highlights in this case.
2751 */
2752 draw_rect(dr, x, y, TILE_SIZE, TILE_SIZE,
2753 bg == COL_BACKGROUND ? COL_BACKGROUND2 : bg);
2754 draw_line(dr, x, y, x + TILE_SIZE - 1, y, COL_LOWLIGHT);
2755 draw_line(dr, x, y, x, y + TILE_SIZE - 1, COL_LOWLIGHT);
2756 } else {
2757 /*
2758 * Draw highlights to indicate the square is covered.
2759 */
2760 coords[0] = x + TILE_SIZE - 1;
2761 coords[1] = y + TILE_SIZE - 1;
2762 coords[2] = x + TILE_SIZE - 1;
2763 coords[3] = y;
2764 coords[4] = x;
2765 coords[5] = y + TILE_SIZE - 1;
2766 draw_polygon(dr, coords, 3, COL_LOWLIGHT ^ hl, COL_LOWLIGHT ^ hl);
2767
2768 coords[0] = x;
2769 coords[1] = y;
2770 draw_polygon(dr, coords, 3, COL_HIGHLIGHT ^ hl,
2771 COL_HIGHLIGHT ^ hl);
2772
2773 draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
2774 TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
2775 bg);
2776 }
2777
2778 if (v == -1) {
2779 /*
2780 * Draw a flag.
2781 */
2782 #define SETCOORD(n, dx, dy) do { \
2783 coords[(n)*2+0] = x + TILE_SIZE * (dx); \
2784 coords[(n)*2+1] = y + TILE_SIZE * (dy); \
2785 } while (0)
2786 SETCOORD(0, 0.6, 0.35);
2787 SETCOORD(1, 0.6, 0.7);
2788 SETCOORD(2, 0.8, 0.8);
2789 SETCOORD(3, 0.25, 0.8);
2790 SETCOORD(4, 0.55, 0.7);
2791 SETCOORD(5, 0.55, 0.35);
2792 draw_polygon(dr, coords, 6, COL_FLAGBASE, COL_FLAGBASE);
2793
2794 SETCOORD(0, 0.6, 0.2);
2795 SETCOORD(1, 0.6, 0.5);
2796 SETCOORD(2, 0.2, 0.35);
2797 draw_polygon(dr, coords, 3, COL_FLAG, COL_FLAG);
2798 #undef SETCOORD
2799
2800 } else if (v == -3) {
2801 /*
2802 * Draw a question mark.
2803 */
2804 draw_text(dr, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
2805 FONT_VARIABLE, TILE_SIZE * 6 / 8,
2806 ALIGN_VCENTRE | ALIGN_HCENTRE,
2807 COL_QUERY, "?");
2808 }
2809 } else {
2810 /*
2811 * Clear the square to the background colour, and draw thin
2812 * grid lines along the top and left.
2813 *
2814 * Exception is that for value 65 (mine we've just trodden
2815 * on), we clear the square to COL_BANG.
2816 */
2817 draw_rect(dr, x, y, TILE_SIZE, TILE_SIZE,
2818 (v == 65 ? COL_BANG :
2819 bg == COL_BACKGROUND ? COL_BACKGROUND2 : bg));
2820 draw_line(dr, x, y, x + TILE_SIZE - 1, y, COL_LOWLIGHT);
2821 draw_line(dr, x, y, x, y + TILE_SIZE - 1, COL_LOWLIGHT);
2822
2823 if (v > 0 && v <= 8) {
2824 /*
2825 * Mark a number.
2826 */
2827 char str[2];
2828 str[0] = v + '0';
2829 str[1] = '\0';
2830 draw_text(dr, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
2831 FONT_VARIABLE, TILE_SIZE * 7 / 8,
2832 ALIGN_VCENTRE | ALIGN_HCENTRE,
2833 (COL_1 - 1) + v, str);
2834
2835 } else if (v >= 64) {
2836 /*
2837 * Mark a mine.
2838 *
2839 * FIXME: this could be done better!
2840 */
2841 #if 0
2842 draw_text(dr, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
2843 FONT_VARIABLE, TILE_SIZE * 7 / 8,
2844 ALIGN_VCENTRE | ALIGN_HCENTRE,
2845 COL_MINE, "*");
2846 #else
2847 {
2848 int cx = x + TILE_SIZE / 2;
2849 int cy = y + TILE_SIZE / 2;
2850 int r = TILE_SIZE / 2 - 3;
2851 int coords[4*5*2];
2852 int xdx = 1, xdy = 0, ydx = 0, ydy = 1;
2853 int tdx, tdy, i;
2854
2855 for (i = 0; i < 4*5*2; i += 5*2) {
2856 coords[i+2*0+0] = cx - r/6*xdx + r*4/5*ydx;
2857 coords[i+2*0+1] = cy - r/6*xdy + r*4/5*ydy;
2858 coords[i+2*1+0] = cx - r/6*xdx + r*ydx;
2859 coords[i+2*1+1] = cy - r/6*xdy + r*ydy;
2860 coords[i+2*2+0] = cx + r/6*xdx + r*ydx;
2861 coords[i+2*2+1] = cy + r/6*xdy + r*ydy;
2862 coords[i+2*3+0] = cx + r/6*xdx + r*4/5*ydx;
2863 coords[i+2*3+1] = cy + r/6*xdy + r*4/5*ydy;
2864 coords[i+2*4+0] = cx + r*3/5*xdx + r*3/5*ydx;
2865 coords[i+2*4+1] = cy + r*3/5*xdy + r*3/5*ydy;
2866
2867 tdx = ydx;
2868 tdy = ydy;
2869 ydx = xdx;
2870 ydy = xdy;
2871 xdx = -tdx;
2872 xdy = -tdy;
2873 }
2874
2875 draw_polygon(dr, coords, 5*4, COL_MINE, COL_MINE);
2876
2877 draw_rect(dr, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT);
2878 }
2879 #endif
2880
2881 if (v == 66) {
2882 /*
2883 * Cross through the mine.
2884 */
2885 int dx;
2886 for (dx = -1; dx <= +1; dx++) {
2887 draw_line(dr, x + 3 + dx, y + 2,
2888 x + TILE_SIZE - 3 + dx,
2889 y + TILE_SIZE - 2, COL_CROSS);
2890 draw_line(dr, x + TILE_SIZE - 3 + dx, y + 2,
2891 x + 3 + dx, y + TILE_SIZE - 2,
2892 COL_CROSS);
2893 }
2894 }
2895 }
2896 }
2897
2898 draw_update(dr, x, y, TILE_SIZE, TILE_SIZE);
2899 }
2900
2901 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2902 game_state *state, int dir, game_ui *ui,
2903 float animtime, float flashtime)
2904 {
2905 int x, y;
2906 int mines, markers, bg;
2907
2908 if (flashtime) {
2909 int frame = (flashtime / FLASH_FRAME);
2910 if (frame % 2)
2911 bg = (ui->flash_is_death ? COL_BACKGROUND : COL_LOWLIGHT);
2912 else
2913 bg = (ui->flash_is_death ? COL_BANG : COL_HIGHLIGHT);
2914 } else
2915 bg = COL_BACKGROUND;
2916
2917 if (!ds->started) {
2918 int coords[10];
2919
2920 draw_rect(dr, 0, 0,
2921 TILE_SIZE * state->w + 2 * BORDER,
2922 TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
2923 draw_update(dr, 0, 0,
2924 TILE_SIZE * state->w + 2 * BORDER,
2925 TILE_SIZE * state->h + 2 * BORDER);
2926
2927 /*
2928 * Recessed area containing the whole puzzle.
2929 */
2930 coords[0] = COORD(state->w) + OUTER_HIGHLIGHT_WIDTH - 1;
2931 coords[1] = COORD(state->h) + OUTER_HIGHLIGHT_WIDTH - 1;
2932 coords[2] = COORD(state->w) + OUTER_HIGHLIGHT_WIDTH - 1;
2933 coords[3] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2934 coords[4] = coords[2] - TILE_SIZE;
2935 coords[5] = coords[3] + TILE_SIZE;
2936 coords[8] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2937 coords[9] = COORD(state->h) + OUTER_HIGHLIGHT_WIDTH - 1;
2938 coords[6] = coords[8] + TILE_SIZE;
2939 coords[7] = coords[9] - TILE_SIZE;
2940 draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
2941
2942 coords[1] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2943 coords[0] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2944 draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
2945
2946 ds->started = TRUE;
2947 }
2948
2949 /*
2950 * Now draw the tiles. Also in this loop, count up the number
2951 * of mines and mine markers.
2952 */
2953 mines = markers = 0;
2954 for (y = 0; y < ds->h; y++)
2955 for (x = 0; x < ds->w; x++) {
2956 int v = state->grid[y*ds->w+x];
2957
2958 if (v == -1)
2959 markers++;
2960 if (state->layout->mines && state->layout->mines[y*ds->w+x])
2961 mines++;
2962
2963 if ((v == -2 || v == -3) &&
2964 (abs(x-ui->hx) <= ui->hradius && abs(y-ui->hy) <= ui->hradius))
2965 v -= 20;
2966
2967 if (ds->grid[y*ds->w+x] != v || bg != ds->bg) {
2968 draw_tile(dr, ds, COORD(x), COORD(y), v, bg);
2969 ds->grid[y*ds->w+x] = v;
2970 }
2971 }
2972 ds->bg = bg;
2973
2974 if (!state->layout->mines)
2975 mines = state->layout->n;
2976
2977 /*
2978 * Update the status bar.
2979 */
2980 {
2981 char statusbar[512];
2982 if (state->dead) {
2983 sprintf(statusbar, "DEAD!");
2984 } else if (state->won) {
2985 if (state->used_solve)
2986 sprintf(statusbar, "Auto-solved.");
2987 else
2988 sprintf(statusbar, "COMPLETED!");
2989 } else {
2990 sprintf(statusbar, "Marked: %d / %d", markers, mines);
2991 }
2992 if (ui->deaths)
2993 sprintf(statusbar + strlen(statusbar),
2994 " Deaths: %d", ui->deaths);
2995 status_bar(dr, statusbar);
2996 }
2997 }
2998
2999 static float game_anim_length(game_state *oldstate, game_state *newstate,
3000 int dir, game_ui *ui)
3001 {
3002 return 0.0F;
3003 }
3004
3005 static float game_flash_length(game_state *oldstate, game_state *newstate,
3006 int dir, game_ui *ui)
3007 {
3008 if (oldstate->used_solve || newstate->used_solve)
3009 return 0.0F;
3010
3011 if (dir > 0 && !oldstate->dead && !oldstate->won) {
3012 if (newstate->dead) {
3013 ui->flash_is_death = TRUE;
3014 return 3 * FLASH_FRAME;
3015 }
3016 if (newstate->won) {
3017 ui->flash_is_death = FALSE;
3018 return 2 * FLASH_FRAME;
3019 }
3020 }
3021 return 0.0F;
3022 }
3023
3024 static int game_wants_statusbar(void)
3025 {
3026 return TRUE;
3027 }
3028
3029 static int game_timing_state(game_state *state, game_ui *ui)
3030 {
3031 if (state->dead || state->won || ui->completed || !state->layout->mines)
3032 return FALSE;
3033 return TRUE;
3034 }
3035
3036 static void game_print_size(game_params *params, float *x, float *y)
3037 {
3038 }
3039
3040 static void game_print(drawing *dr, game_state *state, int tilesize)
3041 {
3042 }
3043
3044 #ifdef COMBINED
3045 #define thegame mines
3046 #endif
3047
3048 const struct game thegame = {
3049 "Mines", "games.mines",
3050 default_params,
3051 game_fetch_preset,
3052 decode_params,
3053 encode_params,
3054 free_params,
3055 dup_params,
3056 TRUE, game_configure, custom_params,
3057 validate_params,
3058 new_game_desc,
3059 validate_desc,
3060 new_game,
3061 dup_game,
3062 free_game,
3063 TRUE, solve_game,
3064 TRUE, game_text_format,
3065 new_ui,
3066 free_ui,
3067 encode_ui,
3068 decode_ui,
3069 game_changed_state,
3070 interpret_move,
3071 execute_move,
3072 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3073 game_colours,
3074 game_new_drawstate,
3075 game_free_drawstate,
3076 game_redraw,
3077 game_anim_length,
3078 game_flash_length,
3079 FALSE, FALSE, game_print_size, game_print,
3080 game_wants_statusbar,
3081 TRUE, game_timing_state,
3082 BUTTON_BEATS(LEFT_BUTTON, RIGHT_BUTTON),
3083 };
3084
3085 #ifdef STANDALONE_OBFUSCATOR
3086
3087 /*
3088 * Vaguely useful stand-alone program which translates between
3089 * obfuscated and clear Mines game descriptions. Pass in a game
3090 * description on the command line, and if it's clear it will be
3091 * obfuscated and vice versa. The output text should also be a
3092 * valid game ID describing the same game. Like this:
3093 *
3094 * $ ./mineobfusc 9x9:4,4,mb071b49fbd1cb6a0d5868
3095 * 9x9:4,4,004000007c00010022080
3096 * $ ./mineobfusc 9x9:4,4,004000007c00010022080
3097 * 9x9:4,4,mb071b49fbd1cb6a0d5868
3098 *
3099 * gcc -DSTANDALONE_OBFUSCATOR -o mineobfusc mines.c malloc.c random.c tree234.c misc.c
3100 */
3101
3102 #include <stdarg.h>
3103
3104 void frontend_default_colour(frontend *fe, float *output) {}
3105 void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
3106 int align, int colour, char *text) {}
3107 void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
3108 void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
3109 void draw_polygon(drawing *dr, int *coords, int npoints,
3110 int fillcolour, int outlinecolour) {}
3111 void clip(drawing *dr, int x, int y, int w, int h) {}
3112 void unclip(drawing *dr) {}
3113 void start_draw(drawing *dr) {}
3114 void draw_update(drawing *dr, int x, int y, int w, int h) {}
3115 void end_draw(drawing *dr) {}
3116 void midend_supersede_game_desc(midend *me, char *desc, char *privdesc) {}
3117 void status_bar(drawing *dr, char *text) {}
3118
3119 void fatal(char *fmt, ...)
3120 {
3121 va_list ap;
3122
3123 fprintf(stderr, "fatal error: ");
3124
3125 va_start(ap, fmt);
3126 vfprintf(stderr, fmt, ap);
3127 va_end(ap);
3128
3129 fprintf(stderr, "\n");
3130 exit(1);
3131 }
3132
3133 int main(int argc, char **argv)
3134 {
3135 game_params *p;
3136 game_state *s;
3137 char *id = NULL, *desc, *err;
3138 int y, x;
3139
3140 while (--argc > 0) {
3141 char *p = *++argv;
3142 if (*p == '-') {
3143 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
3144 return 1;
3145 } else {
3146 id = p;
3147 }
3148 }
3149
3150 if (!id) {
3151 fprintf(stderr, "usage: %s <game_id>\n", argv[0]);
3152 return 1;
3153 }
3154
3155 desc = strchr(id, ':');
3156 if (!desc) {
3157 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
3158 return 1;
3159 }
3160 *desc++ = '\0';
3161
3162 p = default_params();
3163 decode_params(p, id);
3164 err = validate_desc(p, desc);
3165 if (err) {
3166 fprintf(stderr, "%s: %s\n", argv[0], err);
3167 return 1;
3168 }
3169 s = new_game(NULL, p, desc);
3170
3171 x = atoi(desc);
3172 while (*desc && *desc != ',') desc++;
3173 if (*desc) desc++;
3174 y = atoi(desc);
3175 while (*desc && *desc != ',') desc++;
3176 if (*desc) desc++;
3177
3178 printf("%s:%s\n", id, describe_layout(s->layout->mines,
3179 p->w * p->h,
3180 x, y,
3181 (*desc != 'm')));
3182
3183 return 0;
3184 }
3185
3186 #endif