Mines now follows the conventional approach of offering a completely
[sgt/puzzles] / net.c
1 /*
2 * net.c: Net game.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13 #include "tree234.h"
14
15 #define PI 3.141592653589793238462643383279502884197169399
16
17 #define MATMUL(xr,yr,m,x,y) do { \
18 float rx, ry, xx = (x), yy = (y), *mat = (m); \
19 rx = mat[0] * xx + mat[2] * yy; \
20 ry = mat[1] * xx + mat[3] * yy; \
21 (xr) = rx; (yr) = ry; \
22 } while (0)
23
24 /* Direction and other bitfields */
25 #define R 0x01
26 #define U 0x02
27 #define L 0x04
28 #define D 0x08
29 #define LOCKED 0x10
30 #define ACTIVE 0x20
31
32 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
33 #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
34 #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
35 #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
36 #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
37 ((n)&3) == 1 ? A(x) : \
38 ((n)&3) == 2 ? F(x) : C(x) )
39
40 /* X and Y displacements */
41 #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
42 #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
43
44 /* Bit count */
45 #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
46 (((x) & 0x02) >> 1) + ((x) & 0x01) )
47
48 #define TILE_SIZE 32
49 #define TILE_BORDER 1
50 #define WINDOW_OFFSET 16
51
52 #define ROTATE_TIME 0.13F
53 #define FLASH_FRAME 0.07F
54
55 /* Transform physical coords to game coords using game_drawstate ds */
56 #define GX(x) (((x) + ds->org_x) % ds->width)
57 #define GY(y) (((y) + ds->org_y) % ds->height)
58 /* ...and game coords to physical coords */
59 #define RX(x) (((x) + ds->width - ds->org_x) % ds->width)
60 #define RY(y) (((y) + ds->height - ds->org_y) % ds->height)
61
62 enum {
63 COL_BACKGROUND,
64 COL_LOCKED,
65 COL_BORDER,
66 COL_WIRE,
67 COL_ENDPOINT,
68 COL_POWERED,
69 COL_BARRIER,
70 NCOLOURS
71 };
72
73 struct game_params {
74 int width;
75 int height;
76 int wrapping;
77 int unique;
78 float barrier_probability;
79 };
80
81 struct game_aux_info {
82 int width, height;
83 unsigned char *tiles;
84 };
85
86 struct game_state {
87 int width, height, wrapping, completed;
88 int last_rotate_x, last_rotate_y, last_rotate_dir;
89 int used_solve, just_used_solve;
90 unsigned char *tiles;
91 unsigned char *barriers;
92 };
93
94 #define OFFSETWH(x2,y2,x1,y1,dir,width,height) \
95 ( (x2) = ((x1) + width + X((dir))) % width, \
96 (y2) = ((y1) + height + Y((dir))) % height)
97
98 #define OFFSET(x2,y2,x1,y1,dir,state) \
99 OFFSETWH(x2,y2,x1,y1,dir,(state)->width,(state)->height)
100
101 #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
102 #define tile(state, x, y) index(state, (state)->tiles, x, y)
103 #define barrier(state, x, y) index(state, (state)->barriers, x, y)
104
105 struct xyd {
106 int x, y, direction;
107 };
108
109 static int xyd_cmp(const void *av, const void *bv) {
110 const struct xyd *a = (const struct xyd *)av;
111 const struct xyd *b = (const struct xyd *)bv;
112 if (a->x < b->x)
113 return -1;
114 if (a->x > b->x)
115 return +1;
116 if (a->y < b->y)
117 return -1;
118 if (a->y > b->y)
119 return +1;
120 if (a->direction < b->direction)
121 return -1;
122 if (a->direction > b->direction)
123 return +1;
124 return 0;
125 };
126
127 static int xyd_cmp_nc(void *av, void *bv) { return xyd_cmp(av, bv); }
128
129 static struct xyd *new_xyd(int x, int y, int direction)
130 {
131 struct xyd *xyd = snew(struct xyd);
132 xyd->x = x;
133 xyd->y = y;
134 xyd->direction = direction;
135 return xyd;
136 }
137
138 /* ----------------------------------------------------------------------
139 * Manage game parameters.
140 */
141 static game_params *default_params(void)
142 {
143 game_params *ret = snew(game_params);
144
145 ret->width = 5;
146 ret->height = 5;
147 ret->wrapping = FALSE;
148 ret->unique = TRUE;
149 ret->barrier_probability = 0.0;
150
151 return ret;
152 }
153
154 static int game_fetch_preset(int i, char **name, game_params **params)
155 {
156 game_params *ret;
157 char str[80];
158 static const struct { int x, y, wrap; } values[] = {
159 {5, 5, FALSE},
160 {7, 7, FALSE},
161 {9, 9, FALSE},
162 {11, 11, FALSE},
163 {13, 11, FALSE},
164 {5, 5, TRUE},
165 {7, 7, TRUE},
166 {9, 9, TRUE},
167 {11, 11, TRUE},
168 {13, 11, TRUE},
169 };
170
171 if (i < 0 || i >= lenof(values))
172 return FALSE;
173
174 ret = snew(game_params);
175 ret->width = values[i].x;
176 ret->height = values[i].y;
177 ret->wrapping = values[i].wrap;
178 ret->unique = TRUE;
179 ret->barrier_probability = 0.0;
180
181 sprintf(str, "%dx%d%s", ret->width, ret->height,
182 ret->wrapping ? " wrapping" : "");
183
184 *name = dupstr(str);
185 *params = ret;
186 return TRUE;
187 }
188
189 static void free_params(game_params *params)
190 {
191 sfree(params);
192 }
193
194 static game_params *dup_params(game_params *params)
195 {
196 game_params *ret = snew(game_params);
197 *ret = *params; /* structure copy */
198 return ret;
199 }
200
201 static void decode_params(game_params *ret, char const *string)
202 {
203 char const *p = string;
204
205 ret->width = atoi(p);
206 while (*p && isdigit((unsigned char)*p)) p++;
207 if (*p == 'x') {
208 p++;
209 ret->height = atoi(p);
210 while (*p && isdigit((unsigned char)*p)) p++;
211 } else {
212 ret->height = ret->width;
213 }
214
215 while (*p) {
216 if (*p == 'w') {
217 p++;
218 ret->wrapping = TRUE;
219 } else if (*p == 'b') {
220 p++;
221 ret->barrier_probability = atof(p);
222 while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
223 } else if (*p == 'a') {
224 p++;
225 ret->unique = FALSE;
226 } else
227 p++; /* skip any other gunk */
228 }
229 }
230
231 static char *encode_params(game_params *params, int full)
232 {
233 char ret[400];
234 int len;
235
236 len = sprintf(ret, "%dx%d", params->width, params->height);
237 if (params->wrapping)
238 ret[len++] = 'w';
239 if (full && params->barrier_probability)
240 len += sprintf(ret+len, "b%g", params->barrier_probability);
241 if (full && !params->unique)
242 ret[len++] = 'a';
243 assert(len < lenof(ret));
244 ret[len] = '\0';
245
246 return dupstr(ret);
247 }
248
249 static config_item *game_configure(game_params *params)
250 {
251 config_item *ret;
252 char buf[80];
253
254 ret = snewn(6, config_item);
255
256 ret[0].name = "Width";
257 ret[0].type = C_STRING;
258 sprintf(buf, "%d", params->width);
259 ret[0].sval = dupstr(buf);
260 ret[0].ival = 0;
261
262 ret[1].name = "Height";
263 ret[1].type = C_STRING;
264 sprintf(buf, "%d", params->height);
265 ret[1].sval = dupstr(buf);
266 ret[1].ival = 0;
267
268 ret[2].name = "Walls wrap around";
269 ret[2].type = C_BOOLEAN;
270 ret[2].sval = NULL;
271 ret[2].ival = params->wrapping;
272
273 ret[3].name = "Barrier probability";
274 ret[3].type = C_STRING;
275 sprintf(buf, "%g", params->barrier_probability);
276 ret[3].sval = dupstr(buf);
277 ret[3].ival = 0;
278
279 ret[4].name = "Ensure unique solution";
280 ret[4].type = C_BOOLEAN;
281 ret[4].sval = NULL;
282 ret[4].ival = params->unique;
283
284 ret[5].name = NULL;
285 ret[5].type = C_END;
286 ret[5].sval = NULL;
287 ret[5].ival = 0;
288
289 return ret;
290 }
291
292 static game_params *custom_params(config_item *cfg)
293 {
294 game_params *ret = snew(game_params);
295
296 ret->width = atoi(cfg[0].sval);
297 ret->height = atoi(cfg[1].sval);
298 ret->wrapping = cfg[2].ival;
299 ret->barrier_probability = (float)atof(cfg[3].sval);
300 ret->unique = cfg[4].ival;
301
302 return ret;
303 }
304
305 static char *validate_params(game_params *params)
306 {
307 if (params->width <= 0 && params->height <= 0)
308 return "Width and height must both be greater than zero";
309 if (params->width <= 0)
310 return "Width must be greater than zero";
311 if (params->height <= 0)
312 return "Height must be greater than zero";
313 if (params->width <= 1 && params->height <= 1)
314 return "At least one of width and height must be greater than one";
315 if (params->barrier_probability < 0)
316 return "Barrier probability may not be negative";
317 if (params->barrier_probability > 1)
318 return "Barrier probability may not be greater than 1";
319
320 /*
321 * Specifying either grid dimension as 2 in a wrapping puzzle
322 * makes it actually impossible to ensure a unique puzzle
323 * solution.
324 *
325 * Proof:
326 *
327 * Without loss of generality, let us assume the puzzle _width_
328 * is 2, so we can conveniently discuss rows without having to
329 * say `rows/columns' all the time. (The height may be 2 as
330 * well, but that doesn't matter.)
331 *
332 * In each row, there are two edges between tiles: the inner
333 * edge (running down the centre of the grid) and the outer
334 * edge (the identified left and right edges of the grid).
335 *
336 * Lemma: In any valid 2xn puzzle there must be at least one
337 * row in which _exactly one_ of the inner edge and outer edge
338 * is connected.
339 *
340 * Proof: No row can have _both_ inner and outer edges
341 * connected, because this would yield a loop. So the only
342 * other way to falsify the lemma is for every row to have
343 * _neither_ the inner nor outer edge connected. But this
344 * means there is no connection at all between the left and
345 * right columns of the puzzle, so there are two disjoint
346 * subgraphs, which is also disallowed. []
347 *
348 * Given such a row, it is always possible to make the
349 * disconnected edge connected and the connected edge
350 * disconnected without changing the state of any other edge.
351 * (This is easily seen by case analysis on the various tiles:
352 * left-pointing and right-pointing endpoints can be exchanged,
353 * likewise T-pieces, and a corner piece can select its
354 * horizontal connectivity independently of its vertical.) This
355 * yields a distinct valid solution.
356 *
357 * Thus, for _every_ row in which exactly one of the inner and
358 * outer edge is connected, there are two valid states for that
359 * row, and hence the total number of solutions of the puzzle
360 * is at least 2^(number of such rows), and in particular is at
361 * least 2 since there must be at least one such row. []
362 */
363 if (params->unique && params->wrapping &&
364 (params->width == 2 || params->height == 2))
365 return "No wrapping puzzle with a width or height of 2 can have"
366 " a unique solution";
367
368 return NULL;
369 }
370
371 /* ----------------------------------------------------------------------
372 * Solver used to assure solution uniqueness during generation.
373 */
374
375 /*
376 * Test cases I used while debugging all this were
377 *
378 * ./net --generate 1 13x11w#12300
379 * which expands under the non-unique grid generation rules to
380 * 13x11w:5eaade1bd222664436d5e2965c12656b1129dd825219e3274d558d5eb2dab5da18898e571d5a2987be79746bd95726c597447d6da96188c513add829da7681da954db113d3cd244
381 * and has two ambiguous areas.
382 *
383 * An even better one is
384 * 13x11w#507896411361192
385 * which expands to
386 * 13x11w:b7125b1aec598eb31bd58d82572bc11494e5dee4e8db2bdd29b88d41a16bdd996d2996ddec8c83741a1e8674e78328ba71737b8894a9271b1cd1399453d1952e43951d9b712822e
387 * and has an ambiguous area _and_ a situation where loop avoidance
388 * is a necessary deductive technique.
389 *
390 * Then there's
391 * 48x25w#820543338195187
392 * becoming
393 * 48x25w:255989d14cdd185deaa753a93821a12edc1ab97943ac127e2685d7b8b3c48861b2192416139212b316eddd35de43714ebc7628d753db32e596284d9ec52c5a7dc1b4c811a655117d16dc28921b2b4161352cab1d89d18bc836b8b891d55ea4622a1251861b5bc9a8aa3e5bcd745c95229ca6c3b5e21d5832d397e917325793d7eb442dc351b2db2a52ba8e1651642275842d8871d5534aabc6d5b741aaa2d48ed2a7dbbb3151ddb49d5b9a7ed1ab98ee75d613d656dbba347bc514c84556b43a9bc65a3256ead792488b862a9d2a8a39b4255a4949ed7dbd79443292521265896b4399c95ede89d7c8c797a6a57791a849adea489359a158aa12e5dacce862b8333b7ebea7d344d1a3c53198864b73a9dedde7b663abb1b539e1e8853b1b7edb14a2a17ebaae4dbe63598a2e7e9a2dbdad415bc1d8cb88cbab5a8c82925732cd282e641ea3bd7d2c6e776de9117a26be86deb7c82c89524b122cb9397cd1acd2284e744ea62b9279bae85479ababe315c3ac29c431333395b24e6a1e3c43a2da42d4dce84aadd5b154aea555eaddcbd6e527d228c19388d9b424d94214555a7edbdeebe569d4a56dc51a86bd9963e377bb74752bd5eaa5761ba545e297b62a1bda46ab4aee423ad6c661311783cc18786d4289236563cb4a75ec67d481c14814994464cd1b87396dee63e5ab6e952cc584baa1d4c47cb557ec84dbb63d487c8728118673a166846dd3a4ebc23d6cb9c5827d96b4556e91899db32b517eda815ae271a8911bd745447121dc8d321557bc2a435ebec1bbac35b1a291669451174e6aa2218a4a9c5a6ca31ebc45d84e3a82c121e9ced7d55e9a
394 * which has a spot (far right) where slightly more complex loop
395 * avoidance is required.
396 */
397
398 static int dsf_canonify(int *dsf, int val)
399 {
400 int v2 = val;
401
402 while (dsf[val] != val)
403 val = dsf[val];
404
405 while (v2 != val) {
406 int tmp = dsf[v2];
407 dsf[v2] = val;
408 v2 = tmp;
409 }
410
411 return val;
412 }
413
414 static void dsf_merge(int *dsf, int v1, int v2)
415 {
416 v1 = dsf_canonify(dsf, v1);
417 v2 = dsf_canonify(dsf, v2);
418 dsf[v2] = v1;
419 }
420
421 struct todo {
422 unsigned char *marked;
423 int *buffer;
424 int buflen;
425 int head, tail;
426 };
427
428 static struct todo *todo_new(int maxsize)
429 {
430 struct todo *todo = snew(struct todo);
431 todo->marked = snewn(maxsize, unsigned char);
432 memset(todo->marked, 0, maxsize);
433 todo->buflen = maxsize + 1;
434 todo->buffer = snewn(todo->buflen, int);
435 todo->head = todo->tail = 0;
436 return todo;
437 }
438
439 static void todo_free(struct todo *todo)
440 {
441 sfree(todo->marked);
442 sfree(todo->buffer);
443 sfree(todo);
444 }
445
446 static void todo_add(struct todo *todo, int index)
447 {
448 if (todo->marked[index])
449 return; /* already on the list */
450 todo->marked[index] = TRUE;
451 todo->buffer[todo->tail++] = index;
452 if (todo->tail == todo->buflen)
453 todo->tail = 0;
454 }
455
456 static int todo_get(struct todo *todo) {
457 int ret;
458
459 if (todo->head == todo->tail)
460 return -1; /* list is empty */
461 ret = todo->buffer[todo->head++];
462 if (todo->head == todo->buflen)
463 todo->head = 0;
464 todo->marked[ret] = FALSE;
465
466 return ret;
467 }
468
469 static int net_solver(int w, int h, unsigned char *tiles,
470 unsigned char *barriers, int wrapping)
471 {
472 unsigned char *tilestate;
473 unsigned char *edgestate;
474 int *deadends;
475 int *equivalence;
476 struct todo *todo;
477 int i, j, x, y;
478 int area;
479 int done_something;
480
481 /*
482 * Set up the solver's data structures.
483 */
484
485 /*
486 * tilestate stores the possible orientations of each tile.
487 * There are up to four of these, so we'll index the array in
488 * fours. tilestate[(y * w + x) * 4] and its three successive
489 * members give the possible orientations, clearing to 255 from
490 * the end as things are ruled out.
491 *
492 * In this loop we also count up the area of the grid (which is
493 * not _necessarily_ equal to w*h, because there might be one
494 * or more blank squares present. This will never happen in a
495 * grid generated _by_ this program, but it's worth keeping the
496 * solver as general as possible.)
497 */
498 tilestate = snewn(w * h * 4, unsigned char);
499 area = 0;
500 for (i = 0; i < w*h; i++) {
501 tilestate[i * 4] = tiles[i] & 0xF;
502 for (j = 1; j < 4; j++) {
503 if (tilestate[i * 4 + j - 1] == 255 ||
504 A(tilestate[i * 4 + j - 1]) == tilestate[i * 4])
505 tilestate[i * 4 + j] = 255;
506 else
507 tilestate[i * 4 + j] = A(tilestate[i * 4 + j - 1]);
508 }
509 if (tiles[i] != 0)
510 area++;
511 }
512
513 /*
514 * edgestate stores the known state of each edge. It is 0 for
515 * unknown, 1 for open (connected) and 2 for closed (not
516 * connected).
517 *
518 * In principle we need only worry about each edge once each,
519 * but in fact it's easier to track each edge twice so that we
520 * can reference it from either side conveniently. Also I'm
521 * going to allocate _five_ bytes per tile, rather than the
522 * obvious four, so that I can index edgestate[(y*w+x) * 5 + d]
523 * where d is 1,2,4,8 and they never overlap.
524 */
525 edgestate = snewn((w * h - 1) * 5 + 9, unsigned char);
526 memset(edgestate, 0, (w * h - 1) * 5 + 9);
527
528 /*
529 * deadends tracks which edges have dead ends on them. It is
530 * indexed by tile and direction: deadends[(y*w+x) * 5 + d]
531 * tells you whether heading out of tile (x,y) in direction d
532 * can reach a limited amount of the grid. Values are area+1
533 * (no dead end known) or less than that (can reach _at most_
534 * this many other tiles by heading this way out of this tile).
535 */
536 deadends = snewn((w * h - 1) * 5 + 9, int);
537 for (i = 0; i < (w * h - 1) * 5 + 9; i++)
538 deadends[i] = area+1;
539
540 /*
541 * equivalence tracks which sets of tiles are known to be
542 * connected to one another, so we can avoid creating loops by
543 * linking together tiles which are already linked through
544 * another route.
545 *
546 * This is a disjoint set forest structure: equivalence[i]
547 * contains the index of another member of the equivalence
548 * class containing i, or contains i itself for precisely one
549 * member in each such class. To find a representative member
550 * of the equivalence class containing i, you keep replacing i
551 * with equivalence[i] until it stops changing; then you go
552 * _back_ along the same path and point everything on it
553 * directly at the representative member so as to speed up
554 * future searches. Then you test equivalence between tiles by
555 * finding the representative of each tile and seeing if
556 * they're the same; and you create new equivalence (merge
557 * classes) by finding the representative of each tile and
558 * setting equivalence[one]=the_other.
559 */
560 equivalence = snewn(w * h, int);
561 for (i = 0; i < w*h; i++)
562 equivalence[i] = i; /* initially all distinct */
563
564 /*
565 * On a non-wrapping grid, we instantly know that all the edges
566 * round the edge are closed.
567 */
568 if (!wrapping) {
569 for (i = 0; i < w; i++) {
570 edgestate[i * 5 + 2] = edgestate[((h-1) * w + i) * 5 + 8] = 2;
571 }
572 for (i = 0; i < h; i++) {
573 edgestate[(i * w + w-1) * 5 + 1] = edgestate[(i * w) * 5 + 4] = 2;
574 }
575 }
576
577 /*
578 * If we have barriers available, we can mark those edges as
579 * closed too.
580 */
581 if (barriers) {
582 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
583 int d;
584 for (d = 1; d <= 8; d += d) {
585 if (barriers[y*w+x] & d) {
586 int x2, y2;
587 /*
588 * In principle the barrier list should already
589 * contain each barrier from each side, but
590 * let's not take chances with our internal
591 * consistency.
592 */
593 OFFSETWH(x2, y2, x, y, d, w, h);
594 edgestate[(y*w+x) * 5 + d] = 2;
595 edgestate[(y2*w+x2) * 5 + F(d)] = 2;
596 }
597 }
598 }
599 }
600
601 /*
602 * Since most deductions made by this solver are local (the
603 * exception is loop avoidance, where joining two tiles
604 * together on one side of the grid can theoretically permit a
605 * fresh deduction on the other), we can address the scaling
606 * problem inherent in iterating repeatedly over the entire
607 * grid by instead working with a to-do list.
608 */
609 todo = todo_new(w * h);
610
611 /*
612 * Main deductive loop.
613 */
614 done_something = TRUE; /* prevent instant termination! */
615 while (1) {
616 int index;
617
618 /*
619 * Take a tile index off the todo list and process it.
620 */
621 index = todo_get(todo);
622 if (index == -1) {
623 /*
624 * If we have run out of immediate things to do, we
625 * have no choice but to scan the whole grid for
626 * longer-range things we've missed. Hence, I now add
627 * every square on the grid back on to the to-do list.
628 * I also set `done_something' to FALSE at this point;
629 * if we later come back here and find it still FALSE,
630 * we will know we've scanned the entire grid without
631 * finding anything new to do, and we can terminate.
632 */
633 if (!done_something)
634 break;
635 for (i = 0; i < w*h; i++)
636 todo_add(todo, i);
637 done_something = FALSE;
638
639 index = todo_get(todo);
640 }
641
642 y = index / w;
643 x = index % w;
644 {
645 int d, ourclass = dsf_canonify(equivalence, y*w+x);
646 int deadendmax[9];
647
648 deadendmax[1] = deadendmax[2] = deadendmax[4] = deadendmax[8] = 0;
649
650 for (i = j = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
651 int valid;
652 int nnondeadends, nondeadends[4], deadendtotal;
653 int nequiv, equiv[5];
654 int val = tilestate[(y*w+x) * 4 + i];
655
656 valid = TRUE;
657 nnondeadends = deadendtotal = 0;
658 equiv[0] = ourclass;
659 nequiv = 1;
660 for (d = 1; d <= 8; d += d) {
661 /*
662 * Immediately rule out this orientation if it
663 * conflicts with any known edge.
664 */
665 if ((edgestate[(y*w+x) * 5 + d] == 1 && !(val & d)) ||
666 (edgestate[(y*w+x) * 5 + d] == 2 && (val & d)))
667 valid = FALSE;
668
669 if (val & d) {
670 /*
671 * Count up the dead-end statistics.
672 */
673 if (deadends[(y*w+x) * 5 + d] <= area) {
674 deadendtotal += deadends[(y*w+x) * 5 + d];
675 } else {
676 nondeadends[nnondeadends++] = d;
677 }
678
679 /*
680 * Ensure we aren't linking to any tiles,
681 * through edges not already known to be
682 * open, which create a loop.
683 */
684 if (edgestate[(y*w+x) * 5 + d] == 0) {
685 int c, k, x2, y2;
686
687 OFFSETWH(x2, y2, x, y, d, w, h);
688 c = dsf_canonify(equivalence, y2*w+x2);
689 for (k = 0; k < nequiv; k++)
690 if (c == equiv[k])
691 break;
692 if (k == nequiv)
693 equiv[nequiv++] = c;
694 else
695 valid = FALSE;
696 }
697 }
698 }
699
700 if (nnondeadends == 0) {
701 /*
702 * If this orientation links together dead-ends
703 * with a total area of less than the entire
704 * grid, it is invalid.
705 *
706 * (We add 1 to deadendtotal because of the
707 * tile itself, of course; one tile linking
708 * dead ends of size 2 and 3 forms a subnetwork
709 * with a total area of 6, not 5.)
710 */
711 if (deadendtotal > 0 && deadendtotal+1 < area)
712 valid = FALSE;
713 } else if (nnondeadends == 1) {
714 /*
715 * If this orientation links together one or
716 * more dead-ends with precisely one
717 * non-dead-end, then we may have to mark that
718 * non-dead-end as a dead end going the other
719 * way. However, it depends on whether all
720 * other orientations share the same property.
721 */
722 deadendtotal++;
723 if (deadendmax[nondeadends[0]] < deadendtotal)
724 deadendmax[nondeadends[0]] = deadendtotal;
725 } else {
726 /*
727 * If this orientation links together two or
728 * more non-dead-ends, then we can rule out the
729 * possibility of putting in new dead-end
730 * markings in those directions.
731 */
732 int k;
733 for (k = 0; k < nnondeadends; k++)
734 deadendmax[nondeadends[k]] = area+1;
735 }
736
737 if (valid)
738 tilestate[(y*w+x) * 4 + j++] = val;
739 #ifdef SOLVER_DIAGNOSTICS
740 else
741 printf("ruling out orientation %x at %d,%d\n", val, x, y);
742 #endif
743 }
744
745 assert(j > 0); /* we can't lose _all_ possibilities! */
746
747 if (j < i) {
748 done_something = TRUE;
749
750 /*
751 * We have ruled out at least one tile orientation.
752 * Make sure the rest are blanked.
753 */
754 while (j < 4)
755 tilestate[(y*w+x) * 4 + j++] = 255;
756 }
757
758 /*
759 * Now go through the tile orientations again and see
760 * if we've deduced anything new about any edges.
761 */
762 {
763 int a, o;
764 a = 0xF; o = 0;
765
766 for (i = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
767 a &= tilestate[(y*w+x) * 4 + i];
768 o |= tilestate[(y*w+x) * 4 + i];
769 }
770 for (d = 1; d <= 8; d += d)
771 if (edgestate[(y*w+x) * 5 + d] == 0) {
772 int x2, y2, d2;
773 OFFSETWH(x2, y2, x, y, d, w, h);
774 d2 = F(d);
775 if (a & d) {
776 /* This edge is open in all orientations. */
777 #ifdef SOLVER_DIAGNOSTICS
778 printf("marking edge %d,%d:%d open\n", x, y, d);
779 #endif
780 edgestate[(y*w+x) * 5 + d] = 1;
781 edgestate[(y2*w+x2) * 5 + d2] = 1;
782 dsf_merge(equivalence, y*w+x, y2*w+x2);
783 done_something = TRUE;
784 todo_add(todo, y2*w+x2);
785 } else if (!(o & d)) {
786 /* This edge is closed in all orientations. */
787 #ifdef SOLVER_DIAGNOSTICS
788 printf("marking edge %d,%d:%d closed\n", x, y, d);
789 #endif
790 edgestate[(y*w+x) * 5 + d] = 2;
791 edgestate[(y2*w+x2) * 5 + d2] = 2;
792 done_something = TRUE;
793 todo_add(todo, y2*w+x2);
794 }
795 }
796
797 }
798
799 /*
800 * Now check the dead-end markers and see if any of
801 * them has lowered from the real ones.
802 */
803 for (d = 1; d <= 8; d += d) {
804 int x2, y2, d2;
805 OFFSETWH(x2, y2, x, y, d, w, h);
806 d2 = F(d);
807 if (deadendmax[d] > 0 &&
808 deadends[(y2*w+x2) * 5 + d2] > deadendmax[d]) {
809 #ifdef SOLVER_DIAGNOSTICS
810 printf("setting dead end value %d,%d:%d to %d\n",
811 x2, y2, d2, deadendmax[d]);
812 #endif
813 deadends[(y2*w+x2) * 5 + d2] = deadendmax[d];
814 done_something = TRUE;
815 todo_add(todo, y2*w+x2);
816 }
817 }
818
819 }
820 }
821
822 /*
823 * Mark all completely determined tiles as locked.
824 */
825 j = TRUE;
826 for (i = 0; i < w*h; i++) {
827 if (tilestate[i * 4 + 1] == 255) {
828 assert(tilestate[i * 4 + 0] != 255);
829 tiles[i] = tilestate[i * 4] | LOCKED;
830 } else {
831 tiles[i] &= ~LOCKED;
832 j = FALSE;
833 }
834 }
835
836 /*
837 * Free up working space.
838 */
839 todo_free(todo);
840 sfree(tilestate);
841 sfree(edgestate);
842 sfree(deadends);
843 sfree(equivalence);
844
845 return j;
846 }
847
848 /* ----------------------------------------------------------------------
849 * Randomly select a new game description.
850 */
851
852 /*
853 * Function to randomly perturb an ambiguous section in a grid, to
854 * attempt to ensure unique solvability.
855 */
856 static void perturb(int w, int h, unsigned char *tiles, int wrapping,
857 random_state *rs, int startx, int starty, int startd)
858 {
859 struct xyd *perimeter, *perim2, *loop[2], looppos[2];
860 int nperim, perimsize, nloop[2], loopsize[2];
861 int x, y, d, i;
862
863 /*
864 * We know that the tile at (startx,starty) is part of an
865 * ambiguous section, and we also know that its neighbour in
866 * direction startd is fully specified. We begin by tracing all
867 * the way round the ambiguous area.
868 */
869 nperim = perimsize = 0;
870 perimeter = NULL;
871 x = startx;
872 y = starty;
873 d = startd;
874 #ifdef PERTURB_DIAGNOSTICS
875 printf("perturb %d,%d:%d\n", x, y, d);
876 #endif
877 do {
878 int x2, y2, d2;
879
880 if (nperim >= perimsize) {
881 perimsize = perimsize * 3 / 2 + 32;
882 perimeter = sresize(perimeter, perimsize, struct xyd);
883 }
884 perimeter[nperim].x = x;
885 perimeter[nperim].y = y;
886 perimeter[nperim].direction = d;
887 nperim++;
888 #ifdef PERTURB_DIAGNOSTICS
889 printf("perimeter: %d,%d:%d\n", x, y, d);
890 #endif
891
892 /*
893 * First, see if we can simply turn left from where we are
894 * and find another locked square.
895 */
896 d2 = A(d);
897 OFFSETWH(x2, y2, x, y, d2, w, h);
898 if ((!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1)) ||
899 (tiles[y2*w+x2] & LOCKED)) {
900 d = d2;
901 } else {
902 /*
903 * Failing that, step left into the new square and look
904 * in front of us.
905 */
906 x = x2;
907 y = y2;
908 OFFSETWH(x2, y2, x, y, d, w, h);
909 if ((wrapping || (abs(x2-x) <= 1 && abs(y2-y) <= 1)) &&
910 !(tiles[y2*w+x2] & LOCKED)) {
911 /*
912 * And failing _that_, we're going to have to step
913 * forward into _that_ square and look right at the
914 * same locked square as we started with.
915 */
916 x = x2;
917 y = y2;
918 d = C(d);
919 }
920 }
921
922 } while (x != startx || y != starty || d != startd);
923
924 /*
925 * Our technique for perturbing this ambiguous area is to
926 * search round its edge for a join we can make: that is, an
927 * edge on the perimeter which is (a) not currently connected,
928 * and (b) connecting it would not yield a full cross on either
929 * side. Then we make that join, search round the network to
930 * find the loop thus constructed, and sever the loop at a
931 * randomly selected other point.
932 */
933 perim2 = snewn(nperim, struct xyd);
934 memcpy(perim2, perimeter, nperim * sizeof(struct xyd));
935 /* Shuffle the perimeter, so as to search it without directional bias. */
936 for (i = nperim; --i ;) {
937 int j = random_upto(rs, i+1);
938 struct xyd t;
939
940 t = perim2[j];
941 perim2[j] = perim2[i];
942 perim2[i] = t;
943 }
944 for (i = 0; i < nperim; i++) {
945 int x2, y2;
946
947 x = perim2[i].x;
948 y = perim2[i].y;
949 d = perim2[i].direction;
950
951 OFFSETWH(x2, y2, x, y, d, w, h);
952 if (!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1))
953 continue; /* can't link across non-wrapping border */
954 if (tiles[y*w+x] & d)
955 continue; /* already linked in this direction! */
956 if (((tiles[y*w+x] | d) & 15) == 15)
957 continue; /* can't turn this tile into a cross */
958 if (((tiles[y2*w+x2] | F(d)) & 15) == 15)
959 continue; /* can't turn other tile into a cross */
960
961 /*
962 * We've found the point at which we're going to make a new
963 * link.
964 */
965 #ifdef PERTURB_DIAGNOSTICS
966 printf("linking %d,%d:%d\n", x, y, d);
967 #endif
968 tiles[y*w+x] |= d;
969 tiles[y2*w+x2] |= F(d);
970
971 break;
972 }
973
974 if (i == nperim)
975 return; /* nothing we can do! */
976
977 /*
978 * Now we've constructed a new link, we need to find the entire
979 * loop of which it is a part.
980 *
981 * In principle, this involves doing a complete search round
982 * the network. However, I anticipate that in the vast majority
983 * of cases the loop will be quite small, so what I'm going to
984 * do is make _two_ searches round the network in parallel, one
985 * keeping its metaphorical hand on the left-hand wall while
986 * the other keeps its hand on the right. As soon as one of
987 * them gets back to its starting point, I abandon the other.
988 */
989 for (i = 0; i < 2; i++) {
990 loopsize[i] = nloop[i] = 0;
991 loop[i] = NULL;
992 looppos[i].x = x;
993 looppos[i].y = y;
994 looppos[i].direction = d;
995 }
996 while (1) {
997 for (i = 0; i < 2; i++) {
998 int x2, y2, j;
999
1000 x = looppos[i].x;
1001 y = looppos[i].y;
1002 d = looppos[i].direction;
1003
1004 OFFSETWH(x2, y2, x, y, d, w, h);
1005
1006 /*
1007 * Add this path segment to the loop, unless it exactly
1008 * reverses the previous one on the loop in which case
1009 * we take it away again.
1010 */
1011 #ifdef PERTURB_DIAGNOSTICS
1012 printf("looppos[%d] = %d,%d:%d\n", i, x, y, d);
1013 #endif
1014 if (nloop[i] > 0 &&
1015 loop[i][nloop[i]-1].x == x2 &&
1016 loop[i][nloop[i]-1].y == y2 &&
1017 loop[i][nloop[i]-1].direction == F(d)) {
1018 #ifdef PERTURB_DIAGNOSTICS
1019 printf("removing path segment %d,%d:%d from loop[%d]\n",
1020 x2, y2, F(d), i);
1021 #endif
1022 nloop[i]--;
1023 } else {
1024 if (nloop[i] >= loopsize[i]) {
1025 loopsize[i] = loopsize[i] * 3 / 2 + 32;
1026 loop[i] = sresize(loop[i], loopsize[i], struct xyd);
1027 }
1028 #ifdef PERTURB_DIAGNOSTICS
1029 printf("adding path segment %d,%d:%d to loop[%d]\n",
1030 x, y, d, i);
1031 #endif
1032 loop[i][nloop[i]++] = looppos[i];
1033 }
1034
1035 #ifdef PERTURB_DIAGNOSTICS
1036 printf("tile at new location is %x\n", tiles[y2*w+x2] & 0xF);
1037 #endif
1038 d = F(d);
1039 for (j = 0; j < 4; j++) {
1040 if (i == 0)
1041 d = A(d);
1042 else
1043 d = C(d);
1044 #ifdef PERTURB_DIAGNOSTICS
1045 printf("trying dir %d\n", d);
1046 #endif
1047 if (tiles[y2*w+x2] & d) {
1048 looppos[i].x = x2;
1049 looppos[i].y = y2;
1050 looppos[i].direction = d;
1051 break;
1052 }
1053 }
1054
1055 assert(j < 4);
1056 assert(nloop[i] > 0);
1057
1058 if (looppos[i].x == loop[i][0].x &&
1059 looppos[i].y == loop[i][0].y &&
1060 looppos[i].direction == loop[i][0].direction) {
1061 #ifdef PERTURB_DIAGNOSTICS
1062 printf("loop %d finished tracking\n", i);
1063 #endif
1064
1065 /*
1066 * Having found our loop, we now sever it at a
1067 * randomly chosen point - absolutely any will do -
1068 * which is not the one we joined it at to begin
1069 * with. Conveniently, the one we joined it at is
1070 * loop[i][0], so we just avoid that one.
1071 */
1072 j = random_upto(rs, nloop[i]-1) + 1;
1073 x = loop[i][j].x;
1074 y = loop[i][j].y;
1075 d = loop[i][j].direction;
1076 OFFSETWH(x2, y2, x, y, d, w, h);
1077 tiles[y*w+x] &= ~d;
1078 tiles[y2*w+x2] &= ~F(d);
1079
1080 break;
1081 }
1082 }
1083 if (i < 2)
1084 break;
1085 }
1086 sfree(loop[0]);
1087 sfree(loop[1]);
1088
1089 /*
1090 * Finally, we must mark the entire disputed section as locked,
1091 * to prevent the perturb function being called on it multiple
1092 * times.
1093 *
1094 * To do this, we _sort_ the perimeter of the area. The
1095 * existing xyd_cmp function will arrange things into columns
1096 * for us, in such a way that each column has the edges in
1097 * vertical order. Then we can work down each column and fill
1098 * in all the squares between an up edge and a down edge.
1099 */
1100 qsort(perimeter, nperim, sizeof(struct xyd), xyd_cmp);
1101 x = y = -1;
1102 for (i = 0; i <= nperim; i++) {
1103 if (i == nperim || perimeter[i].x > x) {
1104 /*
1105 * Fill in everything from the last Up edge to the
1106 * bottom of the grid, if necessary.
1107 */
1108 if (x != -1) {
1109 while (y < h) {
1110 #ifdef PERTURB_DIAGNOSTICS
1111 printf("resolved: locking tile %d,%d\n", x, y);
1112 #endif
1113 tiles[y * w + x] |= LOCKED;
1114 y++;
1115 }
1116 x = y = -1;
1117 }
1118
1119 if (i == nperim)
1120 break;
1121
1122 x = perimeter[i].x;
1123 y = 0;
1124 }
1125
1126 if (perimeter[i].direction == U) {
1127 x = perimeter[i].x;
1128 y = perimeter[i].y;
1129 } else if (perimeter[i].direction == D) {
1130 /*
1131 * Fill in everything from the last Up edge to here.
1132 */
1133 assert(x == perimeter[i].x && y <= perimeter[i].y);
1134 while (y <= perimeter[i].y) {
1135 #ifdef PERTURB_DIAGNOSTICS
1136 printf("resolved: locking tile %d,%d\n", x, y);
1137 #endif
1138 tiles[y * w + x] |= LOCKED;
1139 y++;
1140 }
1141 x = y = -1;
1142 }
1143 }
1144
1145 sfree(perimeter);
1146 }
1147
1148 static char *new_game_desc(game_params *params, random_state *rs,
1149 game_aux_info **aux)
1150 {
1151 tree234 *possibilities, *barriertree;
1152 int w, h, x, y, cx, cy, nbarriers;
1153 unsigned char *tiles, *barriers;
1154 char *desc, *p;
1155
1156 w = params->width;
1157 h = params->height;
1158
1159 cx = w / 2;
1160 cy = h / 2;
1161
1162 tiles = snewn(w * h, unsigned char);
1163 barriers = snewn(w * h, unsigned char);
1164
1165 begin_generation:
1166
1167 memset(tiles, 0, w * h);
1168 memset(barriers, 0, w * h);
1169
1170 /*
1171 * Construct the unshuffled grid.
1172 *
1173 * To do this, we simply start at the centre point, repeatedly
1174 * choose a random possibility out of the available ways to
1175 * extend a used square into an unused one, and do it. After
1176 * extending the third line out of a square, we remove the
1177 * fourth from the possibilities list to avoid any full-cross
1178 * squares (which would make the game too easy because they
1179 * only have one orientation).
1180 *
1181 * The slightly worrying thing is the avoidance of full-cross
1182 * squares. Can this cause our unsophisticated construction
1183 * algorithm to paint itself into a corner, by getting into a
1184 * situation where there are some unreached squares and the
1185 * only way to reach any of them is to extend a T-piece into a
1186 * full cross?
1187 *
1188 * Answer: no it can't, and here's a proof.
1189 *
1190 * Any contiguous group of such unreachable squares must be
1191 * surrounded on _all_ sides by T-pieces pointing away from the
1192 * group. (If not, then there is a square which can be extended
1193 * into one of the `unreachable' ones, and so it wasn't
1194 * unreachable after all.) In particular, this implies that
1195 * each contiguous group of unreachable squares must be
1196 * rectangular in shape (any deviation from that yields a
1197 * non-T-piece next to an `unreachable' square).
1198 *
1199 * So we have a rectangle of unreachable squares, with T-pieces
1200 * forming a solid border around the rectangle. The corners of
1201 * that border must be connected (since every tile connects all
1202 * the lines arriving in it), and therefore the border must
1203 * form a closed loop around the rectangle.
1204 *
1205 * But this can't have happened in the first place, since we
1206 * _know_ we've avoided creating closed loops! Hence, no such
1207 * situation can ever arise, and the naive grid construction
1208 * algorithm will guaranteeably result in a complete grid
1209 * containing no unreached squares, no full crosses _and_ no
1210 * closed loops. []
1211 */
1212 possibilities = newtree234(xyd_cmp_nc);
1213
1214 if (cx+1 < w)
1215 add234(possibilities, new_xyd(cx, cy, R));
1216 if (cy-1 >= 0)
1217 add234(possibilities, new_xyd(cx, cy, U));
1218 if (cx-1 >= 0)
1219 add234(possibilities, new_xyd(cx, cy, L));
1220 if (cy+1 < h)
1221 add234(possibilities, new_xyd(cx, cy, D));
1222
1223 while (count234(possibilities) > 0) {
1224 int i;
1225 struct xyd *xyd;
1226 int x1, y1, d1, x2, y2, d2, d;
1227
1228 /*
1229 * Extract a randomly chosen possibility from the list.
1230 */
1231 i = random_upto(rs, count234(possibilities));
1232 xyd = delpos234(possibilities, i);
1233 x1 = xyd->x;
1234 y1 = xyd->y;
1235 d1 = xyd->direction;
1236 sfree(xyd);
1237
1238 OFFSET(x2, y2, x1, y1, d1, params);
1239 d2 = F(d1);
1240 #ifdef DEBUG
1241 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
1242 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
1243 #endif
1244
1245 /*
1246 * Make the connection. (We should be moving to an as yet
1247 * unused tile.)
1248 */
1249 index(params, tiles, x1, y1) |= d1;
1250 assert(index(params, tiles, x2, y2) == 0);
1251 index(params, tiles, x2, y2) |= d2;
1252
1253 /*
1254 * If we have created a T-piece, remove its last
1255 * possibility.
1256 */
1257 if (COUNT(index(params, tiles, x1, y1)) == 3) {
1258 struct xyd xyd1, *xydp;
1259
1260 xyd1.x = x1;
1261 xyd1.y = y1;
1262 xyd1.direction = 0x0F ^ index(params, tiles, x1, y1);
1263
1264 xydp = find234(possibilities, &xyd1, NULL);
1265
1266 if (xydp) {
1267 #ifdef DEBUG
1268 printf("T-piece; removing (%d,%d,%c)\n",
1269 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
1270 #endif
1271 del234(possibilities, xydp);
1272 sfree(xydp);
1273 }
1274 }
1275
1276 /*
1277 * Remove all other possibilities that were pointing at the
1278 * tile we've just moved into.
1279 */
1280 for (d = 1; d < 0x10; d <<= 1) {
1281 int x3, y3, d3;
1282 struct xyd xyd1, *xydp;
1283
1284 OFFSET(x3, y3, x2, y2, d, params);
1285 d3 = F(d);
1286
1287 xyd1.x = x3;
1288 xyd1.y = y3;
1289 xyd1.direction = d3;
1290
1291 xydp = find234(possibilities, &xyd1, NULL);
1292
1293 if (xydp) {
1294 #ifdef DEBUG
1295 printf("Loop avoidance; removing (%d,%d,%c)\n",
1296 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
1297 #endif
1298 del234(possibilities, xydp);
1299 sfree(xydp);
1300 }
1301 }
1302
1303 /*
1304 * Add new possibilities to the list for moving _out_ of
1305 * the tile we have just moved into.
1306 */
1307 for (d = 1; d < 0x10; d <<= 1) {
1308 int x3, y3;
1309
1310 if (d == d2)
1311 continue; /* we've got this one already */
1312
1313 if (!params->wrapping) {
1314 if (d == U && y2 == 0)
1315 continue;
1316 if (d == D && y2 == h-1)
1317 continue;
1318 if (d == L && x2 == 0)
1319 continue;
1320 if (d == R && x2 == w-1)
1321 continue;
1322 }
1323
1324 OFFSET(x3, y3, x2, y2, d, params);
1325
1326 if (index(params, tiles, x3, y3))
1327 continue; /* this would create a loop */
1328
1329 #ifdef DEBUG
1330 printf("New frontier; adding (%d,%d,%c)\n",
1331 x2, y2, "0RU3L567D9abcdef"[d]);
1332 #endif
1333 add234(possibilities, new_xyd(x2, y2, d));
1334 }
1335 }
1336 /* Having done that, we should have no possibilities remaining. */
1337 assert(count234(possibilities) == 0);
1338 freetree234(possibilities);
1339
1340 if (params->unique) {
1341 int prevn = -1;
1342
1343 /*
1344 * Run the solver to check unique solubility.
1345 */
1346 while (!net_solver(w, h, tiles, NULL, params->wrapping)) {
1347 int n = 0;
1348
1349 /*
1350 * We expect (in most cases) that most of the grid will
1351 * be uniquely specified already, and the remaining
1352 * ambiguous sections will be small and separate. So
1353 * our strategy is to find each individual such
1354 * section, and perform a perturbation on the network
1355 * in that area.
1356 */
1357 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
1358 if (x+1 < w && ((tiles[y*w+x] ^ tiles[y*w+x+1]) & LOCKED)) {
1359 n++;
1360 if (tiles[y*w+x] & LOCKED)
1361 perturb(w, h, tiles, params->wrapping, rs, x+1, y, L);
1362 else
1363 perturb(w, h, tiles, params->wrapping, rs, x, y, R);
1364 }
1365 if (y+1 < h && ((tiles[y*w+x] ^ tiles[(y+1)*w+x]) & LOCKED)) {
1366 n++;
1367 if (tiles[y*w+x] & LOCKED)
1368 perturb(w, h, tiles, params->wrapping, rs, x, y+1, U);
1369 else
1370 perturb(w, h, tiles, params->wrapping, rs, x, y, D);
1371 }
1372 }
1373
1374 /*
1375 * Now n counts the number of ambiguous sections we
1376 * have fiddled with. If we haven't managed to decrease
1377 * it from the last time we ran the solver, give up and
1378 * regenerate the entire grid.
1379 */
1380 if (prevn != -1 && prevn <= n)
1381 goto begin_generation; /* (sorry) */
1382
1383 prevn = n;
1384 }
1385
1386 /*
1387 * The solver will have left a lot of LOCKED bits lying
1388 * around in the tiles array. Remove them.
1389 */
1390 for (x = 0; x < w*h; x++)
1391 tiles[x] &= ~LOCKED;
1392 }
1393
1394 /*
1395 * Now compute a list of the possible barrier locations.
1396 */
1397 barriertree = newtree234(xyd_cmp_nc);
1398 for (y = 0; y < h; y++) {
1399 for (x = 0; x < w; x++) {
1400
1401 if (!(index(params, tiles, x, y) & R) &&
1402 (params->wrapping || x < w-1))
1403 add234(barriertree, new_xyd(x, y, R));
1404 if (!(index(params, tiles, x, y) & D) &&
1405 (params->wrapping || y < h-1))
1406 add234(barriertree, new_xyd(x, y, D));
1407 }
1408 }
1409
1410 /*
1411 * Save the unshuffled grid in an aux_info.
1412 */
1413 {
1414 game_aux_info *solution;
1415
1416 solution = snew(game_aux_info);
1417 solution->width = w;
1418 solution->height = h;
1419 solution->tiles = snewn(w * h, unsigned char);
1420 memcpy(solution->tiles, tiles, w * h);
1421
1422 *aux = solution;
1423 }
1424
1425 /*
1426 * Now shuffle the grid.
1427 */
1428 for (y = 0; y < h; y++) {
1429 for (x = 0; x < w; x++) {
1430 int orig = index(params, tiles, x, y);
1431 int rot = random_upto(rs, 4);
1432 index(params, tiles, x, y) = ROT(orig, rot);
1433 }
1434 }
1435
1436 /*
1437 * And now choose barrier locations. (We carefully do this
1438 * _after_ shuffling, so that changing the barrier rate in the
1439 * params while keeping the random seed the same will give the
1440 * same shuffled grid and _only_ change the barrier locations.
1441 * Also the way we choose barrier locations, by repeatedly
1442 * choosing one possibility from the list until we have enough,
1443 * is designed to ensure that raising the barrier rate while
1444 * keeping the seed the same will provide a superset of the
1445 * previous barrier set - i.e. if you ask for 10 barriers, and
1446 * then decide that's still too hard and ask for 20, you'll get
1447 * the original 10 plus 10 more, rather than getting 20 new
1448 * ones and the chance of remembering your first 10.)
1449 */
1450 nbarriers = (int)(params->barrier_probability * count234(barriertree));
1451 assert(nbarriers >= 0 && nbarriers <= count234(barriertree));
1452
1453 while (nbarriers > 0) {
1454 int i;
1455 struct xyd *xyd;
1456 int x1, y1, d1, x2, y2, d2;
1457
1458 /*
1459 * Extract a randomly chosen barrier from the list.
1460 */
1461 i = random_upto(rs, count234(barriertree));
1462 xyd = delpos234(barriertree, i);
1463
1464 assert(xyd != NULL);
1465
1466 x1 = xyd->x;
1467 y1 = xyd->y;
1468 d1 = xyd->direction;
1469 sfree(xyd);
1470
1471 OFFSET(x2, y2, x1, y1, d1, params);
1472 d2 = F(d1);
1473
1474 index(params, barriers, x1, y1) |= d1;
1475 index(params, barriers, x2, y2) |= d2;
1476
1477 nbarriers--;
1478 }
1479
1480 /*
1481 * Clean up the rest of the barrier list.
1482 */
1483 {
1484 struct xyd *xyd;
1485
1486 while ( (xyd = delpos234(barriertree, 0)) != NULL)
1487 sfree(xyd);
1488
1489 freetree234(barriertree);
1490 }
1491
1492 /*
1493 * Finally, encode the grid into a string game description.
1494 *
1495 * My syntax is extremely simple: each square is encoded as a
1496 * hex digit in which bit 0 means a connection on the right,
1497 * bit 1 means up, bit 2 left and bit 3 down. (i.e. the same
1498 * encoding as used internally). Each digit is followed by
1499 * optional barrier indicators: `v' means a vertical barrier to
1500 * the right of it, and `h' means a horizontal barrier below
1501 * it.
1502 */
1503 desc = snewn(w * h * 3 + 1, char);
1504 p = desc;
1505 for (y = 0; y < h; y++) {
1506 for (x = 0; x < w; x++) {
1507 *p++ = "0123456789abcdef"[index(params, tiles, x, y)];
1508 if ((params->wrapping || x < w-1) &&
1509 (index(params, barriers, x, y) & R))
1510 *p++ = 'v';
1511 if ((params->wrapping || y < h-1) &&
1512 (index(params, barriers, x, y) & D))
1513 *p++ = 'h';
1514 }
1515 }
1516 assert(p - desc <= w*h*3);
1517 *p = '\0';
1518
1519 sfree(tiles);
1520 sfree(barriers);
1521
1522 return desc;
1523 }
1524
1525 static void game_free_aux_info(game_aux_info *aux)
1526 {
1527 sfree(aux->tiles);
1528 sfree(aux);
1529 }
1530
1531 static char *validate_desc(game_params *params, char *desc)
1532 {
1533 int w = params->width, h = params->height;
1534 int i;
1535
1536 for (i = 0; i < w*h; i++) {
1537 if (*desc >= '0' && *desc <= '9')
1538 /* OK */;
1539 else if (*desc >= 'a' && *desc <= 'f')
1540 /* OK */;
1541 else if (*desc >= 'A' && *desc <= 'F')
1542 /* OK */;
1543 else if (!*desc)
1544 return "Game description shorter than expected";
1545 else
1546 return "Game description contained unexpected character";
1547 desc++;
1548 while (*desc == 'h' || *desc == 'v')
1549 desc++;
1550 }
1551 if (*desc)
1552 return "Game description longer than expected";
1553
1554 return NULL;
1555 }
1556
1557 /* ----------------------------------------------------------------------
1558 * Construct an initial game state, given a description and parameters.
1559 */
1560
1561 static game_state *new_game(midend_data *me, game_params *params, char *desc)
1562 {
1563 game_state *state;
1564 int w, h, x, y;
1565
1566 assert(params->width > 0 && params->height > 0);
1567 assert(params->width > 1 || params->height > 1);
1568
1569 /*
1570 * Create a blank game state.
1571 */
1572 state = snew(game_state);
1573 w = state->width = params->width;
1574 h = state->height = params->height;
1575 state->wrapping = params->wrapping;
1576 state->last_rotate_dir = state->last_rotate_x = state->last_rotate_y = 0;
1577 state->completed = state->used_solve = state->just_used_solve = FALSE;
1578 state->tiles = snewn(state->width * state->height, unsigned char);
1579 memset(state->tiles, 0, state->width * state->height);
1580 state->barriers = snewn(state->width * state->height, unsigned char);
1581 memset(state->barriers, 0, state->width * state->height);
1582
1583 /*
1584 * Parse the game description into the grid.
1585 */
1586 for (y = 0; y < h; y++) {
1587 for (x = 0; x < w; x++) {
1588 if (*desc >= '0' && *desc <= '9')
1589 tile(state, x, y) = *desc - '0';
1590 else if (*desc >= 'a' && *desc <= 'f')
1591 tile(state, x, y) = *desc - 'a' + 10;
1592 else if (*desc >= 'A' && *desc <= 'F')
1593 tile(state, x, y) = *desc - 'A' + 10;
1594 if (*desc)
1595 desc++;
1596 while (*desc == 'h' || *desc == 'v') {
1597 int x2, y2, d1, d2;
1598 if (*desc == 'v')
1599 d1 = R;
1600 else
1601 d1 = D;
1602
1603 OFFSET(x2, y2, x, y, d1, state);
1604 d2 = F(d1);
1605
1606 barrier(state, x, y) |= d1;
1607 barrier(state, x2, y2) |= d2;
1608
1609 desc++;
1610 }
1611 }
1612 }
1613
1614 /*
1615 * Set up border barriers if this is a non-wrapping game.
1616 */
1617 if (!state->wrapping) {
1618 for (x = 0; x < state->width; x++) {
1619 barrier(state, x, 0) |= U;
1620 barrier(state, x, state->height-1) |= D;
1621 }
1622 for (y = 0; y < state->height; y++) {
1623 barrier(state, 0, y) |= L;
1624 barrier(state, state->width-1, y) |= R;
1625 }
1626 } else {
1627 /*
1628 * We check whether this is de-facto a non-wrapping game
1629 * despite the parameters, in case we were passed the
1630 * description of a non-wrapping game. This is so that we
1631 * can change some aspects of the UI behaviour.
1632 */
1633 state->wrapping = FALSE;
1634 for (x = 0; x < state->width; x++)
1635 if (!(barrier(state, x, 0) & U) ||
1636 !(barrier(state, x, state->height-1) & D))
1637 state->wrapping = TRUE;
1638 for (y = 0; y < state->width; y++)
1639 if (!(barrier(state, 0, y) & L) ||
1640 !(barrier(state, state->width-1, y) & R))
1641 state->wrapping = TRUE;
1642 }
1643
1644 return state;
1645 }
1646
1647 static game_state *dup_game(game_state *state)
1648 {
1649 game_state *ret;
1650
1651 ret = snew(game_state);
1652 ret->width = state->width;
1653 ret->height = state->height;
1654 ret->wrapping = state->wrapping;
1655 ret->completed = state->completed;
1656 ret->used_solve = state->used_solve;
1657 ret->just_used_solve = state->just_used_solve;
1658 ret->last_rotate_dir = state->last_rotate_dir;
1659 ret->last_rotate_x = state->last_rotate_x;
1660 ret->last_rotate_y = state->last_rotate_y;
1661 ret->tiles = snewn(state->width * state->height, unsigned char);
1662 memcpy(ret->tiles, state->tiles, state->width * state->height);
1663 ret->barriers = snewn(state->width * state->height, unsigned char);
1664 memcpy(ret->barriers, state->barriers, state->width * state->height);
1665
1666 return ret;
1667 }
1668
1669 static void free_game(game_state *state)
1670 {
1671 sfree(state->tiles);
1672 sfree(state->barriers);
1673 sfree(state);
1674 }
1675
1676 static game_state *solve_game(game_state *state, game_aux_info *aux,
1677 char **error)
1678 {
1679 game_state *ret;
1680
1681 if (!aux) {
1682 /*
1683 * Run the internal solver on the provided grid. This might
1684 * not yield a complete solution.
1685 */
1686 ret = dup_game(state);
1687 net_solver(ret->width, ret->height, ret->tiles,
1688 ret->barriers, ret->wrapping);
1689 } else {
1690 assert(aux->width == state->width);
1691 assert(aux->height == state->height);
1692 ret = dup_game(state);
1693 memcpy(ret->tiles, aux->tiles, ret->width * ret->height);
1694 ret->used_solve = ret->just_used_solve = TRUE;
1695 ret->completed = TRUE;
1696 }
1697
1698 return ret;
1699 }
1700
1701 static char *game_text_format(game_state *state)
1702 {
1703 return NULL;
1704 }
1705
1706 /* ----------------------------------------------------------------------
1707 * Utility routine.
1708 */
1709
1710 /*
1711 * Compute which squares are reachable from the centre square, as a
1712 * quick visual aid to determining how close the game is to
1713 * completion. This is also a simple way to tell if the game _is_
1714 * completed - just call this function and see whether every square
1715 * is marked active.
1716 */
1717 static unsigned char *compute_active(game_state *state, int cx, int cy)
1718 {
1719 unsigned char *active;
1720 tree234 *todo;
1721 struct xyd *xyd;
1722
1723 active = snewn(state->width * state->height, unsigned char);
1724 memset(active, 0, state->width * state->height);
1725
1726 /*
1727 * We only store (x,y) pairs in todo, but it's easier to reuse
1728 * xyd_cmp and just store direction 0 every time.
1729 */
1730 todo = newtree234(xyd_cmp_nc);
1731 index(state, active, cx, cy) = ACTIVE;
1732 add234(todo, new_xyd(cx, cy, 0));
1733
1734 while ( (xyd = delpos234(todo, 0)) != NULL) {
1735 int x1, y1, d1, x2, y2, d2;
1736
1737 x1 = xyd->x;
1738 y1 = xyd->y;
1739 sfree(xyd);
1740
1741 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
1742 OFFSET(x2, y2, x1, y1, d1, state);
1743 d2 = F(d1);
1744
1745 /*
1746 * If the next tile in this direction is connected to
1747 * us, and there isn't a barrier in the way, and it
1748 * isn't already marked active, then mark it active and
1749 * add it to the to-examine list.
1750 */
1751 if ((tile(state, x1, y1) & d1) &&
1752 (tile(state, x2, y2) & d2) &&
1753 !(barrier(state, x1, y1) & d1) &&
1754 !index(state, active, x2, y2)) {
1755 index(state, active, x2, y2) = ACTIVE;
1756 add234(todo, new_xyd(x2, y2, 0));
1757 }
1758 }
1759 }
1760 /* Now we expect the todo list to have shrunk to zero size. */
1761 assert(count234(todo) == 0);
1762 freetree234(todo);
1763
1764 return active;
1765 }
1766
1767 struct game_ui {
1768 int org_x, org_y; /* origin */
1769 int cx, cy; /* source tile (game coordinates) */
1770 int cur_x, cur_y;
1771 int cur_visible;
1772 random_state *rs; /* used for jumbling */
1773 };
1774
1775 static game_ui *new_ui(game_state *state)
1776 {
1777 void *seed;
1778 int seedsize;
1779 game_ui *ui = snew(game_ui);
1780 ui->org_x = ui->org_y = 0;
1781 ui->cur_x = ui->cx = state->width / 2;
1782 ui->cur_y = ui->cy = state->height / 2;
1783 ui->cur_visible = FALSE;
1784 get_random_seed(&seed, &seedsize);
1785 ui->rs = random_init(seed, seedsize);
1786 sfree(seed);
1787
1788 return ui;
1789 }
1790
1791 static void free_ui(game_ui *ui)
1792 {
1793 random_free(ui->rs);
1794 sfree(ui);
1795 }
1796
1797 /* ----------------------------------------------------------------------
1798 * Process a move.
1799 */
1800 static game_state *make_move(game_state *state, game_ui *ui,
1801 int x, int y, int button)
1802 {
1803 game_state *ret, *nullret;
1804 int tx, ty, orig;
1805 int shift = button & MOD_SHFT, ctrl = button & MOD_CTRL;
1806
1807 button &= ~MOD_MASK;
1808 nullret = NULL;
1809
1810 if (button == LEFT_BUTTON ||
1811 button == MIDDLE_BUTTON ||
1812 button == RIGHT_BUTTON) {
1813
1814 if (ui->cur_visible) {
1815 ui->cur_visible = FALSE;
1816 nullret = state;
1817 }
1818
1819 /*
1820 * The button must have been clicked on a valid tile.
1821 */
1822 x -= WINDOW_OFFSET + TILE_BORDER;
1823 y -= WINDOW_OFFSET + TILE_BORDER;
1824 if (x < 0 || y < 0)
1825 return nullret;
1826 tx = x / TILE_SIZE;
1827 ty = y / TILE_SIZE;
1828 if (tx >= state->width || ty >= state->height)
1829 return nullret;
1830 /* Transform from physical to game coords */
1831 tx = (tx + ui->org_x) % state->width;
1832 ty = (ty + ui->org_y) % state->height;
1833 if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
1834 y % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
1835 return nullret;
1836 } else if (button == CURSOR_UP || button == CURSOR_DOWN ||
1837 button == CURSOR_RIGHT || button == CURSOR_LEFT) {
1838 int dir;
1839 switch (button) {
1840 case CURSOR_UP: dir = U; break;
1841 case CURSOR_DOWN: dir = D; break;
1842 case CURSOR_LEFT: dir = L; break;
1843 case CURSOR_RIGHT: dir = R; break;
1844 default: return nullret;
1845 }
1846 if (shift) {
1847 /*
1848 * Move origin.
1849 */
1850 if (state->wrapping) {
1851 OFFSET(ui->org_x, ui->org_y, ui->org_x, ui->org_y, dir, state);
1852 } else return nullret; /* disallowed for non-wrapping grids */
1853 }
1854 if (ctrl) {
1855 /*
1856 * Change source tile.
1857 */
1858 OFFSET(ui->cx, ui->cy, ui->cx, ui->cy, dir, state);
1859 }
1860 if (!shift && !ctrl) {
1861 /*
1862 * Move keyboard cursor.
1863 */
1864 OFFSET(ui->cur_x, ui->cur_y, ui->cur_x, ui->cur_y, dir, state);
1865 ui->cur_visible = TRUE;
1866 }
1867 return state; /* UI activity has occurred */
1868 } else if (button == 'a' || button == 's' || button == 'd' ||
1869 button == 'A' || button == 'S' || button == 'D') {
1870 tx = ui->cur_x;
1871 ty = ui->cur_y;
1872 if (button == 'a' || button == 'A')
1873 button = LEFT_BUTTON;
1874 else if (button == 's' || button == 'S')
1875 button = MIDDLE_BUTTON;
1876 else if (button == 'd' || button == 'D')
1877 button = RIGHT_BUTTON;
1878 ui->cur_visible = TRUE;
1879 } else if (button == 'j' || button == 'J') {
1880 /* XXX should we have some mouse control for this? */
1881 button = 'J'; /* canonify */
1882 tx = ty = -1; /* shut gcc up :( */
1883 } else
1884 return nullret;
1885
1886 /*
1887 * The middle button locks or unlocks a tile. (A locked tile
1888 * cannot be turned, and is visually marked as being locked.
1889 * This is a convenience for the player, so that once they are
1890 * sure which way round a tile goes, they can lock it and thus
1891 * avoid forgetting later on that they'd already done that one;
1892 * and the locking also prevents them turning the tile by
1893 * accident. If they change their mind, another middle click
1894 * unlocks it.)
1895 */
1896 if (button == MIDDLE_BUTTON) {
1897
1898 ret = dup_game(state);
1899 ret->just_used_solve = FALSE;
1900 tile(ret, tx, ty) ^= LOCKED;
1901 ret->last_rotate_dir = ret->last_rotate_x = ret->last_rotate_y = 0;
1902 return ret;
1903
1904 } else if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
1905
1906 /*
1907 * The left and right buttons have no effect if clicked on a
1908 * locked tile.
1909 */
1910 if (tile(state, tx, ty) & LOCKED)
1911 return nullret;
1912
1913 /*
1914 * Otherwise, turn the tile one way or the other. Left button
1915 * turns anticlockwise; right button turns clockwise.
1916 */
1917 ret = dup_game(state);
1918 ret->just_used_solve = FALSE;
1919 orig = tile(ret, tx, ty);
1920 if (button == LEFT_BUTTON) {
1921 tile(ret, tx, ty) = A(orig);
1922 ret->last_rotate_dir = +1;
1923 } else {
1924 tile(ret, tx, ty) = C(orig);
1925 ret->last_rotate_dir = -1;
1926 }
1927 ret->last_rotate_x = tx;
1928 ret->last_rotate_y = ty;
1929
1930 } else if (button == 'J') {
1931
1932 /*
1933 * Jumble all unlocked tiles to random orientations.
1934 */
1935 int jx, jy;
1936 ret = dup_game(state);
1937 ret->just_used_solve = FALSE;
1938 for (jy = 0; jy < ret->height; jy++) {
1939 for (jx = 0; jx < ret->width; jx++) {
1940 if (!(tile(ret, jx, jy) & LOCKED)) {
1941 int rot = random_upto(ui->rs, 4);
1942 orig = tile(ret, jx, jy);
1943 tile(ret, jx, jy) = ROT(orig, rot);
1944 }
1945 }
1946 }
1947 ret->last_rotate_dir = 0; /* suppress animation */
1948 ret->last_rotate_x = ret->last_rotate_y = 0;
1949
1950 } else assert(0);
1951
1952 /*
1953 * Check whether the game has been completed.
1954 */
1955 {
1956 unsigned char *active = compute_active(ret, ui->cx, ui->cy);
1957 int x1, y1;
1958 int complete = TRUE;
1959
1960 for (x1 = 0; x1 < ret->width; x1++)
1961 for (y1 = 0; y1 < ret->height; y1++)
1962 if ((tile(ret, x1, y1) & 0xF) && !index(ret, active, x1, y1)) {
1963 complete = FALSE;
1964 goto break_label; /* break out of two loops at once */
1965 }
1966 break_label:
1967
1968 sfree(active);
1969
1970 if (complete)
1971 ret->completed = TRUE;
1972 }
1973
1974 return ret;
1975 }
1976
1977 /* ----------------------------------------------------------------------
1978 * Routines for drawing the game position on the screen.
1979 */
1980
1981 struct game_drawstate {
1982 int started;
1983 int width, height;
1984 int org_x, org_y;
1985 unsigned char *visible;
1986 };
1987
1988 static game_drawstate *game_new_drawstate(game_state *state)
1989 {
1990 game_drawstate *ds = snew(game_drawstate);
1991
1992 ds->started = FALSE;
1993 ds->width = state->width;
1994 ds->height = state->height;
1995 ds->org_x = ds->org_y = -1;
1996 ds->visible = snewn(state->width * state->height, unsigned char);
1997 memset(ds->visible, 0xFF, state->width * state->height);
1998
1999 return ds;
2000 }
2001
2002 static void game_free_drawstate(game_drawstate *ds)
2003 {
2004 sfree(ds->visible);
2005 sfree(ds);
2006 }
2007
2008 static void game_size(game_params *params, int *x, int *y)
2009 {
2010 *x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
2011 *y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
2012 }
2013
2014 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
2015 {
2016 float *ret;
2017
2018 ret = snewn(NCOLOURS * 3, float);
2019 *ncolours = NCOLOURS;
2020
2021 /*
2022 * Basic background colour is whatever the front end thinks is
2023 * a sensible default.
2024 */
2025 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2026
2027 /*
2028 * Wires are black.
2029 */
2030 ret[COL_WIRE * 3 + 0] = 0.0F;
2031 ret[COL_WIRE * 3 + 1] = 0.0F;
2032 ret[COL_WIRE * 3 + 2] = 0.0F;
2033
2034 /*
2035 * Powered wires and powered endpoints are cyan.
2036 */
2037 ret[COL_POWERED * 3 + 0] = 0.0F;
2038 ret[COL_POWERED * 3 + 1] = 1.0F;
2039 ret[COL_POWERED * 3 + 2] = 1.0F;
2040
2041 /*
2042 * Barriers are red.
2043 */
2044 ret[COL_BARRIER * 3 + 0] = 1.0F;
2045 ret[COL_BARRIER * 3 + 1] = 0.0F;
2046 ret[COL_BARRIER * 3 + 2] = 0.0F;
2047
2048 /*
2049 * Unpowered endpoints are blue.
2050 */
2051 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
2052 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
2053 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
2054
2055 /*
2056 * Tile borders are a darker grey than the background.
2057 */
2058 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2059 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2060 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2061
2062 /*
2063 * Locked tiles are a grey in between those two.
2064 */
2065 ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2066 ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2067 ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2068
2069 return ret;
2070 }
2071
2072 static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
2073 int colour)
2074 {
2075 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
2076 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
2077 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
2078 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
2079 draw_line(fe, x1, y1, x2, y2, colour);
2080 }
2081
2082 static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
2083 int colour)
2084 {
2085 int mx = (x1 < x2 ? x1 : x2);
2086 int my = (y1 < y2 ? y1 : y2);
2087 int dx = (x2 + x1 - 2*mx + 1);
2088 int dy = (y2 + y1 - 2*my + 1);
2089
2090 draw_rect(fe, mx, my, dx, dy, colour);
2091 }
2092
2093 /*
2094 * draw_barrier_corner() and draw_barrier() are passed physical coords
2095 */
2096 static void draw_barrier_corner(frontend *fe, int x, int y, int dx, int dy,
2097 int phase)
2098 {
2099 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2100 int by = WINDOW_OFFSET + TILE_SIZE * y;
2101 int x1, y1;
2102
2103 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
2104 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
2105
2106 if (phase == 0) {
2107 draw_rect_coords(fe, bx+x1+dx, by+y1,
2108 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
2109 COL_WIRE);
2110 draw_rect_coords(fe, bx+x1, by+y1+dy,
2111 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
2112 COL_WIRE);
2113 } else {
2114 draw_rect_coords(fe, bx+x1, by+y1,
2115 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
2116 COL_BARRIER);
2117 }
2118 }
2119
2120 static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
2121 {
2122 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2123 int by = WINDOW_OFFSET + TILE_SIZE * y;
2124 int x1, y1, w, h;
2125
2126 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
2127 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
2128 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
2129 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
2130
2131 if (phase == 0) {
2132 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
2133 } else {
2134 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
2135 }
2136 }
2137
2138 /*
2139 * draw_tile() is passed physical coordinates
2140 */
2141 static void draw_tile(frontend *fe, game_state *state, game_drawstate *ds,
2142 int x, int y, int tile, int src, float angle, int cursor)
2143 {
2144 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2145 int by = WINDOW_OFFSET + TILE_SIZE * y;
2146 float matrix[4];
2147 float cx, cy, ex, ey, tx, ty;
2148 int dir, col, phase;
2149
2150 /*
2151 * When we draw a single tile, we must draw everything up to
2152 * and including the borders around the tile. This means that
2153 * if the neighbouring tiles have connections to those borders,
2154 * we must draw those connections on the borders themselves.
2155 */
2156
2157 clip(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
2158
2159 /*
2160 * So. First blank the tile out completely: draw a big
2161 * rectangle in border colour, and a smaller rectangle in
2162 * background colour to fill it in.
2163 */
2164 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
2165 COL_BORDER);
2166 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
2167 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
2168 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
2169
2170 /*
2171 * Draw an inset outline rectangle as a cursor, in whichever of
2172 * COL_LOCKED and COL_BACKGROUND we aren't currently drawing
2173 * in.
2174 */
2175 if (cursor) {
2176 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8,
2177 bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2178 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2179 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8,
2180 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
2181 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2182 draw_line(fe, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
2183 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2184 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2185 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2186 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2187 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2188 }
2189
2190 /*
2191 * Set up the rotation matrix.
2192 */
2193 matrix[0] = (float)cos(angle * PI / 180.0);
2194 matrix[1] = (float)-sin(angle * PI / 180.0);
2195 matrix[2] = (float)sin(angle * PI / 180.0);
2196 matrix[3] = (float)cos(angle * PI / 180.0);
2197
2198 /*
2199 * Draw the wires.
2200 */
2201 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
2202 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
2203 for (dir = 1; dir < 0x10; dir <<= 1) {
2204 if (tile & dir) {
2205 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
2206 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2207 MATMUL(tx, ty, matrix, ex, ey);
2208 draw_thick_line(fe, bx+(int)cx, by+(int)cy,
2209 bx+(int)(cx+tx), by+(int)(cy+ty),
2210 COL_WIRE);
2211 }
2212 }
2213 for (dir = 1; dir < 0x10; dir <<= 1) {
2214 if (tile & dir) {
2215 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
2216 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2217 MATMUL(tx, ty, matrix, ex, ey);
2218 draw_line(fe, bx+(int)cx, by+(int)cy,
2219 bx+(int)(cx+tx), by+(int)(cy+ty), col);
2220 }
2221 }
2222
2223 /*
2224 * Draw the box in the middle. We do this in blue if the tile
2225 * is an unpowered endpoint, in cyan if the tile is a powered
2226 * endpoint, in black if the tile is the centrepiece, and
2227 * otherwise not at all.
2228 */
2229 col = -1;
2230 if (src)
2231 col = COL_WIRE;
2232 else if (COUNT(tile) == 1) {
2233 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
2234 }
2235 if (col >= 0) {
2236 int i, points[8];
2237
2238 points[0] = +1; points[1] = +1;
2239 points[2] = +1; points[3] = -1;
2240 points[4] = -1; points[5] = -1;
2241 points[6] = -1; points[7] = +1;
2242
2243 for (i = 0; i < 8; i += 2) {
2244 ex = (TILE_SIZE * 0.24F) * points[i];
2245 ey = (TILE_SIZE * 0.24F) * points[i+1];
2246 MATMUL(tx, ty, matrix, ex, ey);
2247 points[i] = bx+(int)(cx+tx);
2248 points[i+1] = by+(int)(cy+ty);
2249 }
2250
2251 draw_polygon(fe, points, 4, TRUE, col);
2252 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
2253 }
2254
2255 /*
2256 * Draw the points on the border if other tiles are connected
2257 * to us.
2258 */
2259 for (dir = 1; dir < 0x10; dir <<= 1) {
2260 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
2261
2262 dx = X(dir);
2263 dy = Y(dir);
2264
2265 ox = x + dx;
2266 oy = y + dy;
2267
2268 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
2269 continue;
2270
2271 if (!(tile(state, GX(ox), GY(oy)) & F(dir)))
2272 continue;
2273
2274 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
2275 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
2276 lx = dx * (TILE_BORDER-1);
2277 ly = dy * (TILE_BORDER-1);
2278 vx = (dy ? 1 : 0);
2279 vy = (dx ? 1 : 0);
2280
2281 if (angle == 0.0 && (tile & dir)) {
2282 /*
2283 * If we are fully connected to the other tile, we must
2284 * draw right across the tile border. (We can use our
2285 * own ACTIVE state to determine what colour to do this
2286 * in: if we are fully connected to the other tile then
2287 * the two ACTIVE states will be the same.)
2288 */
2289 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
2290 draw_rect_coords(fe, px, py, px+lx, py+ly,
2291 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
2292 } else {
2293 /*
2294 * The other tile extends into our border, but isn't
2295 * actually connected to us. Just draw a single black
2296 * dot.
2297 */
2298 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
2299 }
2300 }
2301
2302 /*
2303 * Draw barrier corners, and then barriers.
2304 */
2305 for (phase = 0; phase < 2; phase++) {
2306 for (dir = 1; dir < 0x10; dir <<= 1) {
2307 int x1, y1, corner = FALSE;
2308 /*
2309 * If at least one barrier terminates at the corner
2310 * between dir and A(dir), draw a barrier corner.
2311 */
2312 if (barrier(state, GX(x), GY(y)) & (dir | A(dir))) {
2313 corner = TRUE;
2314 } else {
2315 /*
2316 * Only count barriers terminating at this corner
2317 * if they're physically next to the corner. (That
2318 * is, if they've wrapped round from the far side
2319 * of the screen, they don't count.)
2320 */
2321 x1 = x + X(dir);
2322 y1 = y + Y(dir);
2323 if (x1 >= 0 && x1 < state->width &&
2324 y1 >= 0 && y1 < state->height &&
2325 (barrier(state, GX(x1), GY(y1)) & A(dir))) {
2326 corner = TRUE;
2327 } else {
2328 x1 = x + X(A(dir));
2329 y1 = y + Y(A(dir));
2330 if (x1 >= 0 && x1 < state->width &&
2331 y1 >= 0 && y1 < state->height &&
2332 (barrier(state, GX(x1), GY(y1)) & dir))
2333 corner = TRUE;
2334 }
2335 }
2336
2337 if (corner) {
2338 /*
2339 * At least one barrier terminates here. Draw a
2340 * corner.
2341 */
2342 draw_barrier_corner(fe, x, y,
2343 X(dir)+X(A(dir)), Y(dir)+Y(A(dir)),
2344 phase);
2345 }
2346 }
2347
2348 for (dir = 1; dir < 0x10; dir <<= 1)
2349 if (barrier(state, GX(x), GY(y)) & dir)
2350 draw_barrier(fe, x, y, dir, phase);
2351 }
2352
2353 unclip(fe);
2354
2355 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
2356 }
2357
2358 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
2359 game_state *state, int dir, game_ui *ui, float t, float ft)
2360 {
2361 int x, y, tx, ty, frame, last_rotate_dir, moved_origin = FALSE;
2362 unsigned char *active;
2363 float angle = 0.0;
2364
2365 /*
2366 * Clear the screen, and draw the exterior barrier lines, if
2367 * this is our first call or if the origin has changed.
2368 */
2369 if (!ds->started || ui->org_x != ds->org_x || ui->org_y != ds->org_y) {
2370 int phase;
2371
2372 ds->started = TRUE;
2373
2374 draw_rect(fe, 0, 0,
2375 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
2376 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
2377 COL_BACKGROUND);
2378
2379 ds->org_x = ui->org_x;
2380 ds->org_y = ui->org_y;
2381 moved_origin = TRUE;
2382
2383 draw_update(fe, 0, 0,
2384 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
2385 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
2386
2387 for (phase = 0; phase < 2; phase++) {
2388
2389 for (x = 0; x < ds->width; x++) {
2390 if (x+1 < ds->width) {
2391 if (barrier(state, GX(x), GY(0)) & R)
2392 draw_barrier_corner(fe, x, -1, +1, +1, phase);
2393 if (barrier(state, GX(x), GY(ds->height-1)) & R)
2394 draw_barrier_corner(fe, x, ds->height, +1, -1, phase);
2395 }
2396 if (barrier(state, GX(x), GY(0)) & U) {
2397 draw_barrier_corner(fe, x, -1, -1, +1, phase);
2398 draw_barrier_corner(fe, x, -1, +1, +1, phase);
2399 draw_barrier(fe, x, -1, D, phase);
2400 }
2401 if (barrier(state, GX(x), GY(ds->height-1)) & D) {
2402 draw_barrier_corner(fe, x, ds->height, -1, -1, phase);
2403 draw_barrier_corner(fe, x, ds->height, +1, -1, phase);
2404 draw_barrier(fe, x, ds->height, U, phase);
2405 }
2406 }
2407
2408 for (y = 0; y < ds->height; y++) {
2409 if (y+1 < ds->height) {
2410 if (barrier(state, GX(0), GY(y)) & D)
2411 draw_barrier_corner(fe, -1, y, +1, +1, phase);
2412 if (barrier(state, GX(ds->width-1), GY(y)) & D)
2413 draw_barrier_corner(fe, ds->width, y, -1, +1, phase);
2414 }
2415 if (barrier(state, GX(0), GY(y)) & L) {
2416 draw_barrier_corner(fe, -1, y, +1, -1, phase);
2417 draw_barrier_corner(fe, -1, y, +1, +1, phase);
2418 draw_barrier(fe, -1, y, R, phase);
2419 }
2420 if (barrier(state, GX(ds->width-1), GY(y)) & R) {
2421 draw_barrier_corner(fe, ds->width, y, -1, -1, phase);
2422 draw_barrier_corner(fe, ds->width, y, -1, +1, phase);
2423 draw_barrier(fe, ds->width, y, L, phase);
2424 }
2425 }
2426 }
2427 }
2428
2429 tx = ty = -1;
2430 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
2431 state->last_rotate_dir;
2432 if (oldstate && (t < ROTATE_TIME) && last_rotate_dir) {
2433 /*
2434 * We're animating a single tile rotation. Find the turning
2435 * tile.
2436 */
2437 tx = (dir==-1 ? oldstate->last_rotate_x : state->last_rotate_x);
2438 ty = (dir==-1 ? oldstate->last_rotate_y : state->last_rotate_y);
2439 angle = last_rotate_dir * dir * 90.0F * (t / ROTATE_TIME);
2440 state = oldstate;
2441 }
2442
2443 frame = -1;
2444 if (ft > 0) {
2445 /*
2446 * We're animating a completion flash. Find which frame
2447 * we're at.
2448 */
2449 frame = (int)(ft / FLASH_FRAME);
2450 }
2451
2452 /*
2453 * Draw any tile which differs from the way it was last drawn.
2454 */
2455 active = compute_active(state, ui->cx, ui->cy);
2456
2457 for (x = 0; x < ds->width; x++)
2458 for (y = 0; y < ds->height; y++) {
2459 unsigned char c = tile(state, GX(x), GY(y)) |
2460 index(state, active, GX(x), GY(y));
2461 int is_src = GX(x) == ui->cx && GY(y) == ui->cy;
2462 int is_anim = GX(x) == tx && GY(y) == ty;
2463 int is_cursor = ui->cur_visible &&
2464 GX(x) == ui->cur_x && GY(y) == ui->cur_y;
2465
2466 /*
2467 * In a completion flash, we adjust the LOCKED bit
2468 * depending on our distance from the centre point and
2469 * the frame number.
2470 */
2471 if (frame >= 0) {
2472 int rcx = RX(ui->cx), rcy = RY(ui->cy);
2473 int xdist, ydist, dist;
2474 xdist = (x < rcx ? rcx - x : x - rcx);
2475 ydist = (y < rcy ? rcy - y : y - rcy);
2476 dist = (xdist > ydist ? xdist : ydist);
2477
2478 if (frame >= dist && frame < dist+4) {
2479 int lock = (frame - dist) & 1;
2480 lock = lock ? LOCKED : 0;
2481 c = (c &~ LOCKED) | lock;
2482 }
2483 }
2484
2485 if (moved_origin ||
2486 index(state, ds->visible, x, y) != c ||
2487 index(state, ds->visible, x, y) == 0xFF ||
2488 is_src || is_anim || is_cursor) {
2489 draw_tile(fe, state, ds, x, y, c,
2490 is_src, (is_anim ? angle : 0.0F), is_cursor);
2491 if (is_src || is_anim || is_cursor)
2492 index(state, ds->visible, x, y) = 0xFF;
2493 else
2494 index(state, ds->visible, x, y) = c;
2495 }
2496 }
2497
2498 /*
2499 * Update the status bar.
2500 */
2501 {
2502 char statusbuf[256];
2503 int i, n, n2, a;
2504
2505 n = state->width * state->height;
2506 for (i = a = n2 = 0; i < n; i++) {
2507 if (active[i])
2508 a++;
2509 if (state->tiles[i] & 0xF)
2510 n2++;
2511 }
2512
2513 sprintf(statusbuf, "%sActive: %d/%d",
2514 (state->used_solve ? "Auto-solved. " :
2515 state->completed ? "COMPLETED! " : ""), a, n2);
2516
2517 status_bar(fe, statusbuf);
2518 }
2519
2520 sfree(active);
2521 }
2522
2523 static float game_anim_length(game_state *oldstate,
2524 game_state *newstate, int dir, game_ui *ui)
2525 {
2526 int last_rotate_dir;
2527
2528 /*
2529 * Don't animate an auto-solve move.
2530 */
2531 if ((dir > 0 && newstate->just_used_solve) ||
2532 (dir < 0 && oldstate->just_used_solve))
2533 return 0.0F;
2534
2535 /*
2536 * Don't animate if last_rotate_dir is zero.
2537 */
2538 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
2539 newstate->last_rotate_dir;
2540 if (last_rotate_dir)
2541 return ROTATE_TIME;
2542
2543 return 0.0F;
2544 }
2545
2546 static float game_flash_length(game_state *oldstate,
2547 game_state *newstate, int dir, game_ui *ui)
2548 {
2549 /*
2550 * If the game has just been completed, we display a completion
2551 * flash.
2552 */
2553 if (!oldstate->completed && newstate->completed &&
2554 !oldstate->used_solve && !newstate->used_solve) {
2555 int size = 0;
2556 if (size < newstate->width)
2557 size = newstate->width;
2558 if (size < newstate->height)
2559 size = newstate->height;
2560 return FLASH_FRAME * (size+4);
2561 }
2562
2563 return 0.0F;
2564 }
2565
2566 static int game_wants_statusbar(void)
2567 {
2568 return TRUE;
2569 }
2570
2571 #ifdef COMBINED
2572 #define thegame net
2573 #endif
2574
2575 const struct game thegame = {
2576 "Net", "games.net",
2577 default_params,
2578 game_fetch_preset,
2579 decode_params,
2580 encode_params,
2581 free_params,
2582 dup_params,
2583 TRUE, game_configure, custom_params,
2584 validate_params,
2585 new_game_desc,
2586 game_free_aux_info,
2587 validate_desc,
2588 new_game,
2589 dup_game,
2590 free_game,
2591 TRUE, solve_game,
2592 FALSE, game_text_format,
2593 new_ui,
2594 free_ui,
2595 make_move,
2596 game_size,
2597 game_colours,
2598 game_new_drawstate,
2599 game_free_drawstate,
2600 game_redraw,
2601 game_anim_length,
2602 game_flash_length,
2603 game_wants_statusbar,
2604 };