Mines now follows the conventional approach of offering a completely
[sgt/puzzles] / mines.c
1 /*
2 * mines.c: Minesweeper clone with sophisticated grid generation.
3 *
4 * Still TODO:
5 *
6 * - possibly disable undo? Or alternatively mark game states as
7 * `cheated', although that's horrid.
8 * + OK. Rather than _disabling_ undo, we have a hook callable
9 * in the game backend which is called before we do an undo.
10 * That hook can talk to the game_ui and set the cheated flag,
11 * and then make_move can avoid setting the `won' flag after that.
12 *
13 * - delay game description generation until first click
14 * + do we actually _need_ to do this? Hmm.
15 * + it's a perfectly good puzzle game without
16 * + but it might be useful when we start timing, since it
17 * ensures the user is really paying attention.
18 *
19 * - timer
20 *
21 * - question marks (arrgh, preferences?)
22 *
23 * - sensible parameter constraints
24 * + 30x16: 191 mines just about works if rather slowly, 192 is
25 * just about doom (the latter corresponding to a density of
26 * exactly 1 in 2.5)
27 * + 9x9: 45 mines works - over 1 in 2! 50 seems a bit slow.
28 * + it might not be feasible to work out the exact limit
29 */
30
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <assert.h>
35 #include <ctype.h>
36 #include <math.h>
37
38 #include "tree234.h"
39 #include "puzzles.h"
40
41 enum {
42 COL_BACKGROUND,
43 COL_1, COL_2, COL_3, COL_4, COL_5, COL_6, COL_7, COL_8,
44 COL_MINE, COL_BANG, COL_CROSS, COL_FLAG, COL_FLAGBASE, COL_QUERY,
45 COL_HIGHLIGHT, COL_LOWLIGHT,
46 NCOLOURS
47 };
48
49 #define TILE_SIZE 20
50 #define BORDER (TILE_SIZE * 3 / 2)
51 #define HIGHLIGHT_WIDTH 2
52 #define OUTER_HIGHLIGHT_WIDTH 3
53 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
54 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
55
56 #define FLASH_FRAME 0.13F
57
58 struct game_params {
59 int w, h, n;
60 int unique;
61 };
62
63 struct mine_layout {
64 /*
65 * This structure is shared between all the game_states for a
66 * given instance of the puzzle, so we reference-count it.
67 */
68 int refcount;
69 char *mines;
70 /*
71 * If we haven't yet actually generated the mine layout, here's
72 * all the data we will need to do so.
73 */
74 int n, unique;
75 random_state *rs;
76 midend_data *me; /* to give back the new game desc */
77 };
78
79 struct game_state {
80 int w, h, n, dead, won;
81 struct mine_layout *layout; /* real mine positions */
82 char *grid; /* player knowledge */
83 /*
84 * Each item in the `grid' array is one of the following values:
85 *
86 * - 0 to 8 mean the square is open and has a surrounding mine
87 * count.
88 *
89 * - -1 means the square is marked as a mine.
90 *
91 * - -2 means the square is unknown.
92 *
93 * - -3 means the square is marked with a question mark
94 * (FIXME: do we even want to bother with this?).
95 *
96 * - 64 means the square has had a mine revealed when the game
97 * was lost.
98 *
99 * - 65 means the square had a mine revealed and this was the
100 * one the player hits.
101 *
102 * - 66 means the square has a crossed-out mine because the
103 * player had incorrectly marked it.
104 */
105 };
106
107 static game_params *default_params(void)
108 {
109 game_params *ret = snew(game_params);
110
111 ret->w = ret->h = 9;
112 ret->n = 10;
113 ret->unique = TRUE;
114
115 return ret;
116 }
117
118 static int game_fetch_preset(int i, char **name, game_params **params)
119 {
120 game_params *ret;
121 char str[80];
122 static const struct { int w, h, n; } values[] = {
123 {9, 9, 10},
124 {16, 16, 40},
125 {30, 16, 99},
126 };
127
128 if (i < 0 || i >= lenof(values))
129 return FALSE;
130
131 ret = snew(game_params);
132 ret->w = values[i].w;
133 ret->h = values[i].h;
134 ret->n = values[i].n;
135 ret->unique = TRUE;
136
137 sprintf(str, "%dx%d, %d mines", ret->w, ret->h, ret->n);
138
139 *name = dupstr(str);
140 *params = ret;
141 return TRUE;
142 }
143
144 static void free_params(game_params *params)
145 {
146 sfree(params);
147 }
148
149 static game_params *dup_params(game_params *params)
150 {
151 game_params *ret = snew(game_params);
152 *ret = *params; /* structure copy */
153 return ret;
154 }
155
156 static void decode_params(game_params *params, char const *string)
157 {
158 char const *p = string;
159
160 params->w = atoi(p);
161 while (*p && isdigit((unsigned char)*p)) p++;
162 if (*p == 'x') {
163 p++;
164 params->h = atoi(p);
165 while (*p && isdigit((unsigned char)*p)) p++;
166 } else {
167 params->h = params->w;
168 }
169 if (*p == 'n') {
170 p++;
171 params->n = atoi(p);
172 while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
173 } else {
174 params->n = params->w * params->h / 10;
175 }
176
177 while (*p) {
178 if (*p == 'a') {
179 p++;
180 params->unique = FALSE;
181 } else
182 p++; /* skip any other gunk */
183 }
184 }
185
186 static char *encode_params(game_params *params, int full)
187 {
188 char ret[400];
189 int len;
190
191 len = sprintf(ret, "%dx%d", params->w, params->h);
192 /*
193 * Mine count is a generation-time parameter, since it can be
194 * deduced from the mine bitmap!
195 */
196 if (full)
197 len += sprintf(ret+len, "n%d", params->n);
198 if (full && !params->unique)
199 ret[len++] = 'a';
200 assert(len < lenof(ret));
201 ret[len] = '\0';
202
203 return dupstr(ret);
204 }
205
206 static config_item *game_configure(game_params *params)
207 {
208 config_item *ret;
209 char buf[80];
210
211 ret = snewn(5, config_item);
212
213 ret[0].name = "Width";
214 ret[0].type = C_STRING;
215 sprintf(buf, "%d", params->w);
216 ret[0].sval = dupstr(buf);
217 ret[0].ival = 0;
218
219 ret[1].name = "Height";
220 ret[1].type = C_STRING;
221 sprintf(buf, "%d", params->h);
222 ret[1].sval = dupstr(buf);
223 ret[1].ival = 0;
224
225 ret[2].name = "Mines";
226 ret[2].type = C_STRING;
227 sprintf(buf, "%d", params->n);
228 ret[2].sval = dupstr(buf);
229 ret[2].ival = 0;
230
231 ret[3].name = "Ensure solubility";
232 ret[3].type = C_BOOLEAN;
233 ret[3].sval = NULL;
234 ret[3].ival = params->unique;
235
236 ret[4].name = NULL;
237 ret[4].type = C_END;
238 ret[4].sval = NULL;
239 ret[4].ival = 0;
240
241 return ret;
242 }
243
244 static game_params *custom_params(config_item *cfg)
245 {
246 game_params *ret = snew(game_params);
247
248 ret->w = atoi(cfg[0].sval);
249 ret->h = atoi(cfg[1].sval);
250 ret->n = atoi(cfg[2].sval);
251 if (strchr(cfg[2].sval, '%'))
252 ret->n = ret->n * (ret->w * ret->h) / 100;
253 ret->unique = cfg[3].ival;
254
255 return ret;
256 }
257
258 static char *validate_params(game_params *params)
259 {
260 if (params->w <= 0 && params->h <= 0)
261 return "Width and height must both be greater than zero";
262 if (params->w <= 0)
263 return "Width must be greater than zero";
264 if (params->h <= 0)
265 return "Height must be greater than zero";
266
267 /*
268 * FIXME: Need more constraints here. Not sure what the
269 * sensible limits for Minesweeper actually are. The limits
270 * probably ought to change, however, depending on uniqueness.
271 */
272
273 return NULL;
274 }
275
276 /* ----------------------------------------------------------------------
277 * Minesweeper solver, used to ensure the generated grids are
278 * solvable without having to take risks.
279 */
280
281 /*
282 * Count the bits in a word. Only needs to cope with 16 bits.
283 */
284 static int bitcount16(int word)
285 {
286 word = ((word & 0xAAAA) >> 1) + (word & 0x5555);
287 word = ((word & 0xCCCC) >> 2) + (word & 0x3333);
288 word = ((word & 0xF0F0) >> 4) + (word & 0x0F0F);
289 word = ((word & 0xFF00) >> 8) + (word & 0x00FF);
290
291 return word;
292 }
293
294 /*
295 * We use a tree234 to store a large number of small localised
296 * sets, each with a mine count. We also keep some of those sets
297 * linked together into a to-do list.
298 */
299 struct set {
300 short x, y, mask, mines;
301 int todo;
302 struct set *prev, *next;
303 };
304
305 static int setcmp(void *av, void *bv)
306 {
307 struct set *a = (struct set *)av;
308 struct set *b = (struct set *)bv;
309
310 if (a->y < b->y)
311 return -1;
312 else if (a->y > b->y)
313 return +1;
314 else if (a->x < b->x)
315 return -1;
316 else if (a->x > b->x)
317 return +1;
318 else if (a->mask < b->mask)
319 return -1;
320 else if (a->mask > b->mask)
321 return +1;
322 else
323 return 0;
324 }
325
326 struct setstore {
327 tree234 *sets;
328 struct set *todo_head, *todo_tail;
329 };
330
331 static struct setstore *ss_new(void)
332 {
333 struct setstore *ss = snew(struct setstore);
334 ss->sets = newtree234(setcmp);
335 ss->todo_head = ss->todo_tail = NULL;
336 return ss;
337 }
338
339 /*
340 * Take two input sets, in the form (x,y,mask). Munge the first by
341 * taking either its intersection with the second or its difference
342 * with the second. Return the new mask part of the first set.
343 */
344 static int setmunge(int x1, int y1, int mask1, int x2, int y2, int mask2,
345 int diff)
346 {
347 /*
348 * Adjust the second set so that it has the same x,y
349 * coordinates as the first.
350 */
351 if (abs(x2-x1) >= 3 || abs(y2-y1) >= 3) {
352 mask2 = 0;
353 } else {
354 while (x2 > x1) {
355 mask2 &= ~(4|32|256);
356 mask2 <<= 1;
357 x2--;
358 }
359 while (x2 < x1) {
360 mask2 &= ~(1|8|64);
361 mask2 >>= 1;
362 x2++;
363 }
364 while (y2 > y1) {
365 mask2 &= ~(64|128|256);
366 mask2 <<= 3;
367 y2--;
368 }
369 while (y2 < y1) {
370 mask2 &= ~(1|2|4);
371 mask2 >>= 3;
372 y2++;
373 }
374 }
375
376 /*
377 * Invert the second set if `diff' is set (we're after A &~ B
378 * rather than A & B).
379 */
380 if (diff)
381 mask2 ^= 511;
382
383 /*
384 * Now all that's left is a logical AND.
385 */
386 return mask1 & mask2;
387 }
388
389 static void ss_add_todo(struct setstore *ss, struct set *s)
390 {
391 if (s->todo)
392 return; /* already on it */
393
394 #ifdef SOLVER_DIAGNOSTICS
395 printf("adding set on todo list: %d,%d %03x %d\n",
396 s->x, s->y, s->mask, s->mines);
397 #endif
398
399 s->prev = ss->todo_tail;
400 if (s->prev)
401 s->prev->next = s;
402 else
403 ss->todo_head = s;
404 ss->todo_tail = s;
405 s->next = NULL;
406 s->todo = TRUE;
407 }
408
409 static void ss_add(struct setstore *ss, int x, int y, int mask, int mines)
410 {
411 struct set *s;
412
413 assert(mask != 0);
414
415 /*
416 * Normalise so that x and y are genuinely the bounding
417 * rectangle.
418 */
419 while (!(mask & (1|8|64)))
420 mask >>= 1, x++;
421 while (!(mask & (1|2|4)))
422 mask >>= 3, y++;
423
424 /*
425 * Create a set structure and add it to the tree.
426 */
427 s = snew(struct set);
428 s->x = x;
429 s->y = y;
430 s->mask = mask;
431 s->mines = mines;
432 s->todo = FALSE;
433 if (add234(ss->sets, s) != s) {
434 /*
435 * This set already existed! Free it and return.
436 */
437 sfree(s);
438 return;
439 }
440
441 /*
442 * We've added a new set to the tree, so put it on the todo
443 * list.
444 */
445 ss_add_todo(ss, s);
446 }
447
448 static void ss_remove(struct setstore *ss, struct set *s)
449 {
450 struct set *next = s->next, *prev = s->prev;
451
452 #ifdef SOLVER_DIAGNOSTICS
453 printf("removing set %d,%d %03x\n", s->x, s->y, s->mask);
454 #endif
455 /*
456 * Remove s from the todo list.
457 */
458 if (prev)
459 prev->next = next;
460 else if (s == ss->todo_head)
461 ss->todo_head = next;
462
463 if (next)
464 next->prev = prev;
465 else if (s == ss->todo_tail)
466 ss->todo_tail = prev;
467
468 s->todo = FALSE;
469
470 /*
471 * Remove s from the tree.
472 */
473 del234(ss->sets, s);
474
475 /*
476 * Destroy the actual set structure.
477 */
478 sfree(s);
479 }
480
481 /*
482 * Return a dynamically allocated list of all the sets which
483 * overlap a provided input set.
484 */
485 static struct set **ss_overlap(struct setstore *ss, int x, int y, int mask)
486 {
487 struct set **ret = NULL;
488 int nret = 0, retsize = 0;
489 int xx, yy;
490
491 for (xx = x-3; xx < x+3; xx++)
492 for (yy = y-3; yy < y+3; yy++) {
493 struct set stmp, *s;
494 int pos;
495
496 /*
497 * Find the first set with these top left coordinates.
498 */
499 stmp.x = xx;
500 stmp.y = yy;
501 stmp.mask = 0;
502
503 if (findrelpos234(ss->sets, &stmp, NULL, REL234_GE, &pos)) {
504 while ((s = index234(ss->sets, pos)) != NULL &&
505 s->x == xx && s->y == yy) {
506 /*
507 * This set potentially overlaps the input one.
508 * Compute the intersection to see if they
509 * really overlap, and add it to the list if
510 * so.
511 */
512 if (setmunge(x, y, mask, s->x, s->y, s->mask, FALSE)) {
513 /*
514 * There's an overlap.
515 */
516 if (nret >= retsize) {
517 retsize = nret + 32;
518 ret = sresize(ret, retsize, struct set *);
519 }
520 ret[nret++] = s;
521 }
522
523 pos++;
524 }
525 }
526 }
527
528 ret = sresize(ret, nret+1, struct set *);
529 ret[nret] = NULL;
530
531 return ret;
532 }
533
534 /*
535 * Get an element from the head of the set todo list.
536 */
537 static struct set *ss_todo(struct setstore *ss)
538 {
539 if (ss->todo_head) {
540 struct set *ret = ss->todo_head;
541 ss->todo_head = ret->next;
542 if (ss->todo_head)
543 ss->todo_head->prev = NULL;
544 else
545 ss->todo_tail = NULL;
546 ret->next = ret->prev = NULL;
547 ret->todo = FALSE;
548 return ret;
549 } else {
550 return NULL;
551 }
552 }
553
554 struct squaretodo {
555 int *next;
556 int head, tail;
557 };
558
559 static void std_add(struct squaretodo *std, int i)
560 {
561 if (std->tail >= 0)
562 std->next[std->tail] = i;
563 else
564 std->head = i;
565 std->tail = i;
566 std->next[i] = -1;
567 }
568
569 static void known_squares(int w, int h, struct squaretodo *std, char *grid,
570 int (*open)(void *ctx, int x, int y), void *openctx,
571 int x, int y, int mask, int mine)
572 {
573 int xx, yy, bit;
574
575 bit = 1;
576
577 for (yy = 0; yy < 3; yy++)
578 for (xx = 0; xx < 3; xx++) {
579 if (mask & bit) {
580 int i = (y + yy) * w + (x + xx);
581
582 /*
583 * It's possible that this square is _already_
584 * known, in which case we don't try to add it to
585 * the list twice.
586 */
587 if (grid[i] == -2) {
588
589 if (mine) {
590 grid[i] = -1; /* and don't open it! */
591 } else {
592 grid[i] = open(openctx, x + xx, y + yy);
593 assert(grid[i] != -1); /* *bang* */
594 }
595 std_add(std, i);
596
597 }
598 }
599 bit <<= 1;
600 }
601 }
602
603 /*
604 * This is data returned from the `perturb' function. It details
605 * which squares have become mines and which have become clear. The
606 * solver is (of course) expected to honourably not use that
607 * knowledge directly, but to efficently adjust its internal data
608 * structures and proceed based on only the information it
609 * legitimately has.
610 */
611 struct perturbation {
612 int x, y;
613 int delta; /* +1 == become a mine; -1 == cleared */
614 };
615 struct perturbations {
616 int n;
617 struct perturbation *changes;
618 };
619
620 /*
621 * Main solver entry point. You give it a grid of existing
622 * knowledge (-1 for a square known to be a mine, 0-8 for empty
623 * squares with a given number of neighbours, -2 for completely
624 * unknown), plus a function which you can call to open new squares
625 * once you're confident of them. It fills in as much more of the
626 * grid as it can.
627 *
628 * Return value is:
629 *
630 * - -1 means deduction stalled and nothing could be done
631 * - 0 means deduction succeeded fully
632 * - >0 means deduction succeeded but some number of perturbation
633 * steps were required; the exact return value is the number of
634 * perturb calls.
635 */
636 static int minesolve(int w, int h, int n, char *grid,
637 int (*open)(void *ctx, int x, int y),
638 struct perturbations *(*perturb)(void *ctx, char *grid,
639 int x, int y, int mask),
640 void *ctx, random_state *rs)
641 {
642 struct setstore *ss = ss_new();
643 struct set **list;
644 struct squaretodo astd, *std = &astd;
645 int x, y, i, j;
646 int nperturbs = 0;
647
648 /*
649 * Set up a linked list of squares with known contents, so that
650 * we can process them one by one.
651 */
652 std->next = snewn(w*h, int);
653 std->head = std->tail = -1;
654
655 /*
656 * Initialise that list with all known squares in the input
657 * grid.
658 */
659 for (y = 0; y < h; y++) {
660 for (x = 0; x < w; x++) {
661 i = y*w+x;
662 if (grid[i] != -2)
663 std_add(std, i);
664 }
665 }
666
667 /*
668 * Main deductive loop.
669 */
670 while (1) {
671 int done_something = FALSE;
672 struct set *s;
673
674 /*
675 * If there are any known squares on the todo list, process
676 * them and construct a set for each.
677 */
678 while (std->head != -1) {
679 i = std->head;
680 #ifdef SOLVER_DIAGNOSTICS
681 printf("known square at %d,%d [%d]\n", i%w, i/w, grid[i]);
682 #endif
683 std->head = std->next[i];
684 if (std->head == -1)
685 std->tail = -1;
686
687 x = i % w;
688 y = i / w;
689
690 if (grid[i] >= 0) {
691 int dx, dy, mines, bit, val;
692 #ifdef SOLVER_DIAGNOSTICS
693 printf("creating set around this square\n");
694 #endif
695 /*
696 * Empty square. Construct the set of non-known squares
697 * around this one, and determine its mine count.
698 */
699 mines = grid[i];
700 bit = 1;
701 val = 0;
702 for (dy = -1; dy <= +1; dy++) {
703 for (dx = -1; dx <= +1; dx++) {
704 #ifdef SOLVER_DIAGNOSTICS
705 printf("grid %d,%d = %d\n", x+dx, y+dy, grid[i+dy*w+dx]);
706 #endif
707 if (x+dx < 0 || x+dx >= w || y+dy < 0 || y+dy >= h)
708 /* ignore this one */;
709 else if (grid[i+dy*w+dx] == -1)
710 mines--;
711 else if (grid[i+dy*w+dx] == -2)
712 val |= bit;
713 bit <<= 1;
714 }
715 }
716 if (val)
717 ss_add(ss, x-1, y-1, val, mines);
718 }
719
720 /*
721 * Now, whether the square is empty or full, we must
722 * find any set which contains it and replace it with
723 * one which does not.
724 */
725 {
726 #ifdef SOLVER_DIAGNOSTICS
727 printf("finding sets containing known square %d,%d\n", x, y);
728 #endif
729 list = ss_overlap(ss, x, y, 1);
730
731 for (j = 0; list[j]; j++) {
732 int newmask, newmines;
733
734 s = list[j];
735
736 /*
737 * Compute the mask for this set minus the
738 * newly known square.
739 */
740 newmask = setmunge(s->x, s->y, s->mask, x, y, 1, TRUE);
741
742 /*
743 * Compute the new mine count.
744 */
745 newmines = s->mines - (grid[i] == -1);
746
747 /*
748 * Insert the new set into the collection,
749 * unless it's been whittled right down to
750 * nothing.
751 */
752 if (newmask)
753 ss_add(ss, s->x, s->y, newmask, newmines);
754
755 /*
756 * Destroy the old one; it is actually obsolete.
757 */
758 ss_remove(ss, s);
759 }
760
761 sfree(list);
762 }
763
764 /*
765 * Marking a fresh square as known certainly counts as
766 * doing something.
767 */
768 done_something = TRUE;
769 }
770
771 /*
772 * Now pick a set off the to-do list and attempt deductions
773 * based on it.
774 */
775 if ((s = ss_todo(ss)) != NULL) {
776
777 #ifdef SOLVER_DIAGNOSTICS
778 printf("set to do: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
779 #endif
780 /*
781 * Firstly, see if this set has a mine count of zero or
782 * of its own cardinality.
783 */
784 if (s->mines == 0 || s->mines == bitcount16(s->mask)) {
785 /*
786 * If so, we can immediately mark all the squares
787 * in the set as known.
788 */
789 #ifdef SOLVER_DIAGNOSTICS
790 printf("easy\n");
791 #endif
792 known_squares(w, h, std, grid, open, ctx,
793 s->x, s->y, s->mask, (s->mines != 0));
794
795 /*
796 * Having done that, we need do nothing further
797 * with this set; marking all the squares in it as
798 * known will eventually eliminate it, and will
799 * also permit further deductions about anything
800 * that overlaps it.
801 */
802 continue;
803 }
804
805 /*
806 * Failing that, we now search through all the sets
807 * which overlap this one.
808 */
809 list = ss_overlap(ss, s->x, s->y, s->mask);
810
811 for (j = 0; list[j]; j++) {
812 struct set *s2 = list[j];
813 int swing, s2wing, swc, s2wc;
814
815 /*
816 * Find the non-overlapping parts s2-s and s-s2,
817 * and their cardinalities.
818 *
819 * I'm going to refer to these parts as `wings'
820 * surrounding the central part common to both
821 * sets. The `s wing' is s-s2; the `s2 wing' is
822 * s2-s.
823 */
824 swing = setmunge(s->x, s->y, s->mask, s2->x, s2->y, s2->mask,
825 TRUE);
826 s2wing = setmunge(s2->x, s2->y, s2->mask, s->x, s->y, s->mask,
827 TRUE);
828 swc = bitcount16(swing);
829 s2wc = bitcount16(s2wing);
830
831 /*
832 * If one set has more mines than the other, and
833 * the number of extra mines is equal to the
834 * cardinality of that set's wing, then we can mark
835 * every square in the wing as a known mine, and
836 * every square in the other wing as known clear.
837 */
838 if (swc == s->mines - s2->mines ||
839 s2wc == s2->mines - s->mines) {
840 known_squares(w, h, std, grid, open, ctx,
841 s->x, s->y, swing,
842 (swc == s->mines - s2->mines));
843 known_squares(w, h, std, grid, open, ctx,
844 s2->x, s2->y, s2wing,
845 (s2wc == s2->mines - s->mines));
846 continue;
847 }
848
849 /*
850 * Failing that, see if one set is a subset of the
851 * other. If so, we can divide up the mine count of
852 * the larger set between the smaller set and its
853 * complement, even if neither smaller set ends up
854 * being immediately clearable.
855 */
856 if (swc == 0 && s2wc != 0) {
857 /* s is a subset of s2. */
858 assert(s2->mines > s->mines);
859 ss_add(ss, s2->x, s2->y, s2wing, s2->mines - s->mines);
860 } else if (s2wc == 0 && swc != 0) {
861 /* s2 is a subset of s. */
862 assert(s->mines > s2->mines);
863 ss_add(ss, s->x, s->y, swing, s->mines - s2->mines);
864 }
865 }
866
867 sfree(list);
868
869 /*
870 * In this situation we have definitely done
871 * _something_, even if it's only reducing the size of
872 * our to-do list.
873 */
874 done_something = TRUE;
875 } else if (n >= 0) {
876 /*
877 * We have nothing left on our todo list, which means
878 * all localised deductions have failed. Our next step
879 * is to resort to global deduction based on the total
880 * mine count. This is computationally expensive
881 * compared to any of the above deductions, which is
882 * why we only ever do it when all else fails, so that
883 * hopefully it won't have to happen too often.
884 *
885 * If you pass n<0 into this solver, that informs it
886 * that you do not know the total mine count, so it
887 * won't even attempt these deductions.
888 */
889
890 int minesleft, squaresleft;
891 int nsets, setused[10], cursor;
892
893 /*
894 * Start by scanning the current grid state to work out
895 * how many unknown squares we still have, and how many
896 * mines are to be placed in them.
897 */
898 squaresleft = 0;
899 minesleft = n;
900 for (i = 0; i < w*h; i++) {
901 if (grid[i] == -1)
902 minesleft--;
903 else if (grid[i] == -2)
904 squaresleft++;
905 }
906
907 #ifdef SOLVER_DIAGNOSTICS
908 printf("global deduction time: squaresleft=%d minesleft=%d\n",
909 squaresleft, minesleft);
910 for (y = 0; y < h; y++) {
911 for (x = 0; x < w; x++) {
912 int v = grid[y*w+x];
913 if (v == -1)
914 putchar('*');
915 else if (v == -2)
916 putchar('?');
917 else if (v == 0)
918 putchar('-');
919 else
920 putchar('0' + v);
921 }
922 putchar('\n');
923 }
924 #endif
925
926 /*
927 * If there _are_ no unknown squares, we have actually
928 * finished.
929 */
930 if (squaresleft == 0) {
931 assert(minesleft == 0);
932 break;
933 }
934
935 /*
936 * First really simple case: if there are no more mines
937 * left, or if there are exactly as many mines left as
938 * squares to play them in, then it's all easy.
939 */
940 if (minesleft == 0 || minesleft == squaresleft) {
941 for (i = 0; i < w*h; i++)
942 if (grid[i] == -2)
943 known_squares(w, h, std, grid, open, ctx,
944 i % w, i / w, 1, minesleft != 0);
945 continue; /* now go back to main deductive loop */
946 }
947
948 /*
949 * Failing that, we have to do some _real_ work.
950 * Ideally what we do here is to try every single
951 * combination of the currently available sets, in an
952 * attempt to find a disjoint union (i.e. a set of
953 * squares with a known mine count between them) such
954 * that the remaining unknown squares _not_ contained
955 * in that union either contain no mines or are all
956 * mines.
957 *
958 * Actually enumerating all 2^n possibilities will get
959 * a bit slow for large n, so I artificially cap this
960 * recursion at n=10 to avoid too much pain.
961 */
962 nsets = count234(ss->sets);
963 if (nsets <= lenof(setused)) {
964 /*
965 * Doing this with actual recursive function calls
966 * would get fiddly because a load of local
967 * variables from this function would have to be
968 * passed down through the recursion. So instead
969 * I'm going to use a virtual recursion within this
970 * function. The way this works is:
971 *
972 * - we have an array `setused', such that
973 * setused[n] is 0 or 1 depending on whether set
974 * n is currently in the union we are
975 * considering.
976 *
977 * - we have a value `cursor' which indicates how
978 * much of `setused' we have so far filled in.
979 * It's conceptually the recursion depth.
980 *
981 * We begin by setting `cursor' to zero. Then:
982 *
983 * - if cursor can advance, we advance it by one.
984 * We set the value in `setused' that it went
985 * past to 1 if that set is disjoint from
986 * anything else currently in `setused', or to 0
987 * otherwise.
988 *
989 * - If cursor cannot advance because it has
990 * reached the end of the setused list, then we
991 * have a maximal disjoint union. Check to see
992 * whether its mine count has any useful
993 * properties. If so, mark all the squares not
994 * in the union as known and terminate.
995 *
996 * - If cursor has reached the end of setused and
997 * the algorithm _hasn't_ terminated, back
998 * cursor up to the nearest 1, turn it into a 0
999 * and advance cursor just past it.
1000 *
1001 * - If we attempt to back up to the nearest 1 and
1002 * there isn't one at all, then we have gone
1003 * through all disjoint unions of sets in the
1004 * list and none of them has been helpful, so we
1005 * give up.
1006 */
1007 struct set *sets[lenof(setused)];
1008 for (i = 0; i < nsets; i++)
1009 sets[i] = index234(ss->sets, i);
1010
1011 cursor = 0;
1012 while (1) {
1013
1014 if (cursor < nsets) {
1015 int ok = TRUE;
1016
1017 /* See if any existing set overlaps this one. */
1018 for (i = 0; i < cursor; i++)
1019 if (setused[i] &&
1020 setmunge(sets[cursor]->x,
1021 sets[cursor]->y,
1022 sets[cursor]->mask,
1023 sets[i]->x, sets[i]->y, sets[i]->mask,
1024 FALSE)) {
1025 ok = FALSE;
1026 break;
1027 }
1028
1029 if (ok) {
1030 /*
1031 * We're adding this set to our union,
1032 * so adjust minesleft and squaresleft
1033 * appropriately.
1034 */
1035 minesleft -= sets[cursor]->mines;
1036 squaresleft -= bitcount16(sets[cursor]->mask);
1037 }
1038
1039 setused[cursor++] = ok;
1040 } else {
1041 #ifdef SOLVER_DIAGNOSTICS
1042 printf("trying a set combination with %d %d\n",
1043 squaresleft, minesleft);
1044 #endif /* SOLVER_DIAGNOSTICS */
1045
1046 /*
1047 * We've reached the end. See if we've got
1048 * anything interesting.
1049 */
1050 if (squaresleft > 0 &&
1051 (minesleft == 0 || minesleft == squaresleft)) {
1052 /*
1053 * We have! There is at least one
1054 * square not contained within the set
1055 * union we've just found, and we can
1056 * deduce that either all such squares
1057 * are mines or all are not (depending
1058 * on whether minesleft==0). So now all
1059 * we have to do is actually go through
1060 * the grid, find those squares, and
1061 * mark them.
1062 */
1063 for (i = 0; i < w*h; i++)
1064 if (grid[i] == -2) {
1065 int outside = TRUE;
1066 y = i / w;
1067 x = i % w;
1068 for (j = 0; j < nsets; j++)
1069 if (setused[j] &&
1070 setmunge(sets[j]->x, sets[j]->y,
1071 sets[j]->mask, x, y, 1,
1072 FALSE)) {
1073 outside = FALSE;
1074 break;
1075 }
1076 if (outside)
1077 known_squares(w, h, std, grid,
1078 open, ctx,
1079 x, y, 1, minesleft != 0);
1080 }
1081
1082 done_something = TRUE;
1083 break; /* return to main deductive loop */
1084 }
1085
1086 /*
1087 * If we reach here, then this union hasn't
1088 * done us any good, so move on to the
1089 * next. Backtrack cursor to the nearest 1,
1090 * change it to a 0 and continue.
1091 */
1092 while (cursor-- >= 0 && !setused[cursor]);
1093 if (cursor >= 0) {
1094 assert(setused[cursor]);
1095
1096 /*
1097 * We're removing this set from our
1098 * union, so re-increment minesleft and
1099 * squaresleft.
1100 */
1101 minesleft += sets[cursor]->mines;
1102 squaresleft += bitcount16(sets[cursor]->mask);
1103
1104 setused[cursor++] = 0;
1105 } else {
1106 /*
1107 * We've backtracked all the way to the
1108 * start without finding a single 1,
1109 * which means that our virtual
1110 * recursion is complete and nothing
1111 * helped.
1112 */
1113 break;
1114 }
1115 }
1116
1117 }
1118
1119 }
1120 }
1121
1122 if (done_something)
1123 continue;
1124
1125 #ifdef SOLVER_DIAGNOSTICS
1126 /*
1127 * Dump the current known state of the grid.
1128 */
1129 printf("solver ran out of steam, ret=%d, grid:\n", nperturbs);
1130 for (y = 0; y < h; y++) {
1131 for (x = 0; x < w; x++) {
1132 int v = grid[y*w+x];
1133 if (v == -1)
1134 putchar('*');
1135 else if (v == -2)
1136 putchar('?');
1137 else if (v == 0)
1138 putchar('-');
1139 else
1140 putchar('0' + v);
1141 }
1142 putchar('\n');
1143 }
1144
1145 {
1146 struct set *s;
1147
1148 for (i = 0; (s = index234(ss->sets, i)) != NULL; i++)
1149 printf("remaining set: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
1150 }
1151 #endif
1152
1153 /*
1154 * Now we really are at our wits' end as far as solving
1155 * this grid goes. Our only remaining option is to call
1156 * a perturb function and ask it to modify the grid to
1157 * make it easier.
1158 */
1159 if (perturb) {
1160 struct perturbations *ret;
1161 struct set *s;
1162
1163 nperturbs++;
1164
1165 /*
1166 * Choose a set at random from the current selection,
1167 * and ask the perturb function to either fill or empty
1168 * it.
1169 *
1170 * If we have no sets at all, we must give up.
1171 */
1172 if (count234(ss->sets) == 0)
1173 break;
1174 s = index234(ss->sets, random_upto(rs, count234(ss->sets)));
1175 #ifdef SOLVER_DIAGNOSTICS
1176 printf("perturbing on set %d,%d %03x\n", s->x, s->y, s->mask);
1177 #endif
1178 ret = perturb(ctx, grid, s->x, s->y, s->mask);
1179
1180 if (ret) {
1181 assert(ret->n > 0); /* otherwise should have been NULL */
1182
1183 /*
1184 * A number of squares have been fiddled with, and
1185 * the returned structure tells us which. Adjust
1186 * the mine count in any set which overlaps one of
1187 * those squares, and put them back on the to-do
1188 * list.
1189 */
1190 for (i = 0; i < ret->n; i++) {
1191 #ifdef SOLVER_DIAGNOSTICS
1192 printf("perturbation %s mine at %d,%d\n",
1193 ret->changes[i].delta > 0 ? "added" : "removed",
1194 ret->changes[i].x, ret->changes[i].y);
1195 #endif
1196
1197 list = ss_overlap(ss,
1198 ret->changes[i].x, ret->changes[i].y, 1);
1199
1200 for (j = 0; list[j]; j++) {
1201 list[j]->mines += ret->changes[i].delta;
1202 ss_add_todo(ss, list[j]);
1203 }
1204
1205 sfree(list);
1206 }
1207
1208 /*
1209 * Now free the returned data.
1210 */
1211 sfree(ret->changes);
1212 sfree(ret);
1213
1214 #ifdef SOLVER_DIAGNOSTICS
1215 /*
1216 * Dump the current known state of the grid.
1217 */
1218 printf("state after perturbation:\n", nperturbs);
1219 for (y = 0; y < h; y++) {
1220 for (x = 0; x < w; x++) {
1221 int v = grid[y*w+x];
1222 if (v == -1)
1223 putchar('*');
1224 else if (v == -2)
1225 putchar('?');
1226 else if (v == 0)
1227 putchar('-');
1228 else
1229 putchar('0' + v);
1230 }
1231 putchar('\n');
1232 }
1233
1234 {
1235 struct set *s;
1236
1237 for (i = 0; (s = index234(ss->sets, i)) != NULL; i++)
1238 printf("remaining set: %d,%d %03x %d\n", s->x, s->y, s->mask, s->mines);
1239 }
1240 #endif
1241
1242 /*
1243 * And now we can go back round the deductive loop.
1244 */
1245 continue;
1246 }
1247 }
1248
1249 /*
1250 * If we get here, even that didn't work (either we didn't
1251 * have a perturb function or it returned failure), so we
1252 * give up entirely.
1253 */
1254 break;
1255 }
1256
1257 /*
1258 * See if we've got any unknown squares left.
1259 */
1260 for (y = 0; y < h; y++)
1261 for (x = 0; x < w; x++)
1262 if (grid[y*w+x] == -2) {
1263 nperturbs = -1; /* failed to complete */
1264 break;
1265 }
1266
1267 /*
1268 * Free the set list and square-todo list.
1269 */
1270 {
1271 struct set *s;
1272 while ((s = delpos234(ss->sets, 0)) != NULL)
1273 sfree(s);
1274 freetree234(ss->sets);
1275 sfree(ss);
1276 sfree(std->next);
1277 }
1278
1279 return nperturbs;
1280 }
1281
1282 /* ----------------------------------------------------------------------
1283 * Grid generator which uses the above solver.
1284 */
1285
1286 struct minectx {
1287 char *grid;
1288 int w, h;
1289 int sx, sy;
1290 random_state *rs;
1291 };
1292
1293 static int mineopen(void *vctx, int x, int y)
1294 {
1295 struct minectx *ctx = (struct minectx *)vctx;
1296 int i, j, n;
1297
1298 assert(x >= 0 && x < ctx->w && y >= 0 && y < ctx->h);
1299 if (ctx->grid[y * ctx->w + x])
1300 return -1; /* *bang* */
1301
1302 n = 0;
1303 for (i = -1; i <= +1; i++) {
1304 if (x + i < 0 || x + i >= ctx->w)
1305 continue;
1306 for (j = -1; j <= +1; j++) {
1307 if (y + j < 0 || y + j >= ctx->h)
1308 continue;
1309 if (i == 0 && j == 0)
1310 continue;
1311 if (ctx->grid[(y+j) * ctx->w + (x+i)])
1312 n++;
1313 }
1314 }
1315
1316 return n;
1317 }
1318
1319 /* Structure used internally to mineperturb(). */
1320 struct square {
1321 int x, y, type, random;
1322 };
1323 static int squarecmp(const void *av, const void *bv)
1324 {
1325 const struct square *a = (const struct square *)av;
1326 const struct square *b = (const struct square *)bv;
1327 if (a->type < b->type)
1328 return -1;
1329 else if (a->type > b->type)
1330 return +1;
1331 else if (a->random < b->random)
1332 return -1;
1333 else if (a->random > b->random)
1334 return +1;
1335 else if (a->y < b->y)
1336 return -1;
1337 else if (a->y > b->y)
1338 return +1;
1339 else if (a->x < b->x)
1340 return -1;
1341 else if (a->x > b->x)
1342 return +1;
1343 return 0;
1344 }
1345
1346 static struct perturbations *mineperturb(void *vctx, char *grid,
1347 int setx, int sety, int mask)
1348 {
1349 struct minectx *ctx = (struct minectx *)vctx;
1350 struct square *sqlist;
1351 int x, y, dx, dy, i, n, nfull, nempty;
1352 struct square *tofill[9], *toempty[9], **todo;
1353 int ntofill, ntoempty, ntodo, dtodo, dset;
1354 struct perturbations *ret;
1355
1356 /*
1357 * Make a list of all the squares in the grid which we can
1358 * possibly use. This list should be in preference order, which
1359 * means
1360 *
1361 * - first, unknown squares on the boundary of known space
1362 * - next, unknown squares beyond that boundary
1363 * - as a very last resort, known squares, but not within one
1364 * square of the starting position.
1365 *
1366 * Each of these sections needs to be shuffled independently.
1367 * We do this by preparing list of all squares and then sorting
1368 * it with a random secondary key.
1369 */
1370 sqlist = snewn(ctx->w * ctx->h, struct square);
1371 n = 0;
1372 for (y = 0; y < ctx->h; y++)
1373 for (x = 0; x < ctx->w; x++) {
1374 /*
1375 * If this square is too near the starting position,
1376 * don't put it on the list at all.
1377 */
1378 if (abs(y - ctx->sy) <= 1 && abs(x - ctx->sx) <= 1)
1379 continue;
1380
1381 /*
1382 * If this square is in the input set, also don't put
1383 * it on the list!
1384 */
1385 if (x >= setx && x < setx + 3 &&
1386 y >= sety && y < sety + 3 &&
1387 mask & (1 << ((y-sety)*3+(x-setx))))
1388 continue;
1389
1390 sqlist[n].x = x;
1391 sqlist[n].y = y;
1392
1393 if (grid[y*ctx->w+x] != -2) {
1394 sqlist[n].type = 3; /* known square */
1395 } else {
1396 /*
1397 * Unknown square. Examine everything around it and
1398 * see if it borders on any known squares. If it
1399 * does, it's class 1, otherwise it's 2.
1400 */
1401
1402 sqlist[n].type = 2;
1403
1404 for (dy = -1; dy <= +1; dy++)
1405 for (dx = -1; dx <= +1; dx++)
1406 if (x+dx >= 0 && x+dx < ctx->w &&
1407 y+dy >= 0 && y+dy < ctx->h &&
1408 grid[(y+dy)*ctx->w+(x+dx)] != -2) {
1409 sqlist[n].type = 1;
1410 break;
1411 }
1412 }
1413
1414 /*
1415 * Finally, a random number to cause qsort to
1416 * shuffle within each group.
1417 */
1418 sqlist[n].random = random_bits(ctx->rs, 31);
1419
1420 n++;
1421 }
1422
1423 qsort(sqlist, n, sizeof(struct square), squarecmp);
1424
1425 /*
1426 * Now count up the number of full and empty squares in the set
1427 * we've been provided.
1428 */
1429 nfull = nempty = 0;
1430 for (dy = 0; dy < 3; dy++)
1431 for (dx = 0; dx < 3; dx++)
1432 if (mask & (1 << (dy*3+dx))) {
1433 assert(setx+dx <= ctx->w);
1434 assert(sety+dy <= ctx->h);
1435 if (ctx->grid[(sety+dy)*ctx->w+(setx+dx)])
1436 nfull++;
1437 else
1438 nempty++;
1439 }
1440
1441 /*
1442 * Now go through our sorted list until we find either `nfull'
1443 * empty squares, or `nempty' full squares; these will be
1444 * swapped with the appropriate squares in the set to either
1445 * fill or empty the set while keeping the same number of mines
1446 * overall.
1447 */
1448 ntofill = ntoempty = 0;
1449 for (i = 0; i < n; i++) {
1450 struct square *sq = &sqlist[i];
1451 if (ctx->grid[sq->y * ctx->w + sq->x])
1452 toempty[ntoempty++] = sq;
1453 else
1454 tofill[ntofill++] = sq;
1455 if (ntofill == nfull || ntoempty == nempty)
1456 break;
1457 }
1458
1459 /*
1460 * If this didn't work at all, I think we just give up.
1461 */
1462 if (ntofill != nfull && ntoempty != nempty) {
1463 sfree(sqlist);
1464 return NULL;
1465 }
1466
1467 /*
1468 * Now we're pretty much there. We need to either
1469 * (a) put a mine in each of the empty squares in the set, and
1470 * take one out of each square in `toempty'
1471 * (b) take a mine out of each of the full squares in the set,
1472 * and put one in each square in `tofill'
1473 * depending on which one we've found enough squares to do.
1474 *
1475 * So we start by constructing our list of changes to return to
1476 * the solver, so that it can update its data structures
1477 * efficiently rather than having to rescan the whole grid.
1478 */
1479 ret = snew(struct perturbations);
1480 if (ntofill == nfull) {
1481 todo = tofill;
1482 ntodo = ntofill;
1483 dtodo = +1;
1484 dset = -1;
1485 } else {
1486 todo = toempty;
1487 ntodo = ntoempty;
1488 dtodo = -1;
1489 dset = +1;
1490 }
1491 ret->n = 2 * ntodo;
1492 ret->changes = snewn(ret->n, struct perturbation);
1493 for (i = 0; i < ntodo; i++) {
1494 ret->changes[i].x = todo[i]->x;
1495 ret->changes[i].y = todo[i]->y;
1496 ret->changes[i].delta = dtodo;
1497 }
1498 /* now i == ntodo */
1499 for (dy = 0; dy < 3; dy++)
1500 for (dx = 0; dx < 3; dx++)
1501 if (mask & (1 << (dy*3+dx))) {
1502 int currval = (ctx->grid[(sety+dy)*ctx->w+(setx+dx)] ? +1 : -1);
1503 if (dset == -currval) {
1504 ret->changes[i].x = setx + dx;
1505 ret->changes[i].y = sety + dy;
1506 ret->changes[i].delta = dset;
1507 i++;
1508 }
1509 }
1510 assert(i == ret->n);
1511
1512 sfree(sqlist);
1513
1514 /*
1515 * Having set up the precise list of changes we're going to
1516 * make, we now simply make them and return.
1517 */
1518 for (i = 0; i < ret->n; i++) {
1519 int delta;
1520
1521 x = ret->changes[i].x;
1522 y = ret->changes[i].y;
1523 delta = ret->changes[i].delta;
1524
1525 /*
1526 * Check we're not trying to add an existing mine or remove
1527 * an absent one.
1528 */
1529 assert((delta < 0) ^ (ctx->grid[y*ctx->w+x] == 0));
1530
1531 /*
1532 * Actually make the change.
1533 */
1534 ctx->grid[y*ctx->w+x] = (delta > 0);
1535
1536 /*
1537 * Update any numbers already present in the grid.
1538 */
1539 for (dy = -1; dy <= +1; dy++)
1540 for (dx = -1; dx <= +1; dx++)
1541 if (x+dx >= 0 && x+dx < ctx->w &&
1542 y+dy >= 0 && y+dy < ctx->h &&
1543 grid[(y+dy)*ctx->w+(x+dx)] != -2) {
1544 if (dx == 0 && dy == 0) {
1545 /*
1546 * The square itself is marked as known in
1547 * the grid. Mark it as a mine if it's a
1548 * mine, or else work out its number.
1549 */
1550 if (delta > 0) {
1551 grid[y*ctx->w+x] = -1;
1552 } else {
1553 int dx2, dy2, minecount = 0;
1554 for (dy2 = -1; dy2 <= +1; dy2++)
1555 for (dx2 = -1; dx2 <= +1; dx2++)
1556 if (x+dx2 >= 0 && x+dx2 < ctx->w &&
1557 y+dy2 >= 0 && y+dy2 < ctx->h &&
1558 ctx->grid[(y+dy2)*ctx->w+(x+dx2)])
1559 minecount++;
1560 grid[y*ctx->w+x] = minecount;
1561 }
1562 } else {
1563 if (grid[(y+dy)*ctx->w+(x+dx)] >= 0)
1564 grid[(y+dy)*ctx->w+(x+dx)] += delta;
1565 }
1566 }
1567 }
1568
1569 #ifdef GENERATION_DIAGNOSTICS
1570 {
1571 int yy, xx;
1572 printf("grid after perturbing:\n");
1573 for (yy = 0; yy < ctx->h; yy++) {
1574 for (xx = 0; xx < ctx->w; xx++) {
1575 int v = ctx->grid[yy*ctx->w+xx];
1576 if (yy == ctx->sy && xx == ctx->sx) {
1577 assert(!v);
1578 putchar('S');
1579 } else if (v) {
1580 putchar('*');
1581 } else {
1582 putchar('-');
1583 }
1584 }
1585 putchar('\n');
1586 }
1587 printf("\n");
1588 }
1589 #endif
1590
1591 return ret;
1592 }
1593
1594 static char *minegen(int w, int h, int n, int x, int y, int unique,
1595 random_state *rs)
1596 {
1597 char *ret = snewn(w*h, char);
1598 int success;
1599
1600 do {
1601 success = FALSE;
1602
1603 memset(ret, 0, w*h);
1604
1605 /*
1606 * Start by placing n mines, none of which is at x,y or within
1607 * one square of it.
1608 */
1609 {
1610 int *tmp = snewn(w*h, int);
1611 int i, j, k, nn;
1612
1613 /*
1614 * Write down the list of possible mine locations.
1615 */
1616 k = 0;
1617 for (i = 0; i < h; i++)
1618 for (j = 0; j < w; j++)
1619 if (abs(i - y) > 1 || abs(j - x) > 1)
1620 tmp[k++] = i*w+j;
1621
1622 /*
1623 * Now pick n off the list at random.
1624 */
1625 nn = n;
1626 while (nn-- > 0) {
1627 i = random_upto(rs, k);
1628 ret[tmp[i]] = 1;
1629 tmp[i] = tmp[--k];
1630 }
1631
1632 sfree(tmp);
1633 }
1634
1635 #ifdef GENERATION_DIAGNOSTICS
1636 {
1637 int yy, xx;
1638 printf("grid after initial generation:\n");
1639 for (yy = 0; yy < h; yy++) {
1640 for (xx = 0; xx < w; xx++) {
1641 int v = ret[yy*w+xx];
1642 if (yy == y && xx == x) {
1643 assert(!v);
1644 putchar('S');
1645 } else if (v) {
1646 putchar('*');
1647 } else {
1648 putchar('-');
1649 }
1650 }
1651 putchar('\n');
1652 }
1653 printf("\n");
1654 }
1655 #endif
1656
1657 /*
1658 * Now set up a results grid to run the solver in, and a
1659 * context for the solver to open squares. Then run the solver
1660 * repeatedly; if the number of perturb steps ever goes up or
1661 * it ever returns -1, give up completely.
1662 *
1663 * We bypass this bit if we're not after a unique grid.
1664 */
1665 if (unique) {
1666 char *solvegrid = snewn(w*h, char);
1667 struct minectx actx, *ctx = &actx;
1668 int solveret, prevret = -2;
1669
1670 ctx->grid = ret;
1671 ctx->w = w;
1672 ctx->h = h;
1673 ctx->sx = x;
1674 ctx->sy = y;
1675 ctx->rs = rs;
1676
1677 while (1) {
1678 memset(solvegrid, -2, w*h);
1679 solvegrid[y*w+x] = mineopen(ctx, x, y);
1680 assert(solvegrid[y*w+x] == 0); /* by deliberate arrangement */
1681
1682 solveret =
1683 minesolve(w, h, n, solvegrid, mineopen, mineperturb, ctx, rs);
1684 if (solveret < 0 || (prevret >= 0 && solveret >= prevret)) {
1685 success = FALSE;
1686 break;
1687 } else if (solveret == 0) {
1688 success = TRUE;
1689 break;
1690 }
1691 }
1692
1693 sfree(solvegrid);
1694 } else {
1695 success = TRUE;
1696 }
1697
1698 } while (!success);
1699
1700 return ret;
1701 }
1702
1703 /*
1704 * The Mines game descriptions contain the location of every mine,
1705 * and can therefore be used to cheat.
1706 *
1707 * It would be pointless to attempt to _prevent_ this form of
1708 * cheating by encrypting the description, since Mines is
1709 * open-source so anyone can find out the encryption key. However,
1710 * I think it is worth doing a bit of gentle obfuscation to prevent
1711 * _accidental_ spoilers: if you happened to note that the game ID
1712 * starts with an F, for example, you might be unable to put the
1713 * knowledge of those mines out of your mind while playing. So,
1714 * just as discussions of film endings are rot13ed to avoid
1715 * spoiling it for people who don't want to be told, we apply a
1716 * keyless, reversible, but visually completely obfuscatory masking
1717 * function to the mine bitmap.
1718 */
1719 static void obfuscate_bitmap(unsigned char *bmp, int bits, int decode)
1720 {
1721 int bytes, firsthalf, secondhalf;
1722 struct step {
1723 unsigned char *seedstart;
1724 int seedlen;
1725 unsigned char *targetstart;
1726 int targetlen;
1727 } steps[2];
1728 int i, j;
1729
1730 /*
1731 * My obfuscation algorithm is similar in concept to the OAEP
1732 * encoding used in some forms of RSA. Here's a specification
1733 * of it:
1734 *
1735 * + We have a `masking function' which constructs a stream of
1736 * pseudorandom bytes from a seed of some number of input
1737 * bytes.
1738 *
1739 * + We pad out our input bit stream to a whole number of
1740 * bytes by adding up to 7 zero bits on the end. (In fact
1741 * the bitmap passed as input to this function will already
1742 * have had this done in practice.)
1743 *
1744 * + We divide the _byte_ stream exactly in half, rounding the
1745 * half-way position _down_. So an 81-bit input string, for
1746 * example, rounds up to 88 bits or 11 bytes, and then
1747 * dividing by two gives 5 bytes in the first half and 6 in
1748 * the second half.
1749 *
1750 * + We generate a mask from the second half of the bytes, and
1751 * XOR it over the first half.
1752 *
1753 * + We generate a mask from the (encoded) first half of the
1754 * bytes, and XOR it over the second half. Any null bits at
1755 * the end which were added as padding are cleared back to
1756 * zero even if this operation would have made them nonzero.
1757 *
1758 * To de-obfuscate, the steps are precisely the same except
1759 * that the final two are reversed.
1760 *
1761 * Finally, our masking function. Given an input seed string of
1762 * bytes, the output mask consists of concatenating the SHA-1
1763 * hashes of the seed string and successive decimal integers,
1764 * starting from 0.
1765 */
1766
1767 bytes = (bits + 7) / 8;
1768 firsthalf = bytes / 2;
1769 secondhalf = bytes - firsthalf;
1770
1771 steps[decode ? 1 : 0].seedstart = bmp + firsthalf;
1772 steps[decode ? 1 : 0].seedlen = secondhalf;
1773 steps[decode ? 1 : 0].targetstart = bmp;
1774 steps[decode ? 1 : 0].targetlen = firsthalf;
1775
1776 steps[decode ? 0 : 1].seedstart = bmp;
1777 steps[decode ? 0 : 1].seedlen = firsthalf;
1778 steps[decode ? 0 : 1].targetstart = bmp + firsthalf;
1779 steps[decode ? 0 : 1].targetlen = secondhalf;
1780
1781 for (i = 0; i < 2; i++) {
1782 SHA_State base, final;
1783 unsigned char digest[20];
1784 char numberbuf[80];
1785 int digestpos = 20, counter = 0;
1786
1787 SHA_Init(&base);
1788 SHA_Bytes(&base, steps[i].seedstart, steps[i].seedlen);
1789
1790 for (j = 0; j < steps[i].targetlen; j++) {
1791 if (digestpos >= 20) {
1792 sprintf(numberbuf, "%d", counter++);
1793 final = base;
1794 SHA_Bytes(&final, numberbuf, strlen(numberbuf));
1795 SHA_Final(&final, digest);
1796 digestpos = 0;
1797 }
1798 steps[i].targetstart[j] ^= digest[digestpos]++;
1799 }
1800
1801 /*
1802 * Mask off the pad bits in the final byte after both steps.
1803 */
1804 if (bits % 8)
1805 bmp[bits / 8] &= 0xFF & (0xFF00 >> (bits % 8));
1806 }
1807 }
1808
1809 static char *new_mine_layout(int w, int h, int n, int x, int y, int unique,
1810 random_state *rs, char **game_desc)
1811 {
1812 char *grid, *ret, *p;
1813 unsigned char *bmp;
1814 int i, area;
1815
1816 grid = minegen(w, h, n, x, y, unique, rs);
1817
1818 if (game_desc) {
1819 /*
1820 * Set up the mine bitmap and obfuscate it.
1821 */
1822 area = w * h;
1823 bmp = snewn((area + 7) / 8, unsigned char);
1824 memset(bmp, 0, (area + 7) / 8);
1825 for (i = 0; i < area; i++) {
1826 if (grid[i])
1827 bmp[i / 8] |= 0x80 >> (i % 8);
1828 }
1829 obfuscate_bitmap(bmp, area, FALSE);
1830
1831 /*
1832 * Now encode the resulting bitmap in hex. We can work to
1833 * nibble rather than byte granularity, since the obfuscation
1834 * function guarantees to return a bit string of the same
1835 * length as its input.
1836 */
1837 ret = snewn((area+3)/4 + 100, char);
1838 p = ret + sprintf(ret, "%d,%d,m", x, y); /* 'm' == masked */
1839 for (i = 0; i < (area+3)/4; i++) {
1840 int v = bmp[i/2];
1841 if (i % 2 == 0)
1842 v >>= 4;
1843 *p++ = "0123456789abcdef"[v & 0xF];
1844 }
1845 *p = '\0';
1846
1847 sfree(bmp);
1848
1849 *game_desc = ret;
1850 }
1851
1852 return grid;
1853 }
1854
1855 static char *new_game_desc(game_params *params, random_state *rs,
1856 game_aux_info **aux)
1857 {
1858 #ifdef PREOPENED
1859 int x = random_upto(rs, params->w);
1860 int y = random_upto(rs, params->h);
1861 char *grid, *desc;
1862
1863 grid = new_mine_layout(params->w, params->h, params->n,
1864 x, y, params->unique, rs);
1865 #else
1866 char *rsdesc, *desc;
1867
1868 rsdesc = random_state_encode(rs);
1869 desc = snewn(strlen(rsdesc) + 100, char);
1870 sprintf(desc, "r%d,%c,%s", params->n, params->unique ? 'u' : 'a', rsdesc);
1871 sfree(rsdesc);
1872 return desc;
1873 #endif
1874 }
1875
1876 static void game_free_aux_info(game_aux_info *aux)
1877 {
1878 assert(!"Shouldn't happen");
1879 }
1880
1881 static char *validate_desc(game_params *params, char *desc)
1882 {
1883 int wh = params->w * params->h;
1884 int x, y;
1885
1886 if (*desc == 'r') {
1887 if (!*desc || !isdigit((unsigned char)*desc))
1888 return "No initial mine count in game description";
1889 while (*desc && isdigit((unsigned char)*desc))
1890 desc++; /* skip over mine count */
1891 if (*desc != ',')
1892 return "No ',' after initial x-coordinate in game description";
1893 desc++;
1894 if (*desc != 'u' && *desc != 'a')
1895 return "No uniqueness specifier in game description";
1896 desc++;
1897 if (*desc != ',')
1898 return "No ',' after uniqueness specifier in game description";
1899 /* now ignore the rest */
1900 } else {
1901 if (!*desc || !isdigit((unsigned char)*desc))
1902 return "No initial x-coordinate in game description";
1903 x = atoi(desc);
1904 if (x < 0 || x >= params->w)
1905 return "Initial x-coordinate was out of range";
1906 while (*desc && isdigit((unsigned char)*desc))
1907 desc++; /* skip over x coordinate */
1908 if (*desc != ',')
1909 return "No ',' after initial x-coordinate in game description";
1910 desc++; /* eat comma */
1911 if (!*desc || !isdigit((unsigned char)*desc))
1912 return "No initial y-coordinate in game description";
1913 y = atoi(desc);
1914 if (y < 0 || y >= params->h)
1915 return "Initial y-coordinate was out of range";
1916 while (*desc && isdigit((unsigned char)*desc))
1917 desc++; /* skip over y coordinate */
1918 if (*desc != ',')
1919 return "No ',' after initial y-coordinate in game description";
1920 desc++; /* eat comma */
1921 /* eat `m', meaning `masked', if present */
1922 if (*desc == 'm')
1923 desc++;
1924 /* now just check length of remainder */
1925 if (strlen(desc) != (wh+3)/4)
1926 return "Game description is wrong length";
1927 }
1928
1929 return NULL;
1930 }
1931
1932 static int open_square(game_state *state, int x, int y)
1933 {
1934 int w = state->w, h = state->h;
1935 int xx, yy, nmines, ncovered;
1936
1937 if (!state->layout->mines) {
1938 /*
1939 * We have a preliminary game in which the mine layout
1940 * hasn't been generated yet. Generate it based on the
1941 * initial click location.
1942 */
1943 char *desc;
1944 state->layout->mines = new_mine_layout(w, h, state->layout->n,
1945 x, y, state->layout->unique,
1946 state->layout->rs,
1947 &desc);
1948 midend_supersede_game_desc(state->layout->me, desc);
1949 sfree(desc);
1950 random_free(state->layout->rs);
1951 state->layout->rs = NULL;
1952 }
1953
1954 if (state->layout->mines[y*w+x]) {
1955 /*
1956 * The player has landed on a mine. Bad luck. Expose all
1957 * the mines.
1958 */
1959 state->dead = TRUE;
1960 for (yy = 0; yy < h; yy++)
1961 for (xx = 0; xx < w; xx++) {
1962 if (state->layout->mines[yy*w+xx] &&
1963 (state->grid[yy*w+xx] == -2 ||
1964 state->grid[yy*w+xx] == -3)) {
1965 state->grid[yy*w+xx] = 64;
1966 }
1967 if (!state->layout->mines[yy*w+xx] &&
1968 state->grid[yy*w+xx] == -1) {
1969 state->grid[yy*w+xx] = 66;
1970 }
1971 }
1972 state->grid[y*w+x] = 65;
1973 return -1;
1974 }
1975
1976 /*
1977 * Otherwise, the player has opened a safe square. Mark it to-do.
1978 */
1979 state->grid[y*w+x] = -10; /* `todo' value internal to this func */
1980
1981 /*
1982 * Now go through the grid finding all `todo' values and
1983 * opening them. Every time one of them turns out to have no
1984 * neighbouring mines, we add all its unopened neighbours to
1985 * the list as well.
1986 *
1987 * FIXME: We really ought to be able to do this better than
1988 * using repeated N^2 scans of the grid.
1989 */
1990 while (1) {
1991 int done_something = FALSE;
1992
1993 for (yy = 0; yy < h; yy++)
1994 for (xx = 0; xx < w; xx++)
1995 if (state->grid[yy*w+xx] == -10) {
1996 int dx, dy, v;
1997
1998 assert(!state->layout->mines[yy*w+xx]);
1999
2000 v = 0;
2001
2002 for (dx = -1; dx <= +1; dx++)
2003 for (dy = -1; dy <= +1; dy++)
2004 if (xx+dx >= 0 && xx+dx < state->w &&
2005 yy+dy >= 0 && yy+dy < state->h &&
2006 state->layout->mines[(yy+dy)*w+(xx+dx)])
2007 v++;
2008
2009 state->grid[yy*w+xx] = v;
2010
2011 if (v == 0) {
2012 for (dx = -1; dx <= +1; dx++)
2013 for (dy = -1; dy <= +1; dy++)
2014 if (xx+dx >= 0 && xx+dx < state->w &&
2015 yy+dy >= 0 && yy+dy < state->h &&
2016 state->grid[(yy+dy)*w+(xx+dx)] == -2)
2017 state->grid[(yy+dy)*w+(xx+dx)] = -10;
2018 }
2019
2020 done_something = TRUE;
2021 }
2022
2023 if (!done_something)
2024 break;
2025 }
2026
2027 /*
2028 * Finally, scan the grid and see if exactly as many squares
2029 * are still covered as there are mines. If so, set the `won'
2030 * flag and fill in mine markers on all covered squares.
2031 */
2032 nmines = ncovered = 0;
2033 for (yy = 0; yy < h; yy++)
2034 for (xx = 0; xx < w; xx++) {
2035 if (state->grid[yy*w+xx] < 0)
2036 ncovered++;
2037 if (state->layout->mines[yy*w+xx])
2038 nmines++;
2039 }
2040 assert(ncovered >= nmines);
2041 if (ncovered == nmines) {
2042 for (yy = 0; yy < h; yy++)
2043 for (xx = 0; xx < w; xx++) {
2044 if (state->grid[yy*w+xx] < 0)
2045 state->grid[yy*w+xx] = -1;
2046 }
2047 state->won = TRUE;
2048 }
2049
2050 return 0;
2051 }
2052
2053 static game_state *new_game(midend_data *me, game_params *params, char *desc)
2054 {
2055 game_state *state = snew(game_state);
2056 int i, wh, x, y, ret, masked;
2057 unsigned char *bmp;
2058
2059 state->w = params->w;
2060 state->h = params->h;
2061 state->n = params->n;
2062 state->dead = state->won = FALSE;
2063
2064 wh = state->w * state->h;
2065
2066 state->layout = snew(struct mine_layout);
2067 state->layout->refcount = 1;
2068
2069 state->grid = snewn(wh, char);
2070 memset(state->grid, -2, wh);
2071
2072 if (*desc == 'r') {
2073 desc++;
2074 state->layout->n = atoi(desc);
2075 while (*desc && isdigit((unsigned char)*desc))
2076 desc++; /* skip over mine count */
2077 if (*desc) desc++; /* eat comma */
2078 if (*desc == 'a')
2079 state->layout->unique = FALSE;
2080 else
2081 state->layout->unique = TRUE;
2082 desc++;
2083 if (*desc) desc++; /* eat comma */
2084
2085 state->layout->mines = NULL;
2086 state->layout->rs = random_state_decode(desc);
2087 state->layout->me = me;
2088
2089 } else {
2090
2091 state->layout->mines = snewn(wh, char);
2092 x = atoi(desc);
2093 while (*desc && isdigit((unsigned char)*desc))
2094 desc++; /* skip over x coordinate */
2095 if (*desc) desc++; /* eat comma */
2096 y = atoi(desc);
2097 while (*desc && isdigit((unsigned char)*desc))
2098 desc++; /* skip over y coordinate */
2099 if (*desc) desc++; /* eat comma */
2100
2101 if (*desc == 'm') {
2102 masked = TRUE;
2103 desc++;
2104 } else {
2105 /*
2106 * We permit game IDs to be entered by hand without the
2107 * masking transformation.
2108 */
2109 masked = FALSE;
2110 }
2111
2112 bmp = snewn((wh + 7) / 8, unsigned char);
2113 memset(bmp, 0, (wh + 7) / 8);
2114 for (i = 0; i < (wh+3)/4; i++) {
2115 int c = desc[i];
2116 int v;
2117
2118 assert(c != 0); /* validate_desc should have caught */
2119 if (c >= '0' && c <= '9')
2120 v = c - '0';
2121 else if (c >= 'a' && c <= 'f')
2122 v = c - 'a' + 10;
2123 else if (c >= 'A' && c <= 'F')
2124 v = c - 'A' + 10;
2125 else
2126 v = 0;
2127
2128 bmp[i / 2] |= v << (4 * (1 - (i % 2)));
2129 }
2130
2131 if (masked)
2132 obfuscate_bitmap(bmp, wh, TRUE);
2133
2134 memset(state->layout->mines, 0, wh);
2135 for (i = 0; i < wh; i++) {
2136 if (bmp[i / 8] & (0x80 >> (i % 8)))
2137 state->layout->mines[i] = 1;
2138 }
2139
2140 ret = open_square(state, x, y);
2141 }
2142
2143 return state;
2144 }
2145
2146 static game_state *dup_game(game_state *state)
2147 {
2148 game_state *ret = snew(game_state);
2149
2150 ret->w = state->w;
2151 ret->h = state->h;
2152 ret->n = state->n;
2153 ret->dead = state->dead;
2154 ret->won = state->won;
2155 ret->layout = state->layout;
2156 ret->layout->refcount++;
2157 ret->grid = snewn(ret->w * ret->h, char);
2158 memcpy(ret->grid, state->grid, ret->w * ret->h);
2159
2160 return ret;
2161 }
2162
2163 static void free_game(game_state *state)
2164 {
2165 if (--state->layout->refcount <= 0) {
2166 sfree(state->layout->mines);
2167 if (state->layout->rs)
2168 random_free(state->layout->rs);
2169 sfree(state->layout);
2170 }
2171 sfree(state->grid);
2172 sfree(state);
2173 }
2174
2175 static game_state *solve_game(game_state *state, game_aux_info *aux,
2176 char **error)
2177 {
2178 return NULL;
2179 }
2180
2181 static char *game_text_format(game_state *state)
2182 {
2183 return NULL;
2184 }
2185
2186 struct game_ui {
2187 int hx, hy, hradius; /* for mouse-down highlights */
2188 int flash_is_death;
2189 };
2190
2191 static game_ui *new_ui(game_state *state)
2192 {
2193 game_ui *ui = snew(game_ui);
2194 ui->hx = ui->hy = -1;
2195 ui->hradius = 0;
2196 ui->flash_is_death = FALSE; /* *shrug* */
2197 return ui;
2198 }
2199
2200 static void free_ui(game_ui *ui)
2201 {
2202 sfree(ui);
2203 }
2204
2205 static game_state *make_move(game_state *from, game_ui *ui, int x, int y,
2206 int button)
2207 {
2208 game_state *ret;
2209 int cx, cy;
2210
2211 if (from->dead || from->won)
2212 return NULL; /* no further moves permitted */
2213
2214 if (!IS_MOUSE_DOWN(button) && !IS_MOUSE_DRAG(button) &&
2215 !IS_MOUSE_RELEASE(button))
2216 return NULL;
2217
2218 cx = FROMCOORD(x);
2219 cy = FROMCOORD(y);
2220 if (cx < 0 || cx >= from->w || cy < 0 || cy > from->h)
2221 return NULL;
2222
2223 if (button == LEFT_BUTTON || button == LEFT_DRAG) {
2224 /*
2225 * Mouse-downs and mouse-drags just cause highlighting
2226 * updates.
2227 */
2228 ui->hx = cx;
2229 ui->hy = cy;
2230 ui->hradius = (from->grid[cy*from->w+cx] >= 0 ? 1 : 0);
2231 return from;
2232 }
2233
2234 if (button == RIGHT_BUTTON) {
2235 /*
2236 * Right-clicking only works on a covered square, and it
2237 * toggles between -1 (marked as mine) and -2 (not marked
2238 * as mine).
2239 *
2240 * FIXME: question marks.
2241 */
2242 if (from->grid[cy * from->w + cx] != -2 &&
2243 from->grid[cy * from->w + cx] != -1)
2244 return NULL;
2245
2246 ret = dup_game(from);
2247 ret->grid[cy * from->w + cx] ^= (-2 ^ -1);
2248
2249 return ret;
2250 }
2251
2252 if (button == LEFT_RELEASE) {
2253 ui->hx = ui->hy = -1;
2254 ui->hradius = 0;
2255
2256 /*
2257 * At this stage we must never return NULL: we have adjusted
2258 * the ui, so at worst we return `from'.
2259 */
2260
2261 /*
2262 * Left-clicking on a covered square opens a tile. Not
2263 * permitted if the tile is marked as a mine, for safety.
2264 * (Unmark it and _then_ open it.)
2265 */
2266 if (from->grid[cy * from->w + cx] == -2 ||
2267 from->grid[cy * from->w + cx] == -3) {
2268 ret = dup_game(from);
2269 open_square(ret, cx, cy);
2270 return ret;
2271 }
2272
2273 /*
2274 * Left-clicking on an uncovered tile: first we check to see if
2275 * the number of mine markers surrounding the tile is equal to
2276 * its mine count, and if so then we open all other surrounding
2277 * squares.
2278 */
2279 if (from->grid[cy * from->w + cx] > 0) {
2280 int dy, dx, n;
2281
2282 /* Count mine markers. */
2283 n = 0;
2284 for (dy = -1; dy <= +1; dy++)
2285 for (dx = -1; dx <= +1; dx++)
2286 if (cx+dx >= 0 && cx+dx < from->w &&
2287 cy+dy >= 0 && cy+dy < from->h) {
2288 if (from->grid[(cy+dy)*from->w+(cx+dx)] == -1)
2289 n++;
2290 }
2291
2292 if (n == from->grid[cy * from->w + cx]) {
2293 ret = dup_game(from);
2294 for (dy = -1; dy <= +1; dy++)
2295 for (dx = -1; dx <= +1; dx++)
2296 if (cx+dx >= 0 && cx+dx < ret->w &&
2297 cy+dy >= 0 && cy+dy < ret->h &&
2298 (ret->grid[(cy+dy)*ret->w+(cx+dx)] == -2 ||
2299 ret->grid[(cy+dy)*ret->w+(cx+dx)] == -3))
2300 open_square(ret, cx+dx, cy+dy);
2301 return ret;
2302 }
2303 }
2304
2305 return from;
2306 }
2307
2308 return NULL;
2309 }
2310
2311 /* ----------------------------------------------------------------------
2312 * Drawing routines.
2313 */
2314
2315 struct game_drawstate {
2316 int w, h, started;
2317 char *grid;
2318 /*
2319 * Items in this `grid' array have all the same values as in
2320 * the game_state grid, and in addition:
2321 *
2322 * - -10 means the tile was drawn `specially' as a result of a
2323 * flash, so it will always need redrawing.
2324 *
2325 * - -22 and -23 mean the tile is highlighted for a possible
2326 * click.
2327 */
2328 };
2329
2330 static void game_size(game_params *params, int *x, int *y)
2331 {
2332 *x = BORDER * 2 + TILE_SIZE * params->w;
2333 *y = BORDER * 2 + TILE_SIZE * params->h;
2334 }
2335
2336 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
2337 {
2338 float *ret = snewn(3 * NCOLOURS, float);
2339
2340 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2341
2342 ret[COL_1 * 3 + 0] = 0.0F;
2343 ret[COL_1 * 3 + 1] = 0.0F;
2344 ret[COL_1 * 3 + 2] = 1.0F;
2345
2346 ret[COL_2 * 3 + 0] = 0.0F;
2347 ret[COL_2 * 3 + 1] = 0.5F;
2348 ret[COL_2 * 3 + 2] = 0.0F;
2349
2350 ret[COL_3 * 3 + 0] = 1.0F;
2351 ret[COL_3 * 3 + 1] = 0.0F;
2352 ret[COL_3 * 3 + 2] = 0.0F;
2353
2354 ret[COL_4 * 3 + 0] = 0.0F;
2355 ret[COL_4 * 3 + 1] = 0.0F;
2356 ret[COL_4 * 3 + 2] = 0.5F;
2357
2358 ret[COL_5 * 3 + 0] = 0.5F;
2359 ret[COL_5 * 3 + 1] = 0.0F;
2360 ret[COL_5 * 3 + 2] = 0.0F;
2361
2362 ret[COL_6 * 3 + 0] = 0.0F;
2363 ret[COL_6 * 3 + 1] = 0.5F;
2364 ret[COL_6 * 3 + 2] = 0.5F;
2365
2366 ret[COL_7 * 3 + 0] = 0.0F;
2367 ret[COL_7 * 3 + 1] = 0.0F;
2368 ret[COL_7 * 3 + 2] = 0.0F;
2369
2370 ret[COL_8 * 3 + 0] = 0.5F;
2371 ret[COL_8 * 3 + 1] = 0.5F;
2372 ret[COL_8 * 3 + 2] = 0.5F;
2373
2374 ret[COL_MINE * 3 + 0] = 0.0F;
2375 ret[COL_MINE * 3 + 1] = 0.0F;
2376 ret[COL_MINE * 3 + 2] = 0.0F;
2377
2378 ret[COL_BANG * 3 + 0] = 1.0F;
2379 ret[COL_BANG * 3 + 1] = 0.0F;
2380 ret[COL_BANG * 3 + 2] = 0.0F;
2381
2382 ret[COL_CROSS * 3 + 0] = 1.0F;
2383 ret[COL_CROSS * 3 + 1] = 0.0F;
2384 ret[COL_CROSS * 3 + 2] = 0.0F;
2385
2386 ret[COL_FLAG * 3 + 0] = 1.0F;
2387 ret[COL_FLAG * 3 + 1] = 0.0F;
2388 ret[COL_FLAG * 3 + 2] = 0.0F;
2389
2390 ret[COL_FLAGBASE * 3 + 0] = 0.0F;
2391 ret[COL_FLAGBASE * 3 + 1] = 0.0F;
2392 ret[COL_FLAGBASE * 3 + 2] = 0.0F;
2393
2394 ret[COL_QUERY * 3 + 0] = 0.0F;
2395 ret[COL_QUERY * 3 + 1] = 0.0F;
2396 ret[COL_QUERY * 3 + 2] = 0.0F;
2397
2398 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
2399 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
2400 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
2401
2402 ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2.0 / 3.0;
2403 ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2.0 / 3.0;
2404 ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2.0 / 3.0;
2405
2406 *ncolours = NCOLOURS;
2407 return ret;
2408 }
2409
2410 static game_drawstate *game_new_drawstate(game_state *state)
2411 {
2412 struct game_drawstate *ds = snew(struct game_drawstate);
2413
2414 ds->w = state->w;
2415 ds->h = state->h;
2416 ds->started = FALSE;
2417 ds->grid = snewn(ds->w * ds->h, char);
2418
2419 memset(ds->grid, -99, ds->w * ds->h);
2420
2421 return ds;
2422 }
2423
2424 static void game_free_drawstate(game_drawstate *ds)
2425 {
2426 sfree(ds->grid);
2427 sfree(ds);
2428 }
2429
2430 static void draw_tile(frontend *fe, int x, int y, int v, int bg)
2431 {
2432 if (v < 0) {
2433 int coords[12];
2434 int hl = 0;
2435
2436 if (v == -22 || v == -23) {
2437 v += 20;
2438
2439 /*
2440 * Omit the highlights in this case.
2441 */
2442 draw_rect(fe, x, y, TILE_SIZE, TILE_SIZE, bg);
2443 draw_line(fe, x, y, x + TILE_SIZE - 1, y, COL_LOWLIGHT);
2444 draw_line(fe, x, y, x, y + TILE_SIZE - 1, COL_LOWLIGHT);
2445 } else {
2446 /*
2447 * Draw highlights to indicate the square is covered.
2448 */
2449 coords[0] = x + TILE_SIZE - 1;
2450 coords[1] = y + TILE_SIZE - 1;
2451 coords[2] = x + TILE_SIZE - 1;
2452 coords[3] = y;
2453 coords[4] = x;
2454 coords[5] = y + TILE_SIZE - 1;
2455 draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT ^ hl);
2456 draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT ^ hl);
2457
2458 coords[0] = x;
2459 coords[1] = y;
2460 draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT ^ hl);
2461 draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT ^ hl);
2462
2463 draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
2464 TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
2465 bg);
2466 }
2467
2468 if (v == -1) {
2469 /*
2470 * Draw a flag.
2471 */
2472 #define SETCOORD(n, dx, dy) do { \
2473 coords[(n)*2+0] = x + TILE_SIZE * (dx); \
2474 coords[(n)*2+1] = y + TILE_SIZE * (dy); \
2475 } while (0)
2476 SETCOORD(0, 0.6, 0.35);
2477 SETCOORD(1, 0.6, 0.7);
2478 SETCOORD(2, 0.8, 0.8);
2479 SETCOORD(3, 0.25, 0.8);
2480 SETCOORD(4, 0.55, 0.7);
2481 SETCOORD(5, 0.55, 0.35);
2482 draw_polygon(fe, coords, 6, TRUE, COL_FLAGBASE);
2483 draw_polygon(fe, coords, 6, FALSE, COL_FLAGBASE);
2484
2485 SETCOORD(0, 0.6, 0.2);
2486 SETCOORD(1, 0.6, 0.5);
2487 SETCOORD(2, 0.2, 0.35);
2488 draw_polygon(fe, coords, 3, TRUE, COL_FLAG);
2489 draw_polygon(fe, coords, 3, FALSE, COL_FLAG);
2490 #undef SETCOORD
2491
2492 } else if (v == -3) {
2493 /*
2494 * Draw a question mark.
2495 */
2496 draw_text(fe, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
2497 FONT_VARIABLE, TILE_SIZE * 6 / 8,
2498 ALIGN_VCENTRE | ALIGN_HCENTRE,
2499 COL_QUERY, "?");
2500 }
2501 } else {
2502 /*
2503 * Clear the square to the background colour, and draw thin
2504 * grid lines along the top and left.
2505 *
2506 * Exception is that for value 65 (mine we've just trodden
2507 * on), we clear the square to COL_BANG.
2508 */
2509 draw_rect(fe, x, y, TILE_SIZE, TILE_SIZE,
2510 (v == 65 ? COL_BANG : bg));
2511 draw_line(fe, x, y, x + TILE_SIZE - 1, y, COL_LOWLIGHT);
2512 draw_line(fe, x, y, x, y + TILE_SIZE - 1, COL_LOWLIGHT);
2513
2514 if (v > 0 && v <= 8) {
2515 /*
2516 * Mark a number.
2517 */
2518 char str[2];
2519 str[0] = v + '0';
2520 str[1] = '\0';
2521 draw_text(fe, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
2522 FONT_VARIABLE, TILE_SIZE * 7 / 8,
2523 ALIGN_VCENTRE | ALIGN_HCENTRE,
2524 (COL_1 - 1) + v, str);
2525
2526 } else if (v >= 64) {
2527 /*
2528 * Mark a mine.
2529 *
2530 * FIXME: this could be done better!
2531 */
2532 #if 0
2533 draw_text(fe, x + TILE_SIZE / 2, y + TILE_SIZE / 2,
2534 FONT_VARIABLE, TILE_SIZE * 7 / 8,
2535 ALIGN_VCENTRE | ALIGN_HCENTRE,
2536 COL_MINE, "*");
2537 #else
2538 {
2539 int cx = x + TILE_SIZE / 2;
2540 int cy = y + TILE_SIZE / 2;
2541 int r = TILE_SIZE / 2 - 3;
2542 int coords[4*5*2];
2543 int xdx = 1, xdy = 0, ydx = 0, ydy = 1;
2544 int tdx, tdy, i;
2545
2546 for (i = 0; i < 4*5*2; i += 5*2) {
2547 coords[i+2*0+0] = cx - r/6*xdx + r*4/5*ydx;
2548 coords[i+2*0+1] = cy - r/6*xdy + r*4/5*ydy;
2549 coords[i+2*1+0] = cx - r/6*xdx + r*ydx;
2550 coords[i+2*1+1] = cy - r/6*xdy + r*ydy;
2551 coords[i+2*2+0] = cx + r/6*xdx + r*ydx;
2552 coords[i+2*2+1] = cy + r/6*xdy + r*ydy;
2553 coords[i+2*3+0] = cx + r/6*xdx + r*4/5*ydx;
2554 coords[i+2*3+1] = cy + r/6*xdy + r*4/5*ydy;
2555 coords[i+2*4+0] = cx + r*3/5*xdx + r*3/5*ydx;
2556 coords[i+2*4+1] = cy + r*3/5*xdy + r*3/5*ydy;
2557
2558 tdx = ydx;
2559 tdy = ydy;
2560 ydx = xdx;
2561 ydy = xdy;
2562 xdx = -tdx;
2563 xdy = -tdy;
2564 }
2565
2566 draw_polygon(fe, coords, 5*4, TRUE, COL_MINE);
2567 draw_polygon(fe, coords, 5*4, FALSE, COL_MINE);
2568
2569 draw_rect(fe, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT);
2570 }
2571 #endif
2572
2573 if (v == 66) {
2574 /*
2575 * Cross through the mine.
2576 */
2577 int dx;
2578 for (dx = -1; dx <= +1; dx++) {
2579 draw_line(fe, x + 3 + dx, y + 2,
2580 x + TILE_SIZE - 3 + dx,
2581 y + TILE_SIZE - 2, COL_CROSS);
2582 draw_line(fe, x + TILE_SIZE - 3 + dx, y + 2,
2583 x + 3 + dx, y + TILE_SIZE - 2,
2584 COL_CROSS);
2585 }
2586 }
2587 }
2588 }
2589
2590 draw_update(fe, x, y, TILE_SIZE, TILE_SIZE);
2591 }
2592
2593 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
2594 game_state *state, int dir, game_ui *ui,
2595 float animtime, float flashtime)
2596 {
2597 int x, y;
2598 int mines, markers, bg;
2599
2600 if (flashtime) {
2601 int frame = (flashtime / FLASH_FRAME);
2602 if (frame % 2)
2603 bg = (ui->flash_is_death ? COL_BACKGROUND : COL_LOWLIGHT);
2604 else
2605 bg = (ui->flash_is_death ? COL_BANG : COL_HIGHLIGHT);
2606 } else
2607 bg = COL_BACKGROUND;
2608
2609 if (!ds->started) {
2610 int coords[6];
2611
2612 draw_rect(fe, 0, 0,
2613 TILE_SIZE * state->w + 2 * BORDER,
2614 TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
2615 draw_update(fe, 0, 0,
2616 TILE_SIZE * state->w + 2 * BORDER,
2617 TILE_SIZE * state->h + 2 * BORDER);
2618
2619 /*
2620 * Recessed area containing the whole puzzle.
2621 */
2622 coords[0] = COORD(state->w) + OUTER_HIGHLIGHT_WIDTH - 1;
2623 coords[1] = COORD(state->h) + OUTER_HIGHLIGHT_WIDTH - 1;
2624 coords[2] = COORD(state->w) + OUTER_HIGHLIGHT_WIDTH - 1;
2625 coords[3] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2626 coords[4] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2627 coords[5] = COORD(state->h) + OUTER_HIGHLIGHT_WIDTH - 1;
2628 draw_polygon(fe, coords, 3, TRUE, COL_HIGHLIGHT);
2629 draw_polygon(fe, coords, 3, FALSE, COL_HIGHLIGHT);
2630
2631 coords[1] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2632 coords[0] = COORD(0) - OUTER_HIGHLIGHT_WIDTH;
2633 draw_polygon(fe, coords, 3, TRUE, COL_LOWLIGHT);
2634 draw_polygon(fe, coords, 3, FALSE, COL_LOWLIGHT);
2635
2636 ds->started = TRUE;
2637 }
2638
2639 /*
2640 * Now draw the tiles. Also in this loop, count up the number
2641 * of mines and mine markers.
2642 */
2643 mines = markers = 0;
2644 for (y = 0; y < ds->h; y++)
2645 for (x = 0; x < ds->w; x++) {
2646 int v = state->grid[y*ds->w+x];
2647
2648 if (v == -1)
2649 markers++;
2650 if (state->layout->mines && state->layout->mines[y*ds->w+x])
2651 mines++;
2652
2653 if ((v == -2 || v == -3) &&
2654 (abs(x-ui->hx) <= ui->hradius && abs(y-ui->hy) <= ui->hradius))
2655 v -= 20;
2656
2657 if (ds->grid[y*ds->w+x] != v || bg != COL_BACKGROUND) {
2658 draw_tile(fe, COORD(x), COORD(y), v, bg);
2659 ds->grid[y*ds->w+x] = (bg == COL_BACKGROUND ? v : -10);
2660 }
2661 }
2662
2663 if (!state->layout->mines)
2664 mines = state->layout->n;
2665
2666 /*
2667 * Update the status bar.
2668 */
2669 {
2670 char statusbar[512];
2671 if (state->dead) {
2672 sprintf(statusbar, "GAME OVER!");
2673 } else if (state->won) {
2674 sprintf(statusbar, "COMPLETED!");
2675 } else {
2676 sprintf(statusbar, "Mines marked: %d / %d", markers, mines);
2677 }
2678 status_bar(fe, statusbar);
2679 }
2680 }
2681
2682 static float game_anim_length(game_state *oldstate, game_state *newstate,
2683 int dir, game_ui *ui)
2684 {
2685 return 0.0F;
2686 }
2687
2688 static float game_flash_length(game_state *oldstate, game_state *newstate,
2689 int dir, game_ui *ui)
2690 {
2691 if (dir > 0 && !oldstate->dead && !oldstate->won) {
2692 if (newstate->dead) {
2693 ui->flash_is_death = TRUE;
2694 return 3 * FLASH_FRAME;
2695 }
2696 if (newstate->won) {
2697 ui->flash_is_death = FALSE;
2698 return 2 * FLASH_FRAME;
2699 }
2700 }
2701 return 0.0F;
2702 }
2703
2704 static int game_wants_statusbar(void)
2705 {
2706 return TRUE;
2707 }
2708
2709 #ifdef COMBINED
2710 #define thegame mines
2711 #endif
2712
2713 const struct game thegame = {
2714 "Mines", "games.mines",
2715 default_params,
2716 game_fetch_preset,
2717 decode_params,
2718 encode_params,
2719 free_params,
2720 dup_params,
2721 TRUE, game_configure, custom_params,
2722 validate_params,
2723 new_game_desc,
2724 game_free_aux_info,
2725 validate_desc,
2726 new_game,
2727 dup_game,
2728 free_game,
2729 FALSE, solve_game,
2730 FALSE, game_text_format,
2731 new_ui,
2732 free_ui,
2733 make_move,
2734 game_size,
2735 game_colours,
2736 game_new_drawstate,
2737 game_free_drawstate,
2738 game_redraw,
2739 game_anim_length,
2740 game_flash_length,
2741 game_wants_statusbar,
2742 };