Move definition of PI into puzzles.h. If nothing else, the definition in cube.c
[sgt/puzzles] / net.c
1 /*
2 * net.c: Net game.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13 #include "tree234.h"
14
15 #define MATMUL(xr,yr,m,x,y) do { \
16 float rx, ry, xx = (x), yy = (y), *mat = (m); \
17 rx = mat[0] * xx + mat[2] * yy; \
18 ry = mat[1] * xx + mat[3] * yy; \
19 (xr) = rx; (yr) = ry; \
20 } while (0)
21
22 /* Direction and other bitfields */
23 #define R 0x01
24 #define U 0x02
25 #define L 0x04
26 #define D 0x08
27 #define LOCKED 0x10
28 #define ACTIVE 0x20
29
30 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
31 #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
32 #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
33 #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
34 #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
35 ((n)&3) == 1 ? A(x) : \
36 ((n)&3) == 2 ? F(x) : C(x) )
37
38 /* X and Y displacements */
39 #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
40 #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
41
42 /* Bit count */
43 #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
44 (((x) & 0x02) >> 1) + ((x) & 0x01) )
45
46 #define TILE_SIZE 32
47 #define TILE_BORDER 1
48 #define WINDOW_OFFSET 16
49
50 #define ROTATE_TIME 0.13F
51 #define FLASH_FRAME 0.07F
52
53 /* Transform physical coords to game coords using game_drawstate ds */
54 #define GX(x) (((x) + ds->org_x) % ds->width)
55 #define GY(y) (((y) + ds->org_y) % ds->height)
56 /* ...and game coords to physical coords */
57 #define RX(x) (((x) + ds->width - ds->org_x) % ds->width)
58 #define RY(y) (((y) + ds->height - ds->org_y) % ds->height)
59
60 enum {
61 COL_BACKGROUND,
62 COL_LOCKED,
63 COL_BORDER,
64 COL_WIRE,
65 COL_ENDPOINT,
66 COL_POWERED,
67 COL_BARRIER,
68 NCOLOURS
69 };
70
71 struct game_params {
72 int width;
73 int height;
74 int wrapping;
75 int unique;
76 float barrier_probability;
77 };
78
79 struct game_aux_info {
80 int width, height;
81 unsigned char *tiles;
82 };
83
84 struct game_state {
85 int width, height, wrapping, completed;
86 int last_rotate_x, last_rotate_y, last_rotate_dir;
87 int used_solve, just_used_solve;
88 unsigned char *tiles;
89 unsigned char *barriers;
90 };
91
92 #define OFFSETWH(x2,y2,x1,y1,dir,width,height) \
93 ( (x2) = ((x1) + width + X((dir))) % width, \
94 (y2) = ((y1) + height + Y((dir))) % height)
95
96 #define OFFSET(x2,y2,x1,y1,dir,state) \
97 OFFSETWH(x2,y2,x1,y1,dir,(state)->width,(state)->height)
98
99 #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
100 #define tile(state, x, y) index(state, (state)->tiles, x, y)
101 #define barrier(state, x, y) index(state, (state)->barriers, x, y)
102
103 struct xyd {
104 int x, y, direction;
105 };
106
107 static int xyd_cmp(const void *av, const void *bv) {
108 const struct xyd *a = (const struct xyd *)av;
109 const struct xyd *b = (const struct xyd *)bv;
110 if (a->x < b->x)
111 return -1;
112 if (a->x > b->x)
113 return +1;
114 if (a->y < b->y)
115 return -1;
116 if (a->y > b->y)
117 return +1;
118 if (a->direction < b->direction)
119 return -1;
120 if (a->direction > b->direction)
121 return +1;
122 return 0;
123 };
124
125 static int xyd_cmp_nc(void *av, void *bv) { return xyd_cmp(av, bv); }
126
127 static struct xyd *new_xyd(int x, int y, int direction)
128 {
129 struct xyd *xyd = snew(struct xyd);
130 xyd->x = x;
131 xyd->y = y;
132 xyd->direction = direction;
133 return xyd;
134 }
135
136 /* ----------------------------------------------------------------------
137 * Manage game parameters.
138 */
139 static game_params *default_params(void)
140 {
141 game_params *ret = snew(game_params);
142
143 ret->width = 5;
144 ret->height = 5;
145 ret->wrapping = FALSE;
146 ret->unique = TRUE;
147 ret->barrier_probability = 0.0;
148
149 return ret;
150 }
151
152 static int game_fetch_preset(int i, char **name, game_params **params)
153 {
154 game_params *ret;
155 char str[80];
156 static const struct { int x, y, wrap; } values[] = {
157 {5, 5, FALSE},
158 {7, 7, FALSE},
159 {9, 9, FALSE},
160 {11, 11, FALSE},
161 {13, 11, FALSE},
162 {5, 5, TRUE},
163 {7, 7, TRUE},
164 {9, 9, TRUE},
165 {11, 11, TRUE},
166 {13, 11, TRUE},
167 };
168
169 if (i < 0 || i >= lenof(values))
170 return FALSE;
171
172 ret = snew(game_params);
173 ret->width = values[i].x;
174 ret->height = values[i].y;
175 ret->wrapping = values[i].wrap;
176 ret->unique = TRUE;
177 ret->barrier_probability = 0.0;
178
179 sprintf(str, "%dx%d%s", ret->width, ret->height,
180 ret->wrapping ? " wrapping" : "");
181
182 *name = dupstr(str);
183 *params = ret;
184 return TRUE;
185 }
186
187 static void free_params(game_params *params)
188 {
189 sfree(params);
190 }
191
192 static game_params *dup_params(game_params *params)
193 {
194 game_params *ret = snew(game_params);
195 *ret = *params; /* structure copy */
196 return ret;
197 }
198
199 static void decode_params(game_params *ret, char const *string)
200 {
201 char const *p = string;
202
203 ret->width = atoi(p);
204 while (*p && isdigit((unsigned char)*p)) p++;
205 if (*p == 'x') {
206 p++;
207 ret->height = atoi(p);
208 while (*p && isdigit((unsigned char)*p)) p++;
209 } else {
210 ret->height = ret->width;
211 }
212
213 while (*p) {
214 if (*p == 'w') {
215 p++;
216 ret->wrapping = TRUE;
217 } else if (*p == 'b') {
218 p++;
219 ret->barrier_probability = atof(p);
220 while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
221 } else if (*p == 'a') {
222 p++;
223 ret->unique = FALSE;
224 } else
225 p++; /* skip any other gunk */
226 }
227 }
228
229 static char *encode_params(game_params *params, int full)
230 {
231 char ret[400];
232 int len;
233
234 len = sprintf(ret, "%dx%d", params->width, params->height);
235 if (params->wrapping)
236 ret[len++] = 'w';
237 if (full && params->barrier_probability)
238 len += sprintf(ret+len, "b%g", params->barrier_probability);
239 if (full && !params->unique)
240 ret[len++] = 'a';
241 assert(len < lenof(ret));
242 ret[len] = '\0';
243
244 return dupstr(ret);
245 }
246
247 static config_item *game_configure(game_params *params)
248 {
249 config_item *ret;
250 char buf[80];
251
252 ret = snewn(6, config_item);
253
254 ret[0].name = "Width";
255 ret[0].type = C_STRING;
256 sprintf(buf, "%d", params->width);
257 ret[0].sval = dupstr(buf);
258 ret[0].ival = 0;
259
260 ret[1].name = "Height";
261 ret[1].type = C_STRING;
262 sprintf(buf, "%d", params->height);
263 ret[1].sval = dupstr(buf);
264 ret[1].ival = 0;
265
266 ret[2].name = "Walls wrap around";
267 ret[2].type = C_BOOLEAN;
268 ret[2].sval = NULL;
269 ret[2].ival = params->wrapping;
270
271 ret[3].name = "Barrier probability";
272 ret[3].type = C_STRING;
273 sprintf(buf, "%g", params->barrier_probability);
274 ret[3].sval = dupstr(buf);
275 ret[3].ival = 0;
276
277 ret[4].name = "Ensure unique solution";
278 ret[4].type = C_BOOLEAN;
279 ret[4].sval = NULL;
280 ret[4].ival = params->unique;
281
282 ret[5].name = NULL;
283 ret[5].type = C_END;
284 ret[5].sval = NULL;
285 ret[5].ival = 0;
286
287 return ret;
288 }
289
290 static game_params *custom_params(config_item *cfg)
291 {
292 game_params *ret = snew(game_params);
293
294 ret->width = atoi(cfg[0].sval);
295 ret->height = atoi(cfg[1].sval);
296 ret->wrapping = cfg[2].ival;
297 ret->barrier_probability = (float)atof(cfg[3].sval);
298 ret->unique = cfg[4].ival;
299
300 return ret;
301 }
302
303 static char *validate_params(game_params *params)
304 {
305 if (params->width <= 0 && params->height <= 0)
306 return "Width and height must both be greater than zero";
307 if (params->width <= 0)
308 return "Width must be greater than zero";
309 if (params->height <= 0)
310 return "Height must be greater than zero";
311 if (params->width <= 1 && params->height <= 1)
312 return "At least one of width and height must be greater than one";
313 if (params->barrier_probability < 0)
314 return "Barrier probability may not be negative";
315 if (params->barrier_probability > 1)
316 return "Barrier probability may not be greater than 1";
317
318 /*
319 * Specifying either grid dimension as 2 in a wrapping puzzle
320 * makes it actually impossible to ensure a unique puzzle
321 * solution.
322 *
323 * Proof:
324 *
325 * Without loss of generality, let us assume the puzzle _width_
326 * is 2, so we can conveniently discuss rows without having to
327 * say `rows/columns' all the time. (The height may be 2 as
328 * well, but that doesn't matter.)
329 *
330 * In each row, there are two edges between tiles: the inner
331 * edge (running down the centre of the grid) and the outer
332 * edge (the identified left and right edges of the grid).
333 *
334 * Lemma: In any valid 2xn puzzle there must be at least one
335 * row in which _exactly one_ of the inner edge and outer edge
336 * is connected.
337 *
338 * Proof: No row can have _both_ inner and outer edges
339 * connected, because this would yield a loop. So the only
340 * other way to falsify the lemma is for every row to have
341 * _neither_ the inner nor outer edge connected. But this
342 * means there is no connection at all between the left and
343 * right columns of the puzzle, so there are two disjoint
344 * subgraphs, which is also disallowed. []
345 *
346 * Given such a row, it is always possible to make the
347 * disconnected edge connected and the connected edge
348 * disconnected without changing the state of any other edge.
349 * (This is easily seen by case analysis on the various tiles:
350 * left-pointing and right-pointing endpoints can be exchanged,
351 * likewise T-pieces, and a corner piece can select its
352 * horizontal connectivity independently of its vertical.) This
353 * yields a distinct valid solution.
354 *
355 * Thus, for _every_ row in which exactly one of the inner and
356 * outer edge is connected, there are two valid states for that
357 * row, and hence the total number of solutions of the puzzle
358 * is at least 2^(number of such rows), and in particular is at
359 * least 2 since there must be at least one such row. []
360 */
361 if (params->unique && params->wrapping &&
362 (params->width == 2 || params->height == 2))
363 return "No wrapping puzzle with a width or height of 2 can have"
364 " a unique solution";
365
366 return NULL;
367 }
368
369 /* ----------------------------------------------------------------------
370 * Solver used to assure solution uniqueness during generation.
371 */
372
373 /*
374 * Test cases I used while debugging all this were
375 *
376 * ./net --generate 1 13x11w#12300
377 * which expands under the non-unique grid generation rules to
378 * 13x11w:5eaade1bd222664436d5e2965c12656b1129dd825219e3274d558d5eb2dab5da18898e571d5a2987be79746bd95726c597447d6da96188c513add829da7681da954db113d3cd244
379 * and has two ambiguous areas.
380 *
381 * An even better one is
382 * 13x11w#507896411361192
383 * which expands to
384 * 13x11w:b7125b1aec598eb31bd58d82572bc11494e5dee4e8db2bdd29b88d41a16bdd996d2996ddec8c83741a1e8674e78328ba71737b8894a9271b1cd1399453d1952e43951d9b712822e
385 * and has an ambiguous area _and_ a situation where loop avoidance
386 * is a necessary deductive technique.
387 *
388 * Then there's
389 * 48x25w#820543338195187
390 * becoming
391 * 48x25w:255989d14cdd185deaa753a93821a12edc1ab97943ac127e2685d7b8b3c48861b2192416139212b316eddd35de43714ebc7628d753db32e596284d9ec52c5a7dc1b4c811a655117d16dc28921b2b4161352cab1d89d18bc836b8b891d55ea4622a1251861b5bc9a8aa3e5bcd745c95229ca6c3b5e21d5832d397e917325793d7eb442dc351b2db2a52ba8e1651642275842d8871d5534aabc6d5b741aaa2d48ed2a7dbbb3151ddb49d5b9a7ed1ab98ee75d613d656dbba347bc514c84556b43a9bc65a3256ead792488b862a9d2a8a39b4255a4949ed7dbd79443292521265896b4399c95ede89d7c8c797a6a57791a849adea489359a158aa12e5dacce862b8333b7ebea7d344d1a3c53198864b73a9dedde7b663abb1b539e1e8853b1b7edb14a2a17ebaae4dbe63598a2e7e9a2dbdad415bc1d8cb88cbab5a8c82925732cd282e641ea3bd7d2c6e776de9117a26be86deb7c82c89524b122cb9397cd1acd2284e744ea62b9279bae85479ababe315c3ac29c431333395b24e6a1e3c43a2da42d4dce84aadd5b154aea555eaddcbd6e527d228c19388d9b424d94214555a7edbdeebe569d4a56dc51a86bd9963e377bb74752bd5eaa5761ba545e297b62a1bda46ab4aee423ad6c661311783cc18786d4289236563cb4a75ec67d481c14814994464cd1b87396dee63e5ab6e952cc584baa1d4c47cb557ec84dbb63d487c8728118673a166846dd3a4ebc23d6cb9c5827d96b4556e91899db32b517eda815ae271a8911bd745447121dc8d321557bc2a435ebec1bbac35b1a291669451174e6aa2218a4a9c5a6ca31ebc45d84e3a82c121e9ced7d55e9a
392 * which has a spot (far right) where slightly more complex loop
393 * avoidance is required.
394 */
395
396 static int dsf_canonify(int *dsf, int val)
397 {
398 int v2 = val;
399
400 while (dsf[val] != val)
401 val = dsf[val];
402
403 while (v2 != val) {
404 int tmp = dsf[v2];
405 dsf[v2] = val;
406 v2 = tmp;
407 }
408
409 return val;
410 }
411
412 static void dsf_merge(int *dsf, int v1, int v2)
413 {
414 v1 = dsf_canonify(dsf, v1);
415 v2 = dsf_canonify(dsf, v2);
416 dsf[v2] = v1;
417 }
418
419 struct todo {
420 unsigned char *marked;
421 int *buffer;
422 int buflen;
423 int head, tail;
424 };
425
426 static struct todo *todo_new(int maxsize)
427 {
428 struct todo *todo = snew(struct todo);
429 todo->marked = snewn(maxsize, unsigned char);
430 memset(todo->marked, 0, maxsize);
431 todo->buflen = maxsize + 1;
432 todo->buffer = snewn(todo->buflen, int);
433 todo->head = todo->tail = 0;
434 return todo;
435 }
436
437 static void todo_free(struct todo *todo)
438 {
439 sfree(todo->marked);
440 sfree(todo->buffer);
441 sfree(todo);
442 }
443
444 static void todo_add(struct todo *todo, int index)
445 {
446 if (todo->marked[index])
447 return; /* already on the list */
448 todo->marked[index] = TRUE;
449 todo->buffer[todo->tail++] = index;
450 if (todo->tail == todo->buflen)
451 todo->tail = 0;
452 }
453
454 static int todo_get(struct todo *todo) {
455 int ret;
456
457 if (todo->head == todo->tail)
458 return -1; /* list is empty */
459 ret = todo->buffer[todo->head++];
460 if (todo->head == todo->buflen)
461 todo->head = 0;
462 todo->marked[ret] = FALSE;
463
464 return ret;
465 }
466
467 static int net_solver(int w, int h, unsigned char *tiles,
468 unsigned char *barriers, int wrapping)
469 {
470 unsigned char *tilestate;
471 unsigned char *edgestate;
472 int *deadends;
473 int *equivalence;
474 struct todo *todo;
475 int i, j, x, y;
476 int area;
477 int done_something;
478
479 /*
480 * Set up the solver's data structures.
481 */
482
483 /*
484 * tilestate stores the possible orientations of each tile.
485 * There are up to four of these, so we'll index the array in
486 * fours. tilestate[(y * w + x) * 4] and its three successive
487 * members give the possible orientations, clearing to 255 from
488 * the end as things are ruled out.
489 *
490 * In this loop we also count up the area of the grid (which is
491 * not _necessarily_ equal to w*h, because there might be one
492 * or more blank squares present. This will never happen in a
493 * grid generated _by_ this program, but it's worth keeping the
494 * solver as general as possible.)
495 */
496 tilestate = snewn(w * h * 4, unsigned char);
497 area = 0;
498 for (i = 0; i < w*h; i++) {
499 tilestate[i * 4] = tiles[i] & 0xF;
500 for (j = 1; j < 4; j++) {
501 if (tilestate[i * 4 + j - 1] == 255 ||
502 A(tilestate[i * 4 + j - 1]) == tilestate[i * 4])
503 tilestate[i * 4 + j] = 255;
504 else
505 tilestate[i * 4 + j] = A(tilestate[i * 4 + j - 1]);
506 }
507 if (tiles[i] != 0)
508 area++;
509 }
510
511 /*
512 * edgestate stores the known state of each edge. It is 0 for
513 * unknown, 1 for open (connected) and 2 for closed (not
514 * connected).
515 *
516 * In principle we need only worry about each edge once each,
517 * but in fact it's easier to track each edge twice so that we
518 * can reference it from either side conveniently. Also I'm
519 * going to allocate _five_ bytes per tile, rather than the
520 * obvious four, so that I can index edgestate[(y*w+x) * 5 + d]
521 * where d is 1,2,4,8 and they never overlap.
522 */
523 edgestate = snewn((w * h - 1) * 5 + 9, unsigned char);
524 memset(edgestate, 0, (w * h - 1) * 5 + 9);
525
526 /*
527 * deadends tracks which edges have dead ends on them. It is
528 * indexed by tile and direction: deadends[(y*w+x) * 5 + d]
529 * tells you whether heading out of tile (x,y) in direction d
530 * can reach a limited amount of the grid. Values are area+1
531 * (no dead end known) or less than that (can reach _at most_
532 * this many other tiles by heading this way out of this tile).
533 */
534 deadends = snewn((w * h - 1) * 5 + 9, int);
535 for (i = 0; i < (w * h - 1) * 5 + 9; i++)
536 deadends[i] = area+1;
537
538 /*
539 * equivalence tracks which sets of tiles are known to be
540 * connected to one another, so we can avoid creating loops by
541 * linking together tiles which are already linked through
542 * another route.
543 *
544 * This is a disjoint set forest structure: equivalence[i]
545 * contains the index of another member of the equivalence
546 * class containing i, or contains i itself for precisely one
547 * member in each such class. To find a representative member
548 * of the equivalence class containing i, you keep replacing i
549 * with equivalence[i] until it stops changing; then you go
550 * _back_ along the same path and point everything on it
551 * directly at the representative member so as to speed up
552 * future searches. Then you test equivalence between tiles by
553 * finding the representative of each tile and seeing if
554 * they're the same; and you create new equivalence (merge
555 * classes) by finding the representative of each tile and
556 * setting equivalence[one]=the_other.
557 */
558 equivalence = snewn(w * h, int);
559 for (i = 0; i < w*h; i++)
560 equivalence[i] = i; /* initially all distinct */
561
562 /*
563 * On a non-wrapping grid, we instantly know that all the edges
564 * round the edge are closed.
565 */
566 if (!wrapping) {
567 for (i = 0; i < w; i++) {
568 edgestate[i * 5 + 2] = edgestate[((h-1) * w + i) * 5 + 8] = 2;
569 }
570 for (i = 0; i < h; i++) {
571 edgestate[(i * w + w-1) * 5 + 1] = edgestate[(i * w) * 5 + 4] = 2;
572 }
573 }
574
575 /*
576 * If we have barriers available, we can mark those edges as
577 * closed too.
578 */
579 if (barriers) {
580 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
581 int d;
582 for (d = 1; d <= 8; d += d) {
583 if (barriers[y*w+x] & d) {
584 int x2, y2;
585 /*
586 * In principle the barrier list should already
587 * contain each barrier from each side, but
588 * let's not take chances with our internal
589 * consistency.
590 */
591 OFFSETWH(x2, y2, x, y, d, w, h);
592 edgestate[(y*w+x) * 5 + d] = 2;
593 edgestate[(y2*w+x2) * 5 + F(d)] = 2;
594 }
595 }
596 }
597 }
598
599 /*
600 * Since most deductions made by this solver are local (the
601 * exception is loop avoidance, where joining two tiles
602 * together on one side of the grid can theoretically permit a
603 * fresh deduction on the other), we can address the scaling
604 * problem inherent in iterating repeatedly over the entire
605 * grid by instead working with a to-do list.
606 */
607 todo = todo_new(w * h);
608
609 /*
610 * Main deductive loop.
611 */
612 done_something = TRUE; /* prevent instant termination! */
613 while (1) {
614 int index;
615
616 /*
617 * Take a tile index off the todo list and process it.
618 */
619 index = todo_get(todo);
620 if (index == -1) {
621 /*
622 * If we have run out of immediate things to do, we
623 * have no choice but to scan the whole grid for
624 * longer-range things we've missed. Hence, I now add
625 * every square on the grid back on to the to-do list.
626 * I also set `done_something' to FALSE at this point;
627 * if we later come back here and find it still FALSE,
628 * we will know we've scanned the entire grid without
629 * finding anything new to do, and we can terminate.
630 */
631 if (!done_something)
632 break;
633 for (i = 0; i < w*h; i++)
634 todo_add(todo, i);
635 done_something = FALSE;
636
637 index = todo_get(todo);
638 }
639
640 y = index / w;
641 x = index % w;
642 {
643 int d, ourclass = dsf_canonify(equivalence, y*w+x);
644 int deadendmax[9];
645
646 deadendmax[1] = deadendmax[2] = deadendmax[4] = deadendmax[8] = 0;
647
648 for (i = j = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
649 int valid;
650 int nnondeadends, nondeadends[4], deadendtotal;
651 int nequiv, equiv[5];
652 int val = tilestate[(y*w+x) * 4 + i];
653
654 valid = TRUE;
655 nnondeadends = deadendtotal = 0;
656 equiv[0] = ourclass;
657 nequiv = 1;
658 for (d = 1; d <= 8; d += d) {
659 /*
660 * Immediately rule out this orientation if it
661 * conflicts with any known edge.
662 */
663 if ((edgestate[(y*w+x) * 5 + d] == 1 && !(val & d)) ||
664 (edgestate[(y*w+x) * 5 + d] == 2 && (val & d)))
665 valid = FALSE;
666
667 if (val & d) {
668 /*
669 * Count up the dead-end statistics.
670 */
671 if (deadends[(y*w+x) * 5 + d] <= area) {
672 deadendtotal += deadends[(y*w+x) * 5 + d];
673 } else {
674 nondeadends[nnondeadends++] = d;
675 }
676
677 /*
678 * Ensure we aren't linking to any tiles,
679 * through edges not already known to be
680 * open, which create a loop.
681 */
682 if (edgestate[(y*w+x) * 5 + d] == 0) {
683 int c, k, x2, y2;
684
685 OFFSETWH(x2, y2, x, y, d, w, h);
686 c = dsf_canonify(equivalence, y2*w+x2);
687 for (k = 0; k < nequiv; k++)
688 if (c == equiv[k])
689 break;
690 if (k == nequiv)
691 equiv[nequiv++] = c;
692 else
693 valid = FALSE;
694 }
695 }
696 }
697
698 if (nnondeadends == 0) {
699 /*
700 * If this orientation links together dead-ends
701 * with a total area of less than the entire
702 * grid, it is invalid.
703 *
704 * (We add 1 to deadendtotal because of the
705 * tile itself, of course; one tile linking
706 * dead ends of size 2 and 3 forms a subnetwork
707 * with a total area of 6, not 5.)
708 */
709 if (deadendtotal > 0 && deadendtotal+1 < area)
710 valid = FALSE;
711 } else if (nnondeadends == 1) {
712 /*
713 * If this orientation links together one or
714 * more dead-ends with precisely one
715 * non-dead-end, then we may have to mark that
716 * non-dead-end as a dead end going the other
717 * way. However, it depends on whether all
718 * other orientations share the same property.
719 */
720 deadendtotal++;
721 if (deadendmax[nondeadends[0]] < deadendtotal)
722 deadendmax[nondeadends[0]] = deadendtotal;
723 } else {
724 /*
725 * If this orientation links together two or
726 * more non-dead-ends, then we can rule out the
727 * possibility of putting in new dead-end
728 * markings in those directions.
729 */
730 int k;
731 for (k = 0; k < nnondeadends; k++)
732 deadendmax[nondeadends[k]] = area+1;
733 }
734
735 if (valid)
736 tilestate[(y*w+x) * 4 + j++] = val;
737 #ifdef SOLVER_DIAGNOSTICS
738 else
739 printf("ruling out orientation %x at %d,%d\n", val, x, y);
740 #endif
741 }
742
743 assert(j > 0); /* we can't lose _all_ possibilities! */
744
745 if (j < i) {
746 done_something = TRUE;
747
748 /*
749 * We have ruled out at least one tile orientation.
750 * Make sure the rest are blanked.
751 */
752 while (j < 4)
753 tilestate[(y*w+x) * 4 + j++] = 255;
754 }
755
756 /*
757 * Now go through the tile orientations again and see
758 * if we've deduced anything new about any edges.
759 */
760 {
761 int a, o;
762 a = 0xF; o = 0;
763
764 for (i = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
765 a &= tilestate[(y*w+x) * 4 + i];
766 o |= tilestate[(y*w+x) * 4 + i];
767 }
768 for (d = 1; d <= 8; d += d)
769 if (edgestate[(y*w+x) * 5 + d] == 0) {
770 int x2, y2, d2;
771 OFFSETWH(x2, y2, x, y, d, w, h);
772 d2 = F(d);
773 if (a & d) {
774 /* This edge is open in all orientations. */
775 #ifdef SOLVER_DIAGNOSTICS
776 printf("marking edge %d,%d:%d open\n", x, y, d);
777 #endif
778 edgestate[(y*w+x) * 5 + d] = 1;
779 edgestate[(y2*w+x2) * 5 + d2] = 1;
780 dsf_merge(equivalence, y*w+x, y2*w+x2);
781 done_something = TRUE;
782 todo_add(todo, y2*w+x2);
783 } else if (!(o & d)) {
784 /* This edge is closed in all orientations. */
785 #ifdef SOLVER_DIAGNOSTICS
786 printf("marking edge %d,%d:%d closed\n", x, y, d);
787 #endif
788 edgestate[(y*w+x) * 5 + d] = 2;
789 edgestate[(y2*w+x2) * 5 + d2] = 2;
790 done_something = TRUE;
791 todo_add(todo, y2*w+x2);
792 }
793 }
794
795 }
796
797 /*
798 * Now check the dead-end markers and see if any of
799 * them has lowered from the real ones.
800 */
801 for (d = 1; d <= 8; d += d) {
802 int x2, y2, d2;
803 OFFSETWH(x2, y2, x, y, d, w, h);
804 d2 = F(d);
805 if (deadendmax[d] > 0 &&
806 deadends[(y2*w+x2) * 5 + d2] > deadendmax[d]) {
807 #ifdef SOLVER_DIAGNOSTICS
808 printf("setting dead end value %d,%d:%d to %d\n",
809 x2, y2, d2, deadendmax[d]);
810 #endif
811 deadends[(y2*w+x2) * 5 + d2] = deadendmax[d];
812 done_something = TRUE;
813 todo_add(todo, y2*w+x2);
814 }
815 }
816
817 }
818 }
819
820 /*
821 * Mark all completely determined tiles as locked.
822 */
823 j = TRUE;
824 for (i = 0; i < w*h; i++) {
825 if (tilestate[i * 4 + 1] == 255) {
826 assert(tilestate[i * 4 + 0] != 255);
827 tiles[i] = tilestate[i * 4] | LOCKED;
828 } else {
829 tiles[i] &= ~LOCKED;
830 j = FALSE;
831 }
832 }
833
834 /*
835 * Free up working space.
836 */
837 todo_free(todo);
838 sfree(tilestate);
839 sfree(edgestate);
840 sfree(deadends);
841 sfree(equivalence);
842
843 return j;
844 }
845
846 /* ----------------------------------------------------------------------
847 * Randomly select a new game description.
848 */
849
850 /*
851 * Function to randomly perturb an ambiguous section in a grid, to
852 * attempt to ensure unique solvability.
853 */
854 static void perturb(int w, int h, unsigned char *tiles, int wrapping,
855 random_state *rs, int startx, int starty, int startd)
856 {
857 struct xyd *perimeter, *perim2, *loop[2], looppos[2];
858 int nperim, perimsize, nloop[2], loopsize[2];
859 int x, y, d, i;
860
861 /*
862 * We know that the tile at (startx,starty) is part of an
863 * ambiguous section, and we also know that its neighbour in
864 * direction startd is fully specified. We begin by tracing all
865 * the way round the ambiguous area.
866 */
867 nperim = perimsize = 0;
868 perimeter = NULL;
869 x = startx;
870 y = starty;
871 d = startd;
872 #ifdef PERTURB_DIAGNOSTICS
873 printf("perturb %d,%d:%d\n", x, y, d);
874 #endif
875 do {
876 int x2, y2, d2;
877
878 if (nperim >= perimsize) {
879 perimsize = perimsize * 3 / 2 + 32;
880 perimeter = sresize(perimeter, perimsize, struct xyd);
881 }
882 perimeter[nperim].x = x;
883 perimeter[nperim].y = y;
884 perimeter[nperim].direction = d;
885 nperim++;
886 #ifdef PERTURB_DIAGNOSTICS
887 printf("perimeter: %d,%d:%d\n", x, y, d);
888 #endif
889
890 /*
891 * First, see if we can simply turn left from where we are
892 * and find another locked square.
893 */
894 d2 = A(d);
895 OFFSETWH(x2, y2, x, y, d2, w, h);
896 if ((!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1)) ||
897 (tiles[y2*w+x2] & LOCKED)) {
898 d = d2;
899 } else {
900 /*
901 * Failing that, step left into the new square and look
902 * in front of us.
903 */
904 x = x2;
905 y = y2;
906 OFFSETWH(x2, y2, x, y, d, w, h);
907 if ((wrapping || (abs(x2-x) <= 1 && abs(y2-y) <= 1)) &&
908 !(tiles[y2*w+x2] & LOCKED)) {
909 /*
910 * And failing _that_, we're going to have to step
911 * forward into _that_ square and look right at the
912 * same locked square as we started with.
913 */
914 x = x2;
915 y = y2;
916 d = C(d);
917 }
918 }
919
920 } while (x != startx || y != starty || d != startd);
921
922 /*
923 * Our technique for perturbing this ambiguous area is to
924 * search round its edge for a join we can make: that is, an
925 * edge on the perimeter which is (a) not currently connected,
926 * and (b) connecting it would not yield a full cross on either
927 * side. Then we make that join, search round the network to
928 * find the loop thus constructed, and sever the loop at a
929 * randomly selected other point.
930 */
931 perim2 = snewn(nperim, struct xyd);
932 memcpy(perim2, perimeter, nperim * sizeof(struct xyd));
933 /* Shuffle the perimeter, so as to search it without directional bias. */
934 for (i = nperim; --i ;) {
935 int j = random_upto(rs, i+1);
936 struct xyd t;
937
938 t = perim2[j];
939 perim2[j] = perim2[i];
940 perim2[i] = t;
941 }
942 for (i = 0; i < nperim; i++) {
943 int x2, y2;
944
945 x = perim2[i].x;
946 y = perim2[i].y;
947 d = perim2[i].direction;
948
949 OFFSETWH(x2, y2, x, y, d, w, h);
950 if (!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1))
951 continue; /* can't link across non-wrapping border */
952 if (tiles[y*w+x] & d)
953 continue; /* already linked in this direction! */
954 if (((tiles[y*w+x] | d) & 15) == 15)
955 continue; /* can't turn this tile into a cross */
956 if (((tiles[y2*w+x2] | F(d)) & 15) == 15)
957 continue; /* can't turn other tile into a cross */
958
959 /*
960 * We've found the point at which we're going to make a new
961 * link.
962 */
963 #ifdef PERTURB_DIAGNOSTICS
964 printf("linking %d,%d:%d\n", x, y, d);
965 #endif
966 tiles[y*w+x] |= d;
967 tiles[y2*w+x2] |= F(d);
968
969 break;
970 }
971
972 if (i == nperim)
973 return; /* nothing we can do! */
974
975 /*
976 * Now we've constructed a new link, we need to find the entire
977 * loop of which it is a part.
978 *
979 * In principle, this involves doing a complete search round
980 * the network. However, I anticipate that in the vast majority
981 * of cases the loop will be quite small, so what I'm going to
982 * do is make _two_ searches round the network in parallel, one
983 * keeping its metaphorical hand on the left-hand wall while
984 * the other keeps its hand on the right. As soon as one of
985 * them gets back to its starting point, I abandon the other.
986 */
987 for (i = 0; i < 2; i++) {
988 loopsize[i] = nloop[i] = 0;
989 loop[i] = NULL;
990 looppos[i].x = x;
991 looppos[i].y = y;
992 looppos[i].direction = d;
993 }
994 while (1) {
995 for (i = 0; i < 2; i++) {
996 int x2, y2, j;
997
998 x = looppos[i].x;
999 y = looppos[i].y;
1000 d = looppos[i].direction;
1001
1002 OFFSETWH(x2, y2, x, y, d, w, h);
1003
1004 /*
1005 * Add this path segment to the loop, unless it exactly
1006 * reverses the previous one on the loop in which case
1007 * we take it away again.
1008 */
1009 #ifdef PERTURB_DIAGNOSTICS
1010 printf("looppos[%d] = %d,%d:%d\n", i, x, y, d);
1011 #endif
1012 if (nloop[i] > 0 &&
1013 loop[i][nloop[i]-1].x == x2 &&
1014 loop[i][nloop[i]-1].y == y2 &&
1015 loop[i][nloop[i]-1].direction == F(d)) {
1016 #ifdef PERTURB_DIAGNOSTICS
1017 printf("removing path segment %d,%d:%d from loop[%d]\n",
1018 x2, y2, F(d), i);
1019 #endif
1020 nloop[i]--;
1021 } else {
1022 if (nloop[i] >= loopsize[i]) {
1023 loopsize[i] = loopsize[i] * 3 / 2 + 32;
1024 loop[i] = sresize(loop[i], loopsize[i], struct xyd);
1025 }
1026 #ifdef PERTURB_DIAGNOSTICS
1027 printf("adding path segment %d,%d:%d to loop[%d]\n",
1028 x, y, d, i);
1029 #endif
1030 loop[i][nloop[i]++] = looppos[i];
1031 }
1032
1033 #ifdef PERTURB_DIAGNOSTICS
1034 printf("tile at new location is %x\n", tiles[y2*w+x2] & 0xF);
1035 #endif
1036 d = F(d);
1037 for (j = 0; j < 4; j++) {
1038 if (i == 0)
1039 d = A(d);
1040 else
1041 d = C(d);
1042 #ifdef PERTURB_DIAGNOSTICS
1043 printf("trying dir %d\n", d);
1044 #endif
1045 if (tiles[y2*w+x2] & d) {
1046 looppos[i].x = x2;
1047 looppos[i].y = y2;
1048 looppos[i].direction = d;
1049 break;
1050 }
1051 }
1052
1053 assert(j < 4);
1054 assert(nloop[i] > 0);
1055
1056 if (looppos[i].x == loop[i][0].x &&
1057 looppos[i].y == loop[i][0].y &&
1058 looppos[i].direction == loop[i][0].direction) {
1059 #ifdef PERTURB_DIAGNOSTICS
1060 printf("loop %d finished tracking\n", i);
1061 #endif
1062
1063 /*
1064 * Having found our loop, we now sever it at a
1065 * randomly chosen point - absolutely any will do -
1066 * which is not the one we joined it at to begin
1067 * with. Conveniently, the one we joined it at is
1068 * loop[i][0], so we just avoid that one.
1069 */
1070 j = random_upto(rs, nloop[i]-1) + 1;
1071 x = loop[i][j].x;
1072 y = loop[i][j].y;
1073 d = loop[i][j].direction;
1074 OFFSETWH(x2, y2, x, y, d, w, h);
1075 tiles[y*w+x] &= ~d;
1076 tiles[y2*w+x2] &= ~F(d);
1077
1078 break;
1079 }
1080 }
1081 if (i < 2)
1082 break;
1083 }
1084 sfree(loop[0]);
1085 sfree(loop[1]);
1086
1087 /*
1088 * Finally, we must mark the entire disputed section as locked,
1089 * to prevent the perturb function being called on it multiple
1090 * times.
1091 *
1092 * To do this, we _sort_ the perimeter of the area. The
1093 * existing xyd_cmp function will arrange things into columns
1094 * for us, in such a way that each column has the edges in
1095 * vertical order. Then we can work down each column and fill
1096 * in all the squares between an up edge and a down edge.
1097 */
1098 qsort(perimeter, nperim, sizeof(struct xyd), xyd_cmp);
1099 x = y = -1;
1100 for (i = 0; i <= nperim; i++) {
1101 if (i == nperim || perimeter[i].x > x) {
1102 /*
1103 * Fill in everything from the last Up edge to the
1104 * bottom of the grid, if necessary.
1105 */
1106 if (x != -1) {
1107 while (y < h) {
1108 #ifdef PERTURB_DIAGNOSTICS
1109 printf("resolved: locking tile %d,%d\n", x, y);
1110 #endif
1111 tiles[y * w + x] |= LOCKED;
1112 y++;
1113 }
1114 x = y = -1;
1115 }
1116
1117 if (i == nperim)
1118 break;
1119
1120 x = perimeter[i].x;
1121 y = 0;
1122 }
1123
1124 if (perimeter[i].direction == U) {
1125 x = perimeter[i].x;
1126 y = perimeter[i].y;
1127 } else if (perimeter[i].direction == D) {
1128 /*
1129 * Fill in everything from the last Up edge to here.
1130 */
1131 assert(x == perimeter[i].x && y <= perimeter[i].y);
1132 while (y <= perimeter[i].y) {
1133 #ifdef PERTURB_DIAGNOSTICS
1134 printf("resolved: locking tile %d,%d\n", x, y);
1135 #endif
1136 tiles[y * w + x] |= LOCKED;
1137 y++;
1138 }
1139 x = y = -1;
1140 }
1141 }
1142
1143 sfree(perimeter);
1144 }
1145
1146 static char *new_game_desc(game_params *params, random_state *rs,
1147 game_aux_info **aux, int interactive)
1148 {
1149 tree234 *possibilities, *barriertree;
1150 int w, h, x, y, cx, cy, nbarriers;
1151 unsigned char *tiles, *barriers;
1152 char *desc, *p;
1153
1154 w = params->width;
1155 h = params->height;
1156
1157 cx = w / 2;
1158 cy = h / 2;
1159
1160 tiles = snewn(w * h, unsigned char);
1161 barriers = snewn(w * h, unsigned char);
1162
1163 begin_generation:
1164
1165 memset(tiles, 0, w * h);
1166 memset(barriers, 0, w * h);
1167
1168 /*
1169 * Construct the unshuffled grid.
1170 *
1171 * To do this, we simply start at the centre point, repeatedly
1172 * choose a random possibility out of the available ways to
1173 * extend a used square into an unused one, and do it. After
1174 * extending the third line out of a square, we remove the
1175 * fourth from the possibilities list to avoid any full-cross
1176 * squares (which would make the game too easy because they
1177 * only have one orientation).
1178 *
1179 * The slightly worrying thing is the avoidance of full-cross
1180 * squares. Can this cause our unsophisticated construction
1181 * algorithm to paint itself into a corner, by getting into a
1182 * situation where there are some unreached squares and the
1183 * only way to reach any of them is to extend a T-piece into a
1184 * full cross?
1185 *
1186 * Answer: no it can't, and here's a proof.
1187 *
1188 * Any contiguous group of such unreachable squares must be
1189 * surrounded on _all_ sides by T-pieces pointing away from the
1190 * group. (If not, then there is a square which can be extended
1191 * into one of the `unreachable' ones, and so it wasn't
1192 * unreachable after all.) In particular, this implies that
1193 * each contiguous group of unreachable squares must be
1194 * rectangular in shape (any deviation from that yields a
1195 * non-T-piece next to an `unreachable' square).
1196 *
1197 * So we have a rectangle of unreachable squares, with T-pieces
1198 * forming a solid border around the rectangle. The corners of
1199 * that border must be connected (since every tile connects all
1200 * the lines arriving in it), and therefore the border must
1201 * form a closed loop around the rectangle.
1202 *
1203 * But this can't have happened in the first place, since we
1204 * _know_ we've avoided creating closed loops! Hence, no such
1205 * situation can ever arise, and the naive grid construction
1206 * algorithm will guaranteeably result in a complete grid
1207 * containing no unreached squares, no full crosses _and_ no
1208 * closed loops. []
1209 */
1210 possibilities = newtree234(xyd_cmp_nc);
1211
1212 if (cx+1 < w)
1213 add234(possibilities, new_xyd(cx, cy, R));
1214 if (cy-1 >= 0)
1215 add234(possibilities, new_xyd(cx, cy, U));
1216 if (cx-1 >= 0)
1217 add234(possibilities, new_xyd(cx, cy, L));
1218 if (cy+1 < h)
1219 add234(possibilities, new_xyd(cx, cy, D));
1220
1221 while (count234(possibilities) > 0) {
1222 int i;
1223 struct xyd *xyd;
1224 int x1, y1, d1, x2, y2, d2, d;
1225
1226 /*
1227 * Extract a randomly chosen possibility from the list.
1228 */
1229 i = random_upto(rs, count234(possibilities));
1230 xyd = delpos234(possibilities, i);
1231 x1 = xyd->x;
1232 y1 = xyd->y;
1233 d1 = xyd->direction;
1234 sfree(xyd);
1235
1236 OFFSET(x2, y2, x1, y1, d1, params);
1237 d2 = F(d1);
1238 #ifdef DEBUG
1239 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
1240 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
1241 #endif
1242
1243 /*
1244 * Make the connection. (We should be moving to an as yet
1245 * unused tile.)
1246 */
1247 index(params, tiles, x1, y1) |= d1;
1248 assert(index(params, tiles, x2, y2) == 0);
1249 index(params, tiles, x2, y2) |= d2;
1250
1251 /*
1252 * If we have created a T-piece, remove its last
1253 * possibility.
1254 */
1255 if (COUNT(index(params, tiles, x1, y1)) == 3) {
1256 struct xyd xyd1, *xydp;
1257
1258 xyd1.x = x1;
1259 xyd1.y = y1;
1260 xyd1.direction = 0x0F ^ index(params, tiles, x1, y1);
1261
1262 xydp = find234(possibilities, &xyd1, NULL);
1263
1264 if (xydp) {
1265 #ifdef DEBUG
1266 printf("T-piece; removing (%d,%d,%c)\n",
1267 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
1268 #endif
1269 del234(possibilities, xydp);
1270 sfree(xydp);
1271 }
1272 }
1273
1274 /*
1275 * Remove all other possibilities that were pointing at the
1276 * tile we've just moved into.
1277 */
1278 for (d = 1; d < 0x10; d <<= 1) {
1279 int x3, y3, d3;
1280 struct xyd xyd1, *xydp;
1281
1282 OFFSET(x3, y3, x2, y2, d, params);
1283 d3 = F(d);
1284
1285 xyd1.x = x3;
1286 xyd1.y = y3;
1287 xyd1.direction = d3;
1288
1289 xydp = find234(possibilities, &xyd1, NULL);
1290
1291 if (xydp) {
1292 #ifdef DEBUG
1293 printf("Loop avoidance; removing (%d,%d,%c)\n",
1294 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
1295 #endif
1296 del234(possibilities, xydp);
1297 sfree(xydp);
1298 }
1299 }
1300
1301 /*
1302 * Add new possibilities to the list for moving _out_ of
1303 * the tile we have just moved into.
1304 */
1305 for (d = 1; d < 0x10; d <<= 1) {
1306 int x3, y3;
1307
1308 if (d == d2)
1309 continue; /* we've got this one already */
1310
1311 if (!params->wrapping) {
1312 if (d == U && y2 == 0)
1313 continue;
1314 if (d == D && y2 == h-1)
1315 continue;
1316 if (d == L && x2 == 0)
1317 continue;
1318 if (d == R && x2 == w-1)
1319 continue;
1320 }
1321
1322 OFFSET(x3, y3, x2, y2, d, params);
1323
1324 if (index(params, tiles, x3, y3))
1325 continue; /* this would create a loop */
1326
1327 #ifdef DEBUG
1328 printf("New frontier; adding (%d,%d,%c)\n",
1329 x2, y2, "0RU3L567D9abcdef"[d]);
1330 #endif
1331 add234(possibilities, new_xyd(x2, y2, d));
1332 }
1333 }
1334 /* Having done that, we should have no possibilities remaining. */
1335 assert(count234(possibilities) == 0);
1336 freetree234(possibilities);
1337
1338 if (params->unique) {
1339 int prevn = -1;
1340
1341 /*
1342 * Run the solver to check unique solubility.
1343 */
1344 while (!net_solver(w, h, tiles, NULL, params->wrapping)) {
1345 int n = 0;
1346
1347 /*
1348 * We expect (in most cases) that most of the grid will
1349 * be uniquely specified already, and the remaining
1350 * ambiguous sections will be small and separate. So
1351 * our strategy is to find each individual such
1352 * section, and perform a perturbation on the network
1353 * in that area.
1354 */
1355 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
1356 if (x+1 < w && ((tiles[y*w+x] ^ tiles[y*w+x+1]) & LOCKED)) {
1357 n++;
1358 if (tiles[y*w+x] & LOCKED)
1359 perturb(w, h, tiles, params->wrapping, rs, x+1, y, L);
1360 else
1361 perturb(w, h, tiles, params->wrapping, rs, x, y, R);
1362 }
1363 if (y+1 < h && ((tiles[y*w+x] ^ tiles[(y+1)*w+x]) & LOCKED)) {
1364 n++;
1365 if (tiles[y*w+x] & LOCKED)
1366 perturb(w, h, tiles, params->wrapping, rs, x, y+1, U);
1367 else
1368 perturb(w, h, tiles, params->wrapping, rs, x, y, D);
1369 }
1370 }
1371
1372 /*
1373 * Now n counts the number of ambiguous sections we
1374 * have fiddled with. If we haven't managed to decrease
1375 * it from the last time we ran the solver, give up and
1376 * regenerate the entire grid.
1377 */
1378 if (prevn != -1 && prevn <= n)
1379 goto begin_generation; /* (sorry) */
1380
1381 prevn = n;
1382 }
1383
1384 /*
1385 * The solver will have left a lot of LOCKED bits lying
1386 * around in the tiles array. Remove them.
1387 */
1388 for (x = 0; x < w*h; x++)
1389 tiles[x] &= ~LOCKED;
1390 }
1391
1392 /*
1393 * Now compute a list of the possible barrier locations.
1394 */
1395 barriertree = newtree234(xyd_cmp_nc);
1396 for (y = 0; y < h; y++) {
1397 for (x = 0; x < w; x++) {
1398
1399 if (!(index(params, tiles, x, y) & R) &&
1400 (params->wrapping || x < w-1))
1401 add234(barriertree, new_xyd(x, y, R));
1402 if (!(index(params, tiles, x, y) & D) &&
1403 (params->wrapping || y < h-1))
1404 add234(barriertree, new_xyd(x, y, D));
1405 }
1406 }
1407
1408 /*
1409 * Save the unshuffled grid in an aux_info.
1410 */
1411 {
1412 game_aux_info *solution;
1413
1414 solution = snew(game_aux_info);
1415 solution->width = w;
1416 solution->height = h;
1417 solution->tiles = snewn(w * h, unsigned char);
1418 memcpy(solution->tiles, tiles, w * h);
1419
1420 *aux = solution;
1421 }
1422
1423 /*
1424 * Now shuffle the grid.
1425 */
1426 for (y = 0; y < h; y++) {
1427 for (x = 0; x < w; x++) {
1428 int orig = index(params, tiles, x, y);
1429 int rot = random_upto(rs, 4);
1430 index(params, tiles, x, y) = ROT(orig, rot);
1431 }
1432 }
1433
1434 /*
1435 * And now choose barrier locations. (We carefully do this
1436 * _after_ shuffling, so that changing the barrier rate in the
1437 * params while keeping the random seed the same will give the
1438 * same shuffled grid and _only_ change the barrier locations.
1439 * Also the way we choose barrier locations, by repeatedly
1440 * choosing one possibility from the list until we have enough,
1441 * is designed to ensure that raising the barrier rate while
1442 * keeping the seed the same will provide a superset of the
1443 * previous barrier set - i.e. if you ask for 10 barriers, and
1444 * then decide that's still too hard and ask for 20, you'll get
1445 * the original 10 plus 10 more, rather than getting 20 new
1446 * ones and the chance of remembering your first 10.)
1447 */
1448 nbarriers = (int)(params->barrier_probability * count234(barriertree));
1449 assert(nbarriers >= 0 && nbarriers <= count234(barriertree));
1450
1451 while (nbarriers > 0) {
1452 int i;
1453 struct xyd *xyd;
1454 int x1, y1, d1, x2, y2, d2;
1455
1456 /*
1457 * Extract a randomly chosen barrier from the list.
1458 */
1459 i = random_upto(rs, count234(barriertree));
1460 xyd = delpos234(barriertree, i);
1461
1462 assert(xyd != NULL);
1463
1464 x1 = xyd->x;
1465 y1 = xyd->y;
1466 d1 = xyd->direction;
1467 sfree(xyd);
1468
1469 OFFSET(x2, y2, x1, y1, d1, params);
1470 d2 = F(d1);
1471
1472 index(params, barriers, x1, y1) |= d1;
1473 index(params, barriers, x2, y2) |= d2;
1474
1475 nbarriers--;
1476 }
1477
1478 /*
1479 * Clean up the rest of the barrier list.
1480 */
1481 {
1482 struct xyd *xyd;
1483
1484 while ( (xyd = delpos234(barriertree, 0)) != NULL)
1485 sfree(xyd);
1486
1487 freetree234(barriertree);
1488 }
1489
1490 /*
1491 * Finally, encode the grid into a string game description.
1492 *
1493 * My syntax is extremely simple: each square is encoded as a
1494 * hex digit in which bit 0 means a connection on the right,
1495 * bit 1 means up, bit 2 left and bit 3 down. (i.e. the same
1496 * encoding as used internally). Each digit is followed by
1497 * optional barrier indicators: `v' means a vertical barrier to
1498 * the right of it, and `h' means a horizontal barrier below
1499 * it.
1500 */
1501 desc = snewn(w * h * 3 + 1, char);
1502 p = desc;
1503 for (y = 0; y < h; y++) {
1504 for (x = 0; x < w; x++) {
1505 *p++ = "0123456789abcdef"[index(params, tiles, x, y)];
1506 if ((params->wrapping || x < w-1) &&
1507 (index(params, barriers, x, y) & R))
1508 *p++ = 'v';
1509 if ((params->wrapping || y < h-1) &&
1510 (index(params, barriers, x, y) & D))
1511 *p++ = 'h';
1512 }
1513 }
1514 assert(p - desc <= w*h*3);
1515 *p = '\0';
1516
1517 sfree(tiles);
1518 sfree(barriers);
1519
1520 return desc;
1521 }
1522
1523 static void game_free_aux_info(game_aux_info *aux)
1524 {
1525 sfree(aux->tiles);
1526 sfree(aux);
1527 }
1528
1529 static char *validate_desc(game_params *params, char *desc)
1530 {
1531 int w = params->width, h = params->height;
1532 int i;
1533
1534 for (i = 0; i < w*h; i++) {
1535 if (*desc >= '0' && *desc <= '9')
1536 /* OK */;
1537 else if (*desc >= 'a' && *desc <= 'f')
1538 /* OK */;
1539 else if (*desc >= 'A' && *desc <= 'F')
1540 /* OK */;
1541 else if (!*desc)
1542 return "Game description shorter than expected";
1543 else
1544 return "Game description contained unexpected character";
1545 desc++;
1546 while (*desc == 'h' || *desc == 'v')
1547 desc++;
1548 }
1549 if (*desc)
1550 return "Game description longer than expected";
1551
1552 return NULL;
1553 }
1554
1555 /* ----------------------------------------------------------------------
1556 * Construct an initial game state, given a description and parameters.
1557 */
1558
1559 static game_state *new_game(midend_data *me, game_params *params, char *desc)
1560 {
1561 game_state *state;
1562 int w, h, x, y;
1563
1564 assert(params->width > 0 && params->height > 0);
1565 assert(params->width > 1 || params->height > 1);
1566
1567 /*
1568 * Create a blank game state.
1569 */
1570 state = snew(game_state);
1571 w = state->width = params->width;
1572 h = state->height = params->height;
1573 state->wrapping = params->wrapping;
1574 state->last_rotate_dir = state->last_rotate_x = state->last_rotate_y = 0;
1575 state->completed = state->used_solve = state->just_used_solve = FALSE;
1576 state->tiles = snewn(state->width * state->height, unsigned char);
1577 memset(state->tiles, 0, state->width * state->height);
1578 state->barriers = snewn(state->width * state->height, unsigned char);
1579 memset(state->barriers, 0, state->width * state->height);
1580
1581 /*
1582 * Parse the game description into the grid.
1583 */
1584 for (y = 0; y < h; y++) {
1585 for (x = 0; x < w; x++) {
1586 if (*desc >= '0' && *desc <= '9')
1587 tile(state, x, y) = *desc - '0';
1588 else if (*desc >= 'a' && *desc <= 'f')
1589 tile(state, x, y) = *desc - 'a' + 10;
1590 else if (*desc >= 'A' && *desc <= 'F')
1591 tile(state, x, y) = *desc - 'A' + 10;
1592 if (*desc)
1593 desc++;
1594 while (*desc == 'h' || *desc == 'v') {
1595 int x2, y2, d1, d2;
1596 if (*desc == 'v')
1597 d1 = R;
1598 else
1599 d1 = D;
1600
1601 OFFSET(x2, y2, x, y, d1, state);
1602 d2 = F(d1);
1603
1604 barrier(state, x, y) |= d1;
1605 barrier(state, x2, y2) |= d2;
1606
1607 desc++;
1608 }
1609 }
1610 }
1611
1612 /*
1613 * Set up border barriers if this is a non-wrapping game.
1614 */
1615 if (!state->wrapping) {
1616 for (x = 0; x < state->width; x++) {
1617 barrier(state, x, 0) |= U;
1618 barrier(state, x, state->height-1) |= D;
1619 }
1620 for (y = 0; y < state->height; y++) {
1621 barrier(state, 0, y) |= L;
1622 barrier(state, state->width-1, y) |= R;
1623 }
1624 } else {
1625 /*
1626 * We check whether this is de-facto a non-wrapping game
1627 * despite the parameters, in case we were passed the
1628 * description of a non-wrapping game. This is so that we
1629 * can change some aspects of the UI behaviour.
1630 */
1631 state->wrapping = FALSE;
1632 for (x = 0; x < state->width; x++)
1633 if (!(barrier(state, x, 0) & U) ||
1634 !(barrier(state, x, state->height-1) & D))
1635 state->wrapping = TRUE;
1636 for (y = 0; y < state->width; y++)
1637 if (!(barrier(state, 0, y) & L) ||
1638 !(barrier(state, state->width-1, y) & R))
1639 state->wrapping = TRUE;
1640 }
1641
1642 return state;
1643 }
1644
1645 static game_state *dup_game(game_state *state)
1646 {
1647 game_state *ret;
1648
1649 ret = snew(game_state);
1650 ret->width = state->width;
1651 ret->height = state->height;
1652 ret->wrapping = state->wrapping;
1653 ret->completed = state->completed;
1654 ret->used_solve = state->used_solve;
1655 ret->just_used_solve = state->just_used_solve;
1656 ret->last_rotate_dir = state->last_rotate_dir;
1657 ret->last_rotate_x = state->last_rotate_x;
1658 ret->last_rotate_y = state->last_rotate_y;
1659 ret->tiles = snewn(state->width * state->height, unsigned char);
1660 memcpy(ret->tiles, state->tiles, state->width * state->height);
1661 ret->barriers = snewn(state->width * state->height, unsigned char);
1662 memcpy(ret->barriers, state->barriers, state->width * state->height);
1663
1664 return ret;
1665 }
1666
1667 static void free_game(game_state *state)
1668 {
1669 sfree(state->tiles);
1670 sfree(state->barriers);
1671 sfree(state);
1672 }
1673
1674 static game_state *solve_game(game_state *state, game_aux_info *aux,
1675 char **error)
1676 {
1677 game_state *ret;
1678
1679 if (!aux) {
1680 /*
1681 * Run the internal solver on the provided grid. This might
1682 * not yield a complete solution.
1683 */
1684 ret = dup_game(state);
1685 net_solver(ret->width, ret->height, ret->tiles,
1686 ret->barriers, ret->wrapping);
1687 } else {
1688 assert(aux->width == state->width);
1689 assert(aux->height == state->height);
1690 ret = dup_game(state);
1691 memcpy(ret->tiles, aux->tiles, ret->width * ret->height);
1692 ret->used_solve = ret->just_used_solve = TRUE;
1693 ret->completed = TRUE;
1694 }
1695
1696 return ret;
1697 }
1698
1699 static char *game_text_format(game_state *state)
1700 {
1701 return NULL;
1702 }
1703
1704 /* ----------------------------------------------------------------------
1705 * Utility routine.
1706 */
1707
1708 /*
1709 * Compute which squares are reachable from the centre square, as a
1710 * quick visual aid to determining how close the game is to
1711 * completion. This is also a simple way to tell if the game _is_
1712 * completed - just call this function and see whether every square
1713 * is marked active.
1714 */
1715 static unsigned char *compute_active(game_state *state, int cx, int cy)
1716 {
1717 unsigned char *active;
1718 tree234 *todo;
1719 struct xyd *xyd;
1720
1721 active = snewn(state->width * state->height, unsigned char);
1722 memset(active, 0, state->width * state->height);
1723
1724 /*
1725 * We only store (x,y) pairs in todo, but it's easier to reuse
1726 * xyd_cmp and just store direction 0 every time.
1727 */
1728 todo = newtree234(xyd_cmp_nc);
1729 index(state, active, cx, cy) = ACTIVE;
1730 add234(todo, new_xyd(cx, cy, 0));
1731
1732 while ( (xyd = delpos234(todo, 0)) != NULL) {
1733 int x1, y1, d1, x2, y2, d2;
1734
1735 x1 = xyd->x;
1736 y1 = xyd->y;
1737 sfree(xyd);
1738
1739 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
1740 OFFSET(x2, y2, x1, y1, d1, state);
1741 d2 = F(d1);
1742
1743 /*
1744 * If the next tile in this direction is connected to
1745 * us, and there isn't a barrier in the way, and it
1746 * isn't already marked active, then mark it active and
1747 * add it to the to-examine list.
1748 */
1749 if ((tile(state, x1, y1) & d1) &&
1750 (tile(state, x2, y2) & d2) &&
1751 !(barrier(state, x1, y1) & d1) &&
1752 !index(state, active, x2, y2)) {
1753 index(state, active, x2, y2) = ACTIVE;
1754 add234(todo, new_xyd(x2, y2, 0));
1755 }
1756 }
1757 }
1758 /* Now we expect the todo list to have shrunk to zero size. */
1759 assert(count234(todo) == 0);
1760 freetree234(todo);
1761
1762 return active;
1763 }
1764
1765 struct game_ui {
1766 int org_x, org_y; /* origin */
1767 int cx, cy; /* source tile (game coordinates) */
1768 int cur_x, cur_y;
1769 int cur_visible;
1770 random_state *rs; /* used for jumbling */
1771 };
1772
1773 static game_ui *new_ui(game_state *state)
1774 {
1775 void *seed;
1776 int seedsize;
1777 game_ui *ui = snew(game_ui);
1778 ui->org_x = ui->org_y = 0;
1779 ui->cur_x = ui->cx = state->width / 2;
1780 ui->cur_y = ui->cy = state->height / 2;
1781 ui->cur_visible = FALSE;
1782 get_random_seed(&seed, &seedsize);
1783 ui->rs = random_init(seed, seedsize);
1784 sfree(seed);
1785
1786 return ui;
1787 }
1788
1789 static void free_ui(game_ui *ui)
1790 {
1791 random_free(ui->rs);
1792 sfree(ui);
1793 }
1794
1795 /* ----------------------------------------------------------------------
1796 * Process a move.
1797 */
1798 static game_state *make_move(game_state *state, game_ui *ui,
1799 game_drawstate *ds, int x, int y, int button) {
1800 game_state *ret, *nullret;
1801 int tx, ty, orig;
1802 int shift = button & MOD_SHFT, ctrl = button & MOD_CTRL;
1803
1804 button &= ~MOD_MASK;
1805 nullret = NULL;
1806
1807 if (button == LEFT_BUTTON ||
1808 button == MIDDLE_BUTTON ||
1809 button == RIGHT_BUTTON) {
1810
1811 if (ui->cur_visible) {
1812 ui->cur_visible = FALSE;
1813 nullret = state;
1814 }
1815
1816 /*
1817 * The button must have been clicked on a valid tile.
1818 */
1819 x -= WINDOW_OFFSET + TILE_BORDER;
1820 y -= WINDOW_OFFSET + TILE_BORDER;
1821 if (x < 0 || y < 0)
1822 return nullret;
1823 tx = x / TILE_SIZE;
1824 ty = y / TILE_SIZE;
1825 if (tx >= state->width || ty >= state->height)
1826 return nullret;
1827 /* Transform from physical to game coords */
1828 tx = (tx + ui->org_x) % state->width;
1829 ty = (ty + ui->org_y) % state->height;
1830 if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
1831 y % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
1832 return nullret;
1833 } else if (button == CURSOR_UP || button == CURSOR_DOWN ||
1834 button == CURSOR_RIGHT || button == CURSOR_LEFT) {
1835 int dir;
1836 switch (button) {
1837 case CURSOR_UP: dir = U; break;
1838 case CURSOR_DOWN: dir = D; break;
1839 case CURSOR_LEFT: dir = L; break;
1840 case CURSOR_RIGHT: dir = R; break;
1841 default: return nullret;
1842 }
1843 if (shift) {
1844 /*
1845 * Move origin.
1846 */
1847 if (state->wrapping) {
1848 OFFSET(ui->org_x, ui->org_y, ui->org_x, ui->org_y, dir, state);
1849 } else return nullret; /* disallowed for non-wrapping grids */
1850 }
1851 if (ctrl) {
1852 /*
1853 * Change source tile.
1854 */
1855 OFFSET(ui->cx, ui->cy, ui->cx, ui->cy, dir, state);
1856 }
1857 if (!shift && !ctrl) {
1858 /*
1859 * Move keyboard cursor.
1860 */
1861 OFFSET(ui->cur_x, ui->cur_y, ui->cur_x, ui->cur_y, dir, state);
1862 ui->cur_visible = TRUE;
1863 }
1864 return state; /* UI activity has occurred */
1865 } else if (button == 'a' || button == 's' || button == 'd' ||
1866 button == 'A' || button == 'S' || button == 'D') {
1867 tx = ui->cur_x;
1868 ty = ui->cur_y;
1869 if (button == 'a' || button == 'A')
1870 button = LEFT_BUTTON;
1871 else if (button == 's' || button == 'S')
1872 button = MIDDLE_BUTTON;
1873 else if (button == 'd' || button == 'D')
1874 button = RIGHT_BUTTON;
1875 ui->cur_visible = TRUE;
1876 } else if (button == 'j' || button == 'J') {
1877 /* XXX should we have some mouse control for this? */
1878 button = 'J'; /* canonify */
1879 tx = ty = -1; /* shut gcc up :( */
1880 } else
1881 return nullret;
1882
1883 /*
1884 * The middle button locks or unlocks a tile. (A locked tile
1885 * cannot be turned, and is visually marked as being locked.
1886 * This is a convenience for the player, so that once they are
1887 * sure which way round a tile goes, they can lock it and thus
1888 * avoid forgetting later on that they'd already done that one;
1889 * and the locking also prevents them turning the tile by
1890 * accident. If they change their mind, another middle click
1891 * unlocks it.)
1892 */
1893 if (button == MIDDLE_BUTTON) {
1894
1895 ret = dup_game(state);
1896 ret->just_used_solve = FALSE;
1897 tile(ret, tx, ty) ^= LOCKED;
1898 ret->last_rotate_dir = ret->last_rotate_x = ret->last_rotate_y = 0;
1899 return ret;
1900
1901 } else if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
1902
1903 /*
1904 * The left and right buttons have no effect if clicked on a
1905 * locked tile.
1906 */
1907 if (tile(state, tx, ty) & LOCKED)
1908 return nullret;
1909
1910 /*
1911 * Otherwise, turn the tile one way or the other. Left button
1912 * turns anticlockwise; right button turns clockwise.
1913 */
1914 ret = dup_game(state);
1915 ret->just_used_solve = FALSE;
1916 orig = tile(ret, tx, ty);
1917 if (button == LEFT_BUTTON) {
1918 tile(ret, tx, ty) = A(orig);
1919 ret->last_rotate_dir = +1;
1920 } else {
1921 tile(ret, tx, ty) = C(orig);
1922 ret->last_rotate_dir = -1;
1923 }
1924 ret->last_rotate_x = tx;
1925 ret->last_rotate_y = ty;
1926
1927 } else if (button == 'J') {
1928
1929 /*
1930 * Jumble all unlocked tiles to random orientations.
1931 */
1932 int jx, jy;
1933 ret = dup_game(state);
1934 ret->just_used_solve = FALSE;
1935 for (jy = 0; jy < ret->height; jy++) {
1936 for (jx = 0; jx < ret->width; jx++) {
1937 if (!(tile(ret, jx, jy) & LOCKED)) {
1938 int rot = random_upto(ui->rs, 4);
1939 orig = tile(ret, jx, jy);
1940 tile(ret, jx, jy) = ROT(orig, rot);
1941 }
1942 }
1943 }
1944 ret->last_rotate_dir = 0; /* suppress animation */
1945 ret->last_rotate_x = ret->last_rotate_y = 0;
1946
1947 } else assert(0);
1948
1949 /*
1950 * Check whether the game has been completed.
1951 */
1952 {
1953 unsigned char *active = compute_active(ret, ui->cx, ui->cy);
1954 int x1, y1;
1955 int complete = TRUE;
1956
1957 for (x1 = 0; x1 < ret->width; x1++)
1958 for (y1 = 0; y1 < ret->height; y1++)
1959 if ((tile(ret, x1, y1) & 0xF) && !index(ret, active, x1, y1)) {
1960 complete = FALSE;
1961 goto break_label; /* break out of two loops at once */
1962 }
1963 break_label:
1964
1965 sfree(active);
1966
1967 if (complete)
1968 ret->completed = TRUE;
1969 }
1970
1971 return ret;
1972 }
1973
1974 /* ----------------------------------------------------------------------
1975 * Routines for drawing the game position on the screen.
1976 */
1977
1978 struct game_drawstate {
1979 int started;
1980 int width, height;
1981 int org_x, org_y;
1982 unsigned char *visible;
1983 };
1984
1985 static game_drawstate *game_new_drawstate(game_state *state)
1986 {
1987 game_drawstate *ds = snew(game_drawstate);
1988
1989 ds->started = FALSE;
1990 ds->width = state->width;
1991 ds->height = state->height;
1992 ds->org_x = ds->org_y = -1;
1993 ds->visible = snewn(state->width * state->height, unsigned char);
1994 memset(ds->visible, 0xFF, state->width * state->height);
1995
1996 return ds;
1997 }
1998
1999 static void game_free_drawstate(game_drawstate *ds)
2000 {
2001 sfree(ds->visible);
2002 sfree(ds);
2003 }
2004
2005 static void game_size(game_params *params, int *x, int *y)
2006 {
2007 *x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
2008 *y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
2009 }
2010
2011 static float *game_colours(frontend *fe, game_state *state, int *ncolours)
2012 {
2013 float *ret;
2014
2015 ret = snewn(NCOLOURS * 3, float);
2016 *ncolours = NCOLOURS;
2017
2018 /*
2019 * Basic background colour is whatever the front end thinks is
2020 * a sensible default.
2021 */
2022 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2023
2024 /*
2025 * Wires are black.
2026 */
2027 ret[COL_WIRE * 3 + 0] = 0.0F;
2028 ret[COL_WIRE * 3 + 1] = 0.0F;
2029 ret[COL_WIRE * 3 + 2] = 0.0F;
2030
2031 /*
2032 * Powered wires and powered endpoints are cyan.
2033 */
2034 ret[COL_POWERED * 3 + 0] = 0.0F;
2035 ret[COL_POWERED * 3 + 1] = 1.0F;
2036 ret[COL_POWERED * 3 + 2] = 1.0F;
2037
2038 /*
2039 * Barriers are red.
2040 */
2041 ret[COL_BARRIER * 3 + 0] = 1.0F;
2042 ret[COL_BARRIER * 3 + 1] = 0.0F;
2043 ret[COL_BARRIER * 3 + 2] = 0.0F;
2044
2045 /*
2046 * Unpowered endpoints are blue.
2047 */
2048 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
2049 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
2050 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
2051
2052 /*
2053 * Tile borders are a darker grey than the background.
2054 */
2055 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2056 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2057 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2058
2059 /*
2060 * Locked tiles are a grey in between those two.
2061 */
2062 ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2063 ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2064 ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2065
2066 return ret;
2067 }
2068
2069 static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
2070 int colour)
2071 {
2072 draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
2073 draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
2074 draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
2075 draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
2076 draw_line(fe, x1, y1, x2, y2, colour);
2077 }
2078
2079 static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
2080 int colour)
2081 {
2082 int mx = (x1 < x2 ? x1 : x2);
2083 int my = (y1 < y2 ? y1 : y2);
2084 int dx = (x2 + x1 - 2*mx + 1);
2085 int dy = (y2 + y1 - 2*my + 1);
2086
2087 draw_rect(fe, mx, my, dx, dy, colour);
2088 }
2089
2090 /*
2091 * draw_barrier_corner() and draw_barrier() are passed physical coords
2092 */
2093 static void draw_barrier_corner(frontend *fe, int x, int y, int dx, int dy,
2094 int phase)
2095 {
2096 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2097 int by = WINDOW_OFFSET + TILE_SIZE * y;
2098 int x1, y1;
2099
2100 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
2101 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
2102
2103 if (phase == 0) {
2104 draw_rect_coords(fe, bx+x1+dx, by+y1,
2105 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
2106 COL_WIRE);
2107 draw_rect_coords(fe, bx+x1, by+y1+dy,
2108 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
2109 COL_WIRE);
2110 } else {
2111 draw_rect_coords(fe, bx+x1, by+y1,
2112 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
2113 COL_BARRIER);
2114 }
2115 }
2116
2117 static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
2118 {
2119 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2120 int by = WINDOW_OFFSET + TILE_SIZE * y;
2121 int x1, y1, w, h;
2122
2123 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
2124 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
2125 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
2126 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
2127
2128 if (phase == 0) {
2129 draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
2130 } else {
2131 draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
2132 }
2133 }
2134
2135 /*
2136 * draw_tile() is passed physical coordinates
2137 */
2138 static void draw_tile(frontend *fe, game_state *state, game_drawstate *ds,
2139 int x, int y, int tile, int src, float angle, int cursor)
2140 {
2141 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2142 int by = WINDOW_OFFSET + TILE_SIZE * y;
2143 float matrix[4];
2144 float cx, cy, ex, ey, tx, ty;
2145 int dir, col, phase;
2146
2147 /*
2148 * When we draw a single tile, we must draw everything up to
2149 * and including the borders around the tile. This means that
2150 * if the neighbouring tiles have connections to those borders,
2151 * we must draw those connections on the borders themselves.
2152 */
2153
2154 clip(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
2155
2156 /*
2157 * So. First blank the tile out completely: draw a big
2158 * rectangle in border colour, and a smaller rectangle in
2159 * background colour to fill it in.
2160 */
2161 draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
2162 COL_BORDER);
2163 draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
2164 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
2165 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
2166
2167 /*
2168 * Draw an inset outline rectangle as a cursor, in whichever of
2169 * COL_LOCKED and COL_BACKGROUND we aren't currently drawing
2170 * in.
2171 */
2172 if (cursor) {
2173 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8,
2174 bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2175 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2176 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8,
2177 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
2178 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2179 draw_line(fe, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
2180 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2181 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2182 draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2183 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2184 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2185 }
2186
2187 /*
2188 * Set up the rotation matrix.
2189 */
2190 matrix[0] = (float)cos(angle * PI / 180.0);
2191 matrix[1] = (float)-sin(angle * PI / 180.0);
2192 matrix[2] = (float)sin(angle * PI / 180.0);
2193 matrix[3] = (float)cos(angle * PI / 180.0);
2194
2195 /*
2196 * Draw the wires.
2197 */
2198 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
2199 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
2200 for (dir = 1; dir < 0x10; dir <<= 1) {
2201 if (tile & dir) {
2202 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
2203 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2204 MATMUL(tx, ty, matrix, ex, ey);
2205 draw_thick_line(fe, bx+(int)cx, by+(int)cy,
2206 bx+(int)(cx+tx), by+(int)(cy+ty),
2207 COL_WIRE);
2208 }
2209 }
2210 for (dir = 1; dir < 0x10; dir <<= 1) {
2211 if (tile & dir) {
2212 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
2213 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2214 MATMUL(tx, ty, matrix, ex, ey);
2215 draw_line(fe, bx+(int)cx, by+(int)cy,
2216 bx+(int)(cx+tx), by+(int)(cy+ty), col);
2217 }
2218 }
2219
2220 /*
2221 * Draw the box in the middle. We do this in blue if the tile
2222 * is an unpowered endpoint, in cyan if the tile is a powered
2223 * endpoint, in black if the tile is the centrepiece, and
2224 * otherwise not at all.
2225 */
2226 col = -1;
2227 if (src)
2228 col = COL_WIRE;
2229 else if (COUNT(tile) == 1) {
2230 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
2231 }
2232 if (col >= 0) {
2233 int i, points[8];
2234
2235 points[0] = +1; points[1] = +1;
2236 points[2] = +1; points[3] = -1;
2237 points[4] = -1; points[5] = -1;
2238 points[6] = -1; points[7] = +1;
2239
2240 for (i = 0; i < 8; i += 2) {
2241 ex = (TILE_SIZE * 0.24F) * points[i];
2242 ey = (TILE_SIZE * 0.24F) * points[i+1];
2243 MATMUL(tx, ty, matrix, ex, ey);
2244 points[i] = bx+(int)(cx+tx);
2245 points[i+1] = by+(int)(cy+ty);
2246 }
2247
2248 draw_polygon(fe, points, 4, TRUE, col);
2249 draw_polygon(fe, points, 4, FALSE, COL_WIRE);
2250 }
2251
2252 /*
2253 * Draw the points on the border if other tiles are connected
2254 * to us.
2255 */
2256 for (dir = 1; dir < 0x10; dir <<= 1) {
2257 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
2258
2259 dx = X(dir);
2260 dy = Y(dir);
2261
2262 ox = x + dx;
2263 oy = y + dy;
2264
2265 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
2266 continue;
2267
2268 if (!(tile(state, GX(ox), GY(oy)) & F(dir)))
2269 continue;
2270
2271 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
2272 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
2273 lx = dx * (TILE_BORDER-1);
2274 ly = dy * (TILE_BORDER-1);
2275 vx = (dy ? 1 : 0);
2276 vy = (dx ? 1 : 0);
2277
2278 if (angle == 0.0 && (tile & dir)) {
2279 /*
2280 * If we are fully connected to the other tile, we must
2281 * draw right across the tile border. (We can use our
2282 * own ACTIVE state to determine what colour to do this
2283 * in: if we are fully connected to the other tile then
2284 * the two ACTIVE states will be the same.)
2285 */
2286 draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
2287 draw_rect_coords(fe, px, py, px+lx, py+ly,
2288 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
2289 } else {
2290 /*
2291 * The other tile extends into our border, but isn't
2292 * actually connected to us. Just draw a single black
2293 * dot.
2294 */
2295 draw_rect_coords(fe, px, py, px, py, COL_WIRE);
2296 }
2297 }
2298
2299 /*
2300 * Draw barrier corners, and then barriers.
2301 */
2302 for (phase = 0; phase < 2; phase++) {
2303 for (dir = 1; dir < 0x10; dir <<= 1) {
2304 int x1, y1, corner = FALSE;
2305 /*
2306 * If at least one barrier terminates at the corner
2307 * between dir and A(dir), draw a barrier corner.
2308 */
2309 if (barrier(state, GX(x), GY(y)) & (dir | A(dir))) {
2310 corner = TRUE;
2311 } else {
2312 /*
2313 * Only count barriers terminating at this corner
2314 * if they're physically next to the corner. (That
2315 * is, if they've wrapped round from the far side
2316 * of the screen, they don't count.)
2317 */
2318 x1 = x + X(dir);
2319 y1 = y + Y(dir);
2320 if (x1 >= 0 && x1 < state->width &&
2321 y1 >= 0 && y1 < state->height &&
2322 (barrier(state, GX(x1), GY(y1)) & A(dir))) {
2323 corner = TRUE;
2324 } else {
2325 x1 = x + X(A(dir));
2326 y1 = y + Y(A(dir));
2327 if (x1 >= 0 && x1 < state->width &&
2328 y1 >= 0 && y1 < state->height &&
2329 (barrier(state, GX(x1), GY(y1)) & dir))
2330 corner = TRUE;
2331 }
2332 }
2333
2334 if (corner) {
2335 /*
2336 * At least one barrier terminates here. Draw a
2337 * corner.
2338 */
2339 draw_barrier_corner(fe, x, y,
2340 X(dir)+X(A(dir)), Y(dir)+Y(A(dir)),
2341 phase);
2342 }
2343 }
2344
2345 for (dir = 1; dir < 0x10; dir <<= 1)
2346 if (barrier(state, GX(x), GY(y)) & dir)
2347 draw_barrier(fe, x, y, dir, phase);
2348 }
2349
2350 unclip(fe);
2351
2352 draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
2353 }
2354
2355 static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
2356 game_state *state, int dir, game_ui *ui, float t, float ft)
2357 {
2358 int x, y, tx, ty, frame, last_rotate_dir, moved_origin = FALSE;
2359 unsigned char *active;
2360 float angle = 0.0;
2361
2362 /*
2363 * Clear the screen, and draw the exterior barrier lines, if
2364 * this is our first call or if the origin has changed.
2365 */
2366 if (!ds->started || ui->org_x != ds->org_x || ui->org_y != ds->org_y) {
2367 int phase;
2368
2369 ds->started = TRUE;
2370
2371 draw_rect(fe, 0, 0,
2372 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
2373 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
2374 COL_BACKGROUND);
2375
2376 ds->org_x = ui->org_x;
2377 ds->org_y = ui->org_y;
2378 moved_origin = TRUE;
2379
2380 draw_update(fe, 0, 0,
2381 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
2382 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
2383
2384 for (phase = 0; phase < 2; phase++) {
2385
2386 for (x = 0; x < ds->width; x++) {
2387 if (x+1 < ds->width) {
2388 if (barrier(state, GX(x), GY(0)) & R)
2389 draw_barrier_corner(fe, x, -1, +1, +1, phase);
2390 if (barrier(state, GX(x), GY(ds->height-1)) & R)
2391 draw_barrier_corner(fe, x, ds->height, +1, -1, phase);
2392 }
2393 if (barrier(state, GX(x), GY(0)) & U) {
2394 draw_barrier_corner(fe, x, -1, -1, +1, phase);
2395 draw_barrier_corner(fe, x, -1, +1, +1, phase);
2396 draw_barrier(fe, x, -1, D, phase);
2397 }
2398 if (barrier(state, GX(x), GY(ds->height-1)) & D) {
2399 draw_barrier_corner(fe, x, ds->height, -1, -1, phase);
2400 draw_barrier_corner(fe, x, ds->height, +1, -1, phase);
2401 draw_barrier(fe, x, ds->height, U, phase);
2402 }
2403 }
2404
2405 for (y = 0; y < ds->height; y++) {
2406 if (y+1 < ds->height) {
2407 if (barrier(state, GX(0), GY(y)) & D)
2408 draw_barrier_corner(fe, -1, y, +1, +1, phase);
2409 if (barrier(state, GX(ds->width-1), GY(y)) & D)
2410 draw_barrier_corner(fe, ds->width, y, -1, +1, phase);
2411 }
2412 if (barrier(state, GX(0), GY(y)) & L) {
2413 draw_barrier_corner(fe, -1, y, +1, -1, phase);
2414 draw_barrier_corner(fe, -1, y, +1, +1, phase);
2415 draw_barrier(fe, -1, y, R, phase);
2416 }
2417 if (barrier(state, GX(ds->width-1), GY(y)) & R) {
2418 draw_barrier_corner(fe, ds->width, y, -1, -1, phase);
2419 draw_barrier_corner(fe, ds->width, y, -1, +1, phase);
2420 draw_barrier(fe, ds->width, y, L, phase);
2421 }
2422 }
2423 }
2424 }
2425
2426 tx = ty = -1;
2427 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
2428 state->last_rotate_dir;
2429 if (oldstate && (t < ROTATE_TIME) && last_rotate_dir) {
2430 /*
2431 * We're animating a single tile rotation. Find the turning
2432 * tile.
2433 */
2434 tx = (dir==-1 ? oldstate->last_rotate_x : state->last_rotate_x);
2435 ty = (dir==-1 ? oldstate->last_rotate_y : state->last_rotate_y);
2436 angle = last_rotate_dir * dir * 90.0F * (t / ROTATE_TIME);
2437 state = oldstate;
2438 }
2439
2440 frame = -1;
2441 if (ft > 0) {
2442 /*
2443 * We're animating a completion flash. Find which frame
2444 * we're at.
2445 */
2446 frame = (int)(ft / FLASH_FRAME);
2447 }
2448
2449 /*
2450 * Draw any tile which differs from the way it was last drawn.
2451 */
2452 active = compute_active(state, ui->cx, ui->cy);
2453
2454 for (x = 0; x < ds->width; x++)
2455 for (y = 0; y < ds->height; y++) {
2456 unsigned char c = tile(state, GX(x), GY(y)) |
2457 index(state, active, GX(x), GY(y));
2458 int is_src = GX(x) == ui->cx && GY(y) == ui->cy;
2459 int is_anim = GX(x) == tx && GY(y) == ty;
2460 int is_cursor = ui->cur_visible &&
2461 GX(x) == ui->cur_x && GY(y) == ui->cur_y;
2462
2463 /*
2464 * In a completion flash, we adjust the LOCKED bit
2465 * depending on our distance from the centre point and
2466 * the frame number.
2467 */
2468 if (frame >= 0) {
2469 int rcx = RX(ui->cx), rcy = RY(ui->cy);
2470 int xdist, ydist, dist;
2471 xdist = (x < rcx ? rcx - x : x - rcx);
2472 ydist = (y < rcy ? rcy - y : y - rcy);
2473 dist = (xdist > ydist ? xdist : ydist);
2474
2475 if (frame >= dist && frame < dist+4) {
2476 int lock = (frame - dist) & 1;
2477 lock = lock ? LOCKED : 0;
2478 c = (c &~ LOCKED) | lock;
2479 }
2480 }
2481
2482 if (moved_origin ||
2483 index(state, ds->visible, x, y) != c ||
2484 index(state, ds->visible, x, y) == 0xFF ||
2485 is_src || is_anim || is_cursor) {
2486 draw_tile(fe, state, ds, x, y, c,
2487 is_src, (is_anim ? angle : 0.0F), is_cursor);
2488 if (is_src || is_anim || is_cursor)
2489 index(state, ds->visible, x, y) = 0xFF;
2490 else
2491 index(state, ds->visible, x, y) = c;
2492 }
2493 }
2494
2495 /*
2496 * Update the status bar.
2497 */
2498 {
2499 char statusbuf[256];
2500 int i, n, n2, a;
2501
2502 n = state->width * state->height;
2503 for (i = a = n2 = 0; i < n; i++) {
2504 if (active[i])
2505 a++;
2506 if (state->tiles[i] & 0xF)
2507 n2++;
2508 }
2509
2510 sprintf(statusbuf, "%sActive: %d/%d",
2511 (state->used_solve ? "Auto-solved. " :
2512 state->completed ? "COMPLETED! " : ""), a, n2);
2513
2514 status_bar(fe, statusbuf);
2515 }
2516
2517 sfree(active);
2518 }
2519
2520 static float game_anim_length(game_state *oldstate,
2521 game_state *newstate, int dir, game_ui *ui)
2522 {
2523 int last_rotate_dir;
2524
2525 /*
2526 * Don't animate an auto-solve move.
2527 */
2528 if ((dir > 0 && newstate->just_used_solve) ||
2529 (dir < 0 && oldstate->just_used_solve))
2530 return 0.0F;
2531
2532 /*
2533 * Don't animate if last_rotate_dir is zero.
2534 */
2535 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
2536 newstate->last_rotate_dir;
2537 if (last_rotate_dir)
2538 return ROTATE_TIME;
2539
2540 return 0.0F;
2541 }
2542
2543 static float game_flash_length(game_state *oldstate,
2544 game_state *newstate, int dir, game_ui *ui)
2545 {
2546 /*
2547 * If the game has just been completed, we display a completion
2548 * flash.
2549 */
2550 if (!oldstate->completed && newstate->completed &&
2551 !oldstate->used_solve && !newstate->used_solve) {
2552 int size = 0;
2553 if (size < newstate->width)
2554 size = newstate->width;
2555 if (size < newstate->height)
2556 size = newstate->height;
2557 return FLASH_FRAME * (size+4);
2558 }
2559
2560 return 0.0F;
2561 }
2562
2563 static int game_wants_statusbar(void)
2564 {
2565 return TRUE;
2566 }
2567
2568 static int game_timing_state(game_state *state)
2569 {
2570 return TRUE;
2571 }
2572
2573 #ifdef COMBINED
2574 #define thegame net
2575 #endif
2576
2577 const struct game thegame = {
2578 "Net", "games.net",
2579 default_params,
2580 game_fetch_preset,
2581 decode_params,
2582 encode_params,
2583 free_params,
2584 dup_params,
2585 TRUE, game_configure, custom_params,
2586 validate_params,
2587 new_game_desc,
2588 game_free_aux_info,
2589 validate_desc,
2590 new_game,
2591 dup_game,
2592 free_game,
2593 TRUE, solve_game,
2594 FALSE, game_text_format,
2595 new_ui,
2596 free_ui,
2597 make_move,
2598 game_size,
2599 game_colours,
2600 game_new_drawstate,
2601 game_free_drawstate,
2602 game_redraw,
2603 game_anim_length,
2604 game_flash_length,
2605 game_wants_statusbar,
2606 FALSE, game_timing_state,
2607 };