Having looked at Keen's clue selection code, I also notice that the
[sgt/puzzles] / loopy.c
1 /*
2 * loopy.c:
3 *
4 * An implementation of the Nikoli game 'Loop the loop'.
5 * (c) Mike Pinna, 2005, 2006
6 * Substantially rewritten to allowing for more general types of grid.
7 * (c) Lambros Lambrou 2008
8 *
9 * vim: set shiftwidth=4 :set textwidth=80:
10 */
11
12 /*
13 * Possible future solver enhancements:
14 *
15 * - There's an interesting deductive technique which makes use
16 * of topology rather than just graph theory. Each _face_ in
17 * the grid is either inside or outside the loop; you can tell
18 * that two faces are on the same side of the loop if they're
19 * separated by a LINE_NO (or, more generally, by a path
20 * crossing no LINE_UNKNOWNs and an even number of LINE_YESes),
21 * and on the opposite side of the loop if they're separated by
22 * a LINE_YES (or an odd number of LINE_YESes and no
23 * LINE_UNKNOWNs). Oh, and any face separated from the outside
24 * of the grid by a LINE_YES or a LINE_NO is on the inside or
25 * outside respectively. So if you can track this for all
26 * faces, you figure out the state of the line between a pair
27 * once their relative insideness is known.
28 * + The way I envisage this working is simply to keep an edsf
29 * of all _faces_, which indicates whether they're on
30 * opposite sides of the loop from one another. We also
31 * include a special entry in the edsf for the infinite
32 * exterior "face".
33 * + So, the simple way to do this is to just go through the
34 * edges: every time we see an edge in a state other than
35 * LINE_UNKNOWN which separates two faces that aren't in the
36 * same edsf class, we can rectify that by merging the
37 * classes. Then, conversely, an edge in LINE_UNKNOWN state
38 * which separates two faces that _are_ in the same edsf
39 * class can immediately have its state determined.
40 * + But you can go one better, if you're prepared to loop
41 * over all _pairs_ of edges. Suppose we have edges A and B,
42 * which respectively separate faces A1,A2 and B1,B2.
43 * Suppose that A,B are in the same edge-edsf class and that
44 * A1,B1 (wlog) are in the same face-edsf class; then we can
45 * immediately place A2,B2 into the same face-edsf class (as
46 * each other, not as A1 and A2) one way round or the other.
47 * And conversely again, if A1,B1 are in the same face-edsf
48 * class and so are A2,B2, then we can put A,B into the same
49 * face-edsf class.
50 * * Of course, this deduction requires a quadratic-time
51 * loop over all pairs of edges in the grid, so it should
52 * be reserved until there's nothing easier left to be
53 * done.
54 *
55 * - The generalised grid support has made me (SGT) notice a
56 * possible extension to the loop-avoidance code. When you have
57 * a path of connected edges such that no other edges at all
58 * are incident on any vertex in the middle of the path - or,
59 * alternatively, such that any such edges are already known to
60 * be LINE_NO - then you know those edges are either all
61 * LINE_YES or all LINE_NO. Hence you can mentally merge the
62 * entire path into a single long curly edge for the purposes
63 * of loop avoidance, and look directly at whether or not the
64 * extreme endpoints of the path are connected by some other
65 * route. I find this coming up fairly often when I play on the
66 * octagonal grid setting, so it might be worth implementing in
67 * the solver.
68 *
69 * - (Just a speed optimisation.) Consider some todo list queue where every
70 * time we modify something we mark it for consideration by other bits of
71 * the solver, to save iteration over things that have already been done.
72 */
73
74 #include <stdio.h>
75 #include <stdlib.h>
76 #include <stddef.h>
77 #include <string.h>
78 #include <assert.h>
79 #include <ctype.h>
80 #include <math.h>
81
82 #include "puzzles.h"
83 #include "tree234.h"
84 #include "grid.h"
85
86 /* Debugging options */
87
88 /*
89 #define DEBUG_CACHES
90 #define SHOW_WORKING
91 #define DEBUG_DLINES
92 */
93
94 /* ----------------------------------------------------------------------
95 * Struct, enum and function declarations
96 */
97
98 enum {
99 COL_BACKGROUND,
100 COL_FOREGROUND,
101 COL_LINEUNKNOWN,
102 COL_HIGHLIGHT,
103 COL_MISTAKE,
104 COL_SATISFIED,
105 COL_FAINT,
106 NCOLOURS
107 };
108
109 struct game_state {
110 grid *game_grid; /* ref-counted (internally) */
111
112 /* Put -1 in a face that doesn't get a clue */
113 signed char *clues;
114
115 /* Array of line states, to store whether each line is
116 * YES, NO or UNKNOWN */
117 char *lines;
118
119 unsigned char *line_errors;
120
121 int solved;
122 int cheated;
123
124 /* Used in game_text_format(), so that it knows what type of
125 * grid it's trying to render as ASCII text. */
126 int grid_type;
127 };
128
129 enum solver_status {
130 SOLVER_SOLVED, /* This is the only solution the solver could find */
131 SOLVER_MISTAKE, /* This is definitely not a solution */
132 SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
133 SOLVER_INCOMPLETE /* This may be a partial solution */
134 };
135
136 /* ------ Solver state ------ */
137 typedef struct solver_state {
138 game_state *state;
139 enum solver_status solver_status;
140 /* NB looplen is the number of dots that are joined together at a point, ie a
141 * looplen of 1 means there are no lines to a particular dot */
142 int *looplen;
143
144 /* Difficulty level of solver. Used by solver functions that want to
145 * vary their behaviour depending on the requested difficulty level. */
146 int diff;
147
148 /* caches */
149 char *dot_yes_count;
150 char *dot_no_count;
151 char *face_yes_count;
152 char *face_no_count;
153 char *dot_solved, *face_solved;
154 int *dotdsf;
155
156 /* Information for Normal level deductions:
157 * For each dline, store a bitmask for whether we know:
158 * (bit 0) at least one is YES
159 * (bit 1) at most one is YES */
160 char *dlines;
161
162 /* Hard level information */
163 int *linedsf;
164 } solver_state;
165
166 /*
167 * Difficulty levels. I do some macro ickery here to ensure that my
168 * enum and the various forms of my name list always match up.
169 */
170
171 #define DIFFLIST(A) \
172 A(EASY,Easy,e) \
173 A(NORMAL,Normal,n) \
174 A(TRICKY,Tricky,t) \
175 A(HARD,Hard,h)
176 #define ENUM(upper,title,lower) DIFF_ ## upper,
177 #define TITLE(upper,title,lower) #title,
178 #define ENCODE(upper,title,lower) #lower
179 #define CONFIG(upper,title,lower) ":" #title
180 enum { DIFFLIST(ENUM) DIFF_MAX };
181 static char const *const diffnames[] = { DIFFLIST(TITLE) };
182 static char const diffchars[] = DIFFLIST(ENCODE);
183 #define DIFFCONFIG DIFFLIST(CONFIG)
184
185 /*
186 * Solver routines, sorted roughly in order of computational cost.
187 * The solver will run the faster deductions first, and slower deductions are
188 * only invoked when the faster deductions are unable to make progress.
189 * Each function is associated with a difficulty level, so that the generated
190 * puzzles are solvable by applying only the functions with the chosen
191 * difficulty level or lower.
192 */
193 #define SOLVERLIST(A) \
194 A(trivial_deductions, DIFF_EASY) \
195 A(dline_deductions, DIFF_NORMAL) \
196 A(linedsf_deductions, DIFF_HARD) \
197 A(loop_deductions, DIFF_EASY)
198 #define SOLVER_FN_DECL(fn,diff) static int fn(solver_state *);
199 #define SOLVER_FN(fn,diff) &fn,
200 #define SOLVER_DIFF(fn,diff) diff,
201 SOLVERLIST(SOLVER_FN_DECL)
202 static int (*(solver_fns[]))(solver_state *) = { SOLVERLIST(SOLVER_FN) };
203 static int const solver_diffs[] = { SOLVERLIST(SOLVER_DIFF) };
204 const int NUM_SOLVERS = sizeof(solver_diffs)/sizeof(*solver_diffs);
205
206 struct game_params {
207 int w, h;
208 int diff;
209 int type;
210 };
211
212 /* line_drawstate is the same as line_state, but with the extra ERROR
213 * possibility. The drawing code copies line_state to line_drawstate,
214 * except in the case that the line is an error. */
215 enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO };
216 enum line_drawstate { DS_LINE_YES, DS_LINE_UNKNOWN,
217 DS_LINE_NO, DS_LINE_ERROR };
218
219 #define OPP(line_state) \
220 (2 - line_state)
221
222
223 struct game_drawstate {
224 int started;
225 int tilesize;
226 int flashing;
227 int *textx, *texty;
228 char *lines;
229 char *clue_error;
230 char *clue_satisfied;
231 };
232
233 static char *validate_desc(game_params *params, char *desc);
234 static int dot_order(const game_state* state, int i, char line_type);
235 static int face_order(const game_state* state, int i, char line_type);
236 static solver_state *solve_game_rec(const solver_state *sstate);
237
238 #ifdef DEBUG_CACHES
239 static void check_caches(const solver_state* sstate);
240 #else
241 #define check_caches(s)
242 #endif
243
244 /* ------- List of grid generators ------- */
245 #define GRIDLIST(A) \
246 A(Squares,GRID_SQUARE,3,3) \
247 A(Triangular,GRID_TRIANGULAR,3,3) \
248 A(Honeycomb,GRID_HONEYCOMB,3,3) \
249 A(Snub-Square,GRID_SNUBSQUARE,3,3) \
250 A(Cairo,GRID_CAIRO,3,4) \
251 A(Great-Hexagonal,GRID_GREATHEXAGONAL,3,3) \
252 A(Octagonal,GRID_OCTAGONAL,3,3) \
253 A(Kites,GRID_KITE,3,3) \
254 A(Floret,GRID_FLORET,1,2) \
255 A(Dodecagonal,GRID_DODECAGONAL,2,2) \
256 A(Great-Dodecagonal,GRID_GREATDODECAGONAL,2,2) \
257 A(Penrose (kite/dart),GRID_PENROSE_P2,3,3) \
258 A(Penrose (rhombs),GRID_PENROSE_P3,3,3)
259
260 #define GRID_NAME(title,type,amin,omin) #title,
261 #define GRID_CONFIG(title,type,amin,omin) ":" #title
262 #define GRID_TYPE(title,type,amin,omin) type,
263 #define GRID_SIZES(title,type,amin,omin) \
264 {amin, omin, \
265 "Width and height for this grid type must both be at least " #amin, \
266 "At least one of width and height for this grid type must be at least " #omin,},
267 static char const *const gridnames[] = { GRIDLIST(GRID_NAME) };
268 #define GRID_CONFIGS GRIDLIST(GRID_CONFIG)
269 static grid_type grid_types[] = { GRIDLIST(GRID_TYPE) };
270 #define NUM_GRID_TYPES (sizeof(grid_types) / sizeof(grid_types[0]))
271 static const struct {
272 int amin, omin;
273 char *aerr, *oerr;
274 } grid_size_limits[] = { GRIDLIST(GRID_SIZES) };
275
276 /* Generates a (dynamically allocated) new grid, according to the
277 * type and size requested in params. Does nothing if the grid is already
278 * generated. */
279 static grid *loopy_generate_grid(game_params *params, char *grid_desc)
280 {
281 return grid_new(grid_types[params->type], params->w, params->h, grid_desc);
282 }
283
284 /* ----------------------------------------------------------------------
285 * Preprocessor magic
286 */
287
288 /* General constants */
289 #define PREFERRED_TILE_SIZE 32
290 #define BORDER(tilesize) ((tilesize) / 2)
291 #define FLASH_TIME 0.5F
292
293 #define BIT_SET(field, bit) ((field) & (1<<(bit)))
294
295 #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
296 ((field) |= (1<<(bit)), TRUE))
297
298 #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
299 ((field) &= ~(1<<(bit)), TRUE) : FALSE)
300
301 #define CLUE2CHAR(c) \
302 ((c < 0) ? ' ' : c < 10 ? c + '0' : c - 10 + 'A')
303
304 /* ----------------------------------------------------------------------
305 * General struct manipulation and other straightforward code
306 */
307
308 static game_state *dup_game(game_state *state)
309 {
310 game_state *ret = snew(game_state);
311
312 ret->game_grid = state->game_grid;
313 ret->game_grid->refcount++;
314
315 ret->solved = state->solved;
316 ret->cheated = state->cheated;
317
318 ret->clues = snewn(state->game_grid->num_faces, signed char);
319 memcpy(ret->clues, state->clues, state->game_grid->num_faces);
320
321 ret->lines = snewn(state->game_grid->num_edges, char);
322 memcpy(ret->lines, state->lines, state->game_grid->num_edges);
323
324 ret->line_errors = snewn(state->game_grid->num_edges, unsigned char);
325 memcpy(ret->line_errors, state->line_errors, state->game_grid->num_edges);
326
327 ret->grid_type = state->grid_type;
328 return ret;
329 }
330
331 static void free_game(game_state *state)
332 {
333 if (state) {
334 grid_free(state->game_grid);
335 sfree(state->clues);
336 sfree(state->lines);
337 sfree(state->line_errors);
338 sfree(state);
339 }
340 }
341
342 static solver_state *new_solver_state(game_state *state, int diff) {
343 int i;
344 int num_dots = state->game_grid->num_dots;
345 int num_faces = state->game_grid->num_faces;
346 int num_edges = state->game_grid->num_edges;
347 solver_state *ret = snew(solver_state);
348
349 ret->state = dup_game(state);
350
351 ret->solver_status = SOLVER_INCOMPLETE;
352 ret->diff = diff;
353
354 ret->dotdsf = snew_dsf(num_dots);
355 ret->looplen = snewn(num_dots, int);
356
357 for (i = 0; i < num_dots; i++) {
358 ret->looplen[i] = 1;
359 }
360
361 ret->dot_solved = snewn(num_dots, char);
362 ret->face_solved = snewn(num_faces, char);
363 memset(ret->dot_solved, FALSE, num_dots);
364 memset(ret->face_solved, FALSE, num_faces);
365
366 ret->dot_yes_count = snewn(num_dots, char);
367 memset(ret->dot_yes_count, 0, num_dots);
368 ret->dot_no_count = snewn(num_dots, char);
369 memset(ret->dot_no_count, 0, num_dots);
370 ret->face_yes_count = snewn(num_faces, char);
371 memset(ret->face_yes_count, 0, num_faces);
372 ret->face_no_count = snewn(num_faces, char);
373 memset(ret->face_no_count, 0, num_faces);
374
375 if (diff < DIFF_NORMAL) {
376 ret->dlines = NULL;
377 } else {
378 ret->dlines = snewn(2*num_edges, char);
379 memset(ret->dlines, 0, 2*num_edges);
380 }
381
382 if (diff < DIFF_HARD) {
383 ret->linedsf = NULL;
384 } else {
385 ret->linedsf = snew_dsf(state->game_grid->num_edges);
386 }
387
388 return ret;
389 }
390
391 static void free_solver_state(solver_state *sstate) {
392 if (sstate) {
393 free_game(sstate->state);
394 sfree(sstate->dotdsf);
395 sfree(sstate->looplen);
396 sfree(sstate->dot_solved);
397 sfree(sstate->face_solved);
398 sfree(sstate->dot_yes_count);
399 sfree(sstate->dot_no_count);
400 sfree(sstate->face_yes_count);
401 sfree(sstate->face_no_count);
402
403 /* OK, because sfree(NULL) is a no-op */
404 sfree(sstate->dlines);
405 sfree(sstate->linedsf);
406
407 sfree(sstate);
408 }
409 }
410
411 static solver_state *dup_solver_state(const solver_state *sstate) {
412 game_state *state = sstate->state;
413 int num_dots = state->game_grid->num_dots;
414 int num_faces = state->game_grid->num_faces;
415 int num_edges = state->game_grid->num_edges;
416 solver_state *ret = snew(solver_state);
417
418 ret->state = state = dup_game(sstate->state);
419
420 ret->solver_status = sstate->solver_status;
421 ret->diff = sstate->diff;
422
423 ret->dotdsf = snewn(num_dots, int);
424 ret->looplen = snewn(num_dots, int);
425 memcpy(ret->dotdsf, sstate->dotdsf,
426 num_dots * sizeof(int));
427 memcpy(ret->looplen, sstate->looplen,
428 num_dots * sizeof(int));
429
430 ret->dot_solved = snewn(num_dots, char);
431 ret->face_solved = snewn(num_faces, char);
432 memcpy(ret->dot_solved, sstate->dot_solved, num_dots);
433 memcpy(ret->face_solved, sstate->face_solved, num_faces);
434
435 ret->dot_yes_count = snewn(num_dots, char);
436 memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots);
437 ret->dot_no_count = snewn(num_dots, char);
438 memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots);
439
440 ret->face_yes_count = snewn(num_faces, char);
441 memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces);
442 ret->face_no_count = snewn(num_faces, char);
443 memcpy(ret->face_no_count, sstate->face_no_count, num_faces);
444
445 if (sstate->dlines) {
446 ret->dlines = snewn(2*num_edges, char);
447 memcpy(ret->dlines, sstate->dlines,
448 2*num_edges);
449 } else {
450 ret->dlines = NULL;
451 }
452
453 if (sstate->linedsf) {
454 ret->linedsf = snewn(num_edges, int);
455 memcpy(ret->linedsf, sstate->linedsf,
456 num_edges * sizeof(int));
457 } else {
458 ret->linedsf = NULL;
459 }
460
461 return ret;
462 }
463
464 static game_params *default_params(void)
465 {
466 game_params *ret = snew(game_params);
467
468 #ifdef SLOW_SYSTEM
469 ret->h = 7;
470 ret->w = 7;
471 #else
472 ret->h = 10;
473 ret->w = 10;
474 #endif
475 ret->diff = DIFF_EASY;
476 ret->type = 0;
477
478 return ret;
479 }
480
481 static game_params *dup_params(game_params *params)
482 {
483 game_params *ret = snew(game_params);
484
485 *ret = *params; /* structure copy */
486 return ret;
487 }
488
489 static const game_params presets[] = {
490 #ifdef SMALL_SCREEN
491 { 7, 7, DIFF_EASY, 0 },
492 { 7, 7, DIFF_NORMAL, 0 },
493 { 7, 7, DIFF_HARD, 0 },
494 { 7, 7, DIFF_HARD, 1 },
495 { 7, 7, DIFF_HARD, 2 },
496 { 5, 5, DIFF_HARD, 3 },
497 { 7, 7, DIFF_HARD, 4 },
498 { 5, 4, DIFF_HARD, 5 },
499 { 5, 5, DIFF_HARD, 6 },
500 { 5, 5, DIFF_HARD, 7 },
501 { 3, 3, DIFF_HARD, 8 },
502 { 3, 3, DIFF_HARD, 9 },
503 { 3, 3, DIFF_HARD, 10 },
504 { 6, 6, DIFF_HARD, 11 },
505 { 6, 6, DIFF_HARD, 12 },
506 #else
507 { 7, 7, DIFF_EASY, 0 },
508 { 10, 10, DIFF_EASY, 0 },
509 { 7, 7, DIFF_NORMAL, 0 },
510 { 10, 10, DIFF_NORMAL, 0 },
511 { 7, 7, DIFF_HARD, 0 },
512 { 10, 10, DIFF_HARD, 0 },
513 { 10, 10, DIFF_HARD, 1 },
514 { 12, 10, DIFF_HARD, 2 },
515 { 7, 7, DIFF_HARD, 3 },
516 { 9, 9, DIFF_HARD, 4 },
517 { 5, 4, DIFF_HARD, 5 },
518 { 7, 7, DIFF_HARD, 6 },
519 { 5, 5, DIFF_HARD, 7 },
520 { 5, 5, DIFF_HARD, 8 },
521 { 5, 4, DIFF_HARD, 9 },
522 { 5, 4, DIFF_HARD, 10 },
523 { 10, 10, DIFF_HARD, 11 },
524 { 10, 10, DIFF_HARD, 12 }
525 #endif
526 };
527
528 static int game_fetch_preset(int i, char **name, game_params **params)
529 {
530 game_params *tmppar;
531 char buf[80];
532
533 if (i < 0 || i >= lenof(presets))
534 return FALSE;
535
536 tmppar = snew(game_params);
537 *tmppar = presets[i];
538 *params = tmppar;
539 sprintf(buf, "%dx%d %s - %s", tmppar->h, tmppar->w,
540 gridnames[tmppar->type], diffnames[tmppar->diff]);
541 *name = dupstr(buf);
542
543 return TRUE;
544 }
545
546 static void free_params(game_params *params)
547 {
548 sfree(params);
549 }
550
551 static void decode_params(game_params *params, char const *string)
552 {
553 params->h = params->w = atoi(string);
554 params->diff = DIFF_EASY;
555 while (*string && isdigit((unsigned char)*string)) string++;
556 if (*string == 'x') {
557 string++;
558 params->h = atoi(string);
559 while (*string && isdigit((unsigned char)*string)) string++;
560 }
561 if (*string == 't') {
562 string++;
563 params->type = atoi(string);
564 while (*string && isdigit((unsigned char)*string)) string++;
565 }
566 if (*string == 'd') {
567 int i;
568 string++;
569 for (i = 0; i < DIFF_MAX; i++)
570 if (*string == diffchars[i])
571 params->diff = i;
572 if (*string) string++;
573 }
574 }
575
576 static char *encode_params(game_params *params, int full)
577 {
578 char str[80];
579 sprintf(str, "%dx%dt%d", params->w, params->h, params->type);
580 if (full)
581 sprintf(str + strlen(str), "d%c", diffchars[params->diff]);
582 return dupstr(str);
583 }
584
585 static config_item *game_configure(game_params *params)
586 {
587 config_item *ret;
588 char buf[80];
589
590 ret = snewn(5, config_item);
591
592 ret[0].name = "Width";
593 ret[0].type = C_STRING;
594 sprintf(buf, "%d", params->w);
595 ret[0].sval = dupstr(buf);
596 ret[0].ival = 0;
597
598 ret[1].name = "Height";
599 ret[1].type = C_STRING;
600 sprintf(buf, "%d", params->h);
601 ret[1].sval = dupstr(buf);
602 ret[1].ival = 0;
603
604 ret[2].name = "Grid type";
605 ret[2].type = C_CHOICES;
606 ret[2].sval = GRID_CONFIGS;
607 ret[2].ival = params->type;
608
609 ret[3].name = "Difficulty";
610 ret[3].type = C_CHOICES;
611 ret[3].sval = DIFFCONFIG;
612 ret[3].ival = params->diff;
613
614 ret[4].name = NULL;
615 ret[4].type = C_END;
616 ret[4].sval = NULL;
617 ret[4].ival = 0;
618
619 return ret;
620 }
621
622 static game_params *custom_params(config_item *cfg)
623 {
624 game_params *ret = snew(game_params);
625
626 ret->w = atoi(cfg[0].sval);
627 ret->h = atoi(cfg[1].sval);
628 ret->type = cfg[2].ival;
629 ret->diff = cfg[3].ival;
630
631 return ret;
632 }
633
634 static char *validate_params(game_params *params, int full)
635 {
636 if (params->type < 0 || params->type >= NUM_GRID_TYPES)
637 return "Illegal grid type";
638 if (params->w < grid_size_limits[params->type].amin ||
639 params->h < grid_size_limits[params->type].amin)
640 return grid_size_limits[params->type].aerr;
641 if (params->w < grid_size_limits[params->type].omin &&
642 params->h < grid_size_limits[params->type].omin)
643 return grid_size_limits[params->type].oerr;
644
645 /*
646 * This shouldn't be able to happen at all, since decode_params
647 * and custom_params will never generate anything that isn't
648 * within range.
649 */
650 assert(params->diff < DIFF_MAX);
651
652 return NULL;
653 }
654
655 /* Returns a newly allocated string describing the current puzzle */
656 static char *state_to_text(const game_state *state)
657 {
658 grid *g = state->game_grid;
659 char *retval;
660 int num_faces = g->num_faces;
661 char *description = snewn(num_faces + 1, char);
662 char *dp = description;
663 int empty_count = 0;
664 int i;
665
666 for (i = 0; i < num_faces; i++) {
667 if (state->clues[i] < 0) {
668 if (empty_count > 25) {
669 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
670 empty_count = 0;
671 }
672 empty_count++;
673 } else {
674 if (empty_count) {
675 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
676 empty_count = 0;
677 }
678 dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i]));
679 }
680 }
681
682 if (empty_count)
683 dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
684
685 retval = dupstr(description);
686 sfree(description);
687
688 return retval;
689 }
690
691 #define GRID_DESC_SEP '_'
692
693 /* Splits up a (optional) grid_desc from the game desc. Returns the
694 * grid_desc (which needs freeing) and updates the desc pointer to
695 * start of real desc, or returns NULL if no desc. */
696 static char *extract_grid_desc(char **desc)
697 {
698 char *sep = strchr(*desc, GRID_DESC_SEP), *gd;
699 int gd_len;
700
701 if (!sep) return NULL;
702
703 gd_len = sep - (*desc);
704 gd = snewn(gd_len+1, char);
705 memcpy(gd, *desc, gd_len);
706 gd[gd_len] = '\0';
707
708 *desc = sep+1;
709
710 return gd;
711 }
712
713 /* We require that the params pass the test in validate_params and that the
714 * description fills the entire game area */
715 static char *validate_desc(game_params *params, char *desc)
716 {
717 int count = 0;
718 grid *g;
719 char *grid_desc, *ret;
720
721 /* It's pretty inefficient to do this just for validation. All we need to
722 * know is the precise number of faces. */
723 grid_desc = extract_grid_desc(&desc);
724 ret = grid_validate_desc(grid_types[params->type], params->w, params->h, grid_desc);
725 if (ret) return ret;
726
727 g = loopy_generate_grid(params, grid_desc);
728 if (grid_desc) sfree(grid_desc);
729
730 for (; *desc; ++desc) {
731 if ((*desc >= '0' && *desc <= '9') || (*desc >= 'A' && *desc <= 'Z')) {
732 count++;
733 continue;
734 }
735 if (*desc >= 'a') {
736 count += *desc - 'a' + 1;
737 continue;
738 }
739 return "Unknown character in description";
740 }
741
742 if (count < g->num_faces)
743 return "Description too short for board size";
744 if (count > g->num_faces)
745 return "Description too long for board size";
746
747 grid_free(g);
748
749 return NULL;
750 }
751
752 /* Sums the lengths of the numbers in range [0,n) */
753 /* See equivalent function in solo.c for justification of this. */
754 static int len_0_to_n(int n)
755 {
756 int len = 1; /* Counting 0 as a bit of a special case */
757 int i;
758
759 for (i = 1; i < n; i *= 10) {
760 len += max(n - i, 0);
761 }
762
763 return len;
764 }
765
766 static char *encode_solve_move(const game_state *state)
767 {
768 int len;
769 char *ret, *p;
770 int i;
771 int num_edges = state->game_grid->num_edges;
772
773 /* This is going to return a string representing the moves needed to set
774 * every line in a grid to be the same as the ones in 'state'. The exact
775 * length of this string is predictable. */
776
777 len = 1; /* Count the 'S' prefix */
778 /* Numbers in all lines */
779 len += len_0_to_n(num_edges);
780 /* For each line we also have a letter */
781 len += num_edges;
782
783 ret = snewn(len + 1, char);
784 p = ret;
785
786 p += sprintf(p, "S");
787
788 for (i = 0; i < num_edges; i++) {
789 switch (state->lines[i]) {
790 case LINE_YES:
791 p += sprintf(p, "%dy", i);
792 break;
793 case LINE_NO:
794 p += sprintf(p, "%dn", i);
795 break;
796 }
797 }
798
799 /* No point in doing sums like that if they're going to be wrong */
800 assert(strlen(ret) <= (size_t)len);
801 return ret;
802 }
803
804 static game_ui *new_ui(game_state *state)
805 {
806 return NULL;
807 }
808
809 static void free_ui(game_ui *ui)
810 {
811 }
812
813 static char *encode_ui(game_ui *ui)
814 {
815 return NULL;
816 }
817
818 static void decode_ui(game_ui *ui, char *encoding)
819 {
820 }
821
822 static void game_changed_state(game_ui *ui, game_state *oldstate,
823 game_state *newstate)
824 {
825 }
826
827 static void game_compute_size(game_params *params, int tilesize,
828 int *x, int *y)
829 {
830 int grid_width, grid_height, rendered_width, rendered_height;
831 int g_tilesize;
832
833 grid_compute_size(grid_types[params->type], params->w, params->h,
834 &g_tilesize, &grid_width, &grid_height);
835
836 /* multiply first to minimise rounding error on integer division */
837 rendered_width = grid_width * tilesize / g_tilesize;
838 rendered_height = grid_height * tilesize / g_tilesize;
839 *x = rendered_width + 2 * BORDER(tilesize) + 1;
840 *y = rendered_height + 2 * BORDER(tilesize) + 1;
841 }
842
843 static void game_set_size(drawing *dr, game_drawstate *ds,
844 game_params *params, int tilesize)
845 {
846 ds->tilesize = tilesize;
847 }
848
849 static float *game_colours(frontend *fe, int *ncolours)
850 {
851 float *ret = snewn(4 * NCOLOURS, float);
852
853 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
854
855 ret[COL_FOREGROUND * 3 + 0] = 0.0F;
856 ret[COL_FOREGROUND * 3 + 1] = 0.0F;
857 ret[COL_FOREGROUND * 3 + 2] = 0.0F;
858
859 /*
860 * We want COL_LINEUNKNOWN to be a yellow which is a bit darker
861 * than the background. (I previously set it to 0.8,0.8,0, but
862 * found that this went badly with the 0.8,0.8,0.8 favoured as a
863 * background by the Java frontend.)
864 */
865 ret[COL_LINEUNKNOWN * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
866 ret[COL_LINEUNKNOWN * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
867 ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F;
868
869 ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
870 ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
871 ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
872
873 ret[COL_MISTAKE * 3 + 0] = 1.0F;
874 ret[COL_MISTAKE * 3 + 1] = 0.0F;
875 ret[COL_MISTAKE * 3 + 2] = 0.0F;
876
877 ret[COL_SATISFIED * 3 + 0] = 0.0F;
878 ret[COL_SATISFIED * 3 + 1] = 0.0F;
879 ret[COL_SATISFIED * 3 + 2] = 0.0F;
880
881 /* We want the faint lines to be a bit darker than the background.
882 * Except if the background is pretty dark already; then it ought to be a
883 * bit lighter. Oy vey.
884 */
885 ret[COL_FAINT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F;
886 ret[COL_FAINT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F;
887 ret[COL_FAINT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.9F;
888
889 *ncolours = NCOLOURS;
890 return ret;
891 }
892
893 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
894 {
895 struct game_drawstate *ds = snew(struct game_drawstate);
896 int num_faces = state->game_grid->num_faces;
897 int num_edges = state->game_grid->num_edges;
898 int i;
899
900 ds->tilesize = 0;
901 ds->started = 0;
902 ds->lines = snewn(num_edges, char);
903 ds->clue_error = snewn(num_faces, char);
904 ds->clue_satisfied = snewn(num_faces, char);
905 ds->textx = snewn(num_faces, int);
906 ds->texty = snewn(num_faces, int);
907 ds->flashing = 0;
908
909 memset(ds->lines, LINE_UNKNOWN, num_edges);
910 memset(ds->clue_error, 0, num_faces);
911 memset(ds->clue_satisfied, 0, num_faces);
912 for (i = 0; i < num_faces; i++)
913 ds->textx[i] = ds->texty[i] = -1;
914
915 return ds;
916 }
917
918 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
919 {
920 sfree(ds->textx);
921 sfree(ds->texty);
922 sfree(ds->clue_error);
923 sfree(ds->clue_satisfied);
924 sfree(ds->lines);
925 sfree(ds);
926 }
927
928 static int game_timing_state(game_state *state, game_ui *ui)
929 {
930 return TRUE;
931 }
932
933 static float game_anim_length(game_state *oldstate, game_state *newstate,
934 int dir, game_ui *ui)
935 {
936 return 0.0F;
937 }
938
939 static int game_can_format_as_text_now(game_params *params)
940 {
941 if (params->type != 0)
942 return FALSE;
943 return TRUE;
944 }
945
946 static char *game_text_format(game_state *state)
947 {
948 int w, h, W, H;
949 int x, y, i;
950 int cell_size;
951 char *ret;
952 grid *g = state->game_grid;
953 grid_face *f;
954
955 assert(state->grid_type == 0);
956
957 /* Work out the basic size unit */
958 f = g->faces; /* first face */
959 assert(f->order == 4);
960 /* The dots are ordered clockwise, so the two opposite
961 * corners are guaranteed to span the square */
962 cell_size = abs(f->dots[0]->x - f->dots[2]->x);
963
964 w = (g->highest_x - g->lowest_x) / cell_size;
965 h = (g->highest_y - g->lowest_y) / cell_size;
966
967 /* Create a blank "canvas" to "draw" on */
968 W = 2 * w + 2;
969 H = 2 * h + 1;
970 ret = snewn(W * H + 1, char);
971 for (y = 0; y < H; y++) {
972 for (x = 0; x < W-1; x++) {
973 ret[y*W + x] = ' ';
974 }
975 ret[y*W + W-1] = '\n';
976 }
977 ret[H*W] = '\0';
978
979 /* Fill in edge info */
980 for (i = 0; i < g->num_edges; i++) {
981 grid_edge *e = g->edges + i;
982 /* Cell coordinates, from (0,0) to (w-1,h-1) */
983 int x1 = (e->dot1->x - g->lowest_x) / cell_size;
984 int x2 = (e->dot2->x - g->lowest_x) / cell_size;
985 int y1 = (e->dot1->y - g->lowest_y) / cell_size;
986 int y2 = (e->dot2->y - g->lowest_y) / cell_size;
987 /* Midpoint, in canvas coordinates (canvas coordinates are just twice
988 * cell coordinates) */
989 x = x1 + x2;
990 y = y1 + y2;
991 switch (state->lines[i]) {
992 case LINE_YES:
993 ret[y*W + x] = (y1 == y2) ? '-' : '|';
994 break;
995 case LINE_NO:
996 ret[y*W + x] = 'x';
997 break;
998 case LINE_UNKNOWN:
999 break; /* already a space */
1000 default:
1001 assert(!"Illegal line state");
1002 }
1003 }
1004
1005 /* Fill in clues */
1006 for (i = 0; i < g->num_faces; i++) {
1007 int x1, x2, y1, y2;
1008
1009 f = g->faces + i;
1010 assert(f->order == 4);
1011 /* Cell coordinates, from (0,0) to (w-1,h-1) */
1012 x1 = (f->dots[0]->x - g->lowest_x) / cell_size;
1013 x2 = (f->dots[2]->x - g->lowest_x) / cell_size;
1014 y1 = (f->dots[0]->y - g->lowest_y) / cell_size;
1015 y2 = (f->dots[2]->y - g->lowest_y) / cell_size;
1016 /* Midpoint, in canvas coordinates */
1017 x = x1 + x2;
1018 y = y1 + y2;
1019 ret[y*W + x] = CLUE2CHAR(state->clues[i]);
1020 }
1021 return ret;
1022 }
1023
1024 /* ----------------------------------------------------------------------
1025 * Debug code
1026 */
1027
1028 #ifdef DEBUG_CACHES
1029 static void check_caches(const solver_state* sstate)
1030 {
1031 int i;
1032 const game_state *state = sstate->state;
1033 const grid *g = state->game_grid;
1034
1035 for (i = 0; i < g->num_dots; i++) {
1036 assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]);
1037 assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]);
1038 }
1039
1040 for (i = 0; i < g->num_faces; i++) {
1041 assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]);
1042 assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]);
1043 }
1044 }
1045
1046 #if 0
1047 #define check_caches(s) \
1048 do { \
1049 fprintf(stderr, "check_caches at line %d\n", __LINE__); \
1050 check_caches(s); \
1051 } while (0)
1052 #endif
1053 #endif /* DEBUG_CACHES */
1054
1055 /* ----------------------------------------------------------------------
1056 * Solver utility functions
1057 */
1058
1059 /* Sets the line (with index i) to the new state 'line_new', and updates
1060 * the cached counts of any affected faces and dots.
1061 * Returns TRUE if this actually changed the line's state. */
1062 static int solver_set_line(solver_state *sstate, int i,
1063 enum line_state line_new
1064 #ifdef SHOW_WORKING
1065 , const char *reason
1066 #endif
1067 )
1068 {
1069 game_state *state = sstate->state;
1070 grid *g;
1071 grid_edge *e;
1072
1073 assert(line_new != LINE_UNKNOWN);
1074
1075 check_caches(sstate);
1076
1077 if (state->lines[i] == line_new) {
1078 return FALSE; /* nothing changed */
1079 }
1080 state->lines[i] = line_new;
1081
1082 #ifdef SHOW_WORKING
1083 fprintf(stderr, "solver: set line [%d] to %s (%s)\n",
1084 i, line_new == LINE_YES ? "YES" : "NO",
1085 reason);
1086 #endif
1087
1088 g = state->game_grid;
1089 e = g->edges + i;
1090
1091 /* Update the cache for both dots and both faces affected by this. */
1092 if (line_new == LINE_YES) {
1093 sstate->dot_yes_count[e->dot1 - g->dots]++;
1094 sstate->dot_yes_count[e->dot2 - g->dots]++;
1095 if (e->face1) {
1096 sstate->face_yes_count[e->face1 - g->faces]++;
1097 }
1098 if (e->face2) {
1099 sstate->face_yes_count[e->face2 - g->faces]++;
1100 }
1101 } else {
1102 sstate->dot_no_count[e->dot1 - g->dots]++;
1103 sstate->dot_no_count[e->dot2 - g->dots]++;
1104 if (e->face1) {
1105 sstate->face_no_count[e->face1 - g->faces]++;
1106 }
1107 if (e->face2) {
1108 sstate->face_no_count[e->face2 - g->faces]++;
1109 }
1110 }
1111
1112 check_caches(sstate);
1113 return TRUE;
1114 }
1115
1116 #ifdef SHOW_WORKING
1117 #define solver_set_line(a, b, c) \
1118 solver_set_line(a, b, c, __FUNCTION__)
1119 #endif
1120
1121 /*
1122 * Merge two dots due to the existence of an edge between them.
1123 * Updates the dsf tracking equivalence classes, and keeps track of
1124 * the length of path each dot is currently a part of.
1125 * Returns TRUE if the dots were already linked, ie if they are part of a
1126 * closed loop, and false otherwise.
1127 */
1128 static int merge_dots(solver_state *sstate, int edge_index)
1129 {
1130 int i, j, len;
1131 grid *g = sstate->state->game_grid;
1132 grid_edge *e = g->edges + edge_index;
1133
1134 i = e->dot1 - g->dots;
1135 j = e->dot2 - g->dots;
1136
1137 i = dsf_canonify(sstate->dotdsf, i);
1138 j = dsf_canonify(sstate->dotdsf, j);
1139
1140 if (i == j) {
1141 return TRUE;
1142 } else {
1143 len = sstate->looplen[i] + sstate->looplen[j];
1144 dsf_merge(sstate->dotdsf, i, j);
1145 i = dsf_canonify(sstate->dotdsf, i);
1146 sstate->looplen[i] = len;
1147 return FALSE;
1148 }
1149 }
1150
1151 /* Merge two lines because the solver has deduced that they must be either
1152 * identical or opposite. Returns TRUE if this is new information, otherwise
1153 * FALSE. */
1154 static int merge_lines(solver_state *sstate, int i, int j, int inverse
1155 #ifdef SHOW_WORKING
1156 , const char *reason
1157 #endif
1158 )
1159 {
1160 int inv_tmp;
1161
1162 assert(i < sstate->state->game_grid->num_edges);
1163 assert(j < sstate->state->game_grid->num_edges);
1164
1165 i = edsf_canonify(sstate->linedsf, i, &inv_tmp);
1166 inverse ^= inv_tmp;
1167 j = edsf_canonify(sstate->linedsf, j, &inv_tmp);
1168 inverse ^= inv_tmp;
1169
1170 edsf_merge(sstate->linedsf, i, j, inverse);
1171
1172 #ifdef SHOW_WORKING
1173 if (i != j) {
1174 fprintf(stderr, "%s [%d] [%d] %s(%s)\n",
1175 __FUNCTION__, i, j,
1176 inverse ? "inverse " : "", reason);
1177 }
1178 #endif
1179 return (i != j);
1180 }
1181
1182 #ifdef SHOW_WORKING
1183 #define merge_lines(a, b, c, d) \
1184 merge_lines(a, b, c, d, __FUNCTION__)
1185 #endif
1186
1187 /* Count the number of lines of a particular type currently going into the
1188 * given dot. */
1189 static int dot_order(const game_state* state, int dot, char line_type)
1190 {
1191 int n = 0;
1192 grid *g = state->game_grid;
1193 grid_dot *d = g->dots + dot;
1194 int i;
1195
1196 for (i = 0; i < d->order; i++) {
1197 grid_edge *e = d->edges[i];
1198 if (state->lines[e - g->edges] == line_type)
1199 ++n;
1200 }
1201 return n;
1202 }
1203
1204 /* Count the number of lines of a particular type currently surrounding the
1205 * given face */
1206 static int face_order(const game_state* state, int face, char line_type)
1207 {
1208 int n = 0;
1209 grid *g = state->game_grid;
1210 grid_face *f = g->faces + face;
1211 int i;
1212
1213 for (i = 0; i < f->order; i++) {
1214 grid_edge *e = f->edges[i];
1215 if (state->lines[e - g->edges] == line_type)
1216 ++n;
1217 }
1218 return n;
1219 }
1220
1221 /* Set all lines bordering a dot of type old_type to type new_type
1222 * Return value tells caller whether this function actually did anything */
1223 static int dot_setall(solver_state *sstate, int dot,
1224 char old_type, char new_type)
1225 {
1226 int retval = FALSE, r;
1227 game_state *state = sstate->state;
1228 grid *g;
1229 grid_dot *d;
1230 int i;
1231
1232 if (old_type == new_type)
1233 return FALSE;
1234
1235 g = state->game_grid;
1236 d = g->dots + dot;
1237
1238 for (i = 0; i < d->order; i++) {
1239 int line_index = d->edges[i] - g->edges;
1240 if (state->lines[line_index] == old_type) {
1241 r = solver_set_line(sstate, line_index, new_type);
1242 assert(r == TRUE);
1243 retval = TRUE;
1244 }
1245 }
1246 return retval;
1247 }
1248
1249 /* Set all lines bordering a face of type old_type to type new_type */
1250 static int face_setall(solver_state *sstate, int face,
1251 char old_type, char new_type)
1252 {
1253 int retval = FALSE, r;
1254 game_state *state = sstate->state;
1255 grid *g;
1256 grid_face *f;
1257 int i;
1258
1259 if (old_type == new_type)
1260 return FALSE;
1261
1262 g = state->game_grid;
1263 f = g->faces + face;
1264
1265 for (i = 0; i < f->order; i++) {
1266 int line_index = f->edges[i] - g->edges;
1267 if (state->lines[line_index] == old_type) {
1268 r = solver_set_line(sstate, line_index, new_type);
1269 assert(r == TRUE);
1270 retval = TRUE;
1271 }
1272 }
1273 return retval;
1274 }
1275
1276 /* ----------------------------------------------------------------------
1277 * Loop generation and clue removal
1278 */
1279
1280 /* We're going to store lists of current candidate faces for colouring black
1281 * or white.
1282 * Each face gets a 'score', which tells us how adding that face right
1283 * now would affect the curliness of the solution loop. We're trying to
1284 * maximise that quantity so will bias our random selection of faces to
1285 * colour those with high scores */
1286 struct face_score {
1287 int white_score;
1288 int black_score;
1289 unsigned long random;
1290 /* No need to store a grid_face* here. The 'face_scores' array will
1291 * be a list of 'face_score' objects, one for each face of the grid, so
1292 * the position (index) within the 'face_scores' array will determine
1293 * which face corresponds to a particular face_score.
1294 * Having a single 'face_scores' array for all faces simplifies memory
1295 * management, and probably improves performance, because we don't have to
1296 * malloc/free each individual face_score, and we don't have to maintain
1297 * a mapping from grid_face* pointers to face_score* pointers.
1298 */
1299 };
1300
1301 static int generic_sort_cmpfn(void *v1, void *v2, size_t offset)
1302 {
1303 struct face_score *f1 = v1;
1304 struct face_score *f2 = v2;
1305 int r;
1306
1307 r = *(int *)((char *)f2 + offset) - *(int *)((char *)f1 + offset);
1308 if (r) {
1309 return r;
1310 }
1311
1312 if (f1->random < f2->random)
1313 return -1;
1314 else if (f1->random > f2->random)
1315 return 1;
1316
1317 /*
1318 * It's _just_ possible that two faces might have been given
1319 * the same random value. In that situation, fall back to
1320 * comparing based on the positions within the face_scores list.
1321 * This introduces a tiny directional bias, but not a significant one.
1322 */
1323 return f1 - f2;
1324 }
1325
1326 static int white_sort_cmpfn(void *v1, void *v2)
1327 {
1328 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,white_score));
1329 }
1330
1331 static int black_sort_cmpfn(void *v1, void *v2)
1332 {
1333 return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,black_score));
1334 }
1335
1336 enum face_colour { FACE_WHITE, FACE_GREY, FACE_BLACK };
1337
1338 /* face should be of type grid_face* here. */
1339 #define FACE_COLOUR(face) \
1340 ( (face) == NULL ? FACE_BLACK : \
1341 board[(face) - g->faces] )
1342
1343 /* 'board' is an array of these enums, indicating which faces are
1344 * currently black/white/grey. 'colour' is FACE_WHITE or FACE_BLACK.
1345 * Returns whether it's legal to colour the given face with this colour. */
1346 static int can_colour_face(grid *g, char* board, int face_index,
1347 enum face_colour colour)
1348 {
1349 int i, j;
1350 grid_face *test_face = g->faces + face_index;
1351 grid_face *starting_face, *current_face;
1352 grid_dot *starting_dot;
1353 int transitions;
1354 int current_state, s; /* booleans: equal or not-equal to 'colour' */
1355 int found_same_coloured_neighbour = FALSE;
1356 assert(board[face_index] != colour);
1357
1358 /* Can only consider a face for colouring if it's adjacent to a face
1359 * with the same colour. */
1360 for (i = 0; i < test_face->order; i++) {
1361 grid_edge *e = test_face->edges[i];
1362 grid_face *f = (e->face1 == test_face) ? e->face2 : e->face1;
1363 if (FACE_COLOUR(f) == colour) {
1364 found_same_coloured_neighbour = TRUE;
1365 break;
1366 }
1367 }
1368 if (!found_same_coloured_neighbour)
1369 return FALSE;
1370
1371 /* Need to avoid creating a loop of faces of this colour around some
1372 * differently-coloured faces.
1373 * Also need to avoid meeting a same-coloured face at a corner, with
1374 * other-coloured faces in between. Here's a simple test that (I believe)
1375 * takes care of both these conditions:
1376 *
1377 * Take the circular path formed by this face's edges, and inflate it
1378 * slightly outwards. Imagine walking around this path and consider
1379 * the faces that you visit in sequence. This will include all faces
1380 * touching the given face, either along an edge or just at a corner.
1381 * Count the number of 'colour'/not-'colour' transitions you encounter, as
1382 * you walk along the complete loop. This will obviously turn out to be
1383 * an even number.
1384 * If 0, we're either in the middle of an "island" of this colour (should
1385 * be impossible as we're not supposed to create black or white loops),
1386 * or we're about to start a new island - also not allowed.
1387 * If 4 or greater, there are too many separate coloured regions touching
1388 * this face, and colouring it would create a loop or a corner-violation.
1389 * The only allowed case is when the count is exactly 2. */
1390
1391 /* i points to a dot around the test face.
1392 * j points to a face around the i^th dot.
1393 * The current face will always be:
1394 * test_face->dots[i]->faces[j]
1395 * We assume dots go clockwise around the test face,
1396 * and faces go clockwise around dots. */
1397
1398 /*
1399 * The end condition is slightly fiddly. In sufficiently strange
1400 * degenerate grids, our test face may be adjacent to the same
1401 * other face multiple times (typically if it's the exterior
1402 * face). Consider this, in particular:
1403 *
1404 * +--+
1405 * | |
1406 * +--+--+
1407 * | | |
1408 * +--+--+
1409 *
1410 * The bottom left face there is adjacent to the exterior face
1411 * twice, so we can't just terminate our iteration when we reach
1412 * the same _face_ we started at. Furthermore, we can't
1413 * condition on having the same (i,j) pair either, because
1414 * several (i,j) pairs identify the bottom left contiguity with
1415 * the exterior face! We canonicalise the (i,j) pair by taking
1416 * one step around before we set the termination tracking.
1417 */
1418
1419 i = j = 0;
1420 current_face = test_face->dots[0]->faces[0];
1421 if (current_face == test_face) {
1422 j = 1;
1423 current_face = test_face->dots[0]->faces[1];
1424 }
1425 transitions = 0;
1426 current_state = (FACE_COLOUR(current_face) == colour);
1427 starting_dot = NULL;
1428 starting_face = NULL;
1429 while (TRUE) {
1430 /* Advance to next face.
1431 * Need to loop here because it might take several goes to
1432 * find it. */
1433 while (TRUE) {
1434 j++;
1435 if (j == test_face->dots[i]->order)
1436 j = 0;
1437
1438 if (test_face->dots[i]->faces[j] == test_face) {
1439 /* Advance to next dot round test_face, then
1440 * find current_face around new dot
1441 * and advance to the next face clockwise */
1442 i++;
1443 if (i == test_face->order)
1444 i = 0;
1445 for (j = 0; j < test_face->dots[i]->order; j++) {
1446 if (test_face->dots[i]->faces[j] == current_face)
1447 break;
1448 }
1449 /* Must actually find current_face around new dot,
1450 * or else something's wrong with the grid. */
1451 assert(j != test_face->dots[i]->order);
1452 /* Found, so advance to next face and try again */
1453 } else {
1454 break;
1455 }
1456 }
1457 /* (i,j) are now advanced to next face */
1458 current_face = test_face->dots[i]->faces[j];
1459 s = (FACE_COLOUR(current_face) == colour);
1460 if (!starting_dot) {
1461 starting_dot = test_face->dots[i];
1462 starting_face = current_face;
1463 current_state = s;
1464 } else {
1465 if (s != current_state) {
1466 ++transitions;
1467 current_state = s;
1468 if (transitions > 2)
1469 break;
1470 }
1471 if (test_face->dots[i] == starting_dot &&
1472 current_face == starting_face)
1473 break;
1474 }
1475 }
1476
1477 return (transitions == 2) ? TRUE : FALSE;
1478 }
1479
1480 /* Count the number of neighbours of 'face', having colour 'colour' */
1481 static int face_num_neighbours(grid *g, char *board, grid_face *face,
1482 enum face_colour colour)
1483 {
1484 int colour_count = 0;
1485 int i;
1486 grid_face *f;
1487 grid_edge *e;
1488 for (i = 0; i < face->order; i++) {
1489 e = face->edges[i];
1490 f = (e->face1 == face) ? e->face2 : e->face1;
1491 if (FACE_COLOUR(f) == colour)
1492 ++colour_count;
1493 }
1494 return colour_count;
1495 }
1496
1497 /* The 'score' of a face reflects its current desirability for selection
1498 * as the next face to colour white or black. We want to encourage moving
1499 * into grey areas and increasing loopiness, so we give scores according to
1500 * how many of the face's neighbours are currently coloured the same as the
1501 * proposed colour. */
1502 static int face_score(grid *g, char *board, grid_face *face,
1503 enum face_colour colour)
1504 {
1505 /* Simple formula: score = 0 - num. same-coloured neighbours,
1506 * so a higher score means fewer same-coloured neighbours. */
1507 return -face_num_neighbours(g, board, face, colour);
1508 }
1509
1510 /* Generate a new complete set of clues for the given game_state.
1511 * The method is to generate a WHITE/BLACK colouring of all the faces,
1512 * such that the WHITE faces will define the inside of the path, and the
1513 * BLACK faces define the outside.
1514 * To do this, we initially colour all faces GREY. The infinite space outside
1515 * the grid is coloured BLACK, and we choose a random face to colour WHITE.
1516 * Then we gradually grow the BLACK and the WHITE regions, eliminating GREY
1517 * faces, until the grid is filled with BLACK/WHITE. As we grow the regions,
1518 * we avoid creating loops of a single colour, to preserve the topological
1519 * shape of the WHITE and BLACK regions.
1520 * We also try to make the boundary as loopy and twisty as possible, to avoid
1521 * generating paths that are uninteresting.
1522 * The algorithm works by choosing a BLACK/WHITE colour, then choosing a GREY
1523 * face that can be coloured with that colour (without violating the
1524 * topological shape of that region). It's not obvious, but I think this
1525 * algorithm is guaranteed to terminate without leaving any GREY faces behind.
1526 * Indeed, if there are any GREY faces at all, both the WHITE and BLACK
1527 * regions can be grown.
1528 * This is checked using assert()ions, and I haven't seen any failures yet.
1529 *
1530 * Hand-wavy proof: imagine what can go wrong...
1531 *
1532 * Could the white faces get completely cut off by the black faces, and still
1533 * leave some grey faces remaining?
1534 * No, because then the black faces would form a loop around both the white
1535 * faces and the grey faces, which is disallowed because we continually
1536 * maintain the correct topological shape of the black region.
1537 * Similarly, the black faces can never get cut off by the white faces. That
1538 * means both the WHITE and BLACK regions always have some room to grow into
1539 * the GREY regions.
1540 * Could it be that we can't colour some GREY face, because there are too many
1541 * WHITE/BLACK transitions as we walk round the face? (see the
1542 * can_colour_face() function for details)
1543 * No. Imagine otherwise, and we see WHITE/BLACK/WHITE/BLACK as we walk
1544 * around the face. The two WHITE faces would be connected by a WHITE path,
1545 * and the BLACK faces would be connected by a BLACK path. These paths would
1546 * have to cross, which is impossible.
1547 * Another thing that could go wrong: perhaps we can't find any GREY face to
1548 * colour WHITE, because it would create a loop-violation or a corner-violation
1549 * with the other WHITE faces?
1550 * This is a little bit tricky to prove impossible. Imagine you have such a
1551 * GREY face (that is, if you coloured it WHITE, you would create a WHITE loop
1552 * or corner violation).
1553 * That would cut all the non-white area into two blobs. One of those blobs
1554 * must be free of BLACK faces (because the BLACK stuff is a connected blob).
1555 * So we have a connected GREY area, completely surrounded by WHITE
1556 * (including the GREY face we've tentatively coloured WHITE).
1557 * A well-known result in graph theory says that you can always find a GREY
1558 * face whose removal leaves the remaining GREY area connected. And it says
1559 * there are at least two such faces, so we can always choose the one that
1560 * isn't the "tentative" GREY face. Colouring that face WHITE leaves
1561 * everything nice and connected, including that "tentative" GREY face which
1562 * acts as a gateway to the rest of the non-WHITE grid.
1563 */
1564 static void add_full_clues(game_state *state, random_state *rs)
1565 {
1566 signed char *clues = state->clues;
1567 char *board;
1568 grid *g = state->game_grid;
1569 int i, j;
1570 int num_faces = g->num_faces;
1571 struct face_score *face_scores; /* Array of face_score objects */
1572 struct face_score *fs; /* Points somewhere in the above list */
1573 struct grid_face *cur_face;
1574 tree234 *lightable_faces_sorted;
1575 tree234 *darkable_faces_sorted;
1576 int *face_list;
1577 int do_random_pass;
1578
1579 board = snewn(num_faces, char);
1580
1581 /* Make a board */
1582 memset(board, FACE_GREY, num_faces);
1583
1584 /* Create and initialise the list of face_scores */
1585 face_scores = snewn(num_faces, struct face_score);
1586 for (i = 0; i < num_faces; i++) {
1587 face_scores[i].random = random_bits(rs, 31);
1588 face_scores[i].black_score = face_scores[i].white_score = 0;
1589 }
1590
1591 /* Colour a random, finite face white. The infinite face is implicitly
1592 * coloured black. Together, they will seed the random growth process
1593 * for the black and white areas. */
1594 i = random_upto(rs, num_faces);
1595 board[i] = FACE_WHITE;
1596
1597 /* We need a way of favouring faces that will increase our loopiness.
1598 * We do this by maintaining a list of all candidate faces sorted by
1599 * their score and choose randomly from that with appropriate skew.
1600 * In order to avoid consistently biasing towards particular faces, we
1601 * need the sort order _within_ each group of scores to be completely
1602 * random. But it would be abusing the hospitality of the tree234 data
1603 * structure if our comparison function were nondeterministic :-). So with
1604 * each face we associate a random number that does not change during a
1605 * particular run of the generator, and use that as a secondary sort key.
1606 * Yes, this means we will be biased towards particular random faces in
1607 * any one run but that doesn't actually matter. */
1608
1609 lightable_faces_sorted = newtree234(white_sort_cmpfn);
1610 darkable_faces_sorted = newtree234(black_sort_cmpfn);
1611
1612 /* Initialise the lists of lightable and darkable faces. This is
1613 * slightly different from the code inside the while-loop, because we need
1614 * to check every face of the board (the grid structure does not keep a
1615 * list of the infinite face's neighbours). */
1616 for (i = 0; i < num_faces; i++) {
1617 grid_face *f = g->faces + i;
1618 struct face_score *fs = face_scores + i;
1619 if (board[i] != FACE_GREY) continue;
1620 /* We need the full colourability check here, it's not enough simply
1621 * to check neighbourhood. On some grids, a neighbour of the infinite
1622 * face is not necessarily darkable. */
1623 if (can_colour_face(g, board, i, FACE_BLACK)) {
1624 fs->black_score = face_score(g, board, f, FACE_BLACK);
1625 add234(darkable_faces_sorted, fs);
1626 }
1627 if (can_colour_face(g, board, i, FACE_WHITE)) {
1628 fs->white_score = face_score(g, board, f, FACE_WHITE);
1629 add234(lightable_faces_sorted, fs);
1630 }
1631 }
1632
1633 /* Colour faces one at a time until no more faces are colourable. */
1634 while (TRUE)
1635 {
1636 enum face_colour colour;
1637 struct face_score *fs_white, *fs_black;
1638 int c_lightable = count234(lightable_faces_sorted);
1639 int c_darkable = count234(darkable_faces_sorted);
1640 if (c_lightable == 0 && c_darkable == 0) {
1641 /* No more faces we can use at all. */
1642 break;
1643 }
1644 assert(c_lightable != 0 && c_darkable != 0);
1645
1646 fs_white = (struct face_score *)index234(lightable_faces_sorted, 0);
1647 fs_black = (struct face_score *)index234(darkable_faces_sorted, 0);
1648
1649 /* Choose a colour, and colour the best available face
1650 * with that colour. */
1651 colour = random_upto(rs, 2) ? FACE_WHITE : FACE_BLACK;
1652
1653 if (colour == FACE_WHITE)
1654 fs = fs_white;
1655 else
1656 fs = fs_black;
1657 assert(fs);
1658 i = fs - face_scores;
1659 assert(board[i] == FACE_GREY);
1660 board[i] = colour;
1661
1662 /* Remove this newly-coloured face from the lists. These lists should
1663 * only contain grey faces. */
1664 del234(lightable_faces_sorted, fs);
1665 del234(darkable_faces_sorted, fs);
1666
1667 /* Remember which face we've just coloured */
1668 cur_face = g->faces + i;
1669
1670 /* The face we've just coloured potentially affects the colourability
1671 * and the scores of any neighbouring faces (touching at a corner or
1672 * edge). So the search needs to be conducted around all faces
1673 * touching the one we've just lit. Iterate over its corners, then
1674 * over each corner's faces. For each such face, we remove it from
1675 * the lists, recalculate any scores, then add it back to the lists
1676 * (depending on whether it is lightable, darkable or both). */
1677 for (i = 0; i < cur_face->order; i++) {
1678 grid_dot *d = cur_face->dots[i];
1679 for (j = 0; j < d->order; j++) {
1680 grid_face *f = d->faces[j];
1681 int fi; /* face index of f */
1682
1683 if (f == NULL)
1684 continue;
1685 if (f == cur_face)
1686 continue;
1687
1688 /* If the face is already coloured, it won't be on our
1689 * lightable/darkable lists anyway, so we can skip it without
1690 * bothering with the removal step. */
1691 if (FACE_COLOUR(f) != FACE_GREY) continue;
1692
1693 /* Find the face index and face_score* corresponding to f */
1694 fi = f - g->faces;
1695 fs = face_scores + fi;
1696
1697 /* Remove from lightable list if it's in there. We do this,
1698 * even if it is still lightable, because the score might
1699 * be different, and we need to remove-then-add to maintain
1700 * correct sort order. */
1701 del234(lightable_faces_sorted, fs);
1702 if (can_colour_face(g, board, fi, FACE_WHITE)) {
1703 fs->white_score = face_score(g, board, f, FACE_WHITE);
1704 add234(lightable_faces_sorted, fs);
1705 }
1706 /* Do the same for darkable list. */
1707 del234(darkable_faces_sorted, fs);
1708 if (can_colour_face(g, board, fi, FACE_BLACK)) {
1709 fs->black_score = face_score(g, board, f, FACE_BLACK);
1710 add234(darkable_faces_sorted, fs);
1711 }
1712 }
1713 }
1714 }
1715
1716 /* Clean up */
1717 freetree234(lightable_faces_sorted);
1718 freetree234(darkable_faces_sorted);
1719 sfree(face_scores);
1720
1721 /* The next step requires a shuffled list of all faces */
1722 face_list = snewn(num_faces, int);
1723 for (i = 0; i < num_faces; ++i) {
1724 face_list[i] = i;
1725 }
1726 shuffle(face_list, num_faces, sizeof(int), rs);
1727
1728 /* The above loop-generation algorithm can often leave large clumps
1729 * of faces of one colour. In extreme cases, the resulting path can be
1730 * degenerate and not very satisfying to solve.
1731 * This next step alleviates this problem:
1732 * Go through the shuffled list, and flip the colour of any face we can
1733 * legally flip, and which is adjacent to only one face of the opposite
1734 * colour - this tends to grow 'tendrils' into any clumps.
1735 * Repeat until we can find no more faces to flip. This will
1736 * eventually terminate, because each flip increases the loop's
1737 * perimeter, which cannot increase for ever.
1738 * The resulting path will have maximal loopiness (in the sense that it
1739 * cannot be improved "locally". Unfortunately, this allows a player to
1740 * make some illicit deductions. To combat this (and make the path more
1741 * interesting), we do one final pass making random flips. */
1742
1743 /* Set to TRUE for final pass */
1744 do_random_pass = FALSE;
1745
1746 while (TRUE) {
1747 /* Remember whether a flip occurred during this pass */
1748 int flipped = FALSE;
1749
1750 for (i = 0; i < num_faces; ++i) {
1751 int j = face_list[i];
1752 enum face_colour opp =
1753 (board[j] == FACE_WHITE) ? FACE_BLACK : FACE_WHITE;
1754 if (can_colour_face(g, board, j, opp)) {
1755 grid_face *face = g->faces +j;
1756 if (do_random_pass) {
1757 /* final random pass */
1758 if (!random_upto(rs, 10))
1759 board[j] = opp;
1760 } else {
1761 /* normal pass - flip when neighbour count is 1 */
1762 if (face_num_neighbours(g, board, face, opp) == 1) {
1763 board[j] = opp;
1764 flipped = TRUE;
1765 }
1766 }
1767 }
1768 }
1769
1770 if (do_random_pass) break;
1771 if (!flipped) do_random_pass = TRUE;
1772 }
1773
1774 sfree(face_list);
1775
1776 /* Fill out all the clues by initialising to 0, then iterating over
1777 * all edges and incrementing each clue as we find edges that border
1778 * between BLACK/WHITE faces. While we're at it, we verify that the
1779 * algorithm does work, and there aren't any GREY faces still there. */
1780 memset(clues, 0, num_faces);
1781 for (i = 0; i < g->num_edges; i++) {
1782 grid_edge *e = g->edges + i;
1783 grid_face *f1 = e->face1;
1784 grid_face *f2 = e->face2;
1785 enum face_colour c1 = FACE_COLOUR(f1);
1786 enum face_colour c2 = FACE_COLOUR(f2);
1787 assert(c1 != FACE_GREY);
1788 assert(c2 != FACE_GREY);
1789 if (c1 != c2) {
1790 if (f1) clues[f1 - g->faces]++;
1791 if (f2) clues[f2 - g->faces]++;
1792 }
1793 }
1794
1795 sfree(board);
1796 }
1797
1798
1799 static int game_has_unique_soln(const game_state *state, int diff)
1800 {
1801 int ret;
1802 solver_state *sstate_new;
1803 solver_state *sstate = new_solver_state((game_state *)state, diff);
1804
1805 sstate_new = solve_game_rec(sstate);
1806
1807 assert(sstate_new->solver_status != SOLVER_MISTAKE);
1808 ret = (sstate_new->solver_status == SOLVER_SOLVED);
1809
1810 free_solver_state(sstate_new);
1811 free_solver_state(sstate);
1812
1813 return ret;
1814 }
1815
1816
1817 /* Remove clues one at a time at random. */
1818 static game_state *remove_clues(game_state *state, random_state *rs,
1819 int diff)
1820 {
1821 int *face_list;
1822 int num_faces = state->game_grid->num_faces;
1823 game_state *ret = dup_game(state), *saved_ret;
1824 int n;
1825
1826 /* We need to remove some clues. We'll do this by forming a list of all
1827 * available clues, shuffling it, then going along one at a
1828 * time clearing each clue in turn for which doing so doesn't render the
1829 * board unsolvable. */
1830 face_list = snewn(num_faces, int);
1831 for (n = 0; n < num_faces; ++n) {
1832 face_list[n] = n;
1833 }
1834
1835 shuffle(face_list, num_faces, sizeof(int), rs);
1836
1837 for (n = 0; n < num_faces; ++n) {
1838 saved_ret = dup_game(ret);
1839 ret->clues[face_list[n]] = -1;
1840
1841 if (game_has_unique_soln(ret, diff)) {
1842 free_game(saved_ret);
1843 } else {
1844 free_game(ret);
1845 ret = saved_ret;
1846 }
1847 }
1848 sfree(face_list);
1849
1850 return ret;
1851 }
1852
1853
1854 static char *new_game_desc(game_params *params, random_state *rs,
1855 char **aux, int interactive)
1856 {
1857 /* solution and description both use run-length encoding in obvious ways */
1858 char *retval, *game_desc, *grid_desc;
1859 grid *g;
1860 game_state *state = snew(game_state);
1861 game_state *state_new;
1862
1863 grid_desc = grid_new_desc(grid_types[params->type], params->w, params->h, rs);
1864 state->game_grid = g = loopy_generate_grid(params, grid_desc);
1865
1866 state->clues = snewn(g->num_faces, signed char);
1867 state->lines = snewn(g->num_edges, char);
1868 state->line_errors = snewn(g->num_edges, unsigned char);
1869
1870 state->grid_type = params->type;
1871
1872 newboard_please:
1873
1874 memset(state->lines, LINE_UNKNOWN, g->num_edges);
1875 memset(state->line_errors, 0, g->num_edges);
1876
1877 state->solved = state->cheated = FALSE;
1878
1879 /* Get a new random solvable board with all its clues filled in. Yes, this
1880 * can loop for ever if the params are suitably unfavourable, but
1881 * preventing games smaller than 4x4 seems to stop this happening */
1882 do {
1883 add_full_clues(state, rs);
1884 } while (!game_has_unique_soln(state, params->diff));
1885
1886 state_new = remove_clues(state, rs, params->diff);
1887 free_game(state);
1888 state = state_new;
1889
1890
1891 if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) {
1892 #ifdef SHOW_WORKING
1893 fprintf(stderr, "Rejecting board, it is too easy\n");
1894 #endif
1895 goto newboard_please;
1896 }
1897
1898 game_desc = state_to_text(state);
1899
1900 free_game(state);
1901
1902 if (grid_desc) {
1903 retval = snewn(strlen(grid_desc) + 1 + strlen(game_desc) + 1, char);
1904 sprintf(retval, "%s%c%s", grid_desc, GRID_DESC_SEP, game_desc);
1905 sfree(grid_desc);
1906 sfree(game_desc);
1907 } else {
1908 retval = game_desc;
1909 }
1910
1911 assert(!validate_desc(params, retval));
1912
1913 return retval;
1914 }
1915
1916 static game_state *new_game(midend *me, game_params *params, char *desc)
1917 {
1918 int i;
1919 game_state *state = snew(game_state);
1920 int empties_to_make = 0;
1921 int n,n2;
1922 const char *dp;
1923 char *grid_desc;
1924 grid *g;
1925 int num_faces, num_edges;
1926
1927 grid_desc = extract_grid_desc(&desc);
1928 state->game_grid = g = loopy_generate_grid(params, grid_desc);
1929 if (grid_desc) sfree(grid_desc);
1930
1931 dp = desc;
1932
1933 num_faces = g->num_faces;
1934 num_edges = g->num_edges;
1935
1936 state->clues = snewn(num_faces, signed char);
1937 state->lines = snewn(num_edges, char);
1938 state->line_errors = snewn(num_edges, unsigned char);
1939
1940 state->solved = state->cheated = FALSE;
1941
1942 state->grid_type = params->type;
1943
1944 for (i = 0; i < num_faces; i++) {
1945 if (empties_to_make) {
1946 empties_to_make--;
1947 state->clues[i] = -1;
1948 continue;
1949 }
1950
1951 assert(*dp);
1952 n = *dp - '0';
1953 n2 = *dp - 'A' + 10;
1954 if (n >= 0 && n < 10) {
1955 state->clues[i] = n;
1956 } else if (n2 >= 10 && n2 < 36) {
1957 state->clues[i] = n2;
1958 } else {
1959 n = *dp - 'a' + 1;
1960 assert(n > 0);
1961 state->clues[i] = -1;
1962 empties_to_make = n - 1;
1963 }
1964 ++dp;
1965 }
1966
1967 memset(state->lines, LINE_UNKNOWN, num_edges);
1968 memset(state->line_errors, 0, num_edges);
1969 return state;
1970 }
1971
1972 /* Calculates the line_errors data, and checks if the current state is a
1973 * solution */
1974 static int check_completion(game_state *state)
1975 {
1976 grid *g = state->game_grid;
1977 int *dsf;
1978 int num_faces = g->num_faces;
1979 int i;
1980 int infinite_area, finite_area;
1981 int loops_found = 0;
1982 int found_edge_not_in_loop = FALSE;
1983
1984 memset(state->line_errors, 0, g->num_edges);
1985
1986 /* LL implementation of SGT's idea:
1987 * A loop will partition the grid into an inside and an outside.
1988 * If there is more than one loop, the grid will be partitioned into
1989 * even more distinct regions. We can therefore track equivalence of
1990 * faces, by saying that two faces are equivalent when there is a non-YES
1991 * edge between them.
1992 * We could keep track of the number of connected components, by counting
1993 * the number of dsf-merges that aren't no-ops.
1994 * But we're only interested in 3 separate cases:
1995 * no loops, one loop, more than one loop.
1996 *
1997 * No loops: all faces are equivalent to the infinite face.
1998 * One loop: only two equivalence classes - finite and infinite.
1999 * >= 2 loops: there are 2 distinct finite regions.
2000 *
2001 * So we simply make two passes through all the edges.
2002 * In the first pass, we dsf-merge the two faces bordering each non-YES
2003 * edge.
2004 * In the second pass, we look for YES-edges bordering:
2005 * a) two non-equivalent faces.
2006 * b) two non-equivalent faces, and one of them is part of a different
2007 * finite area from the first finite area we've seen.
2008 *
2009 * An occurrence of a) means there is at least one loop.
2010 * An occurrence of b) means there is more than one loop.
2011 * Edges satisfying a) are marked as errors.
2012 *
2013 * While we're at it, we set a flag if we find a YES edge that is not
2014 * part of a loop.
2015 * This information will help decide, if there's a single loop, whether it
2016 * is a candidate for being a solution (that is, all YES edges are part of
2017 * this loop).
2018 *
2019 * If there is a candidate loop, we then go through all clues and check
2020 * they are all satisfied. If so, we have found a solution and we can
2021 * unmark all line_errors.
2022 */
2023
2024 /* Infinite face is at the end - its index is num_faces.
2025 * This macro is just to make this obvious! */
2026 #define INF_FACE num_faces
2027 dsf = snewn(num_faces + 1, int);
2028 dsf_init(dsf, num_faces + 1);
2029
2030 /* First pass */
2031 for (i = 0; i < g->num_edges; i++) {
2032 grid_edge *e = g->edges + i;
2033 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
2034 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
2035 if (state->lines[i] != LINE_YES)
2036 dsf_merge(dsf, f1, f2);
2037 }
2038
2039 /* Second pass */
2040 infinite_area = dsf_canonify(dsf, INF_FACE);
2041 finite_area = -1;
2042 for (i = 0; i < g->num_edges; i++) {
2043 grid_edge *e = g->edges + i;
2044 int f1 = e->face1 ? e->face1 - g->faces : INF_FACE;
2045 int can1 = dsf_canonify(dsf, f1);
2046 int f2 = e->face2 ? e->face2 - g->faces : INF_FACE;
2047 int can2 = dsf_canonify(dsf, f2);
2048 if (state->lines[i] != LINE_YES) continue;
2049
2050 if (can1 == can2) {
2051 /* Faces are equivalent, so this edge not part of a loop */
2052 found_edge_not_in_loop = TRUE;
2053 continue;
2054 }
2055 state->line_errors[i] = TRUE;
2056 if (loops_found == 0) loops_found = 1;
2057
2058 /* Don't bother with further checks if we've already found 2 loops */
2059 if (loops_found == 2) continue;
2060
2061 if (finite_area == -1) {
2062 /* Found our first finite area */
2063 if (can1 != infinite_area)
2064 finite_area = can1;
2065 else
2066 finite_area = can2;
2067 }
2068
2069 /* Have we found a second area? */
2070 if (finite_area != -1) {
2071 if (can1 != infinite_area && can1 != finite_area) {
2072 loops_found = 2;
2073 continue;
2074 }
2075 if (can2 != infinite_area && can2 != finite_area) {
2076 loops_found = 2;
2077 }
2078 }
2079 }
2080
2081 /*
2082 printf("loops_found = %d\n", loops_found);
2083 printf("found_edge_not_in_loop = %s\n",
2084 found_edge_not_in_loop ? "TRUE" : "FALSE");
2085 */
2086
2087 sfree(dsf); /* No longer need the dsf */
2088
2089 /* Have we found a candidate loop? */
2090 if (loops_found == 1 && !found_edge_not_in_loop) {
2091 /* Yes, so check all clues are satisfied */
2092 int found_clue_violation = FALSE;
2093 for (i = 0; i < num_faces; i++) {
2094 int c = state->clues[i];
2095 if (c >= 0) {
2096 if (face_order(state, i, LINE_YES) != c) {
2097 found_clue_violation = TRUE;
2098 break;
2099 }
2100 }
2101 }
2102
2103 if (!found_clue_violation) {
2104 /* The loop is good */
2105 memset(state->line_errors, 0, g->num_edges);
2106 return TRUE; /* No need to bother checking for dot violations */
2107 }
2108 }
2109
2110 /* Check for dot violations */
2111 for (i = 0; i < g->num_dots; i++) {
2112 int yes = dot_order(state, i, LINE_YES);
2113 int unknown = dot_order(state, i, LINE_UNKNOWN);
2114 if ((yes == 1 && unknown == 0) || (yes >= 3)) {
2115 /* violation, so mark all YES edges as errors */
2116 grid_dot *d = g->dots + i;
2117 int j;
2118 for (j = 0; j < d->order; j++) {
2119 int e = d->edges[j] - g->edges;
2120 if (state->lines[e] == LINE_YES)
2121 state->line_errors[e] = TRUE;
2122 }
2123 }
2124 }
2125 return FALSE;
2126 }
2127
2128 /* ----------------------------------------------------------------------
2129 * Solver logic
2130 *
2131 * Our solver modes operate as follows. Each mode also uses the modes above it.
2132 *
2133 * Easy Mode
2134 * Just implement the rules of the game.
2135 *
2136 * Normal and Tricky Modes
2137 * For each (adjacent) pair of lines through each dot we store a bit for
2138 * whether at least one of them is on and whether at most one is on. (If we
2139 * know both or neither is on that's already stored more directly.)
2140 *
2141 * Advanced Mode
2142 * Use edsf data structure to make equivalence classes of lines that are
2143 * known identical to or opposite to one another.
2144 */
2145
2146
2147 /* DLines:
2148 * For general grids, we consider "dlines" to be pairs of lines joined
2149 * at a dot. The lines must be adjacent around the dot, so we can think of
2150 * a dline as being a dot+face combination. Or, a dot+edge combination where
2151 * the second edge is taken to be the next clockwise edge from the dot.
2152 * Original loopy code didn't have this extra restriction of the lines being
2153 * adjacent. From my tests with square grids, this extra restriction seems to
2154 * take little, if anything, away from the quality of the puzzles.
2155 * A dline can be uniquely identified by an edge/dot combination, given that
2156 * a dline-pair always goes clockwise around its common dot. The edge/dot
2157 * combination can be represented by an edge/bool combination - if bool is
2158 * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is
2159 * exactly twice the number of edges in the grid - although the dlines
2160 * spanning the infinite face are not all that useful to the solver.
2161 * Note that, by convention, a dline goes clockwise around its common dot,
2162 * which means the dline goes anti-clockwise around its common face.
2163 */
2164
2165 /* Helper functions for obtaining an index into an array of dlines, given
2166 * various information. We assume the grid layout conventions about how
2167 * the various lists are interleaved - see grid_make_consistent() for
2168 * details. */
2169
2170 /* i points to the first edge of the dline pair, reading clockwise around
2171 * the dot. */
2172 static int dline_index_from_dot(grid *g, grid_dot *d, int i)
2173 {
2174 grid_edge *e = d->edges[i];
2175 int ret;
2176 #ifdef DEBUG_DLINES
2177 grid_edge *e2;
2178 int i2 = i+1;
2179 if (i2 == d->order) i2 = 0;
2180 e2 = d->edges[i2];
2181 #endif
2182 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2183 #ifdef DEBUG_DLINES
2184 printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n",
2185 (int)(d - g->dots), i, (int)(e - g->edges),
2186 (int)(e2 - g->edges), ret);
2187 #endif
2188 return ret;
2189 }
2190 /* i points to the second edge of the dline pair, reading clockwise around
2191 * the face. That is, the edges of the dline, starting at edge{i}, read
2192 * anti-clockwise around the face. By layout conventions, the common dot
2193 * of the dline will be f->dots[i] */
2194 static int dline_index_from_face(grid *g, grid_face *f, int i)
2195 {
2196 grid_edge *e = f->edges[i];
2197 grid_dot *d = f->dots[i];
2198 int ret;
2199 #ifdef DEBUG_DLINES
2200 grid_edge *e2;
2201 int i2 = i - 1;
2202 if (i2 < 0) i2 += f->order;
2203 e2 = f->edges[i2];
2204 #endif
2205 ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0);
2206 #ifdef DEBUG_DLINES
2207 printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n",
2208 (int)(f - g->faces), i, (int)(e - g->edges),
2209 (int)(e2 - g->edges), ret);
2210 #endif
2211 return ret;
2212 }
2213 static int is_atleastone(const char *dline_array, int index)
2214 {
2215 return BIT_SET(dline_array[index], 0);
2216 }
2217 static int set_atleastone(char *dline_array, int index)
2218 {
2219 return SET_BIT(dline_array[index], 0);
2220 }
2221 static int is_atmostone(const char *dline_array, int index)
2222 {
2223 return BIT_SET(dline_array[index], 1);
2224 }
2225 static int set_atmostone(char *dline_array, int index)
2226 {
2227 return SET_BIT(dline_array[index], 1);
2228 }
2229
2230 static void array_setall(char *array, char from, char to, int len)
2231 {
2232 char *p = array, *p_old = p;
2233 int len_remaining = len;
2234
2235 while ((p = memchr(p, from, len_remaining))) {
2236 *p = to;
2237 len_remaining -= p - p_old;
2238 p_old = p;
2239 }
2240 }
2241
2242 /* Helper, called when doing dline dot deductions, in the case where we
2243 * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between
2244 * them (because of dline atmostone/atleastone).
2245 * On entry, edge points to the first of these two UNKNOWNs. This function
2246 * will find the opposite UNKNOWNS (if they are adjacent to one another)
2247 * and set their corresponding dline to atleastone. (Setting atmostone
2248 * already happens in earlier dline deductions) */
2249 static int dline_set_opp_atleastone(solver_state *sstate,
2250 grid_dot *d, int edge)
2251 {
2252 game_state *state = sstate->state;
2253 grid *g = state->game_grid;
2254 int N = d->order;
2255 int opp, opp2;
2256 for (opp = 0; opp < N; opp++) {
2257 int opp_dline_index;
2258 if (opp == edge || opp == edge+1 || opp == edge-1)
2259 continue;
2260 if (opp == 0 && edge == N-1)
2261 continue;
2262 if (opp == N-1 && edge == 0)
2263 continue;
2264 opp2 = opp + 1;
2265 if (opp2 == N) opp2 = 0;
2266 /* Check if opp, opp2 point to LINE_UNKNOWNs */
2267 if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN)
2268 continue;
2269 if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN)
2270 continue;
2271 /* Found opposite UNKNOWNS and they're next to each other */
2272 opp_dline_index = dline_index_from_dot(g, d, opp);
2273 return set_atleastone(sstate->dlines, opp_dline_index);
2274 }
2275 return FALSE;
2276 }
2277
2278
2279 /* Set pairs of lines around this face which are known to be identical, to
2280 * the given line_state */
2281 static int face_setall_identical(solver_state *sstate, int face_index,
2282 enum line_state line_new)
2283 {
2284 /* can[dir] contains the canonical line associated with the line in
2285 * direction dir from the square in question. Similarly inv[dir] is
2286 * whether or not the line in question is inverse to its canonical
2287 * element. */
2288 int retval = FALSE;
2289 game_state *state = sstate->state;
2290 grid *g = state->game_grid;
2291 grid_face *f = g->faces + face_index;
2292 int N = f->order;
2293 int i, j;
2294 int can1, can2, inv1, inv2;
2295
2296 for (i = 0; i < N; i++) {
2297 int line1_index = f->edges[i] - g->edges;
2298 if (state->lines[line1_index] != LINE_UNKNOWN)
2299 continue;
2300 for (j = i + 1; j < N; j++) {
2301 int line2_index = f->edges[j] - g->edges;
2302 if (state->lines[line2_index] != LINE_UNKNOWN)
2303 continue;
2304
2305 /* Found two UNKNOWNS */
2306 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
2307 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
2308 if (can1 == can2 && inv1 == inv2) {
2309 solver_set_line(sstate, line1_index, line_new);
2310 solver_set_line(sstate, line2_index, line_new);
2311 }
2312 }
2313 }
2314 return retval;
2315 }
2316
2317 /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and
2318 * return the edge indices into e. */
2319 static void find_unknowns(game_state *state,
2320 grid_edge **edge_list, /* Edge list to search (from a face or a dot) */
2321 int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */
2322 int *e /* Returned edge indices */)
2323 {
2324 int c = 0;
2325 grid *g = state->game_grid;
2326 while (c < expected_count) {
2327 int line_index = *edge_list - g->edges;
2328 if (state->lines[line_index] == LINE_UNKNOWN) {
2329 e[c] = line_index;
2330 c++;
2331 }
2332 ++edge_list;
2333 }
2334 }
2335
2336 /* If we have a list of edges, and we know whether the number of YESs should
2337 * be odd or even, and there are only a few UNKNOWNs, we can do some simple
2338 * linedsf deductions. This can be used for both face and dot deductions.
2339 * Returns the difficulty level of the next solver that should be used,
2340 * or DIFF_MAX if no progress was made. */
2341 static int parity_deductions(solver_state *sstate,
2342 grid_edge **edge_list, /* Edge list (from a face or a dot) */
2343 int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */
2344 int unknown_count)
2345 {
2346 game_state *state = sstate->state;
2347 int diff = DIFF_MAX;
2348 int *linedsf = sstate->linedsf;
2349
2350 if (unknown_count == 2) {
2351 /* Lines are known alike/opposite, depending on inv. */
2352 int e[2];
2353 find_unknowns(state, edge_list, 2, e);
2354 if (merge_lines(sstate, e[0], e[1], total_parity))
2355 diff = min(diff, DIFF_HARD);
2356 } else if (unknown_count == 3) {
2357 int e[3];
2358 int can[3]; /* canonical edges */
2359 int inv[3]; /* whether can[x] is inverse to e[x] */
2360 find_unknowns(state, edge_list, 3, e);
2361 can[0] = edsf_canonify(linedsf, e[0], inv);
2362 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2363 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2364 if (can[0] == can[1]) {
2365 if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ?
2366 LINE_YES : LINE_NO))
2367 diff = min(diff, DIFF_EASY);
2368 }
2369 if (can[0] == can[2]) {
2370 if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ?
2371 LINE_YES : LINE_NO))
2372 diff = min(diff, DIFF_EASY);
2373 }
2374 if (can[1] == can[2]) {
2375 if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ?
2376 LINE_YES : LINE_NO))
2377 diff = min(diff, DIFF_EASY);
2378 }
2379 } else if (unknown_count == 4) {
2380 int e[4];
2381 int can[4]; /* canonical edges */
2382 int inv[4]; /* whether can[x] is inverse to e[x] */
2383 find_unknowns(state, edge_list, 4, e);
2384 can[0] = edsf_canonify(linedsf, e[0], inv);
2385 can[1] = edsf_canonify(linedsf, e[1], inv+1);
2386 can[2] = edsf_canonify(linedsf, e[2], inv+2);
2387 can[3] = edsf_canonify(linedsf, e[3], inv+3);
2388 if (can[0] == can[1]) {
2389 if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1]))
2390 diff = min(diff, DIFF_HARD);
2391 } else if (can[0] == can[2]) {
2392 if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2]))
2393 diff = min(diff, DIFF_HARD);
2394 } else if (can[0] == can[3]) {
2395 if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3]))
2396 diff = min(diff, DIFF_HARD);
2397 } else if (can[1] == can[2]) {
2398 if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2]))
2399 diff = min(diff, DIFF_HARD);
2400 } else if (can[1] == can[3]) {
2401 if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3]))
2402 diff = min(diff, DIFF_HARD);
2403 } else if (can[2] == can[3]) {
2404 if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3]))
2405 diff = min(diff, DIFF_HARD);
2406 }
2407 }
2408 return diff;
2409 }
2410
2411
2412 /*
2413 * These are the main solver functions.
2414 *
2415 * Their return values are diff values corresponding to the lowest mode solver
2416 * that would notice the work that they have done. For example if the normal
2417 * mode solver adds actual lines or crosses, it will return DIFF_EASY as the
2418 * easy mode solver might be able to make progress using that. It doesn't make
2419 * sense for one of them to return a diff value higher than that of the
2420 * function itself.
2421 *
2422 * Each function returns the lowest value it can, as early as possible, in
2423 * order to try and pass as much work as possible back to the lower level
2424 * solvers which progress more quickly.
2425 */
2426
2427 /* PROPOSED NEW DESIGN:
2428 * We have a work queue consisting of 'events' notifying us that something has
2429 * happened that a particular solver mode might be interested in. For example
2430 * the hard mode solver might do something that helps the normal mode solver at
2431 * dot [x,y] in which case it will enqueue an event recording this fact. Then
2432 * we pull events off the work queue, and hand each in turn to the solver that
2433 * is interested in them. If a solver reports that it failed we pass the same
2434 * event on to progressively more advanced solvers and the loop detector. Once
2435 * we've exhausted an event, or it has helped us progress, we drop it and
2436 * continue to the next one. The events are sorted first in order of solver
2437 * complexity (easy first) then order of insertion (oldest first).
2438 * Once we run out of events we loop over each permitted solver in turn
2439 * (easiest first) until either a deduction is made (and an event therefore
2440 * emerges) or no further deductions can be made (in which case we've failed).
2441 *
2442 * QUESTIONS:
2443 * * How do we 'loop over' a solver when both dots and squares are concerned.
2444 * Answer: first all squares then all dots.
2445 */
2446
2447 static int trivial_deductions(solver_state *sstate)
2448 {
2449 int i, current_yes, current_no;
2450 game_state *state = sstate->state;
2451 grid *g = state->game_grid;
2452 int diff = DIFF_MAX;
2453
2454 /* Per-face deductions */
2455 for (i = 0; i < g->num_faces; i++) {
2456 grid_face *f = g->faces + i;
2457
2458 if (sstate->face_solved[i])
2459 continue;
2460
2461 current_yes = sstate->face_yes_count[i];
2462 current_no = sstate->face_no_count[i];
2463
2464 if (current_yes + current_no == f->order) {
2465 sstate->face_solved[i] = TRUE;
2466 continue;
2467 }
2468
2469 if (state->clues[i] < 0)
2470 continue;
2471
2472 /*
2473 * This code checks whether the numeric clue on a face is so
2474 * large as to permit all its remaining LINE_UNKNOWNs to be
2475 * filled in as LINE_YES, or alternatively so small as to
2476 * permit them all to be filled in as LINE_NO.
2477 */
2478
2479 if (state->clues[i] < current_yes) {
2480 sstate->solver_status = SOLVER_MISTAKE;
2481 return DIFF_EASY;
2482 }
2483 if (state->clues[i] == current_yes) {
2484 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO))
2485 diff = min(diff, DIFF_EASY);
2486 sstate->face_solved[i] = TRUE;
2487 continue;
2488 }
2489
2490 if (f->order - state->clues[i] < current_no) {
2491 sstate->solver_status = SOLVER_MISTAKE;
2492 return DIFF_EASY;
2493 }
2494 if (f->order - state->clues[i] == current_no) {
2495 if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES))
2496 diff = min(diff, DIFF_EASY);
2497 sstate->face_solved[i] = TRUE;
2498 continue;
2499 }
2500
2501 if (f->order - state->clues[i] == current_no + 1 &&
2502 f->order - current_yes - current_no > 2) {
2503 /*
2504 * One small refinement to the above: we also look for any
2505 * adjacent pair of LINE_UNKNOWNs around the face with
2506 * some LINE_YES incident on it from elsewhere. If we find
2507 * one, then we know that pair of LINE_UNKNOWNs can't
2508 * _both_ be LINE_YES, and hence that pushes us one line
2509 * closer to being able to determine all the rest.
2510 */
2511 int j, k, e1, e2, e, d;
2512
2513 for (j = 0; j < f->order; j++) {
2514 e1 = f->edges[j] - g->edges;
2515 e2 = f->edges[j+1 < f->order ? j+1 : 0] - g->edges;
2516
2517 if (g->edges[e1].dot1 == g->edges[e2].dot1 ||
2518 g->edges[e1].dot1 == g->edges[e2].dot2) {
2519 d = g->edges[e1].dot1 - g->dots;
2520 } else {
2521 assert(g->edges[e1].dot2 == g->edges[e2].dot1 ||
2522 g->edges[e1].dot2 == g->edges[e2].dot2);
2523 d = g->edges[e1].dot2 - g->dots;
2524 }
2525
2526 if (state->lines[e1] == LINE_UNKNOWN &&
2527 state->lines[e2] == LINE_UNKNOWN) {
2528 for (k = 0; k < g->dots[d].order; k++) {
2529 int e = g->dots[d].edges[k] - g->edges;
2530 if (state->lines[e] == LINE_YES)
2531 goto found; /* multi-level break */
2532 }
2533 }
2534 }
2535 continue;
2536
2537 found:
2538 /*
2539 * If we get here, we've found such a pair of edges, and
2540 * they're e1 and e2.
2541 */
2542 for (j = 0; j < f->order; j++) {
2543 e = f->edges[j] - g->edges;
2544 if (state->lines[e] == LINE_UNKNOWN && e != e1 && e != e2) {
2545 int r = solver_set_line(sstate, e, LINE_YES);
2546 assert(r);
2547 diff = min(diff, DIFF_EASY);
2548 }
2549 }
2550 }
2551 }
2552
2553 check_caches(sstate);
2554
2555 /* Per-dot deductions */
2556 for (i = 0; i < g->num_dots; i++) {
2557 grid_dot *d = g->dots + i;
2558 int yes, no, unknown;
2559
2560 if (sstate->dot_solved[i])
2561 continue;
2562
2563 yes = sstate->dot_yes_count[i];
2564 no = sstate->dot_no_count[i];
2565 unknown = d->order - yes - no;
2566
2567 if (yes == 0) {
2568 if (unknown == 0) {
2569 sstate->dot_solved[i] = TRUE;
2570 } else if (unknown == 1) {
2571 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2572 diff = min(diff, DIFF_EASY);
2573 sstate->dot_solved[i] = TRUE;
2574 }
2575 } else if (yes == 1) {
2576 if (unknown == 0) {
2577 sstate->solver_status = SOLVER_MISTAKE;
2578 return DIFF_EASY;
2579 } else if (unknown == 1) {
2580 dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES);
2581 diff = min(diff, DIFF_EASY);
2582 }
2583 } else if (yes == 2) {
2584 if (unknown > 0) {
2585 dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO);
2586 diff = min(diff, DIFF_EASY);
2587 }
2588 sstate->dot_solved[i] = TRUE;
2589 } else {
2590 sstate->solver_status = SOLVER_MISTAKE;
2591 return DIFF_EASY;
2592 }
2593 }
2594
2595 check_caches(sstate);
2596
2597 return diff;
2598 }
2599
2600 static int dline_deductions(solver_state *sstate)
2601 {
2602 game_state *state = sstate->state;
2603 grid *g = state->game_grid;
2604 char *dlines = sstate->dlines;
2605 int i;
2606 int diff = DIFF_MAX;
2607
2608 /* ------ Face deductions ------ */
2609
2610 /* Given a set of dline atmostone/atleastone constraints, need to figure
2611 * out if we can deduce any further info. For more general faces than
2612 * squares, this turns out to be a tricky problem.
2613 * The approach taken here is to define (per face) NxN matrices:
2614 * "maxs" and "mins".
2615 * The entries maxs(j,k) and mins(j,k) define the upper and lower limits
2616 * for the possible number of edges that are YES between positions j and k
2617 * going clockwise around the face. Can think of j and k as marking dots
2618 * around the face (recall the labelling scheme: edge0 joins dot0 to dot1,
2619 * edge1 joins dot1 to dot2 etc).
2620 * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing
2621 * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j}
2622 * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to
2623 * the dline atmostone/atleastone status for edges j and j+1.
2624 *
2625 * Then we calculate the remaining entries recursively. We definitely
2626 * know that
2627 * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k.
2628 * This is because any valid placement of YESs between j and k must give
2629 * a valid placement between j and u, and also between u and k.
2630 * I believe it's sufficient to use just the two values of u:
2631 * j+1 and j+2. Seems to work well in practice - the bounds we compute
2632 * are rigorous, even if they might not be best-possible.
2633 *
2634 * Once we have maxs and mins calculated, we can make inferences about
2635 * each dline{j,j+1} by looking at the possible complementary edge-counts
2636 * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue.
2637 * As well as dlines, we can make similar inferences about single edges.
2638 * For example, consider a pentagon with clue 3, and we know at most one
2639 * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES.
2640 * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so
2641 * that final edge would have to be YES to make the count up to 3.
2642 */
2643
2644 /* Much quicker to allocate arrays on the stack than the heap, so
2645 * define the largest possible face size, and base our array allocations
2646 * on that. We check this with an assertion, in case someone decides to
2647 * make a grid which has larger faces than this. Note, this algorithm
2648 * could get quite expensive if there are many large faces. */
2649 #define MAX_FACE_SIZE 12
2650
2651 for (i = 0; i < g->num_faces; i++) {
2652 int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE];
2653 int mins[MAX_FACE_SIZE][MAX_FACE_SIZE];
2654 grid_face *f = g->faces + i;
2655 int N = f->order;
2656 int j,m;
2657 int clue = state->clues[i];
2658 assert(N <= MAX_FACE_SIZE);
2659 if (sstate->face_solved[i])
2660 continue;
2661 if (clue < 0) continue;
2662
2663 /* Calculate the (j,j+1) entries */
2664 for (j = 0; j < N; j++) {
2665 int edge_index = f->edges[j] - g->edges;
2666 int dline_index;
2667 enum line_state line1 = state->lines[edge_index];
2668 enum line_state line2;
2669 int tmp;
2670 int k = j + 1;
2671 if (k >= N) k = 0;
2672 maxs[j][k] = (line1 == LINE_NO) ? 0 : 1;
2673 mins[j][k] = (line1 == LINE_YES) ? 1 : 0;
2674 /* Calculate the (j,j+2) entries */
2675 dline_index = dline_index_from_face(g, f, k);
2676 edge_index = f->edges[k] - g->edges;
2677 line2 = state->lines[edge_index];
2678 k++;
2679 if (k >= N) k = 0;
2680
2681 /* max */
2682 tmp = 2;
2683 if (line1 == LINE_NO) tmp--;
2684 if (line2 == LINE_NO) tmp--;
2685 if (tmp == 2 && is_atmostone(dlines, dline_index))
2686 tmp = 1;
2687 maxs[j][k] = tmp;
2688
2689 /* min */
2690 tmp = 0;
2691 if (line1 == LINE_YES) tmp++;
2692 if (line2 == LINE_YES) tmp++;
2693 if (tmp == 0 && is_atleastone(dlines, dline_index))
2694 tmp = 1;
2695 mins[j][k] = tmp;
2696 }
2697
2698 /* Calculate the (j,j+m) entries for m between 3 and N-1 */
2699 for (m = 3; m < N; m++) {
2700 for (j = 0; j < N; j++) {
2701 int k = j + m;
2702 int u = j + 1;
2703 int v = j + 2;
2704 int tmp;
2705 if (k >= N) k -= N;
2706 if (u >= N) u -= N;
2707 if (v >= N) v -= N;
2708 maxs[j][k] = maxs[j][u] + maxs[u][k];
2709 mins[j][k] = mins[j][u] + mins[u][k];
2710 tmp = maxs[j][v] + maxs[v][k];
2711 maxs[j][k] = min(maxs[j][k], tmp);
2712 tmp = mins[j][v] + mins[v][k];
2713 mins[j][k] = max(mins[j][k], tmp);
2714 }
2715 }
2716
2717 /* See if we can make any deductions */
2718 for (j = 0; j < N; j++) {
2719 int k;
2720 grid_edge *e = f->edges[j];
2721 int line_index = e - g->edges;
2722 int dline_index;
2723
2724 if (state->lines[line_index] != LINE_UNKNOWN)
2725 continue;
2726 k = j + 1;
2727 if (k >= N) k = 0;
2728
2729 /* minimum YESs in the complement of this edge */
2730 if (mins[k][j] > clue) {
2731 sstate->solver_status = SOLVER_MISTAKE;
2732 return DIFF_EASY;
2733 }
2734 if (mins[k][j] == clue) {
2735 /* setting this edge to YES would make at least
2736 * (clue+1) edges - contradiction */
2737 solver_set_line(sstate, line_index, LINE_NO);
2738 diff = min(diff, DIFF_EASY);
2739 }
2740 if (maxs[k][j] < clue - 1) {
2741 sstate->solver_status = SOLVER_MISTAKE;
2742 return DIFF_EASY;
2743 }
2744 if (maxs[k][j] == clue - 1) {
2745 /* Only way to satisfy the clue is to set edge{j} as YES */
2746 solver_set_line(sstate, line_index, LINE_YES);
2747 diff = min(diff, DIFF_EASY);
2748 }
2749
2750 /* More advanced deduction that allows propagation along diagonal
2751 * chains of faces connected by dots, for example, 3-2-...-2-3
2752 * in square grids. */
2753 if (sstate->diff >= DIFF_TRICKY) {
2754 /* Now see if we can make dline deduction for edges{j,j+1} */
2755 e = f->edges[k];
2756 if (state->lines[e - g->edges] != LINE_UNKNOWN)
2757 /* Only worth doing this for an UNKNOWN,UNKNOWN pair.
2758 * Dlines where one of the edges is known, are handled in the
2759 * dot-deductions */
2760 continue;
2761
2762 dline_index = dline_index_from_face(g, f, k);
2763 k++;
2764 if (k >= N) k = 0;
2765
2766 /* minimum YESs in the complement of this dline */
2767 if (mins[k][j] > clue - 2) {
2768 /* Adding 2 YESs would break the clue */
2769 if (set_atmostone(dlines, dline_index))
2770 diff = min(diff, DIFF_NORMAL);
2771 }
2772 /* maximum YESs in the complement of this dline */
2773 if (maxs[k][j] < clue) {
2774 /* Adding 2 NOs would mean not enough YESs */
2775 if (set_atleastone(dlines, dline_index))
2776 diff = min(diff, DIFF_NORMAL);
2777 }
2778 }
2779 }
2780 }
2781
2782 if (diff < DIFF_NORMAL)
2783 return diff;
2784
2785 /* ------ Dot deductions ------ */
2786
2787 for (i = 0; i < g->num_dots; i++) {
2788 grid_dot *d = g->dots + i;
2789 int N = d->order;
2790 int yes, no, unknown;
2791 int j;
2792 if (sstate->dot_solved[i])
2793 continue;
2794 yes = sstate->dot_yes_count[i];
2795 no = sstate->dot_no_count[i];
2796 unknown = N - yes - no;
2797
2798 for (j = 0; j < N; j++) {
2799 int k;
2800 int dline_index;
2801 int line1_index, line2_index;
2802 enum line_state line1, line2;
2803 k = j + 1;
2804 if (k >= N) k = 0;
2805 dline_index = dline_index_from_dot(g, d, j);
2806 line1_index = d->edges[j] - g->edges;
2807 line2_index = d->edges[k] - g->edges;
2808 line1 = state->lines[line1_index];
2809 line2 = state->lines[line2_index];
2810
2811 /* Infer dline state from line state */
2812 if (line1 == LINE_NO || line2 == LINE_NO) {
2813 if (set_atmostone(dlines, dline_index))
2814 diff = min(diff, DIFF_NORMAL);
2815 }
2816 if (line1 == LINE_YES || line2 == LINE_YES) {
2817 if (set_atleastone(dlines, dline_index))
2818 diff = min(diff, DIFF_NORMAL);
2819 }
2820 /* Infer line state from dline state */
2821 if (is_atmostone(dlines, dline_index)) {
2822 if (line1 == LINE_YES && line2 == LINE_UNKNOWN) {
2823 solver_set_line(sstate, line2_index, LINE_NO);
2824 diff = min(diff, DIFF_EASY);
2825 }
2826 if (line2 == LINE_YES && line1 == LINE_UNKNOWN) {
2827 solver_set_line(sstate, line1_index, LINE_NO);
2828 diff = min(diff, DIFF_EASY);
2829 }
2830 }
2831 if (is_atleastone(dlines, dline_index)) {
2832 if (line1 == LINE_NO && line2 == LINE_UNKNOWN) {
2833 solver_set_line(sstate, line2_index, LINE_YES);
2834 diff = min(diff, DIFF_EASY);
2835 }
2836 if (line2 == LINE_NO && line1 == LINE_UNKNOWN) {
2837 solver_set_line(sstate, line1_index, LINE_YES);
2838 diff = min(diff, DIFF_EASY);
2839 }
2840 }
2841 /* Deductions that depend on the numbers of lines.
2842 * Only bother if both lines are UNKNOWN, otherwise the
2843 * easy-mode solver (or deductions above) would have taken
2844 * care of it. */
2845 if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN)
2846 continue;
2847
2848 if (yes == 0 && unknown == 2) {
2849 /* Both these unknowns must be identical. If we know
2850 * atmostone or atleastone, we can make progress. */
2851 if (is_atmostone(dlines, dline_index)) {
2852 solver_set_line(sstate, line1_index, LINE_NO);
2853 solver_set_line(sstate, line2_index, LINE_NO);
2854 diff = min(diff, DIFF_EASY);
2855 }
2856 if (is_atleastone(dlines, dline_index)) {
2857 solver_set_line(sstate, line1_index, LINE_YES);
2858 solver_set_line(sstate, line2_index, LINE_YES);
2859 diff = min(diff, DIFF_EASY);
2860 }
2861 }
2862 if (yes == 1) {
2863 if (set_atmostone(dlines, dline_index))
2864 diff = min(diff, DIFF_NORMAL);
2865 if (unknown == 2) {
2866 if (set_atleastone(dlines, dline_index))
2867 diff = min(diff, DIFF_NORMAL);
2868 }
2869 }
2870
2871 /* More advanced deduction that allows propagation along diagonal
2872 * chains of faces connected by dots, for example: 3-2-...-2-3
2873 * in square grids. */
2874 if (sstate->diff >= DIFF_TRICKY) {
2875 /* If we have atleastone set for this dline, infer
2876 * atmostone for each "opposite" dline (that is, each
2877 * dline without edges in common with this one).
2878 * Again, this test is only worth doing if both these
2879 * lines are UNKNOWN. For if one of these lines were YES,
2880 * the (yes == 1) test above would kick in instead. */
2881 if (is_atleastone(dlines, dline_index)) {
2882 int opp;
2883 for (opp = 0; opp < N; opp++) {
2884 int opp_dline_index;
2885 if (opp == j || opp == j+1 || opp == j-1)
2886 continue;
2887 if (j == 0 && opp == N-1)
2888 continue;
2889 if (j == N-1 && opp == 0)
2890 continue;
2891 opp_dline_index = dline_index_from_dot(g, d, opp);
2892 if (set_atmostone(dlines, opp_dline_index))
2893 diff = min(diff, DIFF_NORMAL);
2894 }
2895 if (yes == 0 && is_atmostone(dlines, dline_index)) {
2896 /* This dline has *exactly* one YES and there are no
2897 * other YESs. This allows more deductions. */
2898 if (unknown == 3) {
2899 /* Third unknown must be YES */
2900 for (opp = 0; opp < N; opp++) {
2901 int opp_index;
2902 if (opp == j || opp == k)
2903 continue;
2904 opp_index = d->edges[opp] - g->edges;
2905 if (state->lines[opp_index] == LINE_UNKNOWN) {
2906 solver_set_line(sstate, opp_index,
2907 LINE_YES);
2908 diff = min(diff, DIFF_EASY);
2909 }
2910 }
2911 } else if (unknown == 4) {
2912 /* Exactly one of opposite UNKNOWNS is YES. We've
2913 * already set atmostone, so set atleastone as
2914 * well.
2915 */
2916 if (dline_set_opp_atleastone(sstate, d, j))
2917 diff = min(diff, DIFF_NORMAL);
2918 }
2919 }
2920 }
2921 }
2922 }
2923 }
2924 return diff;
2925 }
2926
2927 static int linedsf_deductions(solver_state *sstate)
2928 {
2929 game_state *state = sstate->state;
2930 grid *g = state->game_grid;
2931 char *dlines = sstate->dlines;
2932 int i;
2933 int diff = DIFF_MAX;
2934 int diff_tmp;
2935
2936 /* ------ Face deductions ------ */
2937
2938 /* A fully-general linedsf deduction seems overly complicated
2939 * (I suspect the problem is NP-complete, though in practice it might just
2940 * be doable because faces are limited in size).
2941 * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are
2942 * known to be identical. If setting them both to YES (or NO) would break
2943 * the clue, set them to NO (or YES). */
2944
2945 for (i = 0; i < g->num_faces; i++) {
2946 int N, yes, no, unknown;
2947 int clue;
2948
2949 if (sstate->face_solved[i])
2950 continue;
2951 clue = state->clues[i];
2952 if (clue < 0)
2953 continue;
2954
2955 N = g->faces[i].order;
2956 yes = sstate->face_yes_count[i];
2957 if (yes + 1 == clue) {
2958 if (face_setall_identical(sstate, i, LINE_NO))
2959 diff = min(diff, DIFF_EASY);
2960 }
2961 no = sstate->face_no_count[i];
2962 if (no + 1 == N - clue) {
2963 if (face_setall_identical(sstate, i, LINE_YES))
2964 diff = min(diff, DIFF_EASY);
2965 }
2966
2967 /* Reload YES count, it might have changed */
2968 yes = sstate->face_yes_count[i];
2969 unknown = N - no - yes;
2970
2971 /* Deductions with small number of LINE_UNKNOWNs, based on overall
2972 * parity of lines. */
2973 diff_tmp = parity_deductions(sstate, g->faces[i].edges,
2974 (clue - yes) % 2, unknown);
2975 diff = min(diff, diff_tmp);
2976 }
2977
2978 /* ------ Dot deductions ------ */
2979 for (i = 0; i < g->num_dots; i++) {
2980 grid_dot *d = g->dots + i;
2981 int N = d->order;
2982 int j;
2983 int yes, no, unknown;
2984 /* Go through dlines, and do any dline<->linedsf deductions wherever
2985 * we find two UNKNOWNS. */
2986 for (j = 0; j < N; j++) {
2987 int dline_index = dline_index_from_dot(g, d, j);
2988 int line1_index;
2989 int line2_index;
2990 int can1, can2, inv1, inv2;
2991 int j2;
2992 line1_index = d->edges[j] - g->edges;
2993 if (state->lines[line1_index] != LINE_UNKNOWN)
2994 continue;
2995 j2 = j + 1;
2996 if (j2 == N) j2 = 0;
2997 line2_index = d->edges[j2] - g->edges;
2998 if (state->lines[line2_index] != LINE_UNKNOWN)
2999 continue;
3000 /* Infer dline flags from linedsf */
3001 can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1);
3002 can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2);
3003 if (can1 == can2 && inv1 != inv2) {
3004 /* These are opposites, so set dline atmostone/atleastone */
3005 if (set_atmostone(dlines, dline_index))
3006 diff = min(diff, DIFF_NORMAL);
3007 if (set_atleastone(dlines, dline_index))
3008 diff = min(diff, DIFF_NORMAL);
3009 continue;
3010 }
3011 /* Infer linedsf from dline flags */
3012 if (is_atmostone(dlines, dline_index)
3013 && is_atleastone(dlines, dline_index)) {
3014 if (merge_lines(sstate, line1_index, line2_index, 1))
3015 diff = min(diff, DIFF_HARD);
3016 }
3017 }
3018
3019 /* Deductions with small number of LINE_UNKNOWNs, based on overall
3020 * parity of lines. */
3021 yes = sstate->dot_yes_count[i];
3022 no = sstate->dot_no_count[i];
3023 unknown = N - yes - no;
3024 diff_tmp = parity_deductions(sstate, d->edges,
3025 yes % 2, unknown);
3026 diff = min(diff, diff_tmp);
3027 }
3028
3029 /* ------ Edge dsf deductions ------ */
3030
3031 /* If the state of a line is known, deduce the state of its canonical line
3032 * too, and vice versa. */
3033 for (i = 0; i < g->num_edges; i++) {
3034 int can, inv;
3035 enum line_state s;
3036 can = edsf_canonify(sstate->linedsf, i, &inv);
3037 if (can == i)
3038 continue;
3039 s = sstate->state->lines[can];
3040 if (s != LINE_UNKNOWN) {
3041 if (solver_set_line(sstate, i, inv ? OPP(s) : s))
3042 diff = min(diff, DIFF_EASY);
3043 } else {
3044 s = sstate->state->lines[i];
3045 if (s != LINE_UNKNOWN) {
3046 if (solver_set_line(sstate, can, inv ? OPP(s) : s))
3047 diff = min(diff, DIFF_EASY);
3048 }
3049 }
3050 }
3051
3052 return diff;
3053 }
3054
3055 static int loop_deductions(solver_state *sstate)
3056 {
3057 int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
3058 game_state *state = sstate->state;
3059 grid *g = state->game_grid;
3060 int shortest_chainlen = g->num_dots;
3061 int loop_found = FALSE;
3062 int dots_connected;
3063 int progress = FALSE;
3064 int i;
3065
3066 /*
3067 * Go through the grid and update for all the new edges.
3068 * Since merge_dots() is idempotent, the simplest way to
3069 * do this is just to update for _all_ the edges.
3070 * Also, while we're here, we count the edges.
3071 */
3072 for (i = 0; i < g->num_edges; i++) {
3073 if (state->lines[i] == LINE_YES) {
3074 loop_found |= merge_dots(sstate, i);
3075 edgecount++;
3076 }
3077 }
3078
3079 /*
3080 * Count the clues, count the satisfied clues, and count the
3081 * satisfied-minus-one clues.
3082 */
3083 for (i = 0; i < g->num_faces; i++) {
3084 int c = state->clues[i];
3085 if (c >= 0) {
3086 int o = sstate->face_yes_count[i];
3087 if (o == c)
3088 satclues++;
3089 else if (o == c-1)
3090 sm1clues++;
3091 clues++;
3092 }
3093 }
3094
3095 for (i = 0; i < g->num_dots; ++i) {
3096 dots_connected =
3097 sstate->looplen[dsf_canonify(sstate->dotdsf, i)];
3098 if (dots_connected > 1)
3099 shortest_chainlen = min(shortest_chainlen, dots_connected);
3100 }
3101
3102 assert(sstate->solver_status == SOLVER_INCOMPLETE);
3103
3104 if (satclues == clues && shortest_chainlen == edgecount) {
3105 sstate->solver_status = SOLVER_SOLVED;
3106 /* This discovery clearly counts as progress, even if we haven't
3107 * just added any lines or anything */
3108 progress = TRUE;
3109 goto finished_loop_deductionsing;
3110 }
3111
3112 /*
3113 * Now go through looking for LINE_UNKNOWN edges which
3114 * connect two dots that are already in the same
3115 * equivalence class. If we find one, test to see if the
3116 * loop it would create is a solution.
3117 */
3118 for (i = 0; i < g->num_edges; i++) {
3119 grid_edge *e = g->edges + i;
3120 int d1 = e->dot1 - g->dots;
3121 int d2 = e->dot2 - g->dots;
3122 int eqclass, val;
3123 if (state->lines[i] != LINE_UNKNOWN)
3124 continue;
3125
3126 eqclass = dsf_canonify(sstate->dotdsf, d1);
3127 if (eqclass != dsf_canonify(sstate->dotdsf, d2))
3128 continue;
3129
3130 val = LINE_NO; /* loop is bad until proven otherwise */
3131
3132 /*
3133 * This edge would form a loop. Next
3134 * question: how long would the loop be?
3135 * Would it equal the total number of edges
3136 * (plus the one we'd be adding if we added
3137 * it)?
3138 */
3139 if (sstate->looplen[eqclass] == edgecount + 1) {
3140 int sm1_nearby;
3141
3142 /*
3143 * This edge would form a loop which
3144 * took in all the edges in the entire
3145 * grid. So now we need to work out
3146 * whether it would be a valid solution
3147 * to the puzzle, which means we have to
3148 * check if it satisfies all the clues.
3149 * This means that every clue must be
3150 * either satisfied or satisfied-minus-
3151 * 1, and also that the number of
3152 * satisfied-minus-1 clues must be at
3153 * most two and they must lie on either
3154 * side of this edge.
3155 */
3156 sm1_nearby = 0;
3157 if (e->face1) {
3158 int f = e->face1 - g->faces;
3159 int c = state->clues[f];
3160 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
3161 sm1_nearby++;
3162 }
3163 if (e->face2) {
3164 int f = e->face2 - g->faces;
3165 int c = state->clues[f];
3166 if (c >= 0 && sstate->face_yes_count[f] == c - 1)
3167 sm1_nearby++;
3168 }
3169 if (sm1clues == sm1_nearby &&
3170 sm1clues + satclues == clues) {
3171 val = LINE_YES; /* loop is good! */
3172 }
3173 }
3174
3175 /*
3176 * Right. Now we know that adding this edge
3177 * would form a loop, and we know whether
3178 * that loop would be a viable solution or
3179 * not.
3180 *
3181 * If adding this edge produces a solution,
3182 * then we know we've found _a_ solution but
3183 * we don't know that it's _the_ solution -
3184 * if it were provably the solution then
3185 * we'd have deduced this edge some time ago
3186 * without the need to do loop detection. So
3187 * in this state we return SOLVER_AMBIGUOUS,
3188 * which has the effect that hitting Solve
3189 * on a user-provided puzzle will fill in a
3190 * solution but using the solver to
3191 * construct new puzzles won't consider this
3192 * a reasonable deduction for the user to
3193 * make.
3194 */
3195 progress = solver_set_line(sstate, i, val);
3196 assert(progress == TRUE);
3197 if (val == LINE_YES) {
3198 sstate->solver_status = SOLVER_AMBIGUOUS;
3199 goto finished_loop_deductionsing;
3200 }
3201 }
3202
3203 finished_loop_deductionsing:
3204 return progress ? DIFF_EASY : DIFF_MAX;
3205 }
3206
3207 /* This will return a dynamically allocated solver_state containing the (more)
3208 * solved grid */
3209 static solver_state *solve_game_rec(const solver_state *sstate_start)
3210 {
3211 solver_state *sstate;
3212
3213 /* Index of the solver we should call next. */
3214 int i = 0;
3215
3216 /* As a speed-optimisation, we avoid re-running solvers that we know
3217 * won't make any progress. This happens when a high-difficulty
3218 * solver makes a deduction that can only help other high-difficulty
3219 * solvers.
3220 * For example: if a new 'dline' flag is set by dline_deductions, the
3221 * trivial_deductions solver cannot do anything with this information.
3222 * If we've already run the trivial_deductions solver (because it's
3223 * earlier in the list), there's no point running it again.
3224 *
3225 * Therefore: if a solver is earlier in the list than "threshold_index",
3226 * we don't bother running it if it's difficulty level is less than
3227 * "threshold_diff".
3228 */
3229 int threshold_diff = 0;
3230 int threshold_index = 0;
3231
3232 sstate = dup_solver_state(sstate_start);
3233
3234 check_caches(sstate);
3235
3236 while (i < NUM_SOLVERS) {
3237 if (sstate->solver_status == SOLVER_MISTAKE)
3238 return sstate;
3239 if (sstate->solver_status == SOLVER_SOLVED ||
3240 sstate->solver_status == SOLVER_AMBIGUOUS) {
3241 /* solver finished */
3242 break;
3243 }
3244
3245 if ((solver_diffs[i] >= threshold_diff || i >= threshold_index)
3246 && solver_diffs[i] <= sstate->diff) {
3247 /* current_solver is eligible, so use it */
3248 int next_diff = solver_fns[i](sstate);
3249 if (next_diff != DIFF_MAX) {
3250 /* solver made progress, so use new thresholds and
3251 * start again at top of list. */
3252 threshold_diff = next_diff;
3253 threshold_index = i;
3254 i = 0;
3255 continue;
3256 }
3257 }
3258 /* current_solver is ineligible, or failed to make progress, so
3259 * go to the next solver in the list */
3260 i++;
3261 }
3262
3263 if (sstate->solver_status == SOLVER_SOLVED ||
3264 sstate->solver_status == SOLVER_AMBIGUOUS) {
3265 /* s/LINE_UNKNOWN/LINE_NO/g */
3266 array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO,
3267 sstate->state->game_grid->num_edges);
3268 return sstate;
3269 }
3270
3271 return sstate;
3272 }
3273
3274 static char *solve_game(game_state *state, game_state *currstate,
3275 char *aux, char **error)
3276 {
3277 char *soln = NULL;
3278 solver_state *sstate, *new_sstate;
3279
3280 sstate = new_solver_state(state, DIFF_MAX);
3281 new_sstate = solve_game_rec(sstate);
3282
3283 if (new_sstate->solver_status == SOLVER_SOLVED) {
3284 soln = encode_solve_move(new_sstate->state);
3285 } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
3286 soln = encode_solve_move(new_sstate->state);
3287 /**error = "Solver found ambiguous solutions"; */
3288 } else {
3289 soln = encode_solve_move(new_sstate->state);
3290 /**error = "Solver failed"; */
3291 }
3292
3293 free_solver_state(new_sstate);
3294 free_solver_state(sstate);
3295
3296 return soln;
3297 }
3298
3299 /* ----------------------------------------------------------------------
3300 * Drawing and mouse-handling
3301 */
3302
3303 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
3304 int x, int y, int button)
3305 {
3306 grid *g = state->game_grid;
3307 grid_edge *e;
3308 int i;
3309 char *ret, buf[80];
3310 char button_char = ' ';
3311 enum line_state old_state;
3312
3313 button &= ~MOD_MASK;
3314
3315 /* Convert mouse-click (x,y) to grid coordinates */
3316 x -= BORDER(ds->tilesize);
3317 y -= BORDER(ds->tilesize);
3318 x = x * g->tilesize / ds->tilesize;
3319 y = y * g->tilesize / ds->tilesize;
3320 x += g->lowest_x;
3321 y += g->lowest_y;
3322
3323 e = grid_nearest_edge(g, x, y);
3324 if (e == NULL)
3325 return NULL;
3326
3327 i = e - g->edges;
3328
3329 /* I think it's only possible to play this game with mouse clicks, sorry */
3330 /* Maybe will add mouse drag support some time */
3331 old_state = state->lines[i];
3332
3333 switch (button) {
3334 case LEFT_BUTTON:
3335 switch (old_state) {
3336 case LINE_UNKNOWN:
3337 button_char = 'y';
3338 break;
3339 case LINE_YES:
3340 #ifdef STYLUS_BASED
3341 button_char = 'n';
3342 break;
3343 #endif
3344 case LINE_NO:
3345 button_char = 'u';
3346 break;
3347 }
3348 break;
3349 case MIDDLE_BUTTON:
3350 button_char = 'u';
3351 break;
3352 case RIGHT_BUTTON:
3353 switch (old_state) {
3354 case LINE_UNKNOWN:
3355 button_char = 'n';
3356 break;
3357 case LINE_NO:
3358 #ifdef STYLUS_BASED
3359 button_char = 'y';
3360 break;
3361 #endif
3362 case LINE_YES:
3363 button_char = 'u';
3364 break;
3365 }
3366 break;
3367 default:
3368 return NULL;
3369 }
3370
3371
3372 sprintf(buf, "%d%c", i, (int)button_char);
3373 ret = dupstr(buf);
3374
3375 return ret;
3376 }
3377
3378 static game_state *execute_move(game_state *state, char *move)
3379 {
3380 int i;
3381 game_state *newstate = dup_game(state);
3382
3383 if (move[0] == 'S') {
3384 move++;
3385 newstate->cheated = TRUE;
3386 }
3387
3388 while (*move) {
3389 i = atoi(move);
3390 if (i < 0 || i >= newstate->game_grid->num_edges)
3391 goto fail;
3392 move += strspn(move, "1234567890");
3393 switch (*(move++)) {
3394 case 'y':
3395 newstate->lines[i] = LINE_YES;
3396 break;
3397 case 'n':
3398 newstate->lines[i] = LINE_NO;
3399 break;
3400 case 'u':
3401 newstate->lines[i] = LINE_UNKNOWN;
3402 break;
3403 default:
3404 goto fail;
3405 }
3406 }
3407
3408 /*
3409 * Check for completion.
3410 */
3411 if (check_completion(newstate))
3412 newstate->solved = TRUE;
3413
3414 return newstate;
3415
3416 fail:
3417 free_game(newstate);
3418 return NULL;
3419 }
3420
3421 /* ----------------------------------------------------------------------
3422 * Drawing routines.
3423 */
3424
3425 /* Convert from grid coordinates to screen coordinates */
3426 static void grid_to_screen(const game_drawstate *ds, const grid *g,
3427 int grid_x, int grid_y, int *x, int *y)
3428 {
3429 *x = grid_x - g->lowest_x;
3430 *y = grid_y - g->lowest_y;
3431 *x = *x * ds->tilesize / g->tilesize;
3432 *y = *y * ds->tilesize / g->tilesize;
3433 *x += BORDER(ds->tilesize);
3434 *y += BORDER(ds->tilesize);
3435 }
3436
3437 /* Returns (into x,y) position of centre of face for rendering the text clue.
3438 */
3439 static void face_text_pos(const game_drawstate *ds, const grid *g,
3440 grid_face *f, int *xret, int *yret)
3441 {
3442 int faceindex = f - g->faces;
3443
3444 /*
3445 * Return the cached position for this face, if we've already
3446 * worked it out.
3447 */
3448 if (ds->textx[faceindex] >= 0) {
3449 *xret = ds->textx[faceindex];
3450 *yret = ds->texty[faceindex];
3451 return;
3452 }
3453
3454 /*
3455 * Otherwise, use the incentre computed by grid.c and convert it
3456 * to screen coordinates.
3457 */
3458 grid_find_incentre(f);
3459 grid_to_screen(ds, g, f->ix, f->iy,
3460 &ds->textx[faceindex], &ds->texty[faceindex]);
3461
3462 *xret = ds->textx[faceindex];
3463 *yret = ds->texty[faceindex];
3464 }
3465
3466 static void face_text_bbox(game_drawstate *ds, grid *g, grid_face *f,
3467 int *x, int *y, int *w, int *h)
3468 {
3469 int xx, yy;
3470 face_text_pos(ds, g, f, &xx, &yy);
3471
3472 /* There seems to be a certain amount of trial-and-error involved
3473 * in working out the correct bounding-box for the text. */
3474
3475 *x = xx - ds->tilesize/4 - 1;
3476 *y = yy - ds->tilesize/4 - 3;
3477 *w = ds->tilesize/2 + 2;
3478 *h = ds->tilesize/2 + 5;
3479 }
3480
3481 static void game_redraw_clue(drawing *dr, game_drawstate *ds,
3482 game_state *state, int i)
3483 {
3484 grid *g = state->game_grid;
3485 grid_face *f = g->faces + i;
3486 int x, y;
3487 char c[3];
3488
3489 if (state->clues[i] < 10) {
3490 c[0] = CLUE2CHAR(state->clues[i]);
3491 c[1] = '\0';
3492 } else {
3493 sprintf(c, "%d", state->clues[i]);
3494 }
3495
3496 face_text_pos(ds, g, f, &x, &y);
3497 draw_text(dr, x, y,
3498 FONT_VARIABLE, ds->tilesize/2,
3499 ALIGN_VCENTRE | ALIGN_HCENTRE,
3500 ds->clue_error[i] ? COL_MISTAKE :
3501 ds->clue_satisfied[i] ? COL_SATISFIED : COL_FOREGROUND, c);
3502 }
3503
3504 static void edge_bbox(game_drawstate *ds, grid *g, grid_edge *e,
3505 int *x, int *y, int *w, int *h)
3506 {
3507 int x1 = e->dot1->x;
3508 int y1 = e->dot1->y;
3509 int x2 = e->dot2->x;
3510 int y2 = e->dot2->y;
3511 int xmin, xmax, ymin, ymax;
3512
3513 grid_to_screen(ds, g, x1, y1, &x1, &y1);
3514 grid_to_screen(ds, g, x2, y2, &x2, &y2);
3515 /* Allow extra margin for dots, and thickness of lines */
3516 xmin = min(x1, x2) - 2;
3517 xmax = max(x1, x2) + 2;
3518 ymin = min(y1, y2) - 2;
3519 ymax = max(y1, y2) + 2;
3520
3521 *x = xmin;
3522 *y = ymin;
3523 *w = xmax - xmin + 1;
3524 *h = ymax - ymin + 1;
3525 }
3526
3527 static void dot_bbox(game_drawstate *ds, grid *g, grid_dot *d,
3528 int *x, int *y, int *w, int *h)
3529 {
3530 int x1, y1;
3531
3532 grid_to_screen(ds, g, d->x, d->y, &x1, &y1);
3533
3534 *x = x1 - 2;
3535 *y = y1 - 2;
3536 *w = 5;
3537 *h = 5;
3538 }
3539
3540 static const int loopy_line_redraw_phases[] = {
3541 COL_FAINT, COL_LINEUNKNOWN, COL_FOREGROUND, COL_HIGHLIGHT, COL_MISTAKE
3542 };
3543 #define NPHASES lenof(loopy_line_redraw_phases)
3544
3545 static void game_redraw_line(drawing *dr, game_drawstate *ds,
3546 game_state *state, int i, int phase)
3547 {
3548 grid *g = state->game_grid;
3549 grid_edge *e = g->edges + i;
3550 int x1, x2, y1, y2;
3551 int line_colour;
3552
3553 if (state->line_errors[i])
3554 line_colour = COL_MISTAKE;
3555 else if (state->lines[i] == LINE_UNKNOWN)
3556 line_colour = COL_LINEUNKNOWN;
3557 else if (state->lines[i] == LINE_NO)
3558 line_colour = COL_FAINT;
3559 else if (ds->flashing)
3560 line_colour = COL_HIGHLIGHT;
3561 else
3562 line_colour = COL_FOREGROUND;
3563 if (line_colour != loopy_line_redraw_phases[phase])
3564 return;
3565
3566 /* Convert from grid to screen coordinates */
3567 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3568 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3569
3570 if (line_colour == COL_FAINT) {
3571 static int draw_faint_lines = -1;
3572 if (draw_faint_lines < 0) {
3573 char *env = getenv("LOOPY_FAINT_LINES");
3574 draw_faint_lines = (!env || (env[0] == 'y' ||
3575 env[0] == 'Y'));
3576 }
3577 if (draw_faint_lines)
3578 draw_line(dr, x1, y1, x2, y2, line_colour);
3579 } else {
3580 draw_thick_line(dr, 3.0,
3581 x1 + 0.5, y1 + 0.5,
3582 x2 + 0.5, y2 + 0.5,
3583 line_colour);
3584 }
3585 }
3586
3587 static void game_redraw_dot(drawing *dr, game_drawstate *ds,
3588 game_state *state, int i)
3589 {
3590 grid *g = state->game_grid;
3591 grid_dot *d = g->dots + i;
3592 int x, y;
3593
3594 grid_to_screen(ds, g, d->x, d->y, &x, &y);
3595 draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND);
3596 }
3597
3598 static int boxes_intersect(int x0, int y0, int w0, int h0,
3599 int x1, int y1, int w1, int h1)
3600 {
3601 /*
3602 * Two intervals intersect iff neither is wholly on one side of
3603 * the other. Two boxes intersect iff their horizontal and
3604 * vertical intervals both intersect.
3605 */
3606 return (x0 < x1+w1 && x1 < x0+w0 && y0 < y1+h1 && y1 < y0+h0);
3607 }
3608
3609 static void game_redraw_in_rect(drawing *dr, game_drawstate *ds,
3610 game_state *state, int x, int y, int w, int h)
3611 {
3612 grid *g = state->game_grid;
3613 int i, phase;
3614 int bx, by, bw, bh;
3615
3616 clip(dr, x, y, w, h);
3617 draw_rect(dr, x, y, w, h, COL_BACKGROUND);
3618
3619 for (i = 0; i < g->num_faces; i++) {
3620 if (state->clues[i] >= 0) {
3621 face_text_bbox(ds, g, &g->faces[i], &bx, &by, &bw, &bh);
3622 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3623 game_redraw_clue(dr, ds, state, i);
3624 }
3625 }
3626 for (phase = 0; phase < NPHASES; phase++) {
3627 for (i = 0; i < g->num_edges; i++) {
3628 edge_bbox(ds, g, &g->edges[i], &bx, &by, &bw, &bh);
3629 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3630 game_redraw_line(dr, ds, state, i, phase);
3631 }
3632 }
3633 for (i = 0; i < g->num_dots; i++) {
3634 dot_bbox(ds, g, &g->dots[i], &bx, &by, &bw, &bh);
3635 if (boxes_intersect(x, y, w, h, bx, by, bw, bh))
3636 game_redraw_dot(dr, ds, state, i);
3637 }
3638
3639 unclip(dr);
3640 draw_update(dr, x, y, w, h);
3641 }
3642
3643 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3644 game_state *state, int dir, game_ui *ui,
3645 float animtime, float flashtime)
3646 {
3647 #define REDRAW_OBJECTS_LIMIT 16 /* Somewhat arbitrary tradeoff */
3648
3649 grid *g = state->game_grid;
3650 int border = BORDER(ds->tilesize);
3651 int i;
3652 int flash_changed;
3653 int redraw_everything = FALSE;
3654
3655 int edges[REDRAW_OBJECTS_LIMIT], nedges = 0;
3656 int faces[REDRAW_OBJECTS_LIMIT], nfaces = 0;
3657
3658 /* Redrawing is somewhat involved.
3659 *
3660 * An update can theoretically affect an arbitrary number of edges
3661 * (consider, for example, completing or breaking a cycle which doesn't
3662 * satisfy all the clues -- we'll switch many edges between error and
3663 * normal states). On the other hand, redrawing the whole grid takes a
3664 * while, making the game feel sluggish, and many updates are actually
3665 * quite well localized.
3666 *
3667 * This redraw algorithm attempts to cope with both situations gracefully
3668 * and correctly. For localized changes, we set a clip rectangle, fill
3669 * it with background, and then redraw (a plausible but conservative
3670 * guess at) the objects which intersect the rectangle; if several
3671 * objects need redrawing, we'll do them individually. However, if lots
3672 * of objects are affected, we'll just redraw everything.
3673 *
3674 * The reason for all of this is that it's just not safe to do the redraw
3675 * piecemeal. If you try to draw an antialiased diagonal line over
3676 * itself, you get a slightly thicker antialiased diagonal line, which
3677 * looks rather ugly after a while.
3678 *
3679 * So, we take two passes over the grid. The first attempts to work out
3680 * what needs doing, and the second actually does it.
3681 */
3682
3683 if (!ds->started)
3684 redraw_everything = TRUE;
3685 else {
3686
3687 /* First, trundle through the faces. */
3688 for (i = 0; i < g->num_faces; i++) {
3689 grid_face *f = g->faces + i;
3690 int sides = f->order;
3691 int clue_mistake;
3692 int clue_satisfied;
3693 int n = state->clues[i];
3694 if (n < 0)
3695 continue;
3696
3697 clue_mistake = (face_order(state, i, LINE_YES) > n ||
3698 face_order(state, i, LINE_NO ) > (sides-n));
3699 clue_satisfied = (face_order(state, i, LINE_YES) == n &&
3700 face_order(state, i, LINE_NO ) == (sides-n));
3701
3702 if (clue_mistake != ds->clue_error[i] ||
3703 clue_satisfied != ds->clue_satisfied[i]) {
3704 ds->clue_error[i] = clue_mistake;
3705 ds->clue_satisfied[i] = clue_satisfied;
3706 if (nfaces == REDRAW_OBJECTS_LIMIT)
3707 redraw_everything = TRUE;
3708 else
3709 faces[nfaces++] = i;
3710 }
3711 }
3712
3713 /* Work out what the flash state needs to be. */
3714 if (flashtime > 0 &&
3715 (flashtime <= FLASH_TIME/3 ||
3716 flashtime >= FLASH_TIME*2/3)) {
3717 flash_changed = !ds->flashing;
3718 ds->flashing = TRUE;
3719 } else {
3720 flash_changed = ds->flashing;
3721 ds->flashing = FALSE;
3722 }
3723
3724 /* Now, trundle through the edges. */
3725 for (i = 0; i < g->num_edges; i++) {
3726 char new_ds =
3727 state->line_errors[i] ? DS_LINE_ERROR : state->lines[i];
3728 if (new_ds != ds->lines[i] ||
3729 (flash_changed && state->lines[i] == LINE_YES)) {
3730 ds->lines[i] = new_ds;
3731 if (nedges == REDRAW_OBJECTS_LIMIT)
3732 redraw_everything = TRUE;
3733 else
3734 edges[nedges++] = i;
3735 }
3736 }
3737 }
3738
3739 /* Pass one is now done. Now we do the actual drawing. */
3740 if (redraw_everything) {
3741 int grid_width = g->highest_x - g->lowest_x;
3742 int grid_height = g->highest_y - g->lowest_y;
3743 int w = grid_width * ds->tilesize / g->tilesize;
3744 int h = grid_height * ds->tilesize / g->tilesize;
3745
3746 game_redraw_in_rect(dr, ds, state,
3747 0, 0, w + 2*border + 1, h + 2*border + 1);
3748 } else {
3749
3750 /* Right. Now we roll up our sleeves. */
3751
3752 for (i = 0; i < nfaces; i++) {
3753 grid_face *f = g->faces + faces[i];
3754 int x, y, w, h;
3755
3756 face_text_bbox(ds, g, f, &x, &y, &w, &h);
3757 game_redraw_in_rect(dr, ds, state, x, y, w, h);
3758 }
3759
3760 for (i = 0; i < nedges; i++) {
3761 grid_edge *e = g->edges + edges[i];
3762 int x, y, w, h;
3763
3764 edge_bbox(ds, g, e, &x, &y, &w, &h);
3765 game_redraw_in_rect(dr, ds, state, x, y, w, h);
3766 }
3767 }
3768
3769 ds->started = TRUE;
3770 }
3771
3772 static float game_flash_length(game_state *oldstate, game_state *newstate,
3773 int dir, game_ui *ui)
3774 {
3775 if (!oldstate->solved && newstate->solved &&
3776 !oldstate->cheated && !newstate->cheated) {
3777 return FLASH_TIME;
3778 }
3779
3780 return 0.0F;
3781 }
3782
3783 static int game_is_solved(game_state *state)
3784 {
3785 return state->solved;
3786 }
3787
3788 static void game_print_size(game_params *params, float *x, float *y)
3789 {
3790 int pw, ph;
3791
3792 /*
3793 * I'll use 7mm "squares" by default.
3794 */
3795 game_compute_size(params, 700, &pw, &ph);
3796 *x = pw / 100.0F;
3797 *y = ph / 100.0F;
3798 }
3799
3800 static void game_print(drawing *dr, game_state *state, int tilesize)
3801 {
3802 int ink = print_mono_colour(dr, 0);
3803 int i;
3804 game_drawstate ads, *ds = &ads;
3805 grid *g = state->game_grid;
3806
3807 ds->tilesize = tilesize;
3808
3809 for (i = 0; i < g->num_dots; i++) {
3810 int x, y;
3811 grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y);
3812 draw_circle(dr, x, y, ds->tilesize / 15, ink, ink);
3813 }
3814
3815 /*
3816 * Clues.
3817 */
3818 for (i = 0; i < g->num_faces; i++) {
3819 grid_face *f = g->faces + i;
3820 int clue = state->clues[i];
3821 if (clue >= 0) {
3822 char c[2];
3823 int x, y;
3824 c[0] = CLUE2CHAR(clue);
3825 c[1] = '\0';
3826 face_text_pos(ds, g, f, &x, &y);
3827 draw_text(dr, x, y,
3828 FONT_VARIABLE, ds->tilesize / 2,
3829 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
3830 }
3831 }
3832
3833 /*
3834 * Lines.
3835 */
3836 for (i = 0; i < g->num_edges; i++) {
3837 int thickness = (state->lines[i] == LINE_YES) ? 30 : 150;
3838 grid_edge *e = g->edges + i;
3839 int x1, y1, x2, y2;
3840 grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1);
3841 grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2);
3842 if (state->lines[i] == LINE_YES)
3843 {
3844 /* (dx, dy) points from (x1, y1) to (x2, y2).
3845 * The line is then "fattened" in a perpendicular
3846 * direction to create a thin rectangle. */
3847 double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2));
3848 double dx = (x2 - x1) / d;
3849 double dy = (y2 - y1) / d;
3850 int points[8];
3851
3852 dx = (dx * ds->tilesize) / thickness;
3853 dy = (dy * ds->tilesize) / thickness;
3854 points[0] = x1 + (int)dy;
3855 points[1] = y1 - (int)dx;
3856 points[2] = x1 - (int)dy;
3857 points[3] = y1 + (int)dx;
3858 points[4] = x2 - (int)dy;
3859 points[5] = y2 + (int)dx;
3860 points[6] = x2 + (int)dy;
3861 points[7] = y2 - (int)dx;
3862 draw_polygon(dr, points, 4, ink, ink);
3863 }
3864 else
3865 {
3866 /* Draw a dotted line */
3867 int divisions = 6;
3868 int j;
3869 for (j = 1; j < divisions; j++) {
3870 /* Weighted average */
3871 int x = (x1 * (divisions -j) + x2 * j) / divisions;
3872 int y = (y1 * (divisions -j) + y2 * j) / divisions;
3873 draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink);
3874 }
3875 }
3876 }
3877 }
3878
3879 #ifdef COMBINED
3880 #define thegame loopy
3881 #endif
3882
3883 const struct game thegame = {
3884 "Loopy", "games.loopy", "loopy",
3885 default_params,
3886 game_fetch_preset,
3887 decode_params,
3888 encode_params,
3889 free_params,
3890 dup_params,
3891 TRUE, game_configure, custom_params,
3892 validate_params,
3893 new_game_desc,
3894 validate_desc,
3895 new_game,
3896 dup_game,
3897 free_game,
3898 1, solve_game,
3899 TRUE, game_can_format_as_text_now, game_text_format,
3900 new_ui,
3901 free_ui,
3902 encode_ui,
3903 decode_ui,
3904 game_changed_state,
3905 interpret_move,
3906 execute_move,
3907 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3908 game_colours,
3909 game_new_drawstate,
3910 game_free_drawstate,
3911 game_redraw,
3912 game_anim_length,
3913 game_flash_length,
3914 game_is_solved,
3915 TRUE, FALSE, game_print_size, game_print,
3916 FALSE /* wants_statusbar */,
3917 FALSE, game_timing_state,
3918 0, /* mouse_priorities */
3919 };
3920
3921 #ifdef STANDALONE_SOLVER
3922
3923 /*
3924 * Half-hearted standalone solver. It can't output the solution to
3925 * anything but a square puzzle, and it can't log the deductions
3926 * it makes either. But it can solve square puzzles, and more
3927 * importantly it can use its solver to grade the difficulty of
3928 * any puzzle you give it.
3929 */
3930
3931 #include <stdarg.h>
3932
3933 int main(int argc, char **argv)
3934 {
3935 game_params *p;
3936 game_state *s;
3937 char *id = NULL, *desc, *err;
3938 int grade = FALSE;
3939 int ret, diff;
3940 #if 0 /* verbose solver not supported here (yet) */
3941 int really_verbose = FALSE;
3942 #endif
3943
3944 while (--argc > 0) {
3945 char *p = *++argv;
3946 #if 0 /* verbose solver not supported here (yet) */
3947 if (!strcmp(p, "-v")) {
3948 really_verbose = TRUE;
3949 } else
3950 #endif
3951 if (!strcmp(p, "-g")) {
3952 grade = TRUE;
3953 } else if (*p == '-') {
3954 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
3955 return 1;
3956 } else {
3957 id = p;
3958 }
3959 }
3960
3961 if (!id) {
3962 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
3963 return 1;
3964 }
3965
3966 desc = strchr(id, ':');
3967 if (!desc) {
3968 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
3969 return 1;
3970 }
3971 *desc++ = '\0';
3972
3973 p = default_params();
3974 decode_params(p, id);
3975 err = validate_desc(p, desc);
3976 if (err) {
3977 fprintf(stderr, "%s: %s\n", argv[0], err);
3978 return 1;
3979 }
3980 s = new_game(NULL, p, desc);
3981
3982 /*
3983 * When solving an Easy puzzle, we don't want to bother the
3984 * user with Hard-level deductions. For this reason, we grade
3985 * the puzzle internally before doing anything else.
3986 */
3987 ret = -1; /* placate optimiser */
3988 for (diff = 0; diff < DIFF_MAX; diff++) {
3989 solver_state *sstate_new;
3990 solver_state *sstate = new_solver_state((game_state *)s, diff);
3991
3992 sstate_new = solve_game_rec(sstate);
3993
3994 if (sstate_new->solver_status == SOLVER_MISTAKE)
3995 ret = 0;
3996 else if (sstate_new->solver_status == SOLVER_SOLVED)
3997 ret = 1;
3998 else
3999 ret = 2;
4000
4001 free_solver_state(sstate_new);
4002 free_solver_state(sstate);
4003
4004 if (ret < 2)
4005 break;
4006 }
4007
4008 if (diff == DIFF_MAX) {
4009 if (grade)
4010 printf("Difficulty rating: harder than Hard, or ambiguous\n");
4011 else
4012 printf("Unable to find a unique solution\n");
4013 } else {
4014 if (grade) {
4015 if (ret == 0)
4016 printf("Difficulty rating: impossible (no solution exists)\n");
4017 else if (ret == 1)
4018 printf("Difficulty rating: %s\n", diffnames[diff]);
4019 } else {
4020 solver_state *sstate_new;
4021 solver_state *sstate = new_solver_state((game_state *)s, diff);
4022
4023 /* If we supported a verbose solver, we'd set verbosity here */
4024
4025 sstate_new = solve_game_rec(sstate);
4026
4027 if (sstate_new->solver_status == SOLVER_MISTAKE)
4028 printf("Puzzle is inconsistent\n");
4029 else {
4030 assert(sstate_new->solver_status == SOLVER_SOLVED);
4031 if (s->grid_type == 0) {
4032 fputs(game_text_format(sstate_new->state), stdout);
4033 } else {
4034 printf("Unable to output non-square grids\n");
4035 }
4036 }
4037
4038 free_solver_state(sstate_new);
4039 free_solver_state(sstate);
4040 }
4041 }
4042
4043 return 0;
4044 }
4045
4046 #endif
4047
4048 /* vim: set shiftwidth=4 tabstop=8: */