Provide my old drag-based interface to Net as an ifdef-enabled
[sgt/puzzles] / net.c
1 /*
2 * net.c: Net game.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9 #include <ctype.h>
10 #include <math.h>
11
12 #include "puzzles.h"
13 #include "tree234.h"
14
15 /*
16 * The standard user interface for Net simply has left- and
17 * right-button mouse clicks in a square rotate it one way or the
18 * other. We also provide, by #ifdef, a separate interface based on
19 * rotational dragging motions. I initially developed this for the
20 * Mac on the basis that it might work better than the click
21 * interface with only one mouse button available, but in fact
22 * found it to be quite strange and unintuitive. Apparently it
23 * works better on stylus-driven platforms such as Palm and
24 * PocketPC, though, so we enable it by default there.
25 */
26 #ifdef STYLUS_BASED
27 #define USE_DRAGGING
28 #endif
29
30 #define MATMUL(xr,yr,m,x,y) do { \
31 float rx, ry, xx = (x), yy = (y), *mat = (m); \
32 rx = mat[0] * xx + mat[2] * yy; \
33 ry = mat[1] * xx + mat[3] * yy; \
34 (xr) = rx; (yr) = ry; \
35 } while (0)
36
37 /* Direction and other bitfields */
38 #define R 0x01
39 #define U 0x02
40 #define L 0x04
41 #define D 0x08
42 #define LOCKED 0x10
43 #define ACTIVE 0x20
44
45 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
46 #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
47 #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
48 #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
49 #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
50 ((n)&3) == 1 ? A(x) : \
51 ((n)&3) == 2 ? F(x) : C(x) )
52
53 /* X and Y displacements */
54 #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
55 #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
56
57 /* Bit count */
58 #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
59 (((x) & 0x02) >> 1) + ((x) & 0x01) )
60
61 #define PREFERRED_TILE_SIZE 32
62 #define TILE_SIZE (ds->tilesize)
63 #define TILE_BORDER 1
64 #ifdef SMALL_SCREEN
65 #define WINDOW_OFFSET 4
66 #else
67 #define WINDOW_OFFSET 16
68 #endif
69
70 #define ROTATE_TIME 0.13F
71 #define FLASH_FRAME 0.07F
72
73 /* Transform physical coords to game coords using game_drawstate ds */
74 #define GX(x) (((x) + ds->org_x) % ds->width)
75 #define GY(y) (((y) + ds->org_y) % ds->height)
76 /* ...and game coords to physical coords */
77 #define RX(x) (((x) + ds->width - ds->org_x) % ds->width)
78 #define RY(y) (((y) + ds->height - ds->org_y) % ds->height)
79
80 enum {
81 COL_BACKGROUND,
82 COL_LOCKED,
83 COL_BORDER,
84 COL_WIRE,
85 COL_ENDPOINT,
86 COL_POWERED,
87 COL_BARRIER,
88 NCOLOURS
89 };
90
91 struct game_params {
92 int width;
93 int height;
94 int wrapping;
95 int unique;
96 float barrier_probability;
97 };
98
99 struct game_state {
100 int width, height, wrapping, completed;
101 int last_rotate_x, last_rotate_y, last_rotate_dir;
102 int used_solve;
103 unsigned char *tiles;
104 unsigned char *barriers;
105 };
106
107 #define OFFSETWH(x2,y2,x1,y1,dir,width,height) \
108 ( (x2) = ((x1) + width + X((dir))) % width, \
109 (y2) = ((y1) + height + Y((dir))) % height)
110
111 #define OFFSET(x2,y2,x1,y1,dir,state) \
112 OFFSETWH(x2,y2,x1,y1,dir,(state)->width,(state)->height)
113
114 #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
115 #define tile(state, x, y) index(state, (state)->tiles, x, y)
116 #define barrier(state, x, y) index(state, (state)->barriers, x, y)
117
118 struct xyd {
119 int x, y, direction;
120 };
121
122 static int xyd_cmp(const void *av, const void *bv) {
123 const struct xyd *a = (const struct xyd *)av;
124 const struct xyd *b = (const struct xyd *)bv;
125 if (a->x < b->x)
126 return -1;
127 if (a->x > b->x)
128 return +1;
129 if (a->y < b->y)
130 return -1;
131 if (a->y > b->y)
132 return +1;
133 if (a->direction < b->direction)
134 return -1;
135 if (a->direction > b->direction)
136 return +1;
137 return 0;
138 }
139
140 static int xyd_cmp_nc(void *av, void *bv) { return xyd_cmp(av, bv); }
141
142 static struct xyd *new_xyd(int x, int y, int direction)
143 {
144 struct xyd *xyd = snew(struct xyd);
145 xyd->x = x;
146 xyd->y = y;
147 xyd->direction = direction;
148 return xyd;
149 }
150
151 /* ----------------------------------------------------------------------
152 * Manage game parameters.
153 */
154 static game_params *default_params(void)
155 {
156 game_params *ret = snew(game_params);
157
158 ret->width = 5;
159 ret->height = 5;
160 ret->wrapping = FALSE;
161 ret->unique = TRUE;
162 ret->barrier_probability = 0.0;
163
164 return ret;
165 }
166
167 static const struct game_params net_presets[] = {
168 {5, 5, FALSE, TRUE, 0.0},
169 {7, 7, FALSE, TRUE, 0.0},
170 {9, 9, FALSE, TRUE, 0.0},
171 {11, 11, FALSE, TRUE, 0.0},
172 #ifndef SMALL_SCREEN
173 {13, 11, FALSE, TRUE, 0.0},
174 #endif
175 {5, 5, TRUE, TRUE, 0.0},
176 {7, 7, TRUE, TRUE, 0.0},
177 {9, 9, TRUE, TRUE, 0.0},
178 {11, 11, TRUE, TRUE, 0.0},
179 #ifndef SMALL_SCREEN
180 {13, 11, TRUE, TRUE, 0.0},
181 #endif
182 };
183
184 static int game_fetch_preset(int i, char **name, game_params **params)
185 {
186 game_params *ret;
187 char str[80];
188
189 if (i < 0 || i >= lenof(net_presets))
190 return FALSE;
191
192 ret = snew(game_params);
193 *ret = net_presets[i];
194
195 sprintf(str, "%dx%d%s", ret->width, ret->height,
196 ret->wrapping ? " wrapping" : "");
197
198 *name = dupstr(str);
199 *params = ret;
200 return TRUE;
201 }
202
203 static void free_params(game_params *params)
204 {
205 sfree(params);
206 }
207
208 static game_params *dup_params(game_params *params)
209 {
210 game_params *ret = snew(game_params);
211 *ret = *params; /* structure copy */
212 return ret;
213 }
214
215 static void decode_params(game_params *ret, char const *string)
216 {
217 char const *p = string;
218
219 ret->width = atoi(p);
220 while (*p && isdigit((unsigned char)*p)) p++;
221 if (*p == 'x') {
222 p++;
223 ret->height = atoi(p);
224 while (*p && isdigit((unsigned char)*p)) p++;
225 } else {
226 ret->height = ret->width;
227 }
228
229 while (*p) {
230 if (*p == 'w') {
231 p++;
232 ret->wrapping = TRUE;
233 } else if (*p == 'b') {
234 p++;
235 ret->barrier_probability = atof(p);
236 while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
237 } else if (*p == 'a') {
238 p++;
239 ret->unique = FALSE;
240 } else
241 p++; /* skip any other gunk */
242 }
243 }
244
245 static char *encode_params(game_params *params, int full)
246 {
247 char ret[400];
248 int len;
249
250 len = sprintf(ret, "%dx%d", params->width, params->height);
251 if (params->wrapping)
252 ret[len++] = 'w';
253 if (full && params->barrier_probability)
254 len += sprintf(ret+len, "b%g", params->barrier_probability);
255 if (full && !params->unique)
256 ret[len++] = 'a';
257 assert(len < lenof(ret));
258 ret[len] = '\0';
259
260 return dupstr(ret);
261 }
262
263 static config_item *game_configure(game_params *params)
264 {
265 config_item *ret;
266 char buf[80];
267
268 ret = snewn(6, config_item);
269
270 ret[0].name = "Width";
271 ret[0].type = C_STRING;
272 sprintf(buf, "%d", params->width);
273 ret[0].sval = dupstr(buf);
274 ret[0].ival = 0;
275
276 ret[1].name = "Height";
277 ret[1].type = C_STRING;
278 sprintf(buf, "%d", params->height);
279 ret[1].sval = dupstr(buf);
280 ret[1].ival = 0;
281
282 ret[2].name = "Walls wrap around";
283 ret[2].type = C_BOOLEAN;
284 ret[2].sval = NULL;
285 ret[2].ival = params->wrapping;
286
287 ret[3].name = "Barrier probability";
288 ret[3].type = C_STRING;
289 sprintf(buf, "%g", params->barrier_probability);
290 ret[3].sval = dupstr(buf);
291 ret[3].ival = 0;
292
293 ret[4].name = "Ensure unique solution";
294 ret[4].type = C_BOOLEAN;
295 ret[4].sval = NULL;
296 ret[4].ival = params->unique;
297
298 ret[5].name = NULL;
299 ret[5].type = C_END;
300 ret[5].sval = NULL;
301 ret[5].ival = 0;
302
303 return ret;
304 }
305
306 static game_params *custom_params(config_item *cfg)
307 {
308 game_params *ret = snew(game_params);
309
310 ret->width = atoi(cfg[0].sval);
311 ret->height = atoi(cfg[1].sval);
312 ret->wrapping = cfg[2].ival;
313 ret->barrier_probability = (float)atof(cfg[3].sval);
314 ret->unique = cfg[4].ival;
315
316 return ret;
317 }
318
319 static char *validate_params(game_params *params, int full)
320 {
321 if (params->width <= 0 || params->height <= 0)
322 return "Width and height must both be greater than zero";
323 if (params->width <= 1 && params->height <= 1)
324 return "At least one of width and height must be greater than one";
325 if (params->barrier_probability < 0)
326 return "Barrier probability may not be negative";
327 if (params->barrier_probability > 1)
328 return "Barrier probability may not be greater than 1";
329
330 /*
331 * Specifying either grid dimension as 2 in a wrapping puzzle
332 * makes it actually impossible to ensure a unique puzzle
333 * solution.
334 *
335 * Proof:
336 *
337 * Without loss of generality, let us assume the puzzle _width_
338 * is 2, so we can conveniently discuss rows without having to
339 * say `rows/columns' all the time. (The height may be 2 as
340 * well, but that doesn't matter.)
341 *
342 * In each row, there are two edges between tiles: the inner
343 * edge (running down the centre of the grid) and the outer
344 * edge (the identified left and right edges of the grid).
345 *
346 * Lemma: In any valid 2xn puzzle there must be at least one
347 * row in which _exactly one_ of the inner edge and outer edge
348 * is connected.
349 *
350 * Proof: No row can have _both_ inner and outer edges
351 * connected, because this would yield a loop. So the only
352 * other way to falsify the lemma is for every row to have
353 * _neither_ the inner nor outer edge connected. But this
354 * means there is no connection at all between the left and
355 * right columns of the puzzle, so there are two disjoint
356 * subgraphs, which is also disallowed. []
357 *
358 * Given such a row, it is always possible to make the
359 * disconnected edge connected and the connected edge
360 * disconnected without changing the state of any other edge.
361 * (This is easily seen by case analysis on the various tiles:
362 * left-pointing and right-pointing endpoints can be exchanged,
363 * likewise T-pieces, and a corner piece can select its
364 * horizontal connectivity independently of its vertical.) This
365 * yields a distinct valid solution.
366 *
367 * Thus, for _every_ row in which exactly one of the inner and
368 * outer edge is connected, there are two valid states for that
369 * row, and hence the total number of solutions of the puzzle
370 * is at least 2^(number of such rows), and in particular is at
371 * least 2 since there must be at least one such row. []
372 */
373 if (full && params->unique && params->wrapping &&
374 (params->width == 2 || params->height == 2))
375 return "No wrapping puzzle with a width or height of 2 can have"
376 " a unique solution";
377
378 return NULL;
379 }
380
381 /* ----------------------------------------------------------------------
382 * Solver used to assure solution uniqueness during generation.
383 */
384
385 /*
386 * Test cases I used while debugging all this were
387 *
388 * ./net --generate 1 13x11w#12300
389 * which expands under the non-unique grid generation rules to
390 * 13x11w:5eaade1bd222664436d5e2965c12656b1129dd825219e3274d558d5eb2dab5da18898e571d5a2987be79746bd95726c597447d6da96188c513add829da7681da954db113d3cd244
391 * and has two ambiguous areas.
392 *
393 * An even better one is
394 * 13x11w#507896411361192
395 * which expands to
396 * 13x11w:b7125b1aec598eb31bd58d82572bc11494e5dee4e8db2bdd29b88d41a16bdd996d2996ddec8c83741a1e8674e78328ba71737b8894a9271b1cd1399453d1952e43951d9b712822e
397 * and has an ambiguous area _and_ a situation where loop avoidance
398 * is a necessary deductive technique.
399 *
400 * Then there's
401 * 48x25w#820543338195187
402 * becoming
403 * 48x25w:255989d14cdd185deaa753a93821a12edc1ab97943ac127e2685d7b8b3c48861b2192416139212b316eddd35de43714ebc7628d753db32e596284d9ec52c5a7dc1b4c811a655117d16dc28921b2b4161352cab1d89d18bc836b8b891d55ea4622a1251861b5bc9a8aa3e5bcd745c95229ca6c3b5e21d5832d397e917325793d7eb442dc351b2db2a52ba8e1651642275842d8871d5534aabc6d5b741aaa2d48ed2a7dbbb3151ddb49d5b9a7ed1ab98ee75d613d656dbba347bc514c84556b43a9bc65a3256ead792488b862a9d2a8a39b4255a4949ed7dbd79443292521265896b4399c95ede89d7c8c797a6a57791a849adea489359a158aa12e5dacce862b8333b7ebea7d344d1a3c53198864b73a9dedde7b663abb1b539e1e8853b1b7edb14a2a17ebaae4dbe63598a2e7e9a2dbdad415bc1d8cb88cbab5a8c82925732cd282e641ea3bd7d2c6e776de9117a26be86deb7c82c89524b122cb9397cd1acd2284e744ea62b9279bae85479ababe315c3ac29c431333395b24e6a1e3c43a2da42d4dce84aadd5b154aea555eaddcbd6e527d228c19388d9b424d94214555a7edbdeebe569d4a56dc51a86bd9963e377bb74752bd5eaa5761ba545e297b62a1bda46ab4aee423ad6c661311783cc18786d4289236563cb4a75ec67d481c14814994464cd1b87396dee63e5ab6e952cc584baa1d4c47cb557ec84dbb63d487c8728118673a166846dd3a4ebc23d6cb9c5827d96b4556e91899db32b517eda815ae271a8911bd745447121dc8d321557bc2a435ebec1bbac35b1a291669451174e6aa2218a4a9c5a6ca31ebc45d84e3a82c121e9ced7d55e9a
404 * which has a spot (far right) where slightly more complex loop
405 * avoidance is required.
406 */
407
408 struct todo {
409 unsigned char *marked;
410 int *buffer;
411 int buflen;
412 int head, tail;
413 };
414
415 static struct todo *todo_new(int maxsize)
416 {
417 struct todo *todo = snew(struct todo);
418 todo->marked = snewn(maxsize, unsigned char);
419 memset(todo->marked, 0, maxsize);
420 todo->buflen = maxsize + 1;
421 todo->buffer = snewn(todo->buflen, int);
422 todo->head = todo->tail = 0;
423 return todo;
424 }
425
426 static void todo_free(struct todo *todo)
427 {
428 sfree(todo->marked);
429 sfree(todo->buffer);
430 sfree(todo);
431 }
432
433 static void todo_add(struct todo *todo, int index)
434 {
435 if (todo->marked[index])
436 return; /* already on the list */
437 todo->marked[index] = TRUE;
438 todo->buffer[todo->tail++] = index;
439 if (todo->tail == todo->buflen)
440 todo->tail = 0;
441 }
442
443 static int todo_get(struct todo *todo) {
444 int ret;
445
446 if (todo->head == todo->tail)
447 return -1; /* list is empty */
448 ret = todo->buffer[todo->head++];
449 if (todo->head == todo->buflen)
450 todo->head = 0;
451 todo->marked[ret] = FALSE;
452
453 return ret;
454 }
455
456 static int net_solver(int w, int h, unsigned char *tiles,
457 unsigned char *barriers, int wrapping)
458 {
459 unsigned char *tilestate;
460 unsigned char *edgestate;
461 int *deadends;
462 int *equivalence;
463 struct todo *todo;
464 int i, j, x, y;
465 int area;
466 int done_something;
467
468 /*
469 * Set up the solver's data structures.
470 */
471
472 /*
473 * tilestate stores the possible orientations of each tile.
474 * There are up to four of these, so we'll index the array in
475 * fours. tilestate[(y * w + x) * 4] and its three successive
476 * members give the possible orientations, clearing to 255 from
477 * the end as things are ruled out.
478 *
479 * In this loop we also count up the area of the grid (which is
480 * not _necessarily_ equal to w*h, because there might be one
481 * or more blank squares present. This will never happen in a
482 * grid generated _by_ this program, but it's worth keeping the
483 * solver as general as possible.)
484 */
485 tilestate = snewn(w * h * 4, unsigned char);
486 area = 0;
487 for (i = 0; i < w*h; i++) {
488 tilestate[i * 4] = tiles[i] & 0xF;
489 for (j = 1; j < 4; j++) {
490 if (tilestate[i * 4 + j - 1] == 255 ||
491 A(tilestate[i * 4 + j - 1]) == tilestate[i * 4])
492 tilestate[i * 4 + j] = 255;
493 else
494 tilestate[i * 4 + j] = A(tilestate[i * 4 + j - 1]);
495 }
496 if (tiles[i] != 0)
497 area++;
498 }
499
500 /*
501 * edgestate stores the known state of each edge. It is 0 for
502 * unknown, 1 for open (connected) and 2 for closed (not
503 * connected).
504 *
505 * In principle we need only worry about each edge once each,
506 * but in fact it's easier to track each edge twice so that we
507 * can reference it from either side conveniently. Also I'm
508 * going to allocate _five_ bytes per tile, rather than the
509 * obvious four, so that I can index edgestate[(y*w+x) * 5 + d]
510 * where d is 1,2,4,8 and they never overlap.
511 */
512 edgestate = snewn((w * h - 1) * 5 + 9, unsigned char);
513 memset(edgestate, 0, (w * h - 1) * 5 + 9);
514
515 /*
516 * deadends tracks which edges have dead ends on them. It is
517 * indexed by tile and direction: deadends[(y*w+x) * 5 + d]
518 * tells you whether heading out of tile (x,y) in direction d
519 * can reach a limited amount of the grid. Values are area+1
520 * (no dead end known) or less than that (can reach _at most_
521 * this many other tiles by heading this way out of this tile).
522 */
523 deadends = snewn((w * h - 1) * 5 + 9, int);
524 for (i = 0; i < (w * h - 1) * 5 + 9; i++)
525 deadends[i] = area+1;
526
527 /*
528 * equivalence tracks which sets of tiles are known to be
529 * connected to one another, so we can avoid creating loops by
530 * linking together tiles which are already linked through
531 * another route.
532 *
533 * This is a disjoint set forest structure: equivalence[i]
534 * contains the index of another member of the equivalence
535 * class containing i, or contains i itself for precisely one
536 * member in each such class. To find a representative member
537 * of the equivalence class containing i, you keep replacing i
538 * with equivalence[i] until it stops changing; then you go
539 * _back_ along the same path and point everything on it
540 * directly at the representative member so as to speed up
541 * future searches. Then you test equivalence between tiles by
542 * finding the representative of each tile and seeing if
543 * they're the same; and you create new equivalence (merge
544 * classes) by finding the representative of each tile and
545 * setting equivalence[one]=the_other.
546 */
547 equivalence = snew_dsf(w * h);
548
549 /*
550 * On a non-wrapping grid, we instantly know that all the edges
551 * round the edge are closed.
552 */
553 if (!wrapping) {
554 for (i = 0; i < w; i++) {
555 edgestate[i * 5 + 2] = edgestate[((h-1) * w + i) * 5 + 8] = 2;
556 }
557 for (i = 0; i < h; i++) {
558 edgestate[(i * w + w-1) * 5 + 1] = edgestate[(i * w) * 5 + 4] = 2;
559 }
560 }
561
562 /*
563 * If we have barriers available, we can mark those edges as
564 * closed too.
565 */
566 if (barriers) {
567 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
568 int d;
569 for (d = 1; d <= 8; d += d) {
570 if (barriers[y*w+x] & d) {
571 int x2, y2;
572 /*
573 * In principle the barrier list should already
574 * contain each barrier from each side, but
575 * let's not take chances with our internal
576 * consistency.
577 */
578 OFFSETWH(x2, y2, x, y, d, w, h);
579 edgestate[(y*w+x) * 5 + d] = 2;
580 edgestate[(y2*w+x2) * 5 + F(d)] = 2;
581 }
582 }
583 }
584 }
585
586 /*
587 * Since most deductions made by this solver are local (the
588 * exception is loop avoidance, where joining two tiles
589 * together on one side of the grid can theoretically permit a
590 * fresh deduction on the other), we can address the scaling
591 * problem inherent in iterating repeatedly over the entire
592 * grid by instead working with a to-do list.
593 */
594 todo = todo_new(w * h);
595
596 /*
597 * Main deductive loop.
598 */
599 done_something = TRUE; /* prevent instant termination! */
600 while (1) {
601 int index;
602
603 /*
604 * Take a tile index off the todo list and process it.
605 */
606 index = todo_get(todo);
607 if (index == -1) {
608 /*
609 * If we have run out of immediate things to do, we
610 * have no choice but to scan the whole grid for
611 * longer-range things we've missed. Hence, I now add
612 * every square on the grid back on to the to-do list.
613 * I also set `done_something' to FALSE at this point;
614 * if we later come back here and find it still FALSE,
615 * we will know we've scanned the entire grid without
616 * finding anything new to do, and we can terminate.
617 */
618 if (!done_something)
619 break;
620 for (i = 0; i < w*h; i++)
621 todo_add(todo, i);
622 done_something = FALSE;
623
624 index = todo_get(todo);
625 }
626
627 y = index / w;
628 x = index % w;
629 {
630 int d, ourclass = dsf_canonify(equivalence, y*w+x);
631 int deadendmax[9];
632
633 deadendmax[1] = deadendmax[2] = deadendmax[4] = deadendmax[8] = 0;
634
635 for (i = j = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
636 int valid;
637 int nnondeadends, nondeadends[4], deadendtotal;
638 int nequiv, equiv[5];
639 int val = tilestate[(y*w+x) * 4 + i];
640
641 valid = TRUE;
642 nnondeadends = deadendtotal = 0;
643 equiv[0] = ourclass;
644 nequiv = 1;
645 for (d = 1; d <= 8; d += d) {
646 /*
647 * Immediately rule out this orientation if it
648 * conflicts with any known edge.
649 */
650 if ((edgestate[(y*w+x) * 5 + d] == 1 && !(val & d)) ||
651 (edgestate[(y*w+x) * 5 + d] == 2 && (val & d)))
652 valid = FALSE;
653
654 if (val & d) {
655 /*
656 * Count up the dead-end statistics.
657 */
658 if (deadends[(y*w+x) * 5 + d] <= area) {
659 deadendtotal += deadends[(y*w+x) * 5 + d];
660 } else {
661 nondeadends[nnondeadends++] = d;
662 }
663
664 /*
665 * Ensure we aren't linking to any tiles,
666 * through edges not already known to be
667 * open, which create a loop.
668 */
669 if (edgestate[(y*w+x) * 5 + d] == 0) {
670 int c, k, x2, y2;
671
672 OFFSETWH(x2, y2, x, y, d, w, h);
673 c = dsf_canonify(equivalence, y2*w+x2);
674 for (k = 0; k < nequiv; k++)
675 if (c == equiv[k])
676 break;
677 if (k == nequiv)
678 equiv[nequiv++] = c;
679 else
680 valid = FALSE;
681 }
682 }
683 }
684
685 if (nnondeadends == 0) {
686 /*
687 * If this orientation links together dead-ends
688 * with a total area of less than the entire
689 * grid, it is invalid.
690 *
691 * (We add 1 to deadendtotal because of the
692 * tile itself, of course; one tile linking
693 * dead ends of size 2 and 3 forms a subnetwork
694 * with a total area of 6, not 5.)
695 */
696 if (deadendtotal > 0 && deadendtotal+1 < area)
697 valid = FALSE;
698 } else if (nnondeadends == 1) {
699 /*
700 * If this orientation links together one or
701 * more dead-ends with precisely one
702 * non-dead-end, then we may have to mark that
703 * non-dead-end as a dead end going the other
704 * way. However, it depends on whether all
705 * other orientations share the same property.
706 */
707 deadendtotal++;
708 if (deadendmax[nondeadends[0]] < deadendtotal)
709 deadendmax[nondeadends[0]] = deadendtotal;
710 } else {
711 /*
712 * If this orientation links together two or
713 * more non-dead-ends, then we can rule out the
714 * possibility of putting in new dead-end
715 * markings in those directions.
716 */
717 int k;
718 for (k = 0; k < nnondeadends; k++)
719 deadendmax[nondeadends[k]] = area+1;
720 }
721
722 if (valid)
723 tilestate[(y*w+x) * 4 + j++] = val;
724 #ifdef SOLVER_DIAGNOSTICS
725 else
726 printf("ruling out orientation %x at %d,%d\n", val, x, y);
727 #endif
728 }
729
730 assert(j > 0); /* we can't lose _all_ possibilities! */
731
732 if (j < i) {
733 done_something = TRUE;
734
735 /*
736 * We have ruled out at least one tile orientation.
737 * Make sure the rest are blanked.
738 */
739 while (j < 4)
740 tilestate[(y*w+x) * 4 + j++] = 255;
741 }
742
743 /*
744 * Now go through the tile orientations again and see
745 * if we've deduced anything new about any edges.
746 */
747 {
748 int a, o;
749 a = 0xF; o = 0;
750
751 for (i = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
752 a &= tilestate[(y*w+x) * 4 + i];
753 o |= tilestate[(y*w+x) * 4 + i];
754 }
755 for (d = 1; d <= 8; d += d)
756 if (edgestate[(y*w+x) * 5 + d] == 0) {
757 int x2, y2, d2;
758 OFFSETWH(x2, y2, x, y, d, w, h);
759 d2 = F(d);
760 if (a & d) {
761 /* This edge is open in all orientations. */
762 #ifdef SOLVER_DIAGNOSTICS
763 printf("marking edge %d,%d:%d open\n", x, y, d);
764 #endif
765 edgestate[(y*w+x) * 5 + d] = 1;
766 edgestate[(y2*w+x2) * 5 + d2] = 1;
767 dsf_merge(equivalence, y*w+x, y2*w+x2);
768 done_something = TRUE;
769 todo_add(todo, y2*w+x2);
770 } else if (!(o & d)) {
771 /* This edge is closed in all orientations. */
772 #ifdef SOLVER_DIAGNOSTICS
773 printf("marking edge %d,%d:%d closed\n", x, y, d);
774 #endif
775 edgestate[(y*w+x) * 5 + d] = 2;
776 edgestate[(y2*w+x2) * 5 + d2] = 2;
777 done_something = TRUE;
778 todo_add(todo, y2*w+x2);
779 }
780 }
781
782 }
783
784 /*
785 * Now check the dead-end markers and see if any of
786 * them has lowered from the real ones.
787 */
788 for (d = 1; d <= 8; d += d) {
789 int x2, y2, d2;
790 OFFSETWH(x2, y2, x, y, d, w, h);
791 d2 = F(d);
792 if (deadendmax[d] > 0 &&
793 deadends[(y2*w+x2) * 5 + d2] > deadendmax[d]) {
794 #ifdef SOLVER_DIAGNOSTICS
795 printf("setting dead end value %d,%d:%d to %d\n",
796 x2, y2, d2, deadendmax[d]);
797 #endif
798 deadends[(y2*w+x2) * 5 + d2] = deadendmax[d];
799 done_something = TRUE;
800 todo_add(todo, y2*w+x2);
801 }
802 }
803
804 }
805 }
806
807 /*
808 * Mark all completely determined tiles as locked.
809 */
810 j = TRUE;
811 for (i = 0; i < w*h; i++) {
812 if (tilestate[i * 4 + 1] == 255) {
813 assert(tilestate[i * 4 + 0] != 255);
814 tiles[i] = tilestate[i * 4] | LOCKED;
815 } else {
816 tiles[i] &= ~LOCKED;
817 j = FALSE;
818 }
819 }
820
821 /*
822 * Free up working space.
823 */
824 todo_free(todo);
825 sfree(tilestate);
826 sfree(edgestate);
827 sfree(deadends);
828 sfree(equivalence);
829
830 return j;
831 }
832
833 /* ----------------------------------------------------------------------
834 * Randomly select a new game description.
835 */
836
837 /*
838 * Function to randomly perturb an ambiguous section in a grid, to
839 * attempt to ensure unique solvability.
840 */
841 static void perturb(int w, int h, unsigned char *tiles, int wrapping,
842 random_state *rs, int startx, int starty, int startd)
843 {
844 struct xyd *perimeter, *perim2, *loop[2], looppos[2];
845 int nperim, perimsize, nloop[2], loopsize[2];
846 int x, y, d, i;
847
848 /*
849 * We know that the tile at (startx,starty) is part of an
850 * ambiguous section, and we also know that its neighbour in
851 * direction startd is fully specified. We begin by tracing all
852 * the way round the ambiguous area.
853 */
854 nperim = perimsize = 0;
855 perimeter = NULL;
856 x = startx;
857 y = starty;
858 d = startd;
859 #ifdef PERTURB_DIAGNOSTICS
860 printf("perturb %d,%d:%d\n", x, y, d);
861 #endif
862 do {
863 int x2, y2, d2;
864
865 if (nperim >= perimsize) {
866 perimsize = perimsize * 3 / 2 + 32;
867 perimeter = sresize(perimeter, perimsize, struct xyd);
868 }
869 perimeter[nperim].x = x;
870 perimeter[nperim].y = y;
871 perimeter[nperim].direction = d;
872 nperim++;
873 #ifdef PERTURB_DIAGNOSTICS
874 printf("perimeter: %d,%d:%d\n", x, y, d);
875 #endif
876
877 /*
878 * First, see if we can simply turn left from where we are
879 * and find another locked square.
880 */
881 d2 = A(d);
882 OFFSETWH(x2, y2, x, y, d2, w, h);
883 if ((!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1)) ||
884 (tiles[y2*w+x2] & LOCKED)) {
885 d = d2;
886 } else {
887 /*
888 * Failing that, step left into the new square and look
889 * in front of us.
890 */
891 x = x2;
892 y = y2;
893 OFFSETWH(x2, y2, x, y, d, w, h);
894 if ((wrapping || (abs(x2-x) <= 1 && abs(y2-y) <= 1)) &&
895 !(tiles[y2*w+x2] & LOCKED)) {
896 /*
897 * And failing _that_, we're going to have to step
898 * forward into _that_ square and look right at the
899 * same locked square as we started with.
900 */
901 x = x2;
902 y = y2;
903 d = C(d);
904 }
905 }
906
907 } while (x != startx || y != starty || d != startd);
908
909 /*
910 * Our technique for perturbing this ambiguous area is to
911 * search round its edge for a join we can make: that is, an
912 * edge on the perimeter which is (a) not currently connected,
913 * and (b) connecting it would not yield a full cross on either
914 * side. Then we make that join, search round the network to
915 * find the loop thus constructed, and sever the loop at a
916 * randomly selected other point.
917 */
918 perim2 = snewn(nperim, struct xyd);
919 memcpy(perim2, perimeter, nperim * sizeof(struct xyd));
920 /* Shuffle the perimeter, so as to search it without directional bias. */
921 shuffle(perim2, nperim, sizeof(*perim2), rs);
922 for (i = 0; i < nperim; i++) {
923 int x2, y2;
924
925 x = perim2[i].x;
926 y = perim2[i].y;
927 d = perim2[i].direction;
928
929 OFFSETWH(x2, y2, x, y, d, w, h);
930 if (!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1))
931 continue; /* can't link across non-wrapping border */
932 if (tiles[y*w+x] & d)
933 continue; /* already linked in this direction! */
934 if (((tiles[y*w+x] | d) & 15) == 15)
935 continue; /* can't turn this tile into a cross */
936 if (((tiles[y2*w+x2] | F(d)) & 15) == 15)
937 continue; /* can't turn other tile into a cross */
938
939 /*
940 * We've found the point at which we're going to make a new
941 * link.
942 */
943 #ifdef PERTURB_DIAGNOSTICS
944 printf("linking %d,%d:%d\n", x, y, d);
945 #endif
946 tiles[y*w+x] |= d;
947 tiles[y2*w+x2] |= F(d);
948
949 break;
950 }
951 sfree(perim2);
952
953 if (i == nperim)
954 return; /* nothing we can do! */
955
956 /*
957 * Now we've constructed a new link, we need to find the entire
958 * loop of which it is a part.
959 *
960 * In principle, this involves doing a complete search round
961 * the network. However, I anticipate that in the vast majority
962 * of cases the loop will be quite small, so what I'm going to
963 * do is make _two_ searches round the network in parallel, one
964 * keeping its metaphorical hand on the left-hand wall while
965 * the other keeps its hand on the right. As soon as one of
966 * them gets back to its starting point, I abandon the other.
967 */
968 for (i = 0; i < 2; i++) {
969 loopsize[i] = nloop[i] = 0;
970 loop[i] = NULL;
971 looppos[i].x = x;
972 looppos[i].y = y;
973 looppos[i].direction = d;
974 }
975 while (1) {
976 for (i = 0; i < 2; i++) {
977 int x2, y2, j;
978
979 x = looppos[i].x;
980 y = looppos[i].y;
981 d = looppos[i].direction;
982
983 OFFSETWH(x2, y2, x, y, d, w, h);
984
985 /*
986 * Add this path segment to the loop, unless it exactly
987 * reverses the previous one on the loop in which case
988 * we take it away again.
989 */
990 #ifdef PERTURB_DIAGNOSTICS
991 printf("looppos[%d] = %d,%d:%d\n", i, x, y, d);
992 #endif
993 if (nloop[i] > 0 &&
994 loop[i][nloop[i]-1].x == x2 &&
995 loop[i][nloop[i]-1].y == y2 &&
996 loop[i][nloop[i]-1].direction == F(d)) {
997 #ifdef PERTURB_DIAGNOSTICS
998 printf("removing path segment %d,%d:%d from loop[%d]\n",
999 x2, y2, F(d), i);
1000 #endif
1001 nloop[i]--;
1002 } else {
1003 if (nloop[i] >= loopsize[i]) {
1004 loopsize[i] = loopsize[i] * 3 / 2 + 32;
1005 loop[i] = sresize(loop[i], loopsize[i], struct xyd);
1006 }
1007 #ifdef PERTURB_DIAGNOSTICS
1008 printf("adding path segment %d,%d:%d to loop[%d]\n",
1009 x, y, d, i);
1010 #endif
1011 loop[i][nloop[i]++] = looppos[i];
1012 }
1013
1014 #ifdef PERTURB_DIAGNOSTICS
1015 printf("tile at new location is %x\n", tiles[y2*w+x2] & 0xF);
1016 #endif
1017 d = F(d);
1018 for (j = 0; j < 4; j++) {
1019 if (i == 0)
1020 d = A(d);
1021 else
1022 d = C(d);
1023 #ifdef PERTURB_DIAGNOSTICS
1024 printf("trying dir %d\n", d);
1025 #endif
1026 if (tiles[y2*w+x2] & d) {
1027 looppos[i].x = x2;
1028 looppos[i].y = y2;
1029 looppos[i].direction = d;
1030 break;
1031 }
1032 }
1033
1034 assert(j < 4);
1035 assert(nloop[i] > 0);
1036
1037 if (looppos[i].x == loop[i][0].x &&
1038 looppos[i].y == loop[i][0].y &&
1039 looppos[i].direction == loop[i][0].direction) {
1040 #ifdef PERTURB_DIAGNOSTICS
1041 printf("loop %d finished tracking\n", i);
1042 #endif
1043
1044 /*
1045 * Having found our loop, we now sever it at a
1046 * randomly chosen point - absolutely any will do -
1047 * which is not the one we joined it at to begin
1048 * with. Conveniently, the one we joined it at is
1049 * loop[i][0], so we just avoid that one.
1050 */
1051 j = random_upto(rs, nloop[i]-1) + 1;
1052 x = loop[i][j].x;
1053 y = loop[i][j].y;
1054 d = loop[i][j].direction;
1055 OFFSETWH(x2, y2, x, y, d, w, h);
1056 tiles[y*w+x] &= ~d;
1057 tiles[y2*w+x2] &= ~F(d);
1058
1059 break;
1060 }
1061 }
1062 if (i < 2)
1063 break;
1064 }
1065 sfree(loop[0]);
1066 sfree(loop[1]);
1067
1068 /*
1069 * Finally, we must mark the entire disputed section as locked,
1070 * to prevent the perturb function being called on it multiple
1071 * times.
1072 *
1073 * To do this, we _sort_ the perimeter of the area. The
1074 * existing xyd_cmp function will arrange things into columns
1075 * for us, in such a way that each column has the edges in
1076 * vertical order. Then we can work down each column and fill
1077 * in all the squares between an up edge and a down edge.
1078 */
1079 qsort(perimeter, nperim, sizeof(struct xyd), xyd_cmp);
1080 x = y = -1;
1081 for (i = 0; i <= nperim; i++) {
1082 if (i == nperim || perimeter[i].x > x) {
1083 /*
1084 * Fill in everything from the last Up edge to the
1085 * bottom of the grid, if necessary.
1086 */
1087 if (x != -1) {
1088 while (y < h) {
1089 #ifdef PERTURB_DIAGNOSTICS
1090 printf("resolved: locking tile %d,%d\n", x, y);
1091 #endif
1092 tiles[y * w + x] |= LOCKED;
1093 y++;
1094 }
1095 x = y = -1;
1096 }
1097
1098 if (i == nperim)
1099 break;
1100
1101 x = perimeter[i].x;
1102 y = 0;
1103 }
1104
1105 if (perimeter[i].direction == U) {
1106 x = perimeter[i].x;
1107 y = perimeter[i].y;
1108 } else if (perimeter[i].direction == D) {
1109 /*
1110 * Fill in everything from the last Up edge to here.
1111 */
1112 assert(x == perimeter[i].x && y <= perimeter[i].y);
1113 while (y <= perimeter[i].y) {
1114 #ifdef PERTURB_DIAGNOSTICS
1115 printf("resolved: locking tile %d,%d\n", x, y);
1116 #endif
1117 tiles[y * w + x] |= LOCKED;
1118 y++;
1119 }
1120 x = y = -1;
1121 }
1122 }
1123
1124 sfree(perimeter);
1125 }
1126
1127 static char *new_game_desc(game_params *params, random_state *rs,
1128 char **aux, int interactive)
1129 {
1130 tree234 *possibilities, *barriertree;
1131 int w, h, x, y, cx, cy, nbarriers;
1132 unsigned char *tiles, *barriers;
1133 char *desc, *p;
1134
1135 w = params->width;
1136 h = params->height;
1137
1138 cx = w / 2;
1139 cy = h / 2;
1140
1141 tiles = snewn(w * h, unsigned char);
1142 barriers = snewn(w * h, unsigned char);
1143
1144 begin_generation:
1145
1146 memset(tiles, 0, w * h);
1147 memset(barriers, 0, w * h);
1148
1149 /*
1150 * Construct the unshuffled grid.
1151 *
1152 * To do this, we simply start at the centre point, repeatedly
1153 * choose a random possibility out of the available ways to
1154 * extend a used square into an unused one, and do it. After
1155 * extending the third line out of a square, we remove the
1156 * fourth from the possibilities list to avoid any full-cross
1157 * squares (which would make the game too easy because they
1158 * only have one orientation).
1159 *
1160 * The slightly worrying thing is the avoidance of full-cross
1161 * squares. Can this cause our unsophisticated construction
1162 * algorithm to paint itself into a corner, by getting into a
1163 * situation where there are some unreached squares and the
1164 * only way to reach any of them is to extend a T-piece into a
1165 * full cross?
1166 *
1167 * Answer: no it can't, and here's a proof.
1168 *
1169 * Any contiguous group of such unreachable squares must be
1170 * surrounded on _all_ sides by T-pieces pointing away from the
1171 * group. (If not, then there is a square which can be extended
1172 * into one of the `unreachable' ones, and so it wasn't
1173 * unreachable after all.) In particular, this implies that
1174 * each contiguous group of unreachable squares must be
1175 * rectangular in shape (any deviation from that yields a
1176 * non-T-piece next to an `unreachable' square).
1177 *
1178 * So we have a rectangle of unreachable squares, with T-pieces
1179 * forming a solid border around the rectangle. The corners of
1180 * that border must be connected (since every tile connects all
1181 * the lines arriving in it), and therefore the border must
1182 * form a closed loop around the rectangle.
1183 *
1184 * But this can't have happened in the first place, since we
1185 * _know_ we've avoided creating closed loops! Hence, no such
1186 * situation can ever arise, and the naive grid construction
1187 * algorithm will guaranteeably result in a complete grid
1188 * containing no unreached squares, no full crosses _and_ no
1189 * closed loops. []
1190 */
1191 possibilities = newtree234(xyd_cmp_nc);
1192
1193 if (cx+1 < w)
1194 add234(possibilities, new_xyd(cx, cy, R));
1195 if (cy-1 >= 0)
1196 add234(possibilities, new_xyd(cx, cy, U));
1197 if (cx-1 >= 0)
1198 add234(possibilities, new_xyd(cx, cy, L));
1199 if (cy+1 < h)
1200 add234(possibilities, new_xyd(cx, cy, D));
1201
1202 while (count234(possibilities) > 0) {
1203 int i;
1204 struct xyd *xyd;
1205 int x1, y1, d1, x2, y2, d2, d;
1206
1207 /*
1208 * Extract a randomly chosen possibility from the list.
1209 */
1210 i = random_upto(rs, count234(possibilities));
1211 xyd = delpos234(possibilities, i);
1212 x1 = xyd->x;
1213 y1 = xyd->y;
1214 d1 = xyd->direction;
1215 sfree(xyd);
1216
1217 OFFSET(x2, y2, x1, y1, d1, params);
1218 d2 = F(d1);
1219 #ifdef GENERATION_DIAGNOSTICS
1220 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
1221 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
1222 #endif
1223
1224 /*
1225 * Make the connection. (We should be moving to an as yet
1226 * unused tile.)
1227 */
1228 index(params, tiles, x1, y1) |= d1;
1229 assert(index(params, tiles, x2, y2) == 0);
1230 index(params, tiles, x2, y2) |= d2;
1231
1232 /*
1233 * If we have created a T-piece, remove its last
1234 * possibility.
1235 */
1236 if (COUNT(index(params, tiles, x1, y1)) == 3) {
1237 struct xyd xyd1, *xydp;
1238
1239 xyd1.x = x1;
1240 xyd1.y = y1;
1241 xyd1.direction = 0x0F ^ index(params, tiles, x1, y1);
1242
1243 xydp = find234(possibilities, &xyd1, NULL);
1244
1245 if (xydp) {
1246 #ifdef GENERATION_DIAGNOSTICS
1247 printf("T-piece; removing (%d,%d,%c)\n",
1248 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
1249 #endif
1250 del234(possibilities, xydp);
1251 sfree(xydp);
1252 }
1253 }
1254
1255 /*
1256 * Remove all other possibilities that were pointing at the
1257 * tile we've just moved into.
1258 */
1259 for (d = 1; d < 0x10; d <<= 1) {
1260 int x3, y3, d3;
1261 struct xyd xyd1, *xydp;
1262
1263 OFFSET(x3, y3, x2, y2, d, params);
1264 d3 = F(d);
1265
1266 xyd1.x = x3;
1267 xyd1.y = y3;
1268 xyd1.direction = d3;
1269
1270 xydp = find234(possibilities, &xyd1, NULL);
1271
1272 if (xydp) {
1273 #ifdef GENERATION_DIAGNOSTICS
1274 printf("Loop avoidance; removing (%d,%d,%c)\n",
1275 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
1276 #endif
1277 del234(possibilities, xydp);
1278 sfree(xydp);
1279 }
1280 }
1281
1282 /*
1283 * Add new possibilities to the list for moving _out_ of
1284 * the tile we have just moved into.
1285 */
1286 for (d = 1; d < 0x10; d <<= 1) {
1287 int x3, y3;
1288
1289 if (d == d2)
1290 continue; /* we've got this one already */
1291
1292 if (!params->wrapping) {
1293 if (d == U && y2 == 0)
1294 continue;
1295 if (d == D && y2 == h-1)
1296 continue;
1297 if (d == L && x2 == 0)
1298 continue;
1299 if (d == R && x2 == w-1)
1300 continue;
1301 }
1302
1303 OFFSET(x3, y3, x2, y2, d, params);
1304
1305 if (index(params, tiles, x3, y3))
1306 continue; /* this would create a loop */
1307
1308 #ifdef GENERATION_DIAGNOSTICS
1309 printf("New frontier; adding (%d,%d,%c)\n",
1310 x2, y2, "0RU3L567D9abcdef"[d]);
1311 #endif
1312 add234(possibilities, new_xyd(x2, y2, d));
1313 }
1314 }
1315 /* Having done that, we should have no possibilities remaining. */
1316 assert(count234(possibilities) == 0);
1317 freetree234(possibilities);
1318
1319 if (params->unique) {
1320 int prevn = -1;
1321
1322 /*
1323 * Run the solver to check unique solubility.
1324 */
1325 while (!net_solver(w, h, tiles, NULL, params->wrapping)) {
1326 int n = 0;
1327
1328 /*
1329 * We expect (in most cases) that most of the grid will
1330 * be uniquely specified already, and the remaining
1331 * ambiguous sections will be small and separate. So
1332 * our strategy is to find each individual such
1333 * section, and perform a perturbation on the network
1334 * in that area.
1335 */
1336 for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
1337 if (x+1 < w && ((tiles[y*w+x] ^ tiles[y*w+x+1]) & LOCKED)) {
1338 n++;
1339 if (tiles[y*w+x] & LOCKED)
1340 perturb(w, h, tiles, params->wrapping, rs, x+1, y, L);
1341 else
1342 perturb(w, h, tiles, params->wrapping, rs, x, y, R);
1343 }
1344 if (y+1 < h && ((tiles[y*w+x] ^ tiles[(y+1)*w+x]) & LOCKED)) {
1345 n++;
1346 if (tiles[y*w+x] & LOCKED)
1347 perturb(w, h, tiles, params->wrapping, rs, x, y+1, U);
1348 else
1349 perturb(w, h, tiles, params->wrapping, rs, x, y, D);
1350 }
1351 }
1352
1353 /*
1354 * Now n counts the number of ambiguous sections we
1355 * have fiddled with. If we haven't managed to decrease
1356 * it from the last time we ran the solver, give up and
1357 * regenerate the entire grid.
1358 */
1359 if (prevn != -1 && prevn <= n)
1360 goto begin_generation; /* (sorry) */
1361
1362 prevn = n;
1363 }
1364
1365 /*
1366 * The solver will have left a lot of LOCKED bits lying
1367 * around in the tiles array. Remove them.
1368 */
1369 for (x = 0; x < w*h; x++)
1370 tiles[x] &= ~LOCKED;
1371 }
1372
1373 /*
1374 * Now compute a list of the possible barrier locations.
1375 */
1376 barriertree = newtree234(xyd_cmp_nc);
1377 for (y = 0; y < h; y++) {
1378 for (x = 0; x < w; x++) {
1379
1380 if (!(index(params, tiles, x, y) & R) &&
1381 (params->wrapping || x < w-1))
1382 add234(barriertree, new_xyd(x, y, R));
1383 if (!(index(params, tiles, x, y) & D) &&
1384 (params->wrapping || y < h-1))
1385 add234(barriertree, new_xyd(x, y, D));
1386 }
1387 }
1388
1389 /*
1390 * Save the unshuffled grid in aux.
1391 */
1392 {
1393 char *solution;
1394 int i;
1395
1396 solution = snewn(w * h + 1, char);
1397 for (i = 0; i < w * h; i++)
1398 solution[i] = "0123456789abcdef"[tiles[i] & 0xF];
1399 solution[w*h] = '\0';
1400
1401 *aux = solution;
1402 }
1403
1404 /*
1405 * Now shuffle the grid.
1406 */
1407 for (y = 0; y < h; y++) {
1408 for (x = 0; x < w; x++) {
1409 int orig = index(params, tiles, x, y);
1410 int rot = random_upto(rs, 4);
1411 index(params, tiles, x, y) = ROT(orig, rot);
1412 }
1413 }
1414
1415 /*
1416 * And now choose barrier locations. (We carefully do this
1417 * _after_ shuffling, so that changing the barrier rate in the
1418 * params while keeping the random seed the same will give the
1419 * same shuffled grid and _only_ change the barrier locations.
1420 * Also the way we choose barrier locations, by repeatedly
1421 * choosing one possibility from the list until we have enough,
1422 * is designed to ensure that raising the barrier rate while
1423 * keeping the seed the same will provide a superset of the
1424 * previous barrier set - i.e. if you ask for 10 barriers, and
1425 * then decide that's still too hard and ask for 20, you'll get
1426 * the original 10 plus 10 more, rather than getting 20 new
1427 * ones and the chance of remembering your first 10.)
1428 */
1429 nbarriers = (int)(params->barrier_probability * count234(barriertree));
1430 assert(nbarriers >= 0 && nbarriers <= count234(barriertree));
1431
1432 while (nbarriers > 0) {
1433 int i;
1434 struct xyd *xyd;
1435 int x1, y1, d1, x2, y2, d2;
1436
1437 /*
1438 * Extract a randomly chosen barrier from the list.
1439 */
1440 i = random_upto(rs, count234(barriertree));
1441 xyd = delpos234(barriertree, i);
1442
1443 assert(xyd != NULL);
1444
1445 x1 = xyd->x;
1446 y1 = xyd->y;
1447 d1 = xyd->direction;
1448 sfree(xyd);
1449
1450 OFFSET(x2, y2, x1, y1, d1, params);
1451 d2 = F(d1);
1452
1453 index(params, barriers, x1, y1) |= d1;
1454 index(params, barriers, x2, y2) |= d2;
1455
1456 nbarriers--;
1457 }
1458
1459 /*
1460 * Clean up the rest of the barrier list.
1461 */
1462 {
1463 struct xyd *xyd;
1464
1465 while ( (xyd = delpos234(barriertree, 0)) != NULL)
1466 sfree(xyd);
1467
1468 freetree234(barriertree);
1469 }
1470
1471 /*
1472 * Finally, encode the grid into a string game description.
1473 *
1474 * My syntax is extremely simple: each square is encoded as a
1475 * hex digit in which bit 0 means a connection on the right,
1476 * bit 1 means up, bit 2 left and bit 3 down. (i.e. the same
1477 * encoding as used internally). Each digit is followed by
1478 * optional barrier indicators: `v' means a vertical barrier to
1479 * the right of it, and `h' means a horizontal barrier below
1480 * it.
1481 */
1482 desc = snewn(w * h * 3 + 1, char);
1483 p = desc;
1484 for (y = 0; y < h; y++) {
1485 for (x = 0; x < w; x++) {
1486 *p++ = "0123456789abcdef"[index(params, tiles, x, y)];
1487 if ((params->wrapping || x < w-1) &&
1488 (index(params, barriers, x, y) & R))
1489 *p++ = 'v';
1490 if ((params->wrapping || y < h-1) &&
1491 (index(params, barriers, x, y) & D))
1492 *p++ = 'h';
1493 }
1494 }
1495 assert(p - desc <= w*h*3);
1496 *p = '\0';
1497
1498 sfree(tiles);
1499 sfree(barriers);
1500
1501 return desc;
1502 }
1503
1504 static char *validate_desc(game_params *params, char *desc)
1505 {
1506 int w = params->width, h = params->height;
1507 int i;
1508
1509 for (i = 0; i < w*h; i++) {
1510 if (*desc >= '0' && *desc <= '9')
1511 /* OK */;
1512 else if (*desc >= 'a' && *desc <= 'f')
1513 /* OK */;
1514 else if (*desc >= 'A' && *desc <= 'F')
1515 /* OK */;
1516 else if (!*desc)
1517 return "Game description shorter than expected";
1518 else
1519 return "Game description contained unexpected character";
1520 desc++;
1521 while (*desc == 'h' || *desc == 'v')
1522 desc++;
1523 }
1524 if (*desc)
1525 return "Game description longer than expected";
1526
1527 return NULL;
1528 }
1529
1530 /* ----------------------------------------------------------------------
1531 * Construct an initial game state, given a description and parameters.
1532 */
1533
1534 static game_state *new_game(midend *me, game_params *params, char *desc)
1535 {
1536 game_state *state;
1537 int w, h, x, y;
1538
1539 assert(params->width > 0 && params->height > 0);
1540 assert(params->width > 1 || params->height > 1);
1541
1542 /*
1543 * Create a blank game state.
1544 */
1545 state = snew(game_state);
1546 w = state->width = params->width;
1547 h = state->height = params->height;
1548 state->wrapping = params->wrapping;
1549 state->last_rotate_dir = state->last_rotate_x = state->last_rotate_y = 0;
1550 state->completed = state->used_solve = FALSE;
1551 state->tiles = snewn(state->width * state->height, unsigned char);
1552 memset(state->tiles, 0, state->width * state->height);
1553 state->barriers = snewn(state->width * state->height, unsigned char);
1554 memset(state->barriers, 0, state->width * state->height);
1555
1556 /*
1557 * Parse the game description into the grid.
1558 */
1559 for (y = 0; y < h; y++) {
1560 for (x = 0; x < w; x++) {
1561 if (*desc >= '0' && *desc <= '9')
1562 tile(state, x, y) = *desc - '0';
1563 else if (*desc >= 'a' && *desc <= 'f')
1564 tile(state, x, y) = *desc - 'a' + 10;
1565 else if (*desc >= 'A' && *desc <= 'F')
1566 tile(state, x, y) = *desc - 'A' + 10;
1567 if (*desc)
1568 desc++;
1569 while (*desc == 'h' || *desc == 'v') {
1570 int x2, y2, d1, d2;
1571 if (*desc == 'v')
1572 d1 = R;
1573 else
1574 d1 = D;
1575
1576 OFFSET(x2, y2, x, y, d1, state);
1577 d2 = F(d1);
1578
1579 barrier(state, x, y) |= d1;
1580 barrier(state, x2, y2) |= d2;
1581
1582 desc++;
1583 }
1584 }
1585 }
1586
1587 /*
1588 * Set up border barriers if this is a non-wrapping game.
1589 */
1590 if (!state->wrapping) {
1591 for (x = 0; x < state->width; x++) {
1592 barrier(state, x, 0) |= U;
1593 barrier(state, x, state->height-1) |= D;
1594 }
1595 for (y = 0; y < state->height; y++) {
1596 barrier(state, 0, y) |= L;
1597 barrier(state, state->width-1, y) |= R;
1598 }
1599 } else {
1600 /*
1601 * We check whether this is de-facto a non-wrapping game
1602 * despite the parameters, in case we were passed the
1603 * description of a non-wrapping game. This is so that we
1604 * can change some aspects of the UI behaviour.
1605 */
1606 state->wrapping = FALSE;
1607 for (x = 0; x < state->width; x++)
1608 if (!(barrier(state, x, 0) & U) ||
1609 !(barrier(state, x, state->height-1) & D))
1610 state->wrapping = TRUE;
1611 for (y = 0; y < state->width; y++)
1612 if (!(barrier(state, 0, y) & L) ||
1613 !(barrier(state, state->width-1, y) & R))
1614 state->wrapping = TRUE;
1615 }
1616
1617 return state;
1618 }
1619
1620 static game_state *dup_game(game_state *state)
1621 {
1622 game_state *ret;
1623
1624 ret = snew(game_state);
1625 ret->width = state->width;
1626 ret->height = state->height;
1627 ret->wrapping = state->wrapping;
1628 ret->completed = state->completed;
1629 ret->used_solve = state->used_solve;
1630 ret->last_rotate_dir = state->last_rotate_dir;
1631 ret->last_rotate_x = state->last_rotate_x;
1632 ret->last_rotate_y = state->last_rotate_y;
1633 ret->tiles = snewn(state->width * state->height, unsigned char);
1634 memcpy(ret->tiles, state->tiles, state->width * state->height);
1635 ret->barriers = snewn(state->width * state->height, unsigned char);
1636 memcpy(ret->barriers, state->barriers, state->width * state->height);
1637
1638 return ret;
1639 }
1640
1641 static void free_game(game_state *state)
1642 {
1643 sfree(state->tiles);
1644 sfree(state->barriers);
1645 sfree(state);
1646 }
1647
1648 static char *solve_game(game_state *state, game_state *currstate,
1649 char *aux, char **error)
1650 {
1651 unsigned char *tiles;
1652 char *ret;
1653 int retlen, retsize;
1654 int i;
1655
1656 tiles = snewn(state->width * state->height, unsigned char);
1657
1658 if (!aux) {
1659 /*
1660 * Run the internal solver on the provided grid. This might
1661 * not yield a complete solution.
1662 */
1663 memcpy(tiles, state->tiles, state->width * state->height);
1664 net_solver(state->width, state->height, tiles,
1665 state->barriers, state->wrapping);
1666 } else {
1667 for (i = 0; i < state->width * state->height; i++) {
1668 int c = aux[i];
1669
1670 if (c >= '0' && c <= '9')
1671 tiles[i] = c - '0';
1672 else if (c >= 'a' && c <= 'f')
1673 tiles[i] = c - 'a' + 10;
1674 else if (c >= 'A' && c <= 'F')
1675 tiles[i] = c - 'A' + 10;
1676
1677 tiles[i] |= LOCKED;
1678 }
1679 }
1680
1681 /*
1682 * Now construct a string which can be passed to execute_move()
1683 * to transform the current grid into the solved one.
1684 */
1685 retsize = 256;
1686 ret = snewn(retsize, char);
1687 retlen = 0;
1688 ret[retlen++] = 'S';
1689
1690 for (i = 0; i < state->width * state->height; i++) {
1691 int from = currstate->tiles[i], to = tiles[i];
1692 int ft = from & (R|L|U|D), tt = to & (R|L|U|D);
1693 int x = i % state->width, y = i / state->width;
1694 int chr = '\0';
1695 char buf[80], *p = buf;
1696
1697 if (from == to)
1698 continue; /* nothing needs doing at all */
1699
1700 /*
1701 * To transform this tile into the desired tile: first
1702 * unlock the tile if it's locked, then rotate it if
1703 * necessary, then lock it if necessary.
1704 */
1705 if (from & LOCKED)
1706 p += sprintf(p, ";L%d,%d", x, y);
1707
1708 if (tt == A(ft))
1709 chr = 'A';
1710 else if (tt == C(ft))
1711 chr = 'C';
1712 else if (tt == F(ft))
1713 chr = 'F';
1714 else {
1715 assert(tt == ft);
1716 chr = '\0';
1717 }
1718 if (chr)
1719 p += sprintf(p, ";%c%d,%d", chr, x, y);
1720
1721 if (to & LOCKED)
1722 p += sprintf(p, ";L%d,%d", x, y);
1723
1724 if (p > buf) {
1725 if (retlen + (p - buf) >= retsize) {
1726 retsize = retlen + (p - buf) + 512;
1727 ret = sresize(ret, retsize, char);
1728 }
1729 memcpy(ret+retlen, buf, p - buf);
1730 retlen += p - buf;
1731 }
1732 }
1733
1734 assert(retlen < retsize);
1735 ret[retlen] = '\0';
1736 ret = sresize(ret, retlen+1, char);
1737
1738 sfree(tiles);
1739
1740 return ret;
1741 }
1742
1743 static char *game_text_format(game_state *state)
1744 {
1745 return NULL;
1746 }
1747
1748 /* ----------------------------------------------------------------------
1749 * Utility routine.
1750 */
1751
1752 /*
1753 * Compute which squares are reachable from the centre square, as a
1754 * quick visual aid to determining how close the game is to
1755 * completion. This is also a simple way to tell if the game _is_
1756 * completed - just call this function and see whether every square
1757 * is marked active.
1758 */
1759 static unsigned char *compute_active(game_state *state, int cx, int cy)
1760 {
1761 unsigned char *active;
1762 tree234 *todo;
1763 struct xyd *xyd;
1764
1765 active = snewn(state->width * state->height, unsigned char);
1766 memset(active, 0, state->width * state->height);
1767
1768 /*
1769 * We only store (x,y) pairs in todo, but it's easier to reuse
1770 * xyd_cmp and just store direction 0 every time.
1771 */
1772 todo = newtree234(xyd_cmp_nc);
1773 index(state, active, cx, cy) = ACTIVE;
1774 add234(todo, new_xyd(cx, cy, 0));
1775
1776 while ( (xyd = delpos234(todo, 0)) != NULL) {
1777 int x1, y1, d1, x2, y2, d2;
1778
1779 x1 = xyd->x;
1780 y1 = xyd->y;
1781 sfree(xyd);
1782
1783 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
1784 OFFSET(x2, y2, x1, y1, d1, state);
1785 d2 = F(d1);
1786
1787 /*
1788 * If the next tile in this direction is connected to
1789 * us, and there isn't a barrier in the way, and it
1790 * isn't already marked active, then mark it active and
1791 * add it to the to-examine list.
1792 */
1793 if ((tile(state, x1, y1) & d1) &&
1794 (tile(state, x2, y2) & d2) &&
1795 !(barrier(state, x1, y1) & d1) &&
1796 !index(state, active, x2, y2)) {
1797 index(state, active, x2, y2) = ACTIVE;
1798 add234(todo, new_xyd(x2, y2, 0));
1799 }
1800 }
1801 }
1802 /* Now we expect the todo list to have shrunk to zero size. */
1803 assert(count234(todo) == 0);
1804 freetree234(todo);
1805
1806 return active;
1807 }
1808
1809 struct game_ui {
1810 int org_x, org_y; /* origin */
1811 int cx, cy; /* source tile (game coordinates) */
1812 int cur_x, cur_y;
1813 int cur_visible;
1814 random_state *rs; /* used for jumbling */
1815 #ifdef USE_DRAGGING
1816 int dragtilex, dragtiley, dragstartx, dragstarty, dragged;
1817 #endif
1818 };
1819
1820 static game_ui *new_ui(game_state *state)
1821 {
1822 void *seed;
1823 int seedsize;
1824 game_ui *ui = snew(game_ui);
1825 ui->org_x = ui->org_y = 0;
1826 ui->cur_x = ui->cx = state->width / 2;
1827 ui->cur_y = ui->cy = state->height / 2;
1828 ui->cur_visible = FALSE;
1829 get_random_seed(&seed, &seedsize);
1830 ui->rs = random_new(seed, seedsize);
1831 sfree(seed);
1832
1833 return ui;
1834 }
1835
1836 static void free_ui(game_ui *ui)
1837 {
1838 random_free(ui->rs);
1839 sfree(ui);
1840 }
1841
1842 static char *encode_ui(game_ui *ui)
1843 {
1844 char buf[120];
1845 /*
1846 * We preserve the origin and centre-point coordinates over a
1847 * serialise.
1848 */
1849 sprintf(buf, "O%d,%d;C%d,%d", ui->org_x, ui->org_y, ui->cx, ui->cy);
1850 return dupstr(buf);
1851 }
1852
1853 static void decode_ui(game_ui *ui, char *encoding)
1854 {
1855 sscanf(encoding, "O%d,%d;C%d,%d",
1856 &ui->org_x, &ui->org_y, &ui->cx, &ui->cy);
1857 }
1858
1859 static void game_changed_state(game_ui *ui, game_state *oldstate,
1860 game_state *newstate)
1861 {
1862 }
1863
1864 struct game_drawstate {
1865 int started;
1866 int width, height;
1867 int org_x, org_y;
1868 int tilesize;
1869 unsigned char *visible;
1870 };
1871
1872 /* ----------------------------------------------------------------------
1873 * Process a move.
1874 */
1875 static char *interpret_move(game_state *state, game_ui *ui,
1876 game_drawstate *ds, int x, int y, int button)
1877 {
1878 char *nullret;
1879 int tx = -1, ty = -1, dir = 0;
1880 int shift = button & MOD_SHFT, ctrl = button & MOD_CTRL;
1881 enum {
1882 NONE, ROTATE_LEFT, ROTATE_180, ROTATE_RIGHT, TOGGLE_LOCK, JUMBLE,
1883 MOVE_ORIGIN, MOVE_SOURCE, MOVE_ORIGIN_AND_SOURCE, MOVE_CURSOR
1884 } action;
1885
1886 button &= ~MOD_MASK;
1887 nullret = NULL;
1888 action = NONE;
1889
1890 if (button == LEFT_BUTTON ||
1891 button == MIDDLE_BUTTON ||
1892 #ifdef USE_DRAGGING
1893 button == LEFT_DRAG ||
1894 button == LEFT_RELEASE ||
1895 button == RIGHT_DRAG ||
1896 button == RIGHT_RELEASE ||
1897 #endif
1898 button == RIGHT_BUTTON) {
1899
1900 if (ui->cur_visible) {
1901 ui->cur_visible = FALSE;
1902 nullret = "";
1903 }
1904
1905 /*
1906 * The button must have been clicked on a valid tile.
1907 */
1908 x -= WINDOW_OFFSET + TILE_BORDER;
1909 y -= WINDOW_OFFSET + TILE_BORDER;
1910 if (x < 0 || y < 0)
1911 return nullret;
1912 tx = x / TILE_SIZE;
1913 ty = y / TILE_SIZE;
1914 if (tx >= state->width || ty >= state->height)
1915 return nullret;
1916 /* Transform from physical to game coords */
1917 tx = (tx + ui->org_x) % state->width;
1918 ty = (ty + ui->org_y) % state->height;
1919 if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
1920 y % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
1921 return nullret;
1922
1923 #ifdef USE_DRAGGING
1924
1925 if (button == MIDDLE_BUTTON
1926 #ifdef STYLUS_BASED
1927 || button == RIGHT_BUTTON /* with a stylus, `right-click' locks */
1928 #endif
1929 ) {
1930 /*
1931 * Middle button never drags: it only toggles the lock.
1932 */
1933 action = TOGGLE_LOCK;
1934 } else if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
1935 /*
1936 * Otherwise, we note down the start point for a drag.
1937 */
1938 ui->dragtilex = tx;
1939 ui->dragtiley = ty;
1940 ui->dragstartx = x % TILE_SIZE;
1941 ui->dragstarty = y % TILE_SIZE;
1942 ui->dragged = FALSE;
1943 return nullret; /* no actual action */
1944 } else if (button == LEFT_DRAG || button == RIGHT_DRAG) {
1945 /*
1946 * Find the new drag point and see if it necessitates a
1947 * rotation.
1948 */
1949 int x0,y0, xA,yA, xC,yC, xF,yF;
1950 int mx, my;
1951 int d0, dA, dC, dF, dmin;
1952
1953 tx = ui->dragtilex;
1954 ty = ui->dragtiley;
1955
1956 mx = x - (ui->dragtilex * TILE_SIZE);
1957 my = y - (ui->dragtiley * TILE_SIZE);
1958
1959 x0 = ui->dragstartx;
1960 y0 = ui->dragstarty;
1961 xA = ui->dragstarty;
1962 yA = TILE_SIZE-1 - ui->dragstartx;
1963 xF = TILE_SIZE-1 - ui->dragstartx;
1964 yF = TILE_SIZE-1 - ui->dragstarty;
1965 xC = TILE_SIZE-1 - ui->dragstarty;
1966 yC = ui->dragstartx;
1967
1968 d0 = (mx-x0)*(mx-x0) + (my-y0)*(my-y0);
1969 dA = (mx-xA)*(mx-xA) + (my-yA)*(my-yA);
1970 dF = (mx-xF)*(mx-xF) + (my-yF)*(my-yF);
1971 dC = (mx-xC)*(mx-xC) + (my-yC)*(my-yC);
1972
1973 dmin = min(min(d0,dA),min(dF,dC));
1974
1975 if (d0 == dmin) {
1976 return nullret;
1977 } else if (dF == dmin) {
1978 action = ROTATE_180;
1979 ui->dragstartx = xF;
1980 ui->dragstarty = yF;
1981 ui->dragged = TRUE;
1982 } else if (dA == dmin) {
1983 action = ROTATE_LEFT;
1984 ui->dragstartx = xA;
1985 ui->dragstarty = yA;
1986 ui->dragged = TRUE;
1987 } else /* dC == dmin */ {
1988 action = ROTATE_RIGHT;
1989 ui->dragstartx = xC;
1990 ui->dragstarty = yC;
1991 ui->dragged = TRUE;
1992 }
1993 } else if (button == LEFT_RELEASE || button == RIGHT_RELEASE) {
1994 if (!ui->dragged) {
1995 /*
1996 * There was a click but no perceptible drag:
1997 * revert to single-click behaviour.
1998 */
1999 tx = ui->dragtilex;
2000 ty = ui->dragtiley;
2001
2002 if (button == LEFT_RELEASE)
2003 action = ROTATE_LEFT;
2004 else
2005 action = ROTATE_RIGHT;
2006 } else
2007 return nullret; /* no action */
2008 }
2009
2010 #else /* USE_DRAGGING */
2011
2012 action = (button == LEFT_BUTTON ? ROTATE_LEFT :
2013 button == RIGHT_BUTTON ? ROTATE_RIGHT : TOGGLE_LOCK);
2014
2015 #endif /* USE_DRAGGING */
2016
2017 } else if (button == CURSOR_UP || button == CURSOR_DOWN ||
2018 button == CURSOR_RIGHT || button == CURSOR_LEFT) {
2019 switch (button) {
2020 case CURSOR_UP: dir = U; break;
2021 case CURSOR_DOWN: dir = D; break;
2022 case CURSOR_LEFT: dir = L; break;
2023 case CURSOR_RIGHT: dir = R; break;
2024 default: return nullret;
2025 }
2026 if (shift && ctrl) action = MOVE_ORIGIN_AND_SOURCE;
2027 else if (shift) action = MOVE_ORIGIN;
2028 else if (ctrl) action = MOVE_SOURCE;
2029 else action = MOVE_CURSOR;
2030 } else if (button == 'a' || button == 's' || button == 'd' ||
2031 button == 'A' || button == 'S' || button == 'D' ||
2032 button == 'f' || button == 'F' ||
2033 button == CURSOR_SELECT) {
2034 tx = ui->cur_x;
2035 ty = ui->cur_y;
2036 if (button == 'a' || button == 'A' || button == CURSOR_SELECT)
2037 action = ROTATE_LEFT;
2038 else if (button == 's' || button == 'S')
2039 action = TOGGLE_LOCK;
2040 else if (button == 'd' || button == 'D')
2041 action = ROTATE_RIGHT;
2042 else if (button == 'f' || button == 'F')
2043 action = ROTATE_180;
2044 ui->cur_visible = TRUE;
2045 } else if (button == 'j' || button == 'J') {
2046 /* XXX should we have some mouse control for this? */
2047 action = JUMBLE;
2048 } else
2049 return nullret;
2050
2051 /*
2052 * The middle button locks or unlocks a tile. (A locked tile
2053 * cannot be turned, and is visually marked as being locked.
2054 * This is a convenience for the player, so that once they are
2055 * sure which way round a tile goes, they can lock it and thus
2056 * avoid forgetting later on that they'd already done that one;
2057 * and the locking also prevents them turning the tile by
2058 * accident. If they change their mind, another middle click
2059 * unlocks it.)
2060 */
2061 if (action == TOGGLE_LOCK) {
2062 char buf[80];
2063 sprintf(buf, "L%d,%d", tx, ty);
2064 return dupstr(buf);
2065 } else if (action == ROTATE_LEFT || action == ROTATE_RIGHT ||
2066 action == ROTATE_180) {
2067 char buf[80];
2068
2069 /*
2070 * The left and right buttons have no effect if clicked on a
2071 * locked tile.
2072 */
2073 if (tile(state, tx, ty) & LOCKED)
2074 return nullret;
2075
2076 /*
2077 * Otherwise, turn the tile one way or the other. Left button
2078 * turns anticlockwise; right button turns clockwise.
2079 */
2080 sprintf(buf, "%c%d,%d", (int)(action == ROTATE_LEFT ? 'A' :
2081 action == ROTATE_RIGHT ? 'C' : 'F'), tx, ty);
2082 return dupstr(buf);
2083 } else if (action == JUMBLE) {
2084 /*
2085 * Jumble all unlocked tiles to random orientations.
2086 */
2087
2088 int jx, jy, maxlen;
2089 char *ret, *p;
2090
2091 /*
2092 * Maximum string length assumes no int can be converted to
2093 * decimal and take more than 11 digits!
2094 */
2095 maxlen = state->width * state->height * 25 + 3;
2096
2097 ret = snewn(maxlen, char);
2098 p = ret;
2099 *p++ = 'J';
2100
2101 for (jy = 0; jy < state->height; jy++) {
2102 for (jx = 0; jx < state->width; jx++) {
2103 if (!(tile(state, jx, jy) & LOCKED)) {
2104 int rot = random_upto(ui->rs, 4);
2105 if (rot) {
2106 p += sprintf(p, ";%c%d,%d", "AFC"[rot-1], jx, jy);
2107 }
2108 }
2109 }
2110 }
2111 *p++ = '\0';
2112 assert(p - ret < maxlen);
2113 ret = sresize(ret, p - ret, char);
2114
2115 return ret;
2116 } else if (action == MOVE_ORIGIN || action == MOVE_SOURCE ||
2117 action == MOVE_ORIGIN_AND_SOURCE || action == MOVE_CURSOR) {
2118 assert(dir != 0);
2119 if (action == MOVE_ORIGIN || action == MOVE_ORIGIN_AND_SOURCE) {
2120 if (state->wrapping) {
2121 OFFSET(ui->org_x, ui->org_y, ui->org_x, ui->org_y, dir, state);
2122 } else return nullret; /* disallowed for non-wrapping grids */
2123 }
2124 if (action == MOVE_SOURCE || action == MOVE_ORIGIN_AND_SOURCE) {
2125 OFFSET(ui->cx, ui->cy, ui->cx, ui->cy, dir, state);
2126 }
2127 if (action == MOVE_CURSOR) {
2128 OFFSET(ui->cur_x, ui->cur_y, ui->cur_x, ui->cur_y, dir, state);
2129 ui->cur_visible = TRUE;
2130 }
2131 return "";
2132 } else {
2133 return NULL;
2134 }
2135 }
2136
2137 static game_state *execute_move(game_state *from, char *move)
2138 {
2139 game_state *ret;
2140 int tx, ty, n, noanim, orig;
2141
2142 ret = dup_game(from);
2143
2144 if (move[0] == 'J' || move[0] == 'S') {
2145 if (move[0] == 'S')
2146 ret->used_solve = TRUE;
2147
2148 move++;
2149 if (*move == ';')
2150 move++;
2151 noanim = TRUE;
2152 } else
2153 noanim = FALSE;
2154
2155 ret->last_rotate_dir = 0; /* suppress animation */
2156 ret->last_rotate_x = ret->last_rotate_y = 0;
2157
2158 while (*move) {
2159 if ((move[0] == 'A' || move[0] == 'C' ||
2160 move[0] == 'F' || move[0] == 'L') &&
2161 sscanf(move+1, "%d,%d%n", &tx, &ty, &n) >= 2 &&
2162 tx >= 0 && tx < from->width && ty >= 0 && ty < from->height) {
2163 orig = tile(ret, tx, ty);
2164 if (move[0] == 'A') {
2165 tile(ret, tx, ty) = A(orig);
2166 if (!noanim)
2167 ret->last_rotate_dir = +1;
2168 } else if (move[0] == 'F') {
2169 tile(ret, tx, ty) = F(orig);
2170 if (!noanim)
2171 ret->last_rotate_dir = +2; /* + for sake of argument */
2172 } else if (move[0] == 'C') {
2173 tile(ret, tx, ty) = C(orig);
2174 if (!noanim)
2175 ret->last_rotate_dir = -1;
2176 } else {
2177 assert(move[0] == 'L');
2178 tile(ret, tx, ty) ^= LOCKED;
2179 }
2180
2181 move += 1 + n;
2182 if (*move == ';') move++;
2183 } else {
2184 free_game(ret);
2185 return NULL;
2186 }
2187 }
2188 if (!noanim) {
2189 ret->last_rotate_x = tx;
2190 ret->last_rotate_y = ty;
2191 }
2192
2193 /*
2194 * Check whether the game has been completed.
2195 *
2196 * For this purpose it doesn't matter where the source square
2197 * is, because we can start from anywhere and correctly
2198 * determine whether the game is completed.
2199 */
2200 {
2201 unsigned char *active = compute_active(ret, 0, 0);
2202 int x1, y1;
2203 int complete = TRUE;
2204
2205 for (x1 = 0; x1 < ret->width; x1++)
2206 for (y1 = 0; y1 < ret->height; y1++)
2207 if ((tile(ret, x1, y1) & 0xF) && !index(ret, active, x1, y1)) {
2208 complete = FALSE;
2209 goto break_label; /* break out of two loops at once */
2210 }
2211 break_label:
2212
2213 sfree(active);
2214
2215 if (complete)
2216 ret->completed = TRUE;
2217 }
2218
2219 return ret;
2220 }
2221
2222
2223 /* ----------------------------------------------------------------------
2224 * Routines for drawing the game position on the screen.
2225 */
2226
2227 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
2228 {
2229 game_drawstate *ds = snew(game_drawstate);
2230
2231 ds->started = FALSE;
2232 ds->width = state->width;
2233 ds->height = state->height;
2234 ds->org_x = ds->org_y = -1;
2235 ds->visible = snewn(state->width * state->height, unsigned char);
2236 ds->tilesize = 0; /* undecided yet */
2237 memset(ds->visible, 0xFF, state->width * state->height);
2238
2239 return ds;
2240 }
2241
2242 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
2243 {
2244 sfree(ds->visible);
2245 sfree(ds);
2246 }
2247
2248 static void game_compute_size(game_params *params, int tilesize,
2249 int *x, int *y)
2250 {
2251 *x = WINDOW_OFFSET * 2 + tilesize * params->width + TILE_BORDER;
2252 *y = WINDOW_OFFSET * 2 + tilesize * params->height + TILE_BORDER;
2253 }
2254
2255 static void game_set_size(drawing *dr, game_drawstate *ds,
2256 game_params *params, int tilesize)
2257 {
2258 ds->tilesize = tilesize;
2259 }
2260
2261 static float *game_colours(frontend *fe, int *ncolours)
2262 {
2263 float *ret;
2264
2265 ret = snewn(NCOLOURS * 3, float);
2266 *ncolours = NCOLOURS;
2267
2268 /*
2269 * Basic background colour is whatever the front end thinks is
2270 * a sensible default.
2271 */
2272 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
2273
2274 /*
2275 * Wires are black.
2276 */
2277 ret[COL_WIRE * 3 + 0] = 0.0F;
2278 ret[COL_WIRE * 3 + 1] = 0.0F;
2279 ret[COL_WIRE * 3 + 2] = 0.0F;
2280
2281 /*
2282 * Powered wires and powered endpoints are cyan.
2283 */
2284 ret[COL_POWERED * 3 + 0] = 0.0F;
2285 ret[COL_POWERED * 3 + 1] = 1.0F;
2286 ret[COL_POWERED * 3 + 2] = 1.0F;
2287
2288 /*
2289 * Barriers are red.
2290 */
2291 ret[COL_BARRIER * 3 + 0] = 1.0F;
2292 ret[COL_BARRIER * 3 + 1] = 0.0F;
2293 ret[COL_BARRIER * 3 + 2] = 0.0F;
2294
2295 /*
2296 * Unpowered endpoints are blue.
2297 */
2298 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
2299 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
2300 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
2301
2302 /*
2303 * Tile borders are a darker grey than the background.
2304 */
2305 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
2306 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
2307 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
2308
2309 /*
2310 * Locked tiles are a grey in between those two.
2311 */
2312 ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
2313 ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
2314 ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
2315
2316 return ret;
2317 }
2318
2319 static void draw_thick_line(drawing *dr, int x1, int y1, int x2, int y2,
2320 int colour)
2321 {
2322 draw_line(dr, x1-1, y1, x2-1, y2, COL_WIRE);
2323 draw_line(dr, x1+1, y1, x2+1, y2, COL_WIRE);
2324 draw_line(dr, x1, y1-1, x2, y2-1, COL_WIRE);
2325 draw_line(dr, x1, y1+1, x2, y2+1, COL_WIRE);
2326 draw_line(dr, x1, y1, x2, y2, colour);
2327 }
2328
2329 static void draw_rect_coords(drawing *dr, int x1, int y1, int x2, int y2,
2330 int colour)
2331 {
2332 int mx = (x1 < x2 ? x1 : x2);
2333 int my = (y1 < y2 ? y1 : y2);
2334 int dx = (x2 + x1 - 2*mx + 1);
2335 int dy = (y2 + y1 - 2*my + 1);
2336
2337 draw_rect(dr, mx, my, dx, dy, colour);
2338 }
2339
2340 /*
2341 * draw_barrier_corner() and draw_barrier() are passed physical coords
2342 */
2343 static void draw_barrier_corner(drawing *dr, game_drawstate *ds,
2344 int x, int y, int dx, int dy, int phase)
2345 {
2346 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2347 int by = WINDOW_OFFSET + TILE_SIZE * y;
2348 int x1, y1;
2349
2350 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
2351 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
2352
2353 if (phase == 0) {
2354 draw_rect_coords(dr, bx+x1+dx, by+y1,
2355 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
2356 COL_WIRE);
2357 draw_rect_coords(dr, bx+x1, by+y1+dy,
2358 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
2359 COL_WIRE);
2360 } else {
2361 draw_rect_coords(dr, bx+x1, by+y1,
2362 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
2363 COL_BARRIER);
2364 }
2365 }
2366
2367 static void draw_barrier(drawing *dr, game_drawstate *ds,
2368 int x, int y, int dir, int phase)
2369 {
2370 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2371 int by = WINDOW_OFFSET + TILE_SIZE * y;
2372 int x1, y1, w, h;
2373
2374 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
2375 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
2376 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
2377 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
2378
2379 if (phase == 0) {
2380 draw_rect(dr, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
2381 } else {
2382 draw_rect(dr, bx+x1, by+y1, w, h, COL_BARRIER);
2383 }
2384 }
2385
2386 /*
2387 * draw_tile() is passed physical coordinates
2388 */
2389 static void draw_tile(drawing *dr, game_state *state, game_drawstate *ds,
2390 int x, int y, int tile, int src, float angle, int cursor)
2391 {
2392 int bx = WINDOW_OFFSET + TILE_SIZE * x;
2393 int by = WINDOW_OFFSET + TILE_SIZE * y;
2394 float matrix[4];
2395 float cx, cy, ex, ey, tx, ty;
2396 int dir, col, phase;
2397
2398 /*
2399 * When we draw a single tile, we must draw everything up to
2400 * and including the borders around the tile. This means that
2401 * if the neighbouring tiles have connections to those borders,
2402 * we must draw those connections on the borders themselves.
2403 */
2404
2405 clip(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
2406
2407 /*
2408 * So. First blank the tile out completely: draw a big
2409 * rectangle in border colour, and a smaller rectangle in
2410 * background colour to fill it in.
2411 */
2412 draw_rect(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
2413 COL_BORDER);
2414 draw_rect(dr, bx+TILE_BORDER, by+TILE_BORDER,
2415 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
2416 tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
2417
2418 /*
2419 * Draw an inset outline rectangle as a cursor, in whichever of
2420 * COL_LOCKED and COL_BACKGROUND we aren't currently drawing
2421 * in.
2422 */
2423 if (cursor) {
2424 draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE/8,
2425 bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2426 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2427 draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE/8,
2428 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
2429 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2430 draw_line(dr, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
2431 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2432 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2433 draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2434 bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
2435 tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
2436 }
2437
2438 /*
2439 * Set up the rotation matrix.
2440 */
2441 matrix[0] = (float)cos(angle * PI / 180.0);
2442 matrix[1] = (float)-sin(angle * PI / 180.0);
2443 matrix[2] = (float)sin(angle * PI / 180.0);
2444 matrix[3] = (float)cos(angle * PI / 180.0);
2445
2446 /*
2447 * Draw the wires.
2448 */
2449 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
2450 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
2451 for (dir = 1; dir < 0x10; dir <<= 1) {
2452 if (tile & dir) {
2453 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
2454 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2455 MATMUL(tx, ty, matrix, ex, ey);
2456 draw_thick_line(dr, bx+(int)cx, by+(int)cy,
2457 bx+(int)(cx+tx), by+(int)(cy+ty),
2458 COL_WIRE);
2459 }
2460 }
2461 for (dir = 1; dir < 0x10; dir <<= 1) {
2462 if (tile & dir) {
2463 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
2464 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
2465 MATMUL(tx, ty, matrix, ex, ey);
2466 draw_line(dr, bx+(int)cx, by+(int)cy,
2467 bx+(int)(cx+tx), by+(int)(cy+ty), col);
2468 }
2469 }
2470
2471 /*
2472 * Draw the box in the middle. We do this in blue if the tile
2473 * is an unpowered endpoint, in cyan if the tile is a powered
2474 * endpoint, in black if the tile is the centrepiece, and
2475 * otherwise not at all.
2476 */
2477 col = -1;
2478 if (src)
2479 col = COL_WIRE;
2480 else if (COUNT(tile) == 1) {
2481 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
2482 }
2483 if (col >= 0) {
2484 int i, points[8];
2485
2486 points[0] = +1; points[1] = +1;
2487 points[2] = +1; points[3] = -1;
2488 points[4] = -1; points[5] = -1;
2489 points[6] = -1; points[7] = +1;
2490
2491 for (i = 0; i < 8; i += 2) {
2492 ex = (TILE_SIZE * 0.24F) * points[i];
2493 ey = (TILE_SIZE * 0.24F) * points[i+1];
2494 MATMUL(tx, ty, matrix, ex, ey);
2495 points[i] = bx+(int)(cx+tx);
2496 points[i+1] = by+(int)(cy+ty);
2497 }
2498
2499 draw_polygon(dr, points, 4, col, COL_WIRE);
2500 }
2501
2502 /*
2503 * Draw the points on the border if other tiles are connected
2504 * to us.
2505 */
2506 for (dir = 1; dir < 0x10; dir <<= 1) {
2507 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
2508
2509 dx = X(dir);
2510 dy = Y(dir);
2511
2512 ox = x + dx;
2513 oy = y + dy;
2514
2515 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
2516 continue;
2517
2518 if (!(tile(state, GX(ox), GY(oy)) & F(dir)))
2519 continue;
2520
2521 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
2522 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
2523 lx = dx * (TILE_BORDER-1);
2524 ly = dy * (TILE_BORDER-1);
2525 vx = (dy ? 1 : 0);
2526 vy = (dx ? 1 : 0);
2527
2528 if (angle == 0.0 && (tile & dir)) {
2529 /*
2530 * If we are fully connected to the other tile, we must
2531 * draw right across the tile border. (We can use our
2532 * own ACTIVE state to determine what colour to do this
2533 * in: if we are fully connected to the other tile then
2534 * the two ACTIVE states will be the same.)
2535 */
2536 draw_rect_coords(dr, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
2537 draw_rect_coords(dr, px, py, px+lx, py+ly,
2538 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
2539 } else {
2540 /*
2541 * The other tile extends into our border, but isn't
2542 * actually connected to us. Just draw a single black
2543 * dot.
2544 */
2545 draw_rect_coords(dr, px, py, px, py, COL_WIRE);
2546 }
2547 }
2548
2549 /*
2550 * Draw barrier corners, and then barriers.
2551 */
2552 for (phase = 0; phase < 2; phase++) {
2553 for (dir = 1; dir < 0x10; dir <<= 1) {
2554 int x1, y1, corner = FALSE;
2555 /*
2556 * If at least one barrier terminates at the corner
2557 * between dir and A(dir), draw a barrier corner.
2558 */
2559 if (barrier(state, GX(x), GY(y)) & (dir | A(dir))) {
2560 corner = TRUE;
2561 } else {
2562 /*
2563 * Only count barriers terminating at this corner
2564 * if they're physically next to the corner. (That
2565 * is, if they've wrapped round from the far side
2566 * of the screen, they don't count.)
2567 */
2568 x1 = x + X(dir);
2569 y1 = y + Y(dir);
2570 if (x1 >= 0 && x1 < state->width &&
2571 y1 >= 0 && y1 < state->height &&
2572 (barrier(state, GX(x1), GY(y1)) & A(dir))) {
2573 corner = TRUE;
2574 } else {
2575 x1 = x + X(A(dir));
2576 y1 = y + Y(A(dir));
2577 if (x1 >= 0 && x1 < state->width &&
2578 y1 >= 0 && y1 < state->height &&
2579 (barrier(state, GX(x1), GY(y1)) & dir))
2580 corner = TRUE;
2581 }
2582 }
2583
2584 if (corner) {
2585 /*
2586 * At least one barrier terminates here. Draw a
2587 * corner.
2588 */
2589 draw_barrier_corner(dr, ds, x, y,
2590 X(dir)+X(A(dir)), Y(dir)+Y(A(dir)),
2591 phase);
2592 }
2593 }
2594
2595 for (dir = 1; dir < 0x10; dir <<= 1)
2596 if (barrier(state, GX(x), GY(y)) & dir)
2597 draw_barrier(dr, ds, x, y, dir, phase);
2598 }
2599
2600 unclip(dr);
2601
2602 draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
2603 }
2604
2605 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
2606 game_state *state, int dir, game_ui *ui, float t, float ft)
2607 {
2608 int x, y, tx, ty, frame, last_rotate_dir, moved_origin = FALSE;
2609 unsigned char *active;
2610 float angle = 0.0;
2611
2612 /*
2613 * Clear the screen, and draw the exterior barrier lines, if
2614 * this is our first call or if the origin has changed.
2615 */
2616 if (!ds->started || ui->org_x != ds->org_x || ui->org_y != ds->org_y) {
2617 int phase;
2618
2619 ds->started = TRUE;
2620
2621 draw_rect(dr, 0, 0,
2622 WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
2623 WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
2624 COL_BACKGROUND);
2625
2626 ds->org_x = ui->org_x;
2627 ds->org_y = ui->org_y;
2628 moved_origin = TRUE;
2629
2630 draw_update(dr, 0, 0,
2631 WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
2632 WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
2633
2634 for (phase = 0; phase < 2; phase++) {
2635
2636 for (x = 0; x < ds->width; x++) {
2637 if (x+1 < ds->width) {
2638 if (barrier(state, GX(x), GY(0)) & R)
2639 draw_barrier_corner(dr, ds, x, -1, +1, +1, phase);
2640 if (barrier(state, GX(x), GY(ds->height-1)) & R)
2641 draw_barrier_corner(dr, ds, x, ds->height, +1, -1, phase);
2642 }
2643 if (barrier(state, GX(x), GY(0)) & U) {
2644 draw_barrier_corner(dr, ds, x, -1, -1, +1, phase);
2645 draw_barrier_corner(dr, ds, x, -1, +1, +1, phase);
2646 draw_barrier(dr, ds, x, -1, D, phase);
2647 }
2648 if (barrier(state, GX(x), GY(ds->height-1)) & D) {
2649 draw_barrier_corner(dr, ds, x, ds->height, -1, -1, phase);
2650 draw_barrier_corner(dr, ds, x, ds->height, +1, -1, phase);
2651 draw_barrier(dr, ds, x, ds->height, U, phase);
2652 }
2653 }
2654
2655 for (y = 0; y < ds->height; y++) {
2656 if (y+1 < ds->height) {
2657 if (barrier(state, GX(0), GY(y)) & D)
2658 draw_barrier_corner(dr, ds, -1, y, +1, +1, phase);
2659 if (barrier(state, GX(ds->width-1), GY(y)) & D)
2660 draw_barrier_corner(dr, ds, ds->width, y, -1, +1, phase);
2661 }
2662 if (barrier(state, GX(0), GY(y)) & L) {
2663 draw_barrier_corner(dr, ds, -1, y, +1, -1, phase);
2664 draw_barrier_corner(dr, ds, -1, y, +1, +1, phase);
2665 draw_barrier(dr, ds, -1, y, R, phase);
2666 }
2667 if (barrier(state, GX(ds->width-1), GY(y)) & R) {
2668 draw_barrier_corner(dr, ds, ds->width, y, -1, -1, phase);
2669 draw_barrier_corner(dr, ds, ds->width, y, -1, +1, phase);
2670 draw_barrier(dr, ds, ds->width, y, L, phase);
2671 }
2672 }
2673 }
2674 }
2675
2676 tx = ty = -1;
2677 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
2678 state->last_rotate_dir;
2679 if (oldstate && (t < ROTATE_TIME) && last_rotate_dir) {
2680 /*
2681 * We're animating a single tile rotation. Find the turning
2682 * tile.
2683 */
2684 tx = (dir==-1 ? oldstate->last_rotate_x : state->last_rotate_x);
2685 ty = (dir==-1 ? oldstate->last_rotate_y : state->last_rotate_y);
2686 angle = last_rotate_dir * dir * 90.0F * (t / ROTATE_TIME);
2687 state = oldstate;
2688 }
2689
2690 frame = -1;
2691 if (ft > 0) {
2692 /*
2693 * We're animating a completion flash. Find which frame
2694 * we're at.
2695 */
2696 frame = (int)(ft / FLASH_FRAME);
2697 }
2698
2699 /*
2700 * Draw any tile which differs from the way it was last drawn.
2701 */
2702 active = compute_active(state, ui->cx, ui->cy);
2703
2704 for (x = 0; x < ds->width; x++)
2705 for (y = 0; y < ds->height; y++) {
2706 unsigned char c = tile(state, GX(x), GY(y)) |
2707 index(state, active, GX(x), GY(y));
2708 int is_src = GX(x) == ui->cx && GY(y) == ui->cy;
2709 int is_anim = GX(x) == tx && GY(y) == ty;
2710 int is_cursor = ui->cur_visible &&
2711 GX(x) == ui->cur_x && GY(y) == ui->cur_y;
2712
2713 /*
2714 * In a completion flash, we adjust the LOCKED bit
2715 * depending on our distance from the centre point and
2716 * the frame number.
2717 */
2718 if (frame >= 0) {
2719 int rcx = RX(ui->cx), rcy = RY(ui->cy);
2720 int xdist, ydist, dist;
2721 xdist = (x < rcx ? rcx - x : x - rcx);
2722 ydist = (y < rcy ? rcy - y : y - rcy);
2723 dist = (xdist > ydist ? xdist : ydist);
2724
2725 if (frame >= dist && frame < dist+4) {
2726 int lock = (frame - dist) & 1;
2727 lock = lock ? LOCKED : 0;
2728 c = (c &~ LOCKED) | lock;
2729 }
2730 }
2731
2732 if (moved_origin ||
2733 index(state, ds->visible, x, y) != c ||
2734 index(state, ds->visible, x, y) == 0xFF ||
2735 is_src || is_anim || is_cursor) {
2736 draw_tile(dr, state, ds, x, y, c,
2737 is_src, (is_anim ? angle : 0.0F), is_cursor);
2738 if (is_src || is_anim || is_cursor)
2739 index(state, ds->visible, x, y) = 0xFF;
2740 else
2741 index(state, ds->visible, x, y) = c;
2742 }
2743 }
2744
2745 /*
2746 * Update the status bar.
2747 */
2748 {
2749 char statusbuf[256];
2750 int i, n, n2, a;
2751
2752 n = state->width * state->height;
2753 for (i = a = n2 = 0; i < n; i++) {
2754 if (active[i])
2755 a++;
2756 if (state->tiles[i] & 0xF)
2757 n2++;
2758 }
2759
2760 sprintf(statusbuf, "%sActive: %d/%d",
2761 (state->used_solve ? "Auto-solved. " :
2762 state->completed ? "COMPLETED! " : ""), a, n2);
2763
2764 status_bar(dr, statusbuf);
2765 }
2766
2767 sfree(active);
2768 }
2769
2770 static float game_anim_length(game_state *oldstate,
2771 game_state *newstate, int dir, game_ui *ui)
2772 {
2773 int last_rotate_dir;
2774
2775 /*
2776 * Don't animate if last_rotate_dir is zero.
2777 */
2778 last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
2779 newstate->last_rotate_dir;
2780 if (last_rotate_dir)
2781 return ROTATE_TIME;
2782
2783 return 0.0F;
2784 }
2785
2786 static float game_flash_length(game_state *oldstate,
2787 game_state *newstate, int dir, game_ui *ui)
2788 {
2789 /*
2790 * If the game has just been completed, we display a completion
2791 * flash.
2792 */
2793 if (!oldstate->completed && newstate->completed &&
2794 !oldstate->used_solve && !newstate->used_solve) {
2795 int size = 0;
2796 if (size < newstate->width)
2797 size = newstate->width;
2798 if (size < newstate->height)
2799 size = newstate->height;
2800 return FLASH_FRAME * (size+4);
2801 }
2802
2803 return 0.0F;
2804 }
2805
2806 static int game_timing_state(game_state *state, game_ui *ui)
2807 {
2808 return TRUE;
2809 }
2810
2811 static void game_print_size(game_params *params, float *x, float *y)
2812 {
2813 int pw, ph;
2814
2815 /*
2816 * I'll use 8mm squares by default.
2817 */
2818 game_compute_size(params, 800, &pw, &ph);
2819 *x = pw / 100.0;
2820 *y = ph / 100.0;
2821 }
2822
2823 static void draw_diagram(drawing *dr, game_drawstate *ds, int x, int y,
2824 int topleft, int v, int drawlines, int ink)
2825 {
2826 int tx, ty, cx, cy, r, br, k, thick;
2827
2828 tx = WINDOW_OFFSET + TILE_SIZE * x;
2829 ty = WINDOW_OFFSET + TILE_SIZE * y;
2830
2831 /*
2832 * Find our centre point.
2833 */
2834 if (topleft) {
2835 cx = tx + (v & L ? TILE_SIZE / 4 : TILE_SIZE / 6);
2836 cy = ty + (v & U ? TILE_SIZE / 4 : TILE_SIZE / 6);
2837 r = TILE_SIZE / 8;
2838 br = TILE_SIZE / 32;
2839 } else {
2840 cx = tx + TILE_SIZE / 2;
2841 cy = ty + TILE_SIZE / 2;
2842 r = TILE_SIZE / 2;
2843 br = TILE_SIZE / 8;
2844 }
2845 thick = r / 20;
2846
2847 /*
2848 * Draw the square block if we have an endpoint.
2849 */
2850 if (v == 1 || v == 2 || v == 4 || v == 8)
2851 draw_rect(dr, cx - br, cy - br, br*2, br*2, ink);
2852
2853 /*
2854 * Draw each radial line.
2855 */
2856 if (drawlines) {
2857 for (k = 1; k < 16; k *= 2)
2858 if (v & k) {
2859 int x1 = min(cx, cx + (r-thick) * X(k));
2860 int x2 = max(cx, cx + (r-thick) * X(k));
2861 int y1 = min(cy, cy + (r-thick) * Y(k));
2862 int y2 = max(cy, cy + (r-thick) * Y(k));
2863 draw_rect(dr, x1 - thick, y1 - thick,
2864 (x2 - x1) + 2*thick, (y2 - y1) + 2*thick, ink);
2865 }
2866 }
2867 }
2868
2869 static void game_print(drawing *dr, game_state *state, int tilesize)
2870 {
2871 int w = state->width, h = state->height;
2872 int ink = print_mono_colour(dr, 0);
2873 int x, y;
2874
2875 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2876 game_drawstate ads, *ds = &ads;
2877 game_set_size(dr, ds, NULL, tilesize);
2878
2879 /*
2880 * Border.
2881 */
2882 print_line_width(dr, TILE_SIZE / (state->wrapping ? 128 : 12));
2883 draw_rect_outline(dr, WINDOW_OFFSET, WINDOW_OFFSET,
2884 TILE_SIZE * w, TILE_SIZE * h, ink);
2885
2886 /*
2887 * Grid.
2888 */
2889 print_line_width(dr, TILE_SIZE / 128);
2890 for (x = 1; x < w; x++)
2891 draw_line(dr, WINDOW_OFFSET + TILE_SIZE * x, WINDOW_OFFSET,
2892 WINDOW_OFFSET + TILE_SIZE * x, WINDOW_OFFSET + TILE_SIZE * h,
2893 ink);
2894 for (y = 1; y < h; y++)
2895 draw_line(dr, WINDOW_OFFSET, WINDOW_OFFSET + TILE_SIZE * y,
2896 WINDOW_OFFSET + TILE_SIZE * w, WINDOW_OFFSET + TILE_SIZE * y,
2897 ink);
2898
2899 /*
2900 * Barriers.
2901 */
2902 for (y = 0; y <= h; y++)
2903 for (x = 0; x <= w; x++) {
2904 int b = barrier(state, x % w, y % h);
2905 if (x < w && (b & U))
2906 draw_rect(dr, WINDOW_OFFSET + TILE_SIZE * x - TILE_SIZE/24,
2907 WINDOW_OFFSET + TILE_SIZE * y - TILE_SIZE/24,
2908 TILE_SIZE + TILE_SIZE/24 * 2, TILE_SIZE/24 * 2, ink);
2909 if (y < h && (b & L))
2910 draw_rect(dr, WINDOW_OFFSET + TILE_SIZE * x - TILE_SIZE/24,
2911 WINDOW_OFFSET + TILE_SIZE * y - TILE_SIZE/24,
2912 TILE_SIZE/24 * 2, TILE_SIZE + TILE_SIZE/24 * 2, ink);
2913 }
2914
2915 /*
2916 * Grid contents.
2917 */
2918 for (y = 0; y < h; y++)
2919 for (x = 0; x < w; x++) {
2920 int vx, v = tile(state, x, y);
2921 int locked = v & LOCKED;
2922
2923 v &= 0xF;
2924
2925 /*
2926 * Rotate into a standard orientation for the top left
2927 * corner diagram.
2928 */
2929 vx = v;
2930 while (vx != 0 && vx != 15 && vx != 1 && vx != 9 && vx != 13 &&
2931 vx != 5)
2932 vx = A(vx);
2933
2934 /*
2935 * Draw the top left corner diagram.
2936 */
2937 draw_diagram(dr, ds, x, y, TRUE, vx, TRUE, ink);
2938
2939 /*
2940 * Draw the real solution diagram, if we're doing so.
2941 */
2942 draw_diagram(dr, ds, x, y, FALSE, v, locked, ink);
2943 }
2944 }
2945
2946 #ifdef COMBINED
2947 #define thegame net
2948 #endif
2949
2950 const struct game thegame = {
2951 "Net", "games.net", "net",
2952 default_params,
2953 game_fetch_preset,
2954 decode_params,
2955 encode_params,
2956 free_params,
2957 dup_params,
2958 TRUE, game_configure, custom_params,
2959 validate_params,
2960 new_game_desc,
2961 validate_desc,
2962 new_game,
2963 dup_game,
2964 free_game,
2965 TRUE, solve_game,
2966 FALSE, game_text_format,
2967 new_ui,
2968 free_ui,
2969 encode_ui,
2970 decode_ui,
2971 game_changed_state,
2972 interpret_move,
2973 execute_move,
2974 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
2975 game_colours,
2976 game_new_drawstate,
2977 game_free_drawstate,
2978 game_redraw,
2979 game_anim_length,
2980 game_flash_length,
2981 TRUE, FALSE, game_print_size, game_print,
2982 TRUE, /* wants_statusbar */
2983 FALSE, game_timing_state,
2984 0, /* flags */
2985 };